
Experience with the CMS Event Data Model

P Elmer1, B Hegner2 and L Sexton-Kennedy3

1 Princeton University, Princeton, NJ 08544, USA
2 CERN, Geneva, Switzerland
3 FNAL, Batavia, IL 60510, USA

E-mail: benedikt.hegner@cern.ch

Abstract. The re-engineered CMS EDM was presented at CHEP in 2006. Since that time we
have gained a lot of operational experience with the chosen model. We will present some of our
findings, and attempt to evaluate how well it is meeting its goals. We will discuss some of the
new features that have been added since 2006 as well as some of the problems that have been
addressed. Also discussed is the level of adoption throughout CMS, which spans the trigger
farm up to the final physics analysis. Future plans, in particular dealing with schema evolution
and scaling, will be discussed briefly.

1. Introduction
In 2006 the re-engineered CMS EDM was presented during CHEP. Since then it has evolved to
meet some of the chalanges of scale and performance caused by its wide adoption within CMS.
Configuration documents have grown in size and complexity. The data model itself has grown
in complexity as well. Provenance and other types of non-event data have become important.
All of these things will be discussed in the next sections. [2]

2. Configuration
To use the framework, a physicist declares the name of the process to be run along with which
modules should be used in the job. Module declarations specify where data should be read
from, how new data should be created and where as well as which data should be saved to the
resulting EDM file.

In its initial design, a framework job was configured using a dedicated CMS configuration
language. Based on experience with the DZERO framework, it was designed as a declarative
language in which order of the statements didn’t matter; similar to a make script. However, this
turned out to be an unnatural choice for our users. They expected an interpreter model with
structured programming features. The addition of new, non-declarative features significantly
increased the complexity of the simple parser. Due to the maintenance costs of the custom
language, and anticipating further need for dynamical features, a new system based on Python
was designed and deployed for version 2 of CMSSW [3]. CMSSW is the entire offline software
code base which uses the re-engineered framework.

3. Data access
There are two types of data that can be stored in EDM files. Firstly event data which contains
objects like hits, tracks or jet collections are stored as so called products. The second type of

FERMILAB-CONF-09-307-CD-CMS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71327325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data are LumiBlocks and RunBlocks. More will be said about them later. Event data products
are uniquely identified using four pieces of information:

C++ class type Required for type safety, e.g., std::vector<Track> .
module label A unique string which was assigned to the module which constructed the object,

e.g., globaTrackFinder .
product instance label If a module inserts multiple objects of the same type into the event,

this string is used to differentiate the different products. If no product instance label is
specified during a data access then we use an empty string as the default since that is the
same default value used when data products are registered.

process name A unique string assigned to the process being run. This keeps data from different
processing steps (e.g., HLT or RECO) from interfering. If no process name is given during a
data access we default to the most recently run process which has a match for the other
three pieces.

Inter-product links between different objects are supported via CMS specific smart pointers
like edm::Ref<> which used when the concrete type is known and edm::Ptr<> used when the
reference is to a base class. For example, tracks contain a list of edm::Ref<>s to the hits from
which they are formed. A hypothesis for an event can be saved as a collection of edm::Ptr<>s
to generic physics analysis objects.

Data retrieval from the event can happen via various methods. The simplest example is
by specifying the object type and module label. Requesting a product from the Event class,
it returns a smart pointer of type edm::Handle<>. The following code reads an instance of a
collection of tracks created by a module called tracker. In case there is no match for this request,
an exception is thrown when the handle is dereferenced. It is also possible to test for a valid
handle if throwing an exception is undesirable :

Handle<TrackVector> tracks;
event.getByLabel(tracker,tracks):
std::cout << ‘‘The number of tracks in the ’’

<< tracker << ‘‘ collection is ’’ << tracks->size();

Based on the four product identifying strings explained above, individual products can be
kept or dropped at the end of the job as specified by the physicist. In addition products can be
defined as transient only and will then be dropped automatically.

Products within run and lumi data blocks which span longer time periods are also identified
and looked up by the same set of strings as event products. They can act as cache for objects
with the apropriate interval of validity and provide a store for e.g. offline DQM histograms.

This non-event data can become larger than the actual event data stored in the file, especially
in the later steps of the processing chain like a highly selective event skim. Such files usually
contain events from a large time window. Care must be taken to keep only the most highly
summarized information needed for analysis in these data products.

4. Data Storage
The initial goals of the design of the storage system were a) have a simple interface to the
physicist, b) ease of maintenance, c) good performance and d) avoid the need for doing analysis
outside of the experiment infrastructure for example analysis with n-tuples. The combination
of all these lead to the usage of ROOT and Reflex for the object storage. Whether all of these
goals were achieved will be discussed in the following sections.

4.1. Physicist User Interface
The steps needed for persistency is only visible to the person declaring a class as persistent and
for most of the types it is almost trivial. To store a collection of particles the following lines
need to be declared in a classes def.xml file:

<lcgdict>
<selection>
<class name="reco::Particle">
<field name="p4Polar_" transient="true" />
<field name="p4Cartesian_" transient="true" />

</class>
<class name="std::vector<reco::Particle>" />
<class name="edm::Wrapper<std::vector<reco::Particle> >" />
</class>

</lcgdict>
</selection>

These define the particle (and declare two of its members as transient caches), the desired
collection type and a wrapper to facilitate the storage in the event. Instead of directly holding
the data product, the storage actually holds an edm::Wrapper<> class which holds the data
product. This allows additional status information to be stored as well as giving a common base
class (edm::EDProduct) which provides a standard virtual destructor in order to properly delete
objects once the event has been processed.

In addition to advertising the persistent types the template types need to be instantiated for
the creation of the Reflex dictionaries.

#include "DataFormats/Candidate/interface/Particle.h"
#include "DataFormats/Common/interface/Wrapper.h"
namespace {
struct dictionary {
std::vector<reco::Particle> v1;
edm::Wrapper<std::vector<reco::Particle> > w1;
};

}

One of the unexpected draw backs of the ease of definition of even complex data types, is a
proliferation of complex class leading to an overly complex event data model. Though each of
these classes individually could be fine, their total sum caused huge performance and memory
penalties. Code review and policing turned out to be essential to keep the complexity of class
definitions at a reasonable level. Another lesson learned was that C++ meta-programming
techniques used encoded a lot of run time behavior in the type. For example the sorting
algorithm for a vector held by a class can be specified as a template argument to the class.
While these techniques can be elegant in a transient only application, in the persistent world
these templates will show up as different types, even though it makes no difference to the way
the data in the class is stored. This is a rather specialized form of template bloat. CMS has
corrected this where it can but we still need a special build of root that allows more type names
then the default of 4096.

4.2. Ease of Maintenance and Good Performance
Since no custom streamer code needs to be written, the class maintenance in terms of persis-
tency is kept minimal. Furthermore the choice of encouraging identical transient and persistent
representations of objects, avoids translation between the two and the resulting computation
overhead. Measurements with the full CMS framework (version 2.X.Y) on the access of, for

example the track collection, result in a throughput of 300 events/sec, and 3300 events/sec for
FWLite (see further below).

4.3. Analysis Access with ROOT
One of the main goals of the EDM was to allow ROOT users direct read access to the files
created by the framework. This is to allow the physicists to develop his analysis in ROOT
without creating custom n-tuples. Opening event files with ROOT is a very well received
feature and replaces many n-tuple use cases [4]. On top of this bare ROOT access, we provide
additional functionality which we call FWLite. FWLite consists of the data format libraries,
including Reflex dictionaries, an auto-loading mechanism, an event class that is similar to the
full framework interface. The auto-loader is based on the CMS plugin system and takes care
of finding the proper dynamic libraries needed for the products in a given EDM ROOT file.
Writing a ROOT based event loop, especially if the CMS smart pointers are used, presents a
series of difficulties for the physicists, as described in [4]. Therefore we provide a small event
loop which mimics the full framework, called fwlite::Event. FWLite again only relies on the data
format libraries. One application based on this lightweight framework is the Fireworks event
display [5], which has become the main event display for the use case of physics analysis.

The minimal code to access a track collection using FWLite is given below. As mentioned
it takes advantage of the automatic library loader, which loads all needed libraries to the given
EDM ROOT file:

//Load the autoloader
gSystem->Load("libFWCoreFWLite");
AutoLibraryLoader::enable();

#include "DataFormats/FWLite/interface/Handle.h"
TFile f(...);
fwlite::Event ev(&f);
for(ev.toBegin(); !ev.atEnd(); ++ev) {
fwlite::Handle<std::vector<Track> > tracks;
tracks.getByLabel(ev,"trackFinder");

The performance overhead of these lines compared to ROOT alone turns out to be negligible.
Applying the same auto-loader it is possible to write end-user analysis code in Python as well. [6]

To allow the packaging of a small distribution of only the data format libraries, all CMS
data objects are by design kept independent from algorithm or other framework components.
This strategy has been successful resulting in FWLite distribution rpms that are 20% of a full
CMSSW distribution.

5. Provenance information
Another feature of the CMS EDM is the addition of provenance information to aid in
understanding the history of processed data. Storing this within the ROOT file allows the
physicist to query the file with the tools we provide and gain confidence that they understand
what and how that data in that file was calculated. Already during cosmic data taking it
turned out to be a feature frequently used by end users and a valuable tool for debugging. It
is especially important due to the highly distributed nature of the CMS computing model. For
very small skims the full provenance information can easily become larger than the actual event
data. Thus, depending on the use case, the detail level of the provenance information can be
customized. More details can be found in [7].

6. Associations
The design choice of making objects read only once placed into the event, requires that addition
of information from further down the processing chain happens via associations. Some object
data can only be computed after an object has been created. For example, a b-tagging value of a
jet is attached to the jet by adding an entry for it into an association collection. An association
collection is a map like structure using persistent references. For this example the b-tagging
module creates a b-tagging association collection object to match its input jet collection. This
allows us the possibility of extending objects without changing the C++ type of that object
and thus increases the stability of our data format definitions. On the physicist’s side this can
lead to confusion since information related to a single object is spread among multiple event
products. This is being addressed by an additional analysis layer which acts as a view on the
RECO data and makes the data accessible via single entry points [8].

7. Splitting
The framework supports splitting of data at several levels. Some event data, like RAW and
RECO information, are complementary and do not always need to be processed or even
distributed together. To facilitate this, data can be split at event level among different files. If
data from both files are required, the reading process can do a synchronous read of the two event
TTrees, based on the event ID, which will reunify the event. Due to technical limitations both
trees are not equal. One of them has to be considered the primary data source. The primary
source controls which event IDs will be processed and can have persistent references to objects
in the secondary source. The secondary can not have references into the primary. It is for this
reason that the primary always has to be the output of a later step in the processing chain.

Another splitting of data happens on the product level. This improves the compression and
gives access to individual members of an object. On the other hand it sets boundary conditions
on the data types, e.g. if polymorphic members are used the data will not be split below that
place in the object hierarchy. Initially we started with a full split mode. Together with the
already mentioned complex data types, full splitting lead to a large number of branches, on the
order of 12,000. This resulted in a need for many I/O buffers and a huge memory footprint.

As the full split is often not really needed, the current policy is to set the split level at a
case-by-case basis. There the used split modes are based on known access patterns. For example
low-level RECO objects can easily be kept unsplit.

Another use case which demonstraits the limitation of too many output buffers is a central
skimming workflow. Since each output stream has its own copy of the I/O buffers, the memory
consumption scales with the number of skims run in a single job. The first time production
jobs with multiple outputs were run, during the 2007 Computing/Software/Analysis Challenge
(CSA07), there were large operational problems with memory consumption. Based on these
initial problems, the number of skims per job had to be limited to 4. Though we later improved
the situation by adjusting the split level of various products, we still faced a problem during the
following challenge iCSA08 , where a much huger number of alignment and calibration streams
were required.

8. Merging
To allow files to be of reasonable size for e.g. tape storage, multiple data files can be merged into
a single file. The file merging takes advantage of the fast cloning of TTrees and is thus entirely
I/O bound. Currently available I/O rates translate into an execution time of approximately
4 min to merge a typical set of files to a 4 GB ourput file. The order of the event files fed to the
merge is important as events are read in Event ID order. The readback of an unordered merge

can be extremely inefficient since any caching scheme will be defeated by the skipping around
within a file that will be needed to read a complete set of events sequentially.

The Framework will either store one copy or integrate the data accumulated, depending on
the interface provided by the user object, when multiple files are merged.

During the merge block information objects from the same Lumi- and RunBlocks get merged
automatically. The Framework will either store one copy or integrate the data accumulated,
depending on the interface provided by the user object. For integration each mergeable type
needs to implement a mergeProduct method. The major use case for this is the merging of
monitoring histograms used in the CMS DQM framework. Types whose data is constant for the
entire time interval must implement isProductEqual so that consistency of the files being merged
together can be checked by the EDM. Depending on the access pattern and available resources
the block merging can be done at various levels to control the memory usage. Especially for
the case where not properly ordered event files are merged, many temporary block information
objects need to be kept in memory if a full merge is done.

Delivering files in the right order sets an important requirement for the data and workflow
management tools of CMS. Both event data and block data products can be dropped on input,
i.e. ignored for the further processing if there are unsolvable conflicts in schema changes or
memory problems during merge.

9. Schema Evolution
Another major item before data taking is to deploy and commission ROOT schema evolution
in order to support old data being compatible with new software. We will collect many years
of data, and we cannot reprocess all of the data taken thus far for every release. Even in the
beginning there will be a rapid release cycle that only an ever decreasing fraction of the data will
be able to keep up with. Schema evolution is the palative for this situation. Schema evolution
will likely penalize I/O performance so it should be used with care. It should only be used to
“hold us over” until we have enough code changes to justify a reprocessing of all of the data
taken. In other words schema evolution should be used as an insurance policy not as common
practice.

10. EDM File Read Back
The organization of the data written into a file has a large effect on the performance of reading
it back. Since our data files are written once and read many times, the general rule of thumb
for CMS is that files should be optimized for read access, even if this will cost performance in
the writer or the work load management system. As an example of the later we show what the
read pattern can be after a write that was made in event ID order vs. one that was written
by the merging system without regard to ordering the fragment files according to event ID. On
the x axis is the read request number, and on the y axis is the offset in bytes into the file. You
can see that in the unordered plot the end of the file is read first. The workload management
system performance is decreased by having to wait for all of the fragment jobs to finish before
it can do the ordered merge but the resulting read of the ordered file is faster. Another feature
to point out in the ordered plot is the two lines with different slopes. The first line happens
quickly at the beginning of the job, and is caused by the read done to fast clone selected branches
from input into the output file. The second line represents represents reading events for RECO
processing. Different objects have different fill rates so different pieces of a single event gets
written to different places in the file.

11. Further I/O optimization
In an effort to improve the read patterns discussed in the previous section we have worked with
the root team to add two new features to their I/O layer. Both are currently under test.

Figure 1. Offset in bytes vs. read request number for a merged file ordered by eventID (left)
and a file merged without explicit ordering of events (right). More explanations in the text.

The first improvement involves a new feature of the tree cloner. The merging that we do to
form the final file size in our production system, gives us an additional opportunity to reformat
the data according to it’s read pattern. Fitting the general CMS strategy of read optimization,
we can specify and option to the tree cloner which will request that the files be merged and
written back out in read- instead of write-order. The second improvement also involves the
TTree class. In ROOT releases earlier than 5.22 all unfinished buffers are cached on the tree
data structure itself. Due to the large number of branches used in CMS, this results in large
memory allocations each time a new tree gets opened. The second added functionality allows
CMS writing applications to flush these buffers to the appropriate branches on the tree just
before closing the output files.

Figure 2. Offset in bytes vs. read request number for a merged file written in read-order. More
explanations in the text.

12. Summary
The CMS strategy of using the same model for both serially processed, raw and reconstruction
data, and direct access, analysis data has been challenging. Consequences of this are that
complex transient behavior has been captured in the persistent representation. This bloats
the size and complexity of types stored which negatively impacts perofrmance. However CMS
physicist users like this model. They appreciate the simple user interface, the ease of defining
dictionaries, the direct root access, and the automatic provenance tracking. This model has
wide adoption within CMS.

13. References
[1] Rene Brun and Fons Rademakers, ROOT - An Object Oriented Data Analysis Framework, Proceedings

AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
[2] C D Jones et al., The New CMS Event Data Model and Framework, ”Proc. CHEP 2006”.
[3] R Wilkinson, B Hegner, C D Jones, Using Python For Job Configuration in CMS, ”Proc. CHEP 2009”.
[4] F Fabozzi et al., Physics Analysis Tools for the CMS experiment at LHC, IEEE Trans.Nucl.Sci.55:3539-

3543,2008.
[5] D Kovalskyi et al., Fireworks: A Physics Event Display for CMS, ”Proc. CHEP 2009”.
[6] R Wilkinson, B Hegner , Usage of the Python Programming Language in the CMS Experiment, ”Proc. CHEP

2009”.
[7] C D Jones, File Level Provenance Tracking in CMS, ”Proc. CHEP 2009”.
[8] G Petrucciani et al, PAT: the CMS Physics Analysis Toolkit, ”Proc. CHEP 2009”

