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1. Introduction 
 
Human behavior is a function of an iterative interaction between the stimulus 
environment and past experience1. It is not simply a matter of the current stimulus 
environment activating the appropriate experience or rule from memory (e.g., if it is dark 
and I hear a strange noise outside, then I turn on the outside lights and investigate). 
Rather, it is a dynamic process that takes into account not only things one would 
generally do in a given situation, but things that have recently become known (e.g., there 
have recently been coyotes seen in the area and one is known to be rabid), as well as 
other immediate environmental characteristics (e.g., it is snowing outside, I know my dog 
is outside, I know the police are already outside, etc.). All of these factors combine to 
inform me of the most appropriate behavior for the situation. If it were the case that 
humans had a rule for every possible contingency, the amount of storage that would be 
required to enable us to fluidly deal with most situations we encounter would rapidly 
become biologically untenable. We can all deal with contingencies like the one above 
with fairly little effort, but if it isn’t based on rules, what is it based on? 
 
The assertion of the Cognitive Systems program at Sandia for the past 5 years is that at 
the heart of this ability to effectively navigate the world is an ability to discriminate 
between different contexts (i.e., Dynamic Context Discrimination, or DCD. While this 
assertion in and of itself might not seem earthshaking, it is compelling that this ability 
and its components show up in a wide variety of paradigms across different 
subdisciplines in psychology.  
 
We begin by outlining, at a high functional level, the basic ideas of DCD. We then 
provide evidence from several different literatures and paradigms that support our 
assertion that DCD is a core aspect of cognitive functioning. Finally, we discuss DCD 
and the computational model that we have developed as an instantiation of DCD in more 
detail. 
 
Before commencing with our overview of DCD, we should note that DCD is not 
necessarily a theory in the classic sense. Rather, it is a description of cognitive 
functioning that seeks to unify highly similar findings across a wide variety of literatures. 
Further, we believe that such convergence warrants a central place in efforts to 
computationally emulate human cognition. That is, DCD is a general principle of 
cognition. 
 
It is also important to note that while we are drawing parallels across many literatures, 
these are functional parallels and are not necessarily structural ones. That is, we are not 
saying that the same neural pathways are involved in these phenomena. We are only 
saying that the different neural pathways that are responsible for the appearance of these 
various phenomena follow the same functional rules – the mechanisms are the same even 
if the physical parts are distinct. Furthermore, DCD is not a causal mechanism – it is an 

                                                 
1 Personality undoubtedly plays a role in behavior, however, including individual differences in behavior 
that are due to personality structure is beyond the scope of the current discussion. 
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emergent property of the way the brain is constructed. DCD is the result of 
neurophysiology (cf. John, 2002, 2003). 
 
Finally, it is important to note that we are not proposing a generic learning mechanism 
such that one biological algorithm can account for all situation interpretation. Rather, we 
are pointing out that there are strikingly similar empirical results across a wide variety of 
disciplines that can be understood, in part, by similar cognitive processes. It is entirely 
possible, even assumed in some cases (i.e., primary language acquisition) that these more 
generic cognitive processes are complemented and constrained by various limits which 
may or may not be biological in nature (cf. Bates & Elman, 1996; Elman, in press). 
 
2. Dynamic Context Discrimination: An overview 
 
In forming our notions about how a computational model of cognition should look and 
act, we drew on evidence from a variety of literatures in psychology and cognitive 
neuropsychology. We wanted to ensure that the model we built honored what science 
knows about how the brain represents and processes information. Basically, the result of 
this research led us to DCD which states, at its most basic, that human behavior is an 
iterative, dynamic process that is supported by “higer order” cognitive functions such as 
memory and analogy. We see evidence for DCD not only in the response to sensory 
information, but we also see DCD operating in problem solving, text comprehension, 
language comprehension, and learning. Figure 1 illustrates DCD at a coarse-grained 
functional level. 
 
To summarize Figure 1, as information comes into the brain from the stimulus 
environment, the way it is interpreted is affected largely by situations that presented 
similar stimulus patterns. This similarity is determined via analogy, although we do not 
subscribe to the notion that there is a separate top-down analogy engine in the brain2. 
Rather, this is a bottom-up process of pattern recognition that originates in the way 
sensory information is encoded in the sensory cortices (see discussion below on the 
neurophysiology of sensation) and that is mediated by the already-recognized ongoing 
context. In this way, the same set of stimuli encountered at two different times can elicit 
somewhat different interpretations/responses based on the larger context in which they 

                                                 
2 Note that this process is not necessarily, or even usually, an explicit or effortful one. (Chi, Feltovich, & 
Glaser, 1981; Dunbar, 2001; Gick & Holyoak, 1980, 1983; Holyoak & Thagard, 1995; Klein, Calderwood, 
& Clinton-Cirocco, 1985; Novick, 1988; cf. Holyoak & Hummel, 2001; Roediger, 2000; Ross, 1984). 
Shastri (1999) calls this reflexive reasoning, and we believe this is the same phenomenon Klien and his 
colleagues observed with expert firefighters’ time-critical decision-making on the fireground (Klein, 
Calderwood, & Clinton-Cirocco, 1985). In Klein’s RPD, there is rapid retrieval and mapping – and the 
retrieval is based on rapid recognition of systematic relationships based on schema.  

In an interesting laboratory-based experiment, Ratcliff and McKoon (1989) found that retrieval of 
information based solely on surface features occurs within about 500 ms of target presentation, whereas 
retrieval of information based on structural features begins at around 700 ms. Clearly, there is a distinction 
between retrieval based on surface and structural features (the latter really being analogy), but whether or 
not conscious, effortful mapping occurs in that 200 ms lag time is another issue altogether. 

For additional work on this topic, see the literatures on implicit memory and implicit learning. 
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occur (Capaldi & Neath, 1995; Olafson & Ferraro, 2001; Spellman & Holyoak, 1996; 
Tulving, 1983). 

 
It is very important to note that there is never a time when the only information coming 
into the cognitive system is from the external sensory environment. It is also important to 
note that there is rarely a time when there is only one context operating (e.g., I am hungry 
and I am at work and it is 10 am and I am typing a paper). These already recognized 
situations impact the interpretation of new stimulus information coming into the 
cognitive system, whether that stimulation is external (e.g., it is warm in this room) or 
internal (I am tired).  In part, it is the top-down influences of these already-recognized 
contexts that make the model dynamical in nature. 
 
Regardless, once an interpretation of the current stimulus environment is formulated, a 
response follows. This response is based on memory, via analogy, for prior similar 
events. In general, if the consequences of the response are as expected, this episode 
contributes to the strength of the situation class that is defined by the present pattern of 
environmental stimuli. In general, if the consequences of the response are not as 
expected, some distinction is made between the assumed situation class and the current 
environment. At this point, the organism may then make a finer-grained distinction 
between two seemingly similar stimulus patterns. Of course, this requires that the 
organism is sensitive to not only the consequences of its behavior, but that it is also 
sensitive to the differences in stimulus environments that led to those differential 
consequences (see the literature on Einstellung, or mental set for an example of what 
happens in the absence of this sensitivity e.g., Luchins & Luchins, 1950; see also 
literature on negative transfer, e.g., Gick & Holyoak, 1987).The process of either 
differentiating similar patterns of stimuli or abstracting generalities from non-identical 
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patterns is an important dichotomy in DCD, as these functions are two sides of the DCD 
coin. This point will be explained in more detail the following literature review. 
 
3. Dynamic Context Discrimination as a core cognitive 
function: A review of the converging evidence 
 
In the following discussion, it is important to keep in mind that DCD is an iterative, 
dynamic process and that events in the past are constantly influencing the way that 
incoming information is interpreted. Therefore, while the following discussion is 
presented as though DCD had formal, cleanly separable stages, we recognize that is not 
necessarily the case.  
 
Regardless, the evidence we present below gives an overview of the kinds of data used to 
support the architecture of the model that is presented in a later section. These data 
inform not only the high-level functioning, but the low-level knowledge representation 
and how these interact with one another. The goal behind building this computational 
representation of human cognition was to create a model that is behaviorally, 
psychologically plausible and physiologically inspired. We use data from cognitive 
neuroscience regarding information representation and processing in the brain as our 
guide. Then we use the psychological literature to ensure the model is psychologically 
and behaviorally plausible. 
 
3.1 The neurophysiology of sensation and perception 
While our model, in its current state, does not include sensory organs, we do recognize 
that cognition happens in relation to, and therefore must be partially determined by, a 
physical presence in the world (cf. Petitot, 1995). We also recognize that the question of 
how information is represented needs to be addressed at the point at which environmental 
stimuli are initially registered in the cognitive system. Therefore, in order to develop a 
model that will eventually interface with synthetic sensory organs; we considered the 
neurophysiology of sensation in determining our knowledge representation and 
processing scheme. 
 
This literature indicates that as stimulus information propagates through the sensory 
cortices, individual cells (i.e., simple and complex cells) respond selectively to 
increasingly complex stimuli. Retinal ganglion cells respond selectively to very specific 
stimuli (e.g. a dot in a particular place in the visual field), but as information passes 
through the system, the responding cells are less and less selective about the stimuli to 
which they respond, essentially creating equivalencies between multiple similar, 
nonidentical sensory inputs. This is the case for vision (Huebel & Weisel, 1962; 1979), 
audition (Rauschecker, 2001; Richards & Kidd, 2001) and haptic perception 
(Rauschecker, 2001), and there is preliminary evidence that this is also true of olfaction 
(Youngentob, 2001) and taste (Halpern, 2001).  
 
In addition to increasingly complex equivalencies drawn by simple and complex cells, 
there are neurons in the brain (e.g., in the superior colliculus) that specifically respond to 
patterns of activity across multiple sensory cortices (Stein, Wallace & Stanford, 2000), 
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thereby encoding increasingly complex bits of information that include information 
across multiple senses. Interestingly, the integrative functioning of the neurons in the 
superior colliculus is dependent on connections to the cortex – once the connections to 
the parts of the brain that perform higher-level cognitive functions are severed, the 
neurons in the superior colliculus cannot respond in a way that enables them to integrate 
information from multiple sensory modalities (Stein, Stanford, Vaughan, & Wallace, 
2001).  
 
The important point to take from these findings is that the sensory system is set up to 
make distinctions between different stimuli as well as to make abstractions across 
functionally similar stimuli. In addition, it is clear from the existence of necessary two-
way connections between the cortex and the sensory pathways that there is iterative 
processing very early in a human’s perception of the environment. That these processes 
are apparent so early in the human/environment interface is important for the claims 
made by DCD that this iterative, dynamic discrimination process is a fundamental 
process in human cognition. 

 
3.2 Higher-order cognition: Memory and Analogy as the “engines” 
for DCD 
Once the brain has registered sensory information and has perceived meaningful, low-
level patterns in the environment, there can be a response to those stimuli. How those 
stimuli are perceived, and how those perceptions fit into the human’s ongoing 
understanding of the environment will determine exactly what that response will be. 
From the cognitive psychological perspective, this process occurs via memory and 
analogy. 
 
3.2.1 DCD in the absence of an ongoing context 
If we could start at the beginning, in the absence of pre-existing contextual interpretation 
(but not in the absence of world knowledge), understanding the current context would be 
based solely on bottom-up recognition of the unique meaning of patterns of stimuli 
currently in the environment3. Consider the following stimuli: 
  

Large semi-dark room  
Very large screen at front of room 

 Rows of large armchairs and sofas facing screen 
 Odwalla juice and Newman’s Own pretzel ads showing on the screen 
 
Chances are, even if you had no recollection of choosing a film, driving to the cinema, 
and buying your ticket, you’d know you were in a movie theater based on experiencing 
this pattern of environmental stimuli. Furthermore, you’d recognize this as a theater even 
though most theaters don’t have large armchairs, sofas, and Odwalla juice ads. This 
interpretation in the absence of any prior context happens via memory and analogy (see, 
e.g., Chase and Simon, 1973; cf. Klimesch, 1996, 1999).  

                                                 
3 We use the term “environment” to include both external stimuli such as sunlight and internal stimuli such 
as hunger or emotion. 
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Once a given context is recognized, expectations about appropriate behaviors and about 
potential upcoming events develop. Once I realize I am in a theater, I would proceed to 
find a seat and wait for the film to begin. Once the film begins, I know that I should not 
carry on a conversation with my friends and that I should not stand up in front of the 
screen for any length of time. In addition I expect the same courtesy from others, I expect 
that the film will begin within a reasonable timeframe, that there will be previews, and 
that the picture on the screen will be in focus. If any of these expectations is violated, 
attention is refocused to the aberrant events or behaviors and a reassessment of the 
situation and possible responses occur. Likewise, if my behavior falls outside of that 
expected for moviegoers, I can expect that others in the theater will respond to correct my 
aberrant behaviors. All of these expectations and behaviors rely on memory for past 
similar experiences and the consequences of behaviors exhibited in those past episodes. 
 
There are several related hypotheses in the memory literature that account for 
environmental stimuli acting as cues for recall of prior similar events (e.g., Glenberg & 
Swanson, 1986; Tulving, 1983). Probably the most well-known of these is Tulving’s 
encoding specificity hypothesis which states that the likelihood of recalling a given event, 
A at some time later than it’s initial presentation is a function of the similarity of the 
encoding context (at time 1) and the retrieval context (at time 2; Glenberg, 1984; 
Glenberg & Swanson, 1986; Neath & Crowder, 1990; Tulving, 1983; Watkins, 1979; 
1989; 1990; see also Godden and Baddeley, 1975 and Morris, Bransford & Franks, 
1977). The definition of “context” can include sensory stimuli such as odors, emotional 
state, physiological state, and characteristics of the stimuli themselves, but it does not 
have to have any intrinsic meaning with regards to the remembered items in order to act 
as cues  - they only do so because of temporal co-occurrence (Capaldi & Neath, 1995). In 
short, memory is largely a stimulus-controlled phenomenon (Capaldi & Neath, 1995; 
Nairne, 2002; Tulving, 1983; Watkins, 1989; 1990) and similarity in memory is defined 
by the correspondence between encoding context at T1 and retrieval context at T2. 
 
However, simply recalling a past experience that had a similar encoding context does not 
fully explain how we use our past experiences to help us interact with the ongoing world; 
the research on analogical thinking addresses this problem. Once a relevant memory (a 
source) is recalled, information known about that source is then applied to the current 
situation (the target). If the match between the source and the target is an effective one, 
any conclusions reached about the target based on the source are themselves likely to be 
effective (positive transfer). However, if the match is a poor one, an ineffective set of 
conclusions is likely reached (negative transfer; Butterfield & Nelson, 1989, 
1991;Catrambone & Holyoak, 1989; Gentner, 1983; Gentner & Markman, 1997; 
Ghodsain, Bjork, & Benjamin, 1997; Gick & Holyoak, 1980, 1983, 1987; Gick & 
Patterson, 1992; Holyoak & Thagard, 1995; Kolodner, 1997; Ross, 1996).  
 
Furthermore, the thinker’s perception of the current context can have an impact on what 
is recalled such that as perceptions of the same context change, past events considered to 
be similar also change (Spellman and Holyoak (1996); see also Capaldi & Neath, 1995; 
Tulving, 1983). Interestingly, analogy and transfer of training researchers have found that 
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domain novices tend to recall sources based on surface similarities between the source 
and the target (i.e.., irrelevant cues, or context alpha cues; cf. Capaldi & Neath, 1995). 
Domain experts, on the other hand, tend to recall sources based on structural aspects of 
problems (i.e., cues relevant to the relational structure of the problem, or context beta 
cues; Chi, Feltovich, & Glaser, 1981;Gentner, 1983; Gentner & Markman, 1997; Gick & 
Holyoak, 1980; Novick, 1988; Ross, 1996; cf. Capaldi & Neath, 1995; Klein, 1997; 
Klein, Calderwood, & Clinton-Cirocco, 1985).  Therefore, according to the analogy 
literature, similarity is defined differently for domain novices and domain experts. For 
novices, similarity is defined by readily observable, surface aspects of the problem while 
for domain experts, similarity is defined by the less obvious but more functionally 
relevant features of the problem. 
 
Once the analogous solution procedure is mapped onto and applied to the target, if the 
application is an effective one, an abstracted version (i.e., schema) of the problem class 
can then be created or augmented (Gentner & Markman, 1997; see also Gick & Holyoak, 
1983 and Watkins & Kerkar, 1985 for additional evidence of schema creation in problem 
solving and memory, respectively and see Feldman, 2003 for a related idea in the 
category learning literature). If the application of the source to the target is ineffective, 
the thinker is then in a position to make a distinction between the source and the target 
(and their respective problem classes) based on the differences between the two situations 
(e.g., Butterfield & Nelson, 1989, 1991; Ghodsain, Bjork, & Benjamin, 1997; Gick & 
Patterson, 1992; Kolodner, 1997. Also see the section below on learning paradigms for 
additional empirical support). Either way, by relating current events to prior known 
events, the thinker learns about the world incrementally. 
 
While much of the research on analogy has been done in the laboratory, many researchers 
recognize that it is, indeed, a core feature of our general cognitive abilities (Forbus, 2001; 
Hofstadter, 2001; Holyoak, Gentner, & Kokinov, 2001; Holyoak & Hummel, 2001; 
Holyoak & Thagard, 1995; Kolodner, 1997; cf. Glenberg, 1997). To quote one such 
researcher: 
 

“If analogy were merely a special variety of something that in itself lies way out 
on the peripheries, then it would be but an itty-bitty blip in the broad blue sky of 
cognition. To me, however, analogy is anything but a bitty blip—rather, it’s the 
very blue that fills the whole sky of cognition—analogy is everything, or very 
nearly so, in my view” (Hofstadter, 2001, p. 499, italics in original).  

 
3.2.2 DCD in an ongoing context 
Despite the above discussion, there is almost never a time when we interpret 
environmental stimuli in the absence of a larger context. Therefore, DCD must be able to 
deal with the introduction of new stimuli and how stimulus interpretation is affected by 
larger contextual understanding.  
 
In the presence of an ongoing contextual understanding, the basic process of DCD really 
doesn’t change – it is still based on pattern recognition supported by memory/analogy. 
However, the ongoing already-recognized context does introduce some bias into the 
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interpretation of new incoming stimuli and it biases what is recalled based on those 
interpretations. In other words, ongoing contextual understanding exerts a top-down 
influence on both the low-level perceptual processes4 in that it exerts influence over 
attentional processes, as well as higher-level cognitive interpretations (i.e., memory, 
analogy) of the perceived stimuli. 
 
There are several interesting memory phenomena that illustrate top-down influence on 
ongoing context interpretation (e.g. Roediger, 1996). For example, recall Brewer and 
Treyens’ (1981) well-known study in which undergraduates had to recall items from a 
“graduate student’s office” in which they were asked to wait prior to the beginning of the 
“real” experiment. Brewer and Treyens (1981) found that the typicality of items was 
significantly correlated with their likelihood of recall5. In addition, they found that 
typicality also predicted whether items that were not present in the room would be 
intruded into subjects’ recall protocols. Undergraduates used their prior knowledge of a 
schematized version of a graduate student’s office to help them recall the specific items 
that were present in a particular instance of such an office – regardless of whether those 
items were actually present or not. 
  
A related laboratory phenomenon is the false recall phenomenon. In one typical false 
recall paradigm, subjects learn a list of words, all of which are highly semantically related 
to a given critical non-presented target word. For example, if the target word is school, 
subjects may learn words like bus, teacher, chalkboard, homework, but will never see the 
word school. When asked to recall the list, subjects recall having seen the word school on  
40%  to 55% of trials (as compared to approximately 14% of trials for other English 
words; Roediger & McDermott, 1995). In addition, when subjects are asked whether they 
simply know the target word was on the initial list or whether they have a conscious 
recollection of it having been there, they indicate that they have a conscious recollection 
for the presence of that particular item the vast majority of the time. For example, Payne 
and his colleagues (Payne, Elie, Blackwell, & Neuschatz, 1996) had a male experimenter 
and a female experimenter present lists of words to subjects. After recalling words from 
the lists, subjects were asked whether they actually remembered hearing one of the two 
experimenters read the word or if they just knew the word had been on the list. If subjects 
indicated they remembered an experimenter reading the word, they were asked which of 
the two had done so. Subjects were willing to say that the critical non-presented item was 
read by an experimenter 87% of the time, compared to 94% for words that were actually 
on the list.  
 
Finally, top-down influences on the DCD process are well illustrated in the eyewitness 
testimony research made famous by Elizabeth Loftus and her colleagues (Loftus, 1975; 
Loftus & Palmer, 1974; Loftus & Zanni, 1975). In one typical study, subjects are shown a 
series of slides depicting a car crash. Half of the subjects are asked how fast they thought 
the car was going when it “smashed” into the other car, while the other half were asked 

                                                 
4 We are making the classic psychological distinction between sensation and perception in this model. That 
is, sensations are raw sensory data that come into the cognitive system whereas perceptions are the 
beginnings of interpretations of those sensations by the brain. 
5 Typicality was measured for all items used in a separate study. 
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how fast they thought the car was going when it “ran into” the other car. Subjects in the 
“smashed” condition reported seeing broken significantly more often than those in the 
“ran into” condition, even though there was no broken glass in the scene. This particular 
set of experiments demonstrates that DCD operates not only for ongoing experiences, but 
also for recall of prior experiences.  
 
The above studies emphasize that memory is reconstructive rather than reproductive 
(Greene, 1992; Roediger & McDermott, 1995; Talarico & Rubin, 2003). We don’t 
remember things verbatim – we recall the gist of events and fill in the holes based on our 
expectations for what most likely happened. These expectations are dictated both by our 
general knowledge of the world as well as by the current stimulus environment. Things 
not recalled about an event in one context are recalled in a different context, and newly 
acquired knowledge can impact the way that prior events are conceptualized (Roediger, 
2000; Spellman & Holyoak, 1996; Tulving, 1983; cf. Zwaan & Radvansky, 1998).  
 
There is a corollary to the encoding specificity principle that is of interest to the DCD in 
that it explains why schema creation, which is essential to DCD (and human behavior in 
general) might be a byproduct of the inherently reconstructive (rather than reproductive) 
nature of memory - the cue overload hypothesis. This hypothesis states that, “…the 
efficiency of a functional retrieval cue in effecting recall of an item declines as the 
number of items it subsumes increases” (Watkins & Watkins, 1975, p. 443; see also 
Watkins, 1979). That is, the more times you experience a given type of episode, the less 
likely you are to recall details of any given instance of that class of episodes (cf. Watkins 
& Kerkar, 1985; see also Feldman, 2003 for a related idea in the concept learning 
literature).  That is, as you experience a given type of situation more and more often, you 
develop an abstracted version of that situation, or a schema. 
 
In the confines of the memory literature, the cue overload hypothesis explains a variety of 
phenomenon including: 

• buildup and release from proactive inhibition (Capaldi & Neath, 1995) 
• delayed match to sample tasks (Capaldi & Neath, 1995) 
•  the von Restorff effect (i.e., distinctiveness; Cimbalo, Capria, Neider, & Wilkins, 

1977; Huang & Wille, 1979; Schmidt, 1985, 1991; Wallace, 1965; Watkins 
1979).  

 
The cue overload hypothesis is important to DCD because it is the flip-side of the 
encoding specificity coin. That is, while the stimulus environment serves to limit the 
potential “search space” for recallable items (cf. the indexing problem Kolodner, 1997), 
the cue overload hypothesis explains observed flexibility for recall such that the stimulus 
environment does not have to be an exact match in order for a given item or event to be 
recalled because equivalencies form between multiple non-identical episodes. 
Furthermore, the formulation of the cue overload hypothesis in the memory literature (as 
opposed to the analogy literature) provides converging evidence of a compelling 
mechanism by which schema arise as a result of the normal functioning of memory. If 
schema creation were always a conscious, effortful process (cf. Gick & Holyoak, 1983), 
it would be very difficult for humans to interact with the environment – we would either 
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not be able to apply information from our past experience unless there was a perfect 
match between current and past contexts, or we would spend so much time explicitly 
creating schema that we would have no time to do anything else6.  
 
3.3 Other examples of DCD 
 
3.3.1 Learning paradigms in the radical behavioral tradition.  
Despite its fundamental opposition to studying “mental events,” paradigms from the 
radical behavioral tradition actually contribute evidence to our argument that DCD is a 
core human cognitive process. According to behavioral theories, behavior evolves over 
time as a function of consequences of those behaviors. If a behavior has desirable 
consequences, the person will be more likely to engage in that behavior in similar 
circumstances in the future (i.e., the behavior is reinforced). If consequences are aversive, 
the person is less likely to engage in that behavior in similar circumstances (i.e., the 
behavior is punished) 7.  
 
Similarly, when a person attempts to solve a problem and that solution fails, that person 
will be less likely to attempt the same sort of solution in a similar situation in the future. 
Likewise, if the solution succeeds in the first place, that solution will be more likely to be 
used in similar situations in the future. 
 
3.3.1.1 Stimulus generalization and discrimination 
The question then becomes what constitutes a “similar” situation? Behaviorists define 
situations according to environmental stimuli that are present or absent at a given time.  
Examining situation similarity involves measuring response rates in both humans and 
animals as the stimulus set is manipulated parametrically. The level of stimulus 
generalization is plotted according to the parameters used to modify the stimulus set, 
creating a stimulus generalization gradient that shows the change in response rate as a 
function of the parametric modification of the stimulus (Donahoe & Palmer, 1994).  

                                                 
6 The encoding specificity principle and the schema-creation aspect of cue overload can be invoked to 
explain why analogies are so difficult to elicit in the laboratory. The finding is that if students (who are 
invariably domain novices with regard to the types of problems used in analogy research) are given 
multiple examples of the same class of problem and are then asked to explicitly identify how those 
examples are similar (that is, they are asked to consciously create a schema for that problem class), they 
have no difficulty making the analogy to a new example (Catrambone & Holyoak, 1989; Gick & Holyoak, 
1983). However, in the absence of this explicit schema creation exercise, and in the absence of explicit 
hints, students fail to make the analogy the majority of the time (Gick & Holyoak, 1980; 1983). There are a 
couple of reasons for this. First, they have not had enough experience with this class of problems to 
recognize the structural features (i.e.., the relational aspects of the problem), so they instead suggest 
solutions from other situations with which they are more familiar – those that share surface features with 
the current problem. Second, because novices tend to pay more attention to surface features rather than 
structural features of problems, the T1 context tends to comprise mostly surface features. It is only after 
they have had sufficient experience with the problem class that the T1 encoding comprises mostly 
structural features (cf. Butterfield & Nelson, 1989, 1991; see also Ross, 1996), allowing ready transfer to 
T2 problems that contain the same structural features. 
7 It is important to note that reinforcers and punishers are highly individualized. Ultimately, the whether a 
consequence is a reinforcer or punisher is defined by its impact on subsequent behavior. 
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One classic example of stimulus generalization occurs in pigeons. In this research, a 
pigeon is trained to peck a button below a blue light – a behavior that is reinforced with a 
food pellet. As the color of the light is changed from blue to green and eventually 
towards green-yellow, response rates decline parametrically the further away the color 
gets from pure blue. The same decline happens as the color moves through indigo and 
into red (see Figure 2). The important issue then becomes what stimuli are considered 
sufficiently similar to elicit similar responses? Behaviorists appeal to the concept of 
stimulus classes. 
 
3.3.1.2 Stimulus classes 
A stimulus class is a group of similar stimuli that act as indicators that a particular 
context is in operation, indicating that certain behaviors will result in certain 
consequences. A stimulus class can also be thought of as a problem class that is based on 
structurally similar features (Capaldi & Neath, 1995). There are two different types of 
stimulus classes: discriminative, and functional. Discriminative stimuli are stimuli that 
are physically similar (e.g. the blue light in the pigeon example above) that indicate that 
certain behaviors will result in certain consequences. Functional classes, on the other 
hand, are not physically similar to one another, but they still elicit similar behaviors. For 
example, because toys all support “playing behavior” anything considered a toy would 
belong to a functional class. 
 
Stimulus classes are learned over time through experience and through differential 
reinforcement. With differential reinforcement you learn, by way of the consequences of 
your behaviors, which contexts will result in which consequences given a certain set of 
behaviors. For example, some of us may have learned the hard way to actually look for a 
“Please wait to be seated” sign and/or a hostess station when we walk into a restaurant. 
Either we stood around waiting to be seated when it was not appropriate for that 
restaurant, or we seated ourselves, only to be ousted. Or both. The presence of the sign 
and/or station is part of a functional stimulus class that elicits waiting-to-be-seated-
behavior that has been differentially reinforced when members of that class are present 
(Donahoe & Palmer, 1994). Furthermore, there is evidence that these kinds of stimulus 
classes form without any conscious effort on the part of the learner and that, in some 
circumstances, effortful processing is actually detrimental to formation of such classes 
(Brooks, 1978, cited in Donahoe & Palmer, 1994).  
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Figure 2. A conceptual example of a generalization gradient. 
 

 
3.3.1.3 Stimulus classes, prototypes, and schemas 
According to the radical behavioral tradition, prototypes can be thought of as examples of 
a given stimulus class that exhibit the most typical combination of characteristics that are 
exhibited by that class (which itself is determined by reinforcement). A prototypical dog 
has certain characteristics that differentiate it from other animals. Similarly, schemas are 
abstracted forms of instances or episodes – they contain the key aspects of the class 
which differentiate that class from others. Both the notions of prototype and schema 
allow for additional details to be incorporated as they are encountered. Furthermore, both 
can be thought of as the core properties of a given concept or context class – the 
structural features, those characteristics that make the concept or class what it is. 
Interestingly, radical behaviorists maintain that stimulus classes (a.k.a. prototypes, 
schemas) have several characteristics, three of which are: 
• class boundaries are “fuzzy” such that no one feature or characteristic is necessary for 

the discrimination of the class from other classes (c.f., Chi, Feltovich, & Glaser, 
1981; Spellman & Holyoak, 1996) 

• final class characteristics are individualized in that each individual organism has a 
different history with contingencies that affected the creation of the class for that 
individual (c.f., Chi, Feltovich, & Glaser, 1981; Ross, 1996)  

• the “existence” of a class/prototype/schema is an emergent property of the 
reinforcement history of the organism – in actuality the organism behaves as though 

Light wavelength 

Total  
Responses 
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the class actually exists, but there is no one place or central agent that controls, stores, 
or owns the class/prototype/schema (Donahoe & Palmer, 1994; c.f., Kolodner, 1997). 

 
3.3.1.4 Differential reinforcement, problem solving, and DCD 
We know that in problem-solving, and in generally interacting with the world, people 
appeal to their past experiences in order to determine appropriate behavior for current 
situations. We also know, from the previously reviewed literature that this phenomenon is 
not always an explicit and effortful process. The method by which this happens can be 
conceived of as a more complex example of stimulus generalization and discrimination. 
If the stimuli in the current environment are sufficiently structurally similar to those 
encountered during Situation A (and more similar to A than to any other experience), 
then the behaviors exhibited in the current situation will most probably parallel those 
exhibited in Situation A. If the consequences of exhibiting those behaviors in Similar-To-
A situations are aversive, the person will display what behaviorists call “stimulus 
discrimination” over a series of similar experiences. That is, the person will begin to 
determine how the current situation class differs from the class Situation A. When those 
differences are present in future Similar-To-A situations, they will have an impact on 
which set of behaviors are chosen – specifically, where the person might exhibit Behavior 
1 in Situation A, he will avoid exhibiting Behavior 1 in certain Similar-To-A situations 
because Behavior 1 brings about unpleasant consequences in Similar-To-A (cf. 
Butterfield & Nelson, 1989, 1991; Gick & Patterson, 1992).  
 
Interestingly, one recommendation in the literature on analogy and transfer of training is 
to allow students to make and correct their own errors in order to enable them to make 
more finely tuned discriminations regarding when particular solutions are and are not 
appropriate (Butterfield & Nelson, 1989, 1991; Ghodsain, et al., 1994). This 
recommendation, in essence, allows the student to develop a unique reinforcement 
history for solving problems in the domain of interest.  
 
3.3.1.5 Context discrimination and non-humans 
Up to now, we have not explicitly stated that DCD is uniquely human. However, in most 
areas of cognitive research, this assumption is implicit as humans are the only subjects 
studied. This assumption is important because it implies that DCD is, evolutionarily 
speaking, a relatively late-arriving feature of our cognitive systems. Interestingly, there is 
evidence from the radical behavioral literature that this kind of ability, at least at some 
level, is not unique to humans, primates, or even to mammals.  
 
Zentall and his colleagues (discussed in Zentall, 2003; see also Capaldi & Neath, 1995) 
have found evidence for social learning by imitation in non-mammals. For example, 
when a bird (Bird A) watches another bird (Bird B) receive reinforcement for stepping on 
a treadle, Bird A’s instances of subsequently stepping on the treadle are much higher if 
Bird B was reinforced (i.e., given a food pellet for stepping on the treadle). In order for 
this to happen, Bird A must (at some level) recognize the similarity of itself to Bird B, 
and it must be able to recognize that it can produce behavior that is similar to Bird B’s 
behavior. These data are particularly compelling considering the behaviors Zentall and 
his colleagues studied are opaque. The way that stepping on a treadle appears to a quail 
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when it is watching another bird is vastly different from the way that same behavior looks 
to the bird when it is performing the behavior itself. This imitation behavior will occur 
even if the observation period and the observer performance is deferred up to 30 minutes 
in Japanese quail (Zentall, 2003; see also Herrnstein & Loveland, 1964 for additional 
non-human examples).  
 
3.3.2 Language comprehension and production 
The use of language is a quintessential human capability – to our knowledge, no other 
organism has as broad and as flexible a communication system as we do. What makes 
human communication so distinctive is the fact that we can, with little to no difficulty and 
conscious awareness, produce and comprehend thousands of novel sentences a day. 
Moreover, we rarely produce sentences that are ungrammatical, but when we do, our 
audience rarely has difficulty understanding what we intended to say. That is, because of 
a deep understanding of the mechanics of our native language (or any language in which 
we are proficient, really), we can combine and recombine individual words and sounds 
into perfectly understandable, novel strings that impart meaning to the listener. This, in 
turn, enables the listener to respond appropriately. This ability requires a flexibility that 
cannot be accounted for by explicit rules. This section will review different aspects of the 
human ability to use language effectively and flexibly: phenomena that can be interpreted 
to support the perspective that DCD enables agile use of language. There are a couple of 
separate problems that listeners must be able to solve if they are to understand spoken 
language: segmentation of speech into individual words and disambiguation of word 
meaning. 
 
3.3.2.1 Speech segmentation 
Listening to an unfamiliar foreign language makes abundantly clear one problem every 
human being has to solve: how to segment the speech stream into individual sounds and 
words. This process is inherently dynamic: language, whether written or spoken, is 
temporal in nature thus the ongoing interpretation of the message being relayed is a 
function of what has already been communicated and of the incoming stimuli. This is true 
at the level of the phoneme as well as at the lexical level (Carroll, 1994).  
 
Methods for speech segmentation, as it turns out, seem to rest on particular aspects of the 
language in question. For example, English is based on differential syllabic stresses, so 
native speakers of English use the correlations between syllabic stress and word endings 
to determine word boundaries. French, on the other hand, is based on syllable rhythm; so 
French speakers use this rhythm to determine word boundaries. Speakers of Japanese use 
a subsyllabic unit, the mora, to determine word boundaries (Otake, Hatano, Cutler, & 
Mehler, 1993). For example, in one set of experiments, native speakers of French were 
faster to detect the segment ba in the word ba.llance than they were in the word bal.con 
(where dots indicate syllable boundaries), but native speakers of English did not show 
this difference (Vroomen & de Gelder, 1995). English natives, on the other hand, have 
difficulties when the segment to be identified crosses stress boundaries. 
 
3.3.2.2 Disambiguation of meaning and lexical access 
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Segmenting the speech stream into individual words is not the only problem listeners 
have to solve. Interpretation of the linguistic message changes over the timecourse of an 
utterance. Interpretation is determined by several factors including word choice, use of 
syntax, and the prosodic and intonational characteristics of the stimulus. In addition, 
conditions under which an utterance is produced have an impact on meaning (Carroll, 
1994).  
 
Interestingly, many utterances that are perfectly understandable in the context of a steam 
of speech are totally unintelligible when isolated. For example, in one compelling 
experiment, Pollack & Pickett (1964; cited in Carroll, 1994) recorded conversations of 
women sitting in a soundproof room while waiting for a psychology experiment to begin. 
When they spliced out individual words from the speech stream, only about 50% were 
intelligible outside of the context of the conversation, whereas virtually all were 
intelligible when embedded in the speech stream, demonstrating the powerful influence 
of overall contextual understanding on ongoing language comprehension. 
 
Not only does the intelligibility of individual words change with the context – so can the 
interpretation of the meaning of individual words. Take for example the effects of word 
choice on meaning for two sentences that follow (taken from Spivey-Knowlton & 
Sedivy, 1995). The stem of the sentence is the same for both: The Arapahoe Indian shot 
the cowboy with... This stem can be completed several different ways, depending on the 
choice of words that complete the final prepositional phrase. Only once that final phrase 
is complete will the meaning of the entire sentence become clear. 
 

1. The Arapahoe Indian shot the cowboy with the bow and arrow. 
2. The Arapahoe Indian shot the cowboy with the leather vest. 
 

As the sentences unfold, the way that the final prepositional phrase is interpreted changes 
the interpretation of the entire sentence. Interestingly, sentence 1 can be interpreted in 
two ways: a bow and arrow was used to shoot the cowboy, or the cowboy with the bow 
and arrow was the one who was shot. However, people prefer the former interpretation 
(Spivey-Knowlton & Sedivy, 1995). The fact that people tend to prefer to affiliate the 
prepositional phrase at the end of the sentence (as in sentence 1) rather than with the noun 
phrase (as in sentence 2), but that we can quite rapidly reinterpret sentence 2 so that it 
makes sense demonstrates the flexible and dynamic nature of language comprehension.  
 
In addition to word choice and syntax, prosody and intonation are two cues used by both 
infants and adults to aid language comprehension. Using prosodic cues, young infants can 
distinguish between languages that have different prosodic rhythms, but not between 
languages that have similar rhythms (Cutler, 2001). In non-infants, prosody also 
contributes to understanding the intent of the speaker, especially in infant-directed speech 
(Fernald, 1989; Hofstadter, 2001). However, these effects are not limited to infant-
directed speech (e.g., say aloud the phrases LIGHThouse keeper and LightHOUSE 
keeper, placing emphasis on the words in capitol letters; Carroll, 1994; Vroomen & de 
Gelder, 1995). As Hofstadter asserts, there are “probably” situations and then there are 
“probab-lee” situations (Hofstadter, 2001 p. 507). 
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Contextual influences on language comprehension are also found in categorization of 
phonemes (Berko-Gleason, 1993; Menn & Stoel-Gammon, 1993). Speech stimuli with 
identical physical characteristics are perceived as entirely different sounds depending on 
the context in which they occur and on the native language of the speaker. For example, 
/b/ is heard as the letter “b” by native speakers of English and as the letter “v” by native 
speakers of Spanish.  
 
As with context interpretation, language comprehension is both a bottom-up and top-
down process. When top-down influences are strong, the sensory stimuli are more 
quickly recognized than when top-down influences are weak. This is true for both spoken 
and written language (Carroll, 1994; Spivey-Knowlton & Sedivy, 1995). This is also true 
for assigning particular meanings to more abstract words (such as a container that holds 
apples versus a container that holds soda) and for later recall of a target word (Carroll, 
1994). Overall, language comprehension can be thought of as a class of context 
discrimination problems – determining the intended meaning of the speaker and 
formulating an appropriate response relies upon the listener’s ability to attend to and 
accurately interpret various lexical and prosodic cues in the speech stream. 
Misunderstandings occur when errors in context discrimination are made. 
 
3.3.2.4 Non-human language capabilities 
 
As previously mentioned, one very difficult problem that infants must solve in order to 
acquire their native language is the ability to segment the continuous speech stream into 
phrases and words and to learn syntactic structure from the incomplete, or sparse input to 
which they are exposed. These problems has been used by some theorists to argue for a 
specific language acquisition-type device because the problem seemed intractable for 
general learning mechanisms (Bates & Elman, 1996; Pinker, 1991, 1994). However, the 
less is more hypothesis states that it is the limited nature of infant’s cognitive capabilities 
that enable them to perform this parsing task, rather than some specialized device that 
atrophies after a certain age (Newport, 1988, 1990; see Elman, 1993 for a related 
computational model). If there is, indeed, a human-specific language acquisition device, 
we should not expect to see similarities between the discriminations that human infants 
can make and those that other non-humans can make. However, Hauser, Newport, & 
Aslin (2001) have demonstrated that non-human primates are able to make some of the 
same statistical discriminations in a continuous speech stream that human infants are able 
to make (Saffran, Aslin, & Newport, 1996; see also Morgan, Meier, & Newport, 1987). 
Specifically, cotton-top tamarins are able to make distinctions between syllables that 
commonly occur together and those that don’t, mimicking the human ability to 
distinguish word boundaries in continuous speech based solely on the statistical 
regularities of syllable-syllable co-occurrences8. By no means is this ability sufficient to 
enable tamarins to acquire human language, but this ability is a crucial building block. 
 
                                                 
8 Interestingly, these same kinds of regularities aid in parsing other input like music, visual patterns, and 
visuomotor sequences (see Hauser, Newport, & Aslin, 2001 for details). 
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The compelling thing about these findings is that some of the linguistic components cited 
as examples of DCD show up in non-humans. These findings provide additional evidence 
that:  

1. DCD and its components are likely not late-arriving in evolutionary terms. 
2. Many of the human cognitive processes that we have explained via DCD are not 

likely to be due to specialized cognitive mechanisms. Rather, they more likely 
arise from general aspects of the brain, which we hypothesize to be the 
physiological characteristics of the brain.  

 
This implies that DCD is, indeed a core rather than a peripheral process in human 
cognition. 
 
3.3.2.5 Summary 
Language comprehension and production are two of the most overtly dynamical things 
humans do. Language is of interest to DCD because it shares many of the same 
characteristics of DCD with other cognitive phenomena – a compelling finding because 
language has received somewhat special treatment in the literature. As will be discussed 
later, language is also of interest to DCD because the process by which we learn our 
primary language seems to be unique – there is not another obvious example of how we 
learn to do anything else in quite the way we acquire language. If we can understand how 
we acquire language, we can gain insight into the way we learn to interact with the world 
in other, non-linguistic ways.  
 
3.4 Summary 
The upshot of the previous sections is this: Because the concept of DCD continues to 
appear in many guises across many literatures, between which there is often little or no 
communication, there must be something about DCD that is core to human functioning – 
especially given the fact that many of the abovementioned subdisciplines often don’t 
agree with one another philosophically about what it means to be human and about what 
is and is not within the purview of scientific inquiry. Yet, evidence of DCD, whatever its 
various names, continues to appear – across philosophies, across paradigms, across 
disciplines from low-level perception to high-level cognition.  
 
However, DCD isn’t just about passively recognizing patterns in the environment – it is 
about recognizing general patterns and regularizing those patterns: taking multiple 
specific instances and making an averaged, abstracted, or amalgamated version out of 
them – it can be thought of as a two-phase process (which are not necessarily correlated 
with explicit engines or modules in the brain). It is these generalities that then allow us to 
make inferences about specific instances that seem to match a given generality, thereby 
enabling us to rapidly deal with novel situations that match, to a greater or lesser degree, 
things we’ve encountered in the past. 
 
One interesting question arises from this, then: how does this regularizing process 
happen? Should that process be considered separately from DCD, or is it an integral part 
of DCD that can’t be separated? As mentioned in the section on memory, one possible 
explanation is that this regularization phenomenon is a result of the fact that memory is 
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reconstructive rather than reproductive. That is, we recall the gist of events relatively 
accurately, then fill in the details with contextually-guided guesses of what they most 
likely were (Roediger & McDermott, 1995).  
 
4. Dynamic Context Discrimination: The computational 
implementation 
Now that we have presented an overview of converging evidence for DCD, we present 
the computational implementation of DCD. 
 
The Sandia framework is based on the notion that if we are able to create a computational 
model of cognition that is both psychologically and physiologically plausible, we can 
fundamentally transform the way humans and machines interact. It is our contention that 
cognitive architectures created to date are not as fundamentally plausible as the 
framework we have been building over the last 5 years. This section introduces the 
Sandia framework, citing the empirical literature referenced in building the framework.  

 
4.1 Psychological inspiration for the model 
Initial inspiration for the Sandia framework came from the literature on naturalistic 
decision-making (Klein, 1997; Klein, Calderwood, & Clinton-Cirocco, 1985). This 
notion of decision-making holds that experts don’t consider multiple options when faced 
with a decision – especially in time-critical situations as had long been assumed in 
traditional models of decision-making (Baron, 1994). Rather, experts are able to quickly 
assess the nature of the situation based on patterns of cues in the environment. Once a 
pattern is recognized, a solution procedure that the decision-maker learned through 
experience in conjunction with that pattern is implemented (Chi, Feltovich, & Glaser, 
1981; Klein, 1997; Kolodner, 1997; Ross, 1996). Therefore, decision-making can be 
characterized as a highly individualized dynamic interaction between environmental 
stimuli and memory for prior experiences (Kolodner, 1997; Ross, 1996). Interestingly, 
empirical work in this vein demonstrated that solutions are not always optimal, but they 
are sufficient the vast majority of the time (Klein, 1997).  
 
If expertise in a domain is conceptualized as knowing and being able to discriminate 
among a proportionally large number of seemingly similar stimulus patterns, this method 
of decision-making might be true for those of us not considered experts in a specialized 
domain. As we move through life, we learn about an increasing number of 
contexts/patterns/problems and corresponding solutions, or appropriate behaviors. We are 
then able to discriminate between these contexts with increasing refinement by appealing 
to what we’ve encountered in the past. All of us are, in a sense, experts in everyday 
functioning.   
 
The primary problem with using the NDM literature as the sole psychological foundation 
for the model is that this literature is primarily based on anecdotal and case study 
evidence. However, when considered in conjunction with the literatures reviewed earlier, 
this notion of expert decision making becomes quite compelling – and contributes 
additional convergence on the notion of DCD as a core psychological process. 
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4.2 Knowledge representation in the model: Physiological 
inspiration 
In order to implement the DCD account of decision-making (and general human 
cognitive functioning) in computational form, the issue of knowledge representation had 
to be addressed9. Because we believe that cognitive behavior emerges from 
neurophysiology, we turned to a neurophysiological theory of representation that 
originated in research on sensory systems – oscillating systems theory, which has more 
recently been applied to higher-level cognitive functions (Klimesch, 1996, 1999; Singer 
1993). Briefly, oscillating systems theory holds that knowledge representation in the 
brain is distributed across the cortex, such that complete information about a given 
concept, item, or event is not encapsulated in a given neuron. Rather, when a stimulus is 
present in the environment, individual neurons begin to fire in temporal synchrony with 
one another, and out of temporal synchrony with everything else going on in the brain, 
forming what is called a neural assembly. Membership in a neural assembly is fairly 
probabilistic – any given individual neuron may or may not fall into temporal synchrony 
with the other neurons responding to a particular stimulus on a given presentation 
depending on the current context. However, in general, the same population of neurons 
does respond with a particular rate of firing that is distinct from the rates of firing of other 
assemblies (Klimesch, 1996; 1999).  
 
As mentioned in the section on the neurophysiology of sensation, the individual neurons 
that make up these neural assemblies respond selectively to different types of information 
including very low-level perception (e.g., horizontal lines in the environment) to higher-
level, more abstract concepts that themselves comprise low-level perceptive information. 
In this way, the information about a particular experience (e.g., eating an apple) that is 
arriving in the various distinct sensory cortices in the brain (e.g., red and round in the 
visual cortex, weight and movement in the somatosensory cortex, crunchy sound in the 
auditory cortex, sweetness in the gustatory cortex) is bound together, via in-phase 
oscillations of individual neurons across the various sensory cortices, to compose the 
singular phenomenological experience of eating an apple - the neurons responding to 
each of the different sensations oscillate as an assembly. 
 

                                                 
9 Knowledge representation has been given a huge amount of press and has been a source of controversy in 
the cognitive sciences for some time (Bechtel, 1998; Billman, 1999; Dietrich & Markman, 2003; Holyoak 
& Hummel, 2001; Markman, 2000, 2002; Markman & Dietrich, 2000; Shastri, 1999; Stufflebeam, 1999). 
At issue is whether the human system contains representations and, if so, what the nature of those 
representations is - specifically if they are symbolic or distributed in nature. Symbolic systems include 
production systems but are not limited productions (Anderson, Bothell, Byrne, & Lebiere, 2002; 
Falkenhainer, Forbus & Gentner, 1989; Holyoak & Hummel, 2000; Holyoak & Thagard, 1995; Keane, 
Ledgeway, & Duff, 1994; Kokinov, 1994 see also Markman & Dietrich, 2000). Other researchers 
respresent information in a distributed fashion, as in artificial neural networks (McLeod, Plunkett & Rolls, 
1998; Plunkett & Marchman, 1993). A third group goes so far as to say that there is no representation in the 
brain at all (Bechtel, 1998; van Gelder, 1998). However, as will be explained shortly, we adopt a localist 
representation scheme that assumes distributed representations that underly the current localist 
implementation (see, e.g., Hummel & Holyoak, 1997 for another example of this strategy). 
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It is at the level of neural assemblies that the Sandia framework is physiologically based - 
and this helps keep the model implementation practical. The individual nodes that are 
implemented in our model conceptually represent assemblies of neurons rather than 
individual, low-level perceptive and sensory neurons. In this way, despite the fact that the 
Sandia Framework is currently a localist model, we acknowledge the fact that 
neurophysiological evidence indicates that knowledge representation is distributed in the 
brain10. 
 
4.3 Model Components 
This section outlines the basic separable components of the framework. The next section, 
4.4 outlines how these components function together.  
 
The basic framework comprises two primary components: 

• An associative network made up of concept nodes 
• A library comprising knowledge of generic contexts and specific episodes that are 

defined by unique patterns of activation on the associative network 
There are additional components to a full framework, but for purposes of demonstrating 
the computational implementation of DCD, detailing the basic framework is sufficient. 
 
4.3.1 The associative network 
In order for the model to be able to interact with the stimulus environment, there had to 
be a method by which we represented basic-level information - concepts that would be 
combined and recombined to define different contexts. However, we recognize that the 
specific meaning of concepts change with the context in which they occur (e.g., think of 
the many uses of the word “run”). Therefore, we had to represent information in a 
“fuzzy” manner. As the model currently stands, this occurs in the associative network. 
This network comprises nodes, each of which is representative of a concept. These nodes 
occur as vectors in high-dimensional space (i.e., 100-200 dimensions). In this way, we 
are able to represent the concept “run” with as many subtly different meanings as we 
need to by representing those different meanings as slightly different points in that high-
dimensional space (cf. Elman, 1995).  
 
Each of these nodes is also representative of a neural assembly, as mentioned above, and 
therefore each node has the ability to oscillate at a frequency that is determined by a 
variety of factors including the strength of the stimulus, the current state of the model, 
decay rates, affective salience of the cues, and the recent state or states of the model. 
Generally, the oscillation rates of nodes in the associative network fall in the 10-13 Hz 
upper alpha bandwidth (Klimesch, 1999). 
 

                                                 
10 Interestingly, dynamical systems interpretations of cognition have pointed out that explanations at a 
medium level are lacking in the explanation of human behavior (Petitot, 1995). At the micro level, there are 
explanations involving neurons, synapses, and neurotransmitters. At the macro level, there exist the more 
phenomenological and observable behavioral explanations of psychology. However, there is not a strong 
link between these two explanatory paradigms. This is precisely the level of explanation addressed by the 
Sandia framework. 
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Each node has a level of activation associated with it. That level of activation is 
determined by: 
1. the salience of the stimulus in the environment, which determines initial level of 

activation 
2. its semantic relationship with other nodes in the network, the strength of that 

relationship, and the related nodes’ respective levels of activation through spreading 
activation (Anderson, 1983) 

3. affective salience such that those cues that are affiliated with strong emotions in 
given contexts are more highly activated when observed in those contexts 

4. the current context – each context carries with it expected cues as well as expected 
future events that exert top-down influence on activation in the associative network 

5. a static decay11 rate 
 
Each of these factors interacts with each other factor to dynamically determine a node’s 
individual level of activation at each cycle of the model. Once that level of activation 
surpasses a predetermined threshold, the node begins to oscillate. Oscillation rate is then 
determined dynamically by the node’s level of activation, given that the level of 
activation remains above the threshold. Currently, there are no inhibitory processes in the 
model. Therefore, the only way that a node will cease oscillating is if the decay rate is 
greater than all of the activation acceleration factors listed above. 
 
4.3.2 The Context/Episodic memory 
 The Context/Episodic memory is the sum of all of the situations the model knows 
about – both single instances (i.e. episodes) as well as abstracted versions of events (i.e., 
schema, contexts). Each situation is defined by a pattern of cues such that as stimuli come 
in to the model from perceptive mechanisms and activate nodes in the associative 
network to greater or lesser degrees, the model is able to perform context discrimination 
dynamically as these activation patterns change over time. 
 
It is very important to note that despite a formal definition of a context as a pattern of 
activation on the associative network, there does not have to be a perfect match in order 
for the model to recognize that context. Rather, the model operates on an evidence 
accumulation process (Coles, et.al., 1995; Kok, 1990; Kounios, et.al., 1994; Wilding. 
2000; cf. Koehler, White, & Grondin, 2003; Stein, Wallace & Stanford, 2000), whereby 
any number of “candidate” contexts can have some evidence, as determined by their 
similarity to the current pattern of activation on the associative network. However, only 
the contexts that have sufficient evidence to surpass an empirically-determined threshold 
can actually be recognized as occurring. The implication of this final statement is that the 
model can recognize the presence of multiple contexts simultaneously. 
 
4.4 Information processing in the Sandia framework 
The method by which the Sandia framework processes information is fairly 
straightforward. Figure 3 conceptually illustrates the model. At its most basic, the model 
                                                 
11 Decay, in this context, does not refer to the disappearance of memory over time, or forgetting. Rather, 
decay in this context refers to the rate at which the nodes would “spin down” in the absence of any other 
stimulation either from the environment or from spreading and top-down activation. 
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has three components (shown in blue): an associative network comprising nodes that 
represent domain-relevant concepts, a “library” of known contexts each of which is 
defined by a particular pattern of activation across the associative network, and the 
pattern recognition algorithms (which are, in reality, the information populating the 
library of contexts).  
 

 
 

Figure 3. Conceptual diagram of the Sandia Cognitive Framework. 
 
As environmental stimuli are presented to the model (via the perceptive processes which 
are not currently part of the architecture), nodes in the associative network begin to 
oscillate at varying rates depending on a variety of factors including current state of the 
model and salience of the stimulus in the environment. As these concept nodes begin to 
oscillate, evidence for different contexts in the context library is accumulated through a 
weighted sum of the activations on the associative net (cf. Koehler, White, & Grondin, 
2003; Stein, Wallace & Stanford, 2000). Once a given context, or contexts, accumulates 
enough evidence to surpass a pre-set threshold, the model recognizes that context as 
being the current state of affairs. Recognition of a context then implicates an appropriate 
course of action and defines the current state of the model, including expectations about 
stimuli that should and should not be present in the stimulus environment, which then 
impacts the rates of oscillation of nodes in the associative network. In this way, even 
though situation recognition is a very stimulus-driven process, the framework also 
accounts for the role of schemata and top-down activation on ongoing cognition and 
situation interpretation (cf. Brewer & Treyens, 1981; Chi, Feltovich, & Glaser, 1981). 
That is, depending on the current state of the model, it has expectations about what is 
more and less likely to happen next which influences perceptions of the environment12. In 
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this way, cognition is a dynamical process between perception of environmental stimuli 
and expectations about what stimuli should be present based on current contextual 
understanding (van Gelder, 1998) 13. 
 
In the event that the model encounters a novel situation – that is, a novel pattern of 
activation occurs across the associative network – the model attempts to relate that 
pattern to the most similar known context via the evidence accumulation process. 
However, if the pattern is totally new, that is, if no known context receives enough 
evidence to surpass the recognition threshold, this new pattern becomes a new episode in 
the context library. If this new pattern is encountered multiple times, a new schema, or 
abstracted version of the episode is created.  
 
4.5 Appearance of specific psychological functions in the model 
Briefly, there are several psychological phenomena that are captured in this 
implementation in the absence of explicit modules dedicated to those phenomena.  

• Working, short-term and long-term memory are captured in the associate network 
and the context library simultaneously. The phenomenological experience of 
working memory is represented as those nodes and contexts that are currently 
active. Short-term memory is represented via the priming and decay mechanisms 
in the networks. Long-term memory is represented as those nodes and contexts 
that are not currently active. 

• Analogy-making is captured in part via the evidence accumulation process – 
specifically, evidence accumulation allows for retrieval from memory of a 
potential analogue to the current situation.  

• Creation of genericized versions of events, or schema, is captured via creating 
new contexts in the context library and via the modification of those contexts as 
additional experiences are gathered. This is one very important and fundamental 
method of learning in both humans and non-humans. 

• Awareness of the fact that a single stimulus or pattern of stimuli are novel is 
captured indirectly via the evidence accumulation process in that if there is not 
enough evidence for any currently known context to be recognized, that pattern of 
activation on the semantic space is recorded in context/episodic memory as a 
unique event. 

 

5. General Discussion 
The purpose of this paper was to give a brief overview of the psychological and 
neurophysiological literature that supports the architecture of the Sandia Cognitive 
Framework and then to outline the basics of that framework.  
 
The core points of the discussion are: 
                                                 
13 We are making a specific distinction between sensation and perception, in the classic psychological 
sense. Sensation is the method by which our sensory organs (e.g., ears, eyes) detect stimuli in the 
environment. Perception is the method by which our brains make sense of those sensory inputs (refs here). 
Sensation is not necessarily influenced directly by cognition (with the exception that attentional shifts may 
remove a stimulus from the reach of a sensory organ), but interpretation of those sensory inputs, i.e. 
perception, is definitely open to influence by cognition. 
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1. The Sandia Framework approaches the issue of system architecture as a reverse 
engineering problem – if we want to model the human, we have to pay close 
attention to the human system. 

2. Specifically, the behavior of the human system (the behavioral evidence) is a 
consequence of the neurophysiological construction of the system. If the system 
were physically different, so would be the resulting behaviors. 

3. The empirical evidence used to directly inform the architecture of the Sandia 
Framework is only a small part of the literature available that bolsters the basic 
idea about the behavior of the model. Dynamic Context Discrimination is a 
behavioral phenomenon observed in a wide variety of psychological literatures. 

 
In terms of the future of the Framework, one key aspect that has yet to be directly 
addressed in any implementation is the issue of learning.  Up to now, we’ve talked only 
briefly about learning and how that might be instantiated in the framework. However, 
there is one clear distinction between the work that we have done thus far and the way 
that humans function: how might a beginning cognitive framework learn about it’s world 
in the same way human infants do? This is an interesting question, because at present 
time the methods for framework population we use are clearly different from the ways 
that children learn about their environment. Our methods of creating an initial model of 
an individual are not psychologically, physiologically, or behaviorally plausible, but 
eventually we would like to be able to mimic this aspect of human cognition as well. One 
candidate model for the development of this functionality is childhood primary language 
acquisition. 
 
Specifically, a group of researchers has developed theories about the emergence of 
language as a result of the complex interaction between the stimulus input and the 
maturational constraints of infants and young children (Elman,1993, 1995, 1999;  
Newport, 1988, 1990; see Klimesch, 1999 for a potential electrophysiological correlate of 
these constraints).  Through simulations based on simple recurrent connectionist 
networks, mechanisms that are dynamical and physiologically plausible (from both 
neurophysiology and evolutionary perspectives) have been demonstrated that closely 
mimic human data (McLeod, Plunkett & Rolls, 1998). 
 
Elissa Newport formulated what she called the less is more hypothesis to account for the 
observed critical period for attaining native-like proficiency in a given language. 
Basically, she hypothesized that primary language acquisition is not due to some explicit 
device (Bohannon, 1993; cf. Pinker, 1991, 1994), but that it is an emergent consequence 
of the fact that infants have fewer cognitive resources than do adults and that this 
limitation changes the nature of the information infants can attend to (Newport, 1988, 
1990; see also Elman, 1999 for similar ideas and Klimesch, 1999 for a potential 
electrophysiological source for these constraints). So, very early, children’s working 
memories can only keep track of very small bits of information. This essentially turns 
anything but the most simplistic input into noise, allowing infants to detect regularities in 
these small bits of information that would be lost on adults. Then, as children mature and 
their cognitive resources become more numerous, they can utilize the information they 
learned earlier as building blocks for detecting regularities occurring over longer and 
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longer timeperiods. Characteristics of the speech stream, such as prosody and intonation, 
provide the earliest regular cues that allow infants to segment the speech stream into 
individual words and phrases (Cutler, Mehler, Norris & Segui, 1992; Hirsh-Pasek, 
Nelson, Jusczyk, Cassidy, Druss, Kennedy, 1987; Mehler, Jusczyk, Lambertz, Halsted, 
Bertoncini, & Amiel-Tison, 1988; Nelson, Hirsh-Pasek, Jusczyk, & Cassidy, 1989), 
followed by phonological and morphological regularities. Eventually, building upon 
these basics of language, children are able to implicitly determine parts of speech and the 
other grammatical aspects of their native tongue. 
 
Using simple recurrent networks, Elman (1993) has demonstrated that when working 
memory constraints are included in these models, the network not only learns the 
grammars dictating the construction of simple and complex sentences, they also are able 
to generalize this knowledge to novel sentences (Elman, 1993). Lewis and Elman (2001) 
demonstrated that a simple recurrent network can learn complex grammatical 
constructions using the statistical regularities of input that mimics that heard by children. 
In addition, once the networks were trained, they exhibited large error rates in predicting 
upcoming words in novel test sentences when those upcoming words were 
ungrammatical. Furthermore, the errors made by the networks in this set of experiments 
are very similar to those made by children. 
 
Whether imposing these kinds of constraints on a complex enough model could help lead 
to a computational entity forming as complete an understanding of the world as a human 
does is a question, fortunately, that still resides somewhat more in science fiction than in 
science. However, it is important to realize that adult understanding of the world does not 
simply appear in the brain – it is learned through experience. And the kinds of 
experiences that contribute to this learning interact with the architecture of the system 
that is doing the learning, which is biologically determined, to produce a unique 
individual with a unique perspective on the world. Even if the experiment is never tried, 
keeping the interaction between environment, biology, and physiological maturation in 
mind still has the potential to enhance the functioning of a computational modeling effort. 
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