LA-UR-02-0521

Approved for public release; distribution is unlimited.
Los Alamos National Laboratory

Submitted to: 43" Structures, Structural Dynamics and

Materials Conference
Denver CO
April 22-25, 2002

AlAA 2002-1570

LINKING PROBABILITY THEORY AND FUZZY SETS—A STUDY IN UNCERTAINTY ASSESSMENT

Jane M. Booker and Thomas R. Bement (posthumously)
Los Alamos National Laboratory
Los Alamos, New Mexico

Kimberly F. Sellers”

Carnegie Mellon University
Pittsburgh, Pennsylvania

Nozer D. Singpurwalla®
The George Washington University
Washington, D.C.

ABSTRACT

Uncertainties enter into a complex problem from
many sources: variability, errors, and lack of
knowledge. A fundamental question arises in how
to characterize the various kinds of uncertainty
and then combine within a problem such as the
verification and validation of a computer model,
reliability of a dynamic system, or a complex
decision problem. Our aim is to explore how
probability theory and fuzzy set theory can be
made to work in concert, so that uncertainty of
outcomes and imprecision can be treated in a
unified and coherent manner. Both the theoretical
and application of a linkage between the two
theories will be presented. An example from a
reliability application will illustrate how the linkage
between the theories is accomplished through the
use of Bayes Theorem and the probability of fuzzy
sets.
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INTRODUCTION

To many, the term uncertainty means an
absence of knowledge. To some variability or
variation is considered distinct from uncertainty. To
others the term embodies multiple sources
including variability and errors. Regardless of the
source, a fundamental question arises in how to
characterize the various kinds of uncertainty and
then combine them for a given problem in light of
decision-making. Examples of such complex
problems include computer model verification and
validation, and reliability prediction applications with
little or sparse data.

Broadly speaking, uncertainties can be classified
into one of two sources reflecting the meaning and
nature of uncertainty—aleatory or epistemic.
Aleatory uncertainty is found in physical and natural
variation, which cannot be reduced given new
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information, data, or knowledge. Epistemic
uncertainty is from the lack of knowledge and can
be reduced by increasing sample size or gaining
new information. Some propose a third category,
error, which could be either aleatory or epistemic,
and refers to errors, mistakes, and numerical
miscalculation. It is interesting to note the difficulty
in classifying the types of uncertainty into crisp
categories. Fuzzy sets are designed to address
this kind of uncertainty in classification.

Since Zadeh's! introduction of fuzzy set theory in

1965, probability and statistics are sometimes
considered inadequate for dealing with particular
kinds of uncertainty (even if data are available), and
probability models only the type of uncertainty
arising from the unknown outcome of an
experiment. Since it is quite possible that both
unknown outcomes and imprecision of
classification can be present in the same problem,
Zadeh has also claimed that “probability must be
used in concert with fuzzy logic to enhance its
effectiveness. In this perspective, probability theory
and fuzzy logic are complementary rather than
competitive.?” Agreeing with this philosophy, we
explore how probability theory and fuzzy set theory
can be made to work in concert, so that uncertainty
of outcomes and imprecision can be treated in a
unified and coherent manner.
Both the theory and application of a linkage
between the two constructs will be presented in the
sections below. The application is taken from the
PREDICT information integration methodology?®,
where traditional reliability data is sparse but
decisions on performance are nonetheless
required. In particular, the example illustrates how
the linkage between the theories is accomplished
through the use of Bayes Theorem and the
development of the probability measure of fuzzy
sets.

TWO THEORIES FOR UNCERTAINTY

Probability Theory

Probability theory can be described as providing
a calculus (an algebra) for determining the
uncertainty of outcomes of an experiment or event,
E. Let Q represent the set of all possible outcomes

of E. The theory does not tell us how to specify Q,
but Q may be countable and Q° = &. Let F denote
the set of all subsets belonging to Q. Define
subsets A and B such that A, B € F, and then
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(AUB) € F and (AnB) € F. These subsets are well

defined (or crisp). There is no ambiguity in
determining whether an outcome of E belongs to A
or it complement, AC.

Because E is going to be performed, we are
uncertain about the outcome of E, say w. Let P(A)

describe our uncertainty about the outcome, where
0 < P(A) < 1, and P(A) represents our bet that w

A. P(A) is the probability measure of the set A and
is known as the probability of event A. The bet is
two-sided on the occurrence or non-occurrence of
event A, and it will be unambiguously settled when
E is performed and wis observed.

Probability theory does not tell us how to arrive
upon a P(A), nor how to interpret P(A). There are
many different interpretations of probability®. The
willingness to bet is one, referred to as the
personalistic or subjective interpretation of
probability.

The calculus of probability dictates how this kind
of uncertainty combines or coheres for two or more
events. Similarly, we specify P(B) as a
guantification of uncertainty of another event, B,
when E is performed, for w € B. Then the basic

axioms of probability are:

0<P(A) <1 (1)
P(AUB) = P(A) + P(B) — P(AnB) @)
P(ANB) = P(A|B) P(B), ©)

where P(A|B) is the conditional probability of A
were B to occur.

Bayes Theorem is an important development of
conditional probabilities. If A is broken down into a
sequence of events, A;, A,, ..., then the discrete
probability form of the theorem is:

P(AIB) = [P(BIA) P(A)]/ P(B), |=1.2, ...,  (4)
where P(B) = £, P(B|A) P(A). Correspondingly,
the continuous form using probability density
functions (pdf), g and f, is:

a(elx) = [f(xl6)g (8] / [ f(xle) g(6) do, (5

where x is the random variable representing the
data for a given value of parameter, 6. The pdf on

the left is the posterior distribution obtained by
combining the function, f (for the data) with the prior
probability density function for 6. The function f can

be replaced by the likelihood function, which is not
a pdf. As will be seen later, the use of the likelihood
function and Bayes theorem provide an important
link between probability and fuzzy set theories.
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Fuzzy Set Theory and Membership Functions

Fuzzy set theory is useful in handling the kind of
vague uncertainty that can be associated with
classifying an event into a set. Unlike probability
theory, which demands that any outcome  belong

to set A or to A® and not both, fuzzy set theory
permits such joint membership. The degree of
membership belonging to any set is specified using
a membership function. A short example illustrates:

Let X denote the set of integers between zero
and ten, inclusive: X ={0, 1, 2, ..., 10}. Suppose we
are interested in a subset A" of X, where A" contains
all the medium integers of X:

A" = {x; x e X and x is medium}. To specify A", the
term medium integer must be defined. Most would
consider 5 as medium, but what about 7? Our
uncertainty (or vagueness) about what constitutes a
medium integer is what makes A" a fuzzy set, and
such sets occur in our everyday use (or natural
language). The uncertainty of classification arises
because the boundaries of A" are not crisp. The
integer 7 might have some membership (belonging)
in A", and yet also have some degree of
membership in A

A membership function, m,.(x) can quantify this
form of vagueness based on the degree of
membership. Specifically, m,.(X) is a number (by
convention, between 0 and 1) that reflects, in the
subjective view of an assessor, the extent to which
xeA". The assessor assigns to each xe X a

number, mu(X), and this is done for all subsets of
the type A’that are of interest.

As with probability, membership functions can
be combined from two or more fuzzy sets using
the following axioms:

M pr(X) = Max[ma(x), Mg«(x)] (6)
Mprng(X) = MIN[Max(X), Mg.(X)] (1)

Mac(X) =1 - Max(X) (8)
If Ma(X) = Mg«(x), then A"= B’ 9)
If Ma(X) < Mg«(X), then A"c B (10)

LINKAGE BETWEEN THE THEORIES

Four issues are important involving the
interpretation of membership functions relative to
probability theory. First, just as probability theory
does not tell how to specify P(A), fuzzy set theory
does not tell how to specify m,.(X). Second, while
probability axiom (1) bounds P(A), m,.(x) has no
such bounds. In most applications, it is simply a
convenience for mu.(x) € [0,1]. Third, while P(A)
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can be interpreted as a two-sided bet, m,.(x)
reflects an assessor’s view of the extent to which
xe A", Finally, it is not a requirement that the sum

over x of all m,(X) equal one, precluding my.(x) as
being interpreted as a probability.

Noting that m,«(x), as a function of x, reflects the
extent to which xe A, it is an indicator of how likely

it is that xe A". One interpretation of m,.(X) is as the

likelihood of x for a fixed (specified) A". A likelihood
function is not a probability. In statistical inference,
it is the relative degree of support that an
observation provides to several hypotheses.
Specifying the likelihood is also a subjective
process, consistent with membership function
definition and the interpretation of probability.

As noted below Equation (5), likelihoods are also
part of Bayes Theorem. If membership functions
can be interpreted as likelihoods, then Bayes
Theorem provides a valuable link from fuzzy sets
back into probability theory.

Related to this argument is the determination of
the probability measure of fuzzy sets. Again,
membership functions provide an important linkage
between the two theories, and again the purely
subjectivist interpretation will be important.

We begin with a subjective analyst (e.g., a design
engineer), D, who wants to determine the
probability of a fuzzy set, A’,

Po(A) = Py(XeA) (11)
where X denotes the uncertain outcome of an
experiment, E, and the subscript denotes D’s
personal probability. Because fuzzy sets are
involved, D now has to contend with two types of
uncertainty: the outcome of the experiment X=x and
the membership of x in A", Using probability theory,
D specifies two probabilities for these uncertainties:

e Py(x), D’s prior probability that x is the outcome

of E (an aleatory uncertainty), and

e Py(Xe A", D’s prior probability that the outcome

x belongs to A (an epistemic uncertainty).
Determining the first probability is straightforward
using D’'s knowledge about the experiment. The
guestion becomes how D determines the latter
probability. Perfect knowledge (or God) knows
exactly how to classify x with perfect precision.
While D will never know this, he/she does have
some partial knowledge about this classification,
albeit, imprecise, which determines P,(XeA). The

law of total probability dictates how these two
probabilities can be combined and interpreted:

Po(A) = Po(Xe A') = X, Pp(Xe A'|X=X) -Pp(X). (12)
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While D can assess these probabilities, suppose
he/she consults another expert, say Z (in honor of
Zadeh), whose knowledge is in the form of a
membership function. D needs to update equation
(12) in light of this new information. Appealing to
the law of total probability once more, and
assuming X is generated independently of m.(x), D
gets:

Po(Xe A'| mu(X)) = X,Pp(xe ATma(X))-Pp(X). (13)

The middle term in (13) can be evaluated using
Bayes Theorem, written in the form of probabilities
as

Po(xe A'IMa(X)) o< Po(Mae(X)] Xe A)-Pp(xe AY). (14)
The middle term in (14) is actually the likelihood
and, in this case, it corresponds to the membership
function. Combining Equations (13) and (14), we
establish the fundamental relationship between
probability and membership functions, including the
probability measure of fuzzy sets as:

Pp(Xe A mp(X)) oc X Ma(X)-Pp(xe A)-Pp(X)  (15)

A more complete mathematical and interpretive
development is available®.

RELIABIILITY EXAMPLE

A short example in reliability demonstrates the
combining of two different kinds of uncertainty
using equation (15). Reliability is the probability that
the system will successfully perform its function for
a given period of time and given specifications.
Because reliability is a probability, the solution is in
the space of probability theory, consistent with
development of Equation (15).

Assume we have a concept design for a new
automotive system, like a fuel injector. Many of the
components are also new designs, but may be
similar to ones used in the past, implying that
partial knowledge exists. Yet the designer, D,
wants to estimate reliability based upon whatever
information is currently available before building
prototypes or implementing expensive test
programs. D knows that knowledge, expertise,
historical experience, and even information from
vendors and suppliers of parts is valuable and,
when properly elicited and quantified, can provide
the desired reliability estimate under uncertainty.
The information integration methodology, PREDICT
(Performance and Reliability Evaluation with
Diverse Information Combination and Tracking),
provides the tools for such a daunting task®.
Included among those tools are the methods for
formally eliciting and analyzing the expert
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knowledge that exists within the experience base of
the design experts and suppliers®.

Consider a system, S, with three components A,
B, C, and one manufacturing process, MP, with all
items operating in a series reliability arrangement
as shown in Figure 1. A and B constitute
subsystem SS. This initial reliability logic flow
diagram might be the result of D’s first concept
design for the system.

D might decide upon a two-parameter Weibull
model to reflect the reliability, representing both the
components and the manufacturing process. The
Weibull model gives a time dependent estimate of
reliability (R):

R(t) = exp(-At?). (16)
Having a time dependent model is useful for
predicting reliability at strategic time periods for
warranty and regulatory purposes (e.g., EPA
regulations). Typical periods of interest are one and
three years or 100,000 miles. It is important to note
here that the conversion of miles to time is another
source of epistemic uncertainty. The conversion
can be accomplished using a probability density
function to represent the uncertainty associated
with how long it takes for various owners to
accumulate 100,000 miles.

In

o
5 |

T

>

Figure 1. Simple system reliability logic flow
diagram

Because the system is a new concept design,
test data is lacking for its components and process.
However, valuable information exists in the form of
the expert knowledge of its designer, D. Using
formal expert elicitation methods®, D identifies the
values and uncertainties for the two parameters, 8

(the slope) and A (the failure rate per scaled unit of

time) for each component and process. The
epistemic uncertainties in these parameters are
characterized by probability density functions and
translate into uncertainties for the reliabilities
through Equation (16).
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Each component and the MP are considered in
series; therefore the reliability of S is the product of
those individual reliabilities. The uncertainty
distribution for the system reliability at 3 years (36
months) is then calculated from the individual
uncertainty distributions using Monte Carlo
simulation.

Upon examining the reliability uncertainty
distribution for the system, D realizes that
improvements are necessary to make the reliability
acceptable to the design community. By examining
the uncertainty distributions that comprise the
system, component B is seen to have the worst
reliability, contributing the most to the over all poor
system performance; therefore D seeks additional
knowledge about this component to combine with
the prior probabilities that he/she has already
provided.

D consults the supplier of component B to see if
any additional information about its reliability can be
obtained before considering a test program to
obtain more data. However, the supplier’'s
information is not in terms of the Weibull
probability-based model. Instead, the supplier (2)
has membership functions for the reliability
assessment of B, shown in Figure 2, with
descriptions in Table 1.

Table 1. Z's fuzzy set reliability assessment

Fuzzy Set Linguistic Description
A Reliability is excellent

*

Upon examination of the information from Z, D
now asks about the probability that the reliability will
be in fuzzy sets A" or B’, taking advantage of
Equation (15) for combining the membership
function information with D’s prior probabilistic
assessment from the reliability analysis as
summarized in Table 2.

Table 2. Py(x), D’s prior assessment of the
reliability for B

X Po(¥)
0 0
0.25 0.0001
0.5 0.005
0.7 0.05
0.8 0.25
0.85 0.20
0.9 0.45
0.925 0.50
0.97 0.75
0.98 0.90
0.99 0.95
0.998 0.99
0.999 0.9999

To update component B in light of the new
information from Z according to Equation (15), D
must also assess the probabilities that values of x
belong to each of the five fuzzy sets. These
assessments are shown in Table 3.

B Reliability is nominal
c Reliability is poor
D’ Reliability is unacceptable Multiplying D’s probability values in Tables 2 and
E Reliability is ridiculous 3 with Z’s membership function values in Figure 2,
1 -~
0.9 + \ / \\
0.8 + \ / \
o 0.7+ . / \
Sost  \ / \
B05 . / \ -—- A*
Eoat \ / —--B
=03 . / —_C.
0.2 | N\ 7/ — - -E*
0.1 + X .
0 —/ = : :
0 0.2 0.4 0.6

Reliability @ 3 Years

Figure 2. Reliability membership functions for component B.
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and then summing over all values of x in Equation
(15) gives the desired probability for each of the
five fuzzy sets. However, these results are not
normalized. After normalizing for the five possible
sets (in Table 4), D obtains the estimates for the
reliability of component B based on the inclusion of
both kinds of uncertainty and all the available
information.

Table 3. D's assessment of Pp(x € fuzzy set)

X P,(xeA¥) P,(xeB* P,(xeC* P,(xeD*) P,(xeE*

0 0 0 0 0 0.91
0.25 0 0 0.025 0.05 0.09
0.5 0 0 0.11 0.495 0
0.7 0 0 0.18 0.4 0
0.8 0 0.005 0.23 0.05 0
0.85 0.002 0.20 0.21 0.005 0
0.9 0.038 0.225 0.18 0 0
0.925 0.14 0.21 0.06 0 0
0.97 0.15 0.18 0.005 0 0
0.98 0.16 0.16 0 0 0
0.99 0.17 0.02 0 0 0
0.998 0.17 0 0 0 0
0.999 0.17 0 0 0 0

Table 4 indicates that the probability of

“excellent” reliability is 0.74 and that of “nominal”
reliability is 0.17. D was hoping that those two
fuzzy sets would produce a combined reliability
value high enough to drive the system reliability to
greater than 0.96, to meet requirements and avoid
a test or prototype program. While falling a bit
short of this goal, D examines the other
components to determine if additional information
on those components improves the reliability for S.
In particular, another component has a large
uncertainty, whose reduction may be achieved by
investigating the existence of other information.

Table 4. Normalized Py(x € fuzzy set)

P, (xe A¥) 0.740
P, (xe B¥) 0.172
P, (xe C¥) 0.085
P, (xe D¥) 0.003
P, (xe E¥) 0.000

Once all additional information and knowledge is
acquired and included into the reliability analysis for
S, then more expensive options such as a test or
prototype program can be considered. Upon
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considering such expensive options, D can
estimate the reliability from potential outcomes of
tests by continuing to update the reliability
calculations. For example, D can ask: “What if we
build 38 parts, test them and they all pass, what
impact would this have on reliability?” Methods for
this kind of updating calculation (before actually
implementing the test program) can be found in the
PREDICT methodology®. If the reliability is not
sufficiently improved nor the uncertainty reduced
with such a test result, then D would reconsider
proposing that expensive program, and he/she
would pose other “what if” questions, including
design changes to determine the courses of action
necessary to achieve the reliability goal.

CONCLUDING REMARKS

The reliability example serves to illustrate how
different types of uncertainty can be
accommodated using two mathematical theories:
probability and fuzzy set, and how these two
theories can work in concert. Other alternative
theories exist’; however, linkages between them
are a matter of continued research. Complex
decision problems such as verification and
validation of computational and simulation models
are replete with uncertainties (aleatory and
epistemic) and errors in:

o experimental data (e.g., outcomes of

experiments and measurement errors),

e models and their parameters,

e numerical and computational methods.
Understanding, estimating and analytically handling
these may require the use of additional theories for
uncertainties, and will require linkages between
theories so that all can be combined coherently
within the same problem. This paper is only the
first step along that long and difficult journey.
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