
LA-UR- 01-CfX)sy,

Approved for public release;
distribution is unlimited.

Title: I 	Large Neighborhood Search for the Double Traveling
Salesman Problem with Multiple Stacks

Author(s): I Russell Bent

Pascal Van Hentenryck

Intended for: I 	 Submission to the International Conference on Integration of
AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CPAIOR 2009).

A
,J Los Alamos

NATIONAL LABORATORY
--- EST.1943 --

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

1

Large Neighborhood Search

for the Double Traveling Salesman Problem

with Multiple Stacks

Russell Bent l and Pascal Van Hentenryck2

1 Los Alamos National Laboratory, Los Alamos NM 87545, USA
2 Brown University, Providence Rl 02912, USA

Abstract. This paper considers a complex real-life short-haul/long haul
pickup and delivery application. The problem can be modeled as double
traveling salesman problem (TSP) in which the pickups and the deliv
eries happen in the first and second TSPs respectively. Moreover, the
application features multiple stacks in which the items must be stored
and the pickups and deliveries must take place in reserve (LIFO) order
for each stack. The goal is to minimize the total travel time satisfying
these constraints. This paper presents a large search (LNS)
algorithm which improves the best-known results on 65% of the available
instances and is always within 2% of the best-known solutions.

Introduction

Vehicle routing problems (VRP) and traveling salesman problems (TSP) have
received considerable attention in the last decades due to the crucial role they
play in many supply-chain and logistics operations. These problems are often
approached by meta-heuristics, since problems with as few as 100 customers are
often beyond the scope of state-of-the-art systematic search algorithms. Recent
work on the VRP and TSP has produced significant improvements in solution

and execution often by combining several approaches or
and has focused on problems with traditional constraints such as capacities
time windows. Comparatively little research has been devoted to side constraints
that, while less prevalent in the literature, are ubiquitous in practice.

This paper considers the Double Traveling Salesman Problem with Multi
ple Stacks (DTSPMS) which was introduced recently in [13J. Customers in the
DTSPMS are divided into pickup and delivery pairs. Given such a pair (p, d), a
routing must schedule the pickup customer p before the delivery customer d. In
addition, the vehicle mnst visit all the pickup customers first, returns to a depot,
and then visits all the delivery customers, which explains the the double TSP
nature of the problem. Finally, the vehicle has a fixed number of rows/stacks
which are used to store the picked up items and the deliveries must take
in the reverse order in which they were loaded into a row, giving rise to the
multi-stack nature of the problem. The objective is to minimize the total travel
cost incurred by the vehicle.

2

The DTSPMS was introduced in [13] to model a real-life short-haul/long haul
combined pickup and delivery applications. Goods are picked up in one local area
and delivered "en mass" to a long-haul operation (e.g., a freight train) where,
due to labor, time, union rules, and fragility, the goods cannot be re-packed and
must be shipped as is. Upon reaching the long-haul destination, the goods are
delivered in reverse order in which they were packed. Once again, due to labor
and time-intensive costs, the vehicle may only deliver goods that are not blocked

other
The difficulty in the DTSPMS lies in the side-constraints and the stack as

signment variables, which complicate the neighborhoods and invalidates many
of the traditional VRP moves [14J. Indeed, the stack in which a pickup cus
tomer is placed severely restricts the order in which a delivery customer may
be served. The pickup and delivery constraints are more standard and arise in
many applications sl1ch as dial-a-ride problems, airline scheduling, bus routing,
tractor-trailer problems, helicopter support of offshore oil field platforms, and
logistics and maintenance support [12J, many of which may exhibit the types of
constraints described in the DTSPMS. Because of these side constraints, the DT
SPMS is an appealing application to evaluate and compare various approaches
and methodologies. Indeed, industrial vehicle routing problems are rarely pure
and often feature complex side-constraints, which make it incrPJL.~i'lwlll imvortlLnt
to compare existing algorithms on such applications,

This paper proposes a Large Neighborhood Search (LNS) algorithm for the
DTSPMS, since the constraint-based nature of LNS makes it a natural candi
date to gracefully accommodate the problem-specific structure of the DTSPMS.
Experimental results on difficult DTSPMS problems demonstrate the effective
ness of the algorithm. On the benchmarks provided by [13], our LNS algorithm
matches or improves the best-known solutions in 65% of the instances, improv
ing the best-known solution by more than 5% in one case. Moreover, the LNS
algorithm is always within 2% of the best-known solution, indicating that the
LNS algorithm is also robust.

The rest of this paper is organized as follows. Section 2 specifies the DTSPMS
and describes the notations. Section 3 an overview of the overall algorithm.
Section 4 presents the experimental results. Section 5 discusses related work and
Section 6 concludes the paper.

Problem Formulation

This section defines the double traveling salesman problem with mUltiple stacks
(DTSPMS) and various concepts used in the paper.

Customers The problem is defined in terms of n customers who are represented
the numbers 0, ... ,n -1 and four depots represented by do, dlJ d2 , d3 . The set
1, ... ,n - 1, do, dlJ d2 , d3 } represents all the sites considered in the problem.

We use Customer's to represent the set of customers and Sites to represent the set
of sites (The distinction between customers and sites simplifies the formalization

of the problem and of the algorithm). We use Customer!:? and Customersd to
denote the pickup and delivery customers respectively. Given a pickup customer
i, its delivery counterpart is denoted by @i.

Travel Costs The travel cost between sites i and j is denoted by Cij' Travel
costs satisfy the triangular inequality Cij + Cjk ~ Cik.

Tour A traveling salesman tour, or tour for short, starts from depot do, visits
all of the pickup customers, travels to depots d1 and d2 , visits all of the delivery
customers, and then returns to depot d3 . In other words, a tour is a sequence
(do, vi, ... , v~, d1 , d2 , vr, ... , v~, d3). The travel cost of a tour denoted by t(r), is
the cost of visiting all its customers, i.e.,

t(r) = cdovP + CvPvP + ... + CvP vP + CVPd, + Cd v d + Cvdvd + ... + Cvd vd +Cvdd3'
1 1 2 n-l n n 2 1 1 2 n-l n n

Observe that a tour assigns a unique successor and predecessor to every site
(except for the initial and final depots). The successor and predecessor of a site i
in tour a are denoted by succ(i, a) and pred(i, a). For simplicity, our definitions
often assume an underlying tour a and we use i+ and i- to denote the successor
and predecessor of i in a.

Departure Times The departure time of site i, denoted by tSi, is defined re
cursively as

tSdo = 0
{ tSi =tSi-+Ci-i (iESites\do).

Pickup and Deliveries The pickup and deliveries are represented by a prece
dence constraint. The precedence constraint of C E CustomersP is satisfied if
tSe $ tS@e'

Stack Coupling The vehicle (or salesman) has available to it M stacks in
which to store pickups. Each customer C E Customers is assigned a stack Se and
the stack couplirig constraint is satisfied when Se = S@e for all C E Customers.

Last-in First-out The last-in first-out (LIFO) constraint requires that a deliv
ery can occur if it is the most recent undelivered pickup on a stack. To specify
the constraint formally, we need a number of operations on the set of stacks
M: push(c,s,M) pushes customer c on stack s of M and returns the stack set,
top(s,M) returns the customer on top of stack s of M, and pop(s,M) pops cus
tomer s of m and return the stack set. Given these operation, we can define a
recursive algorithm to verify the LIFO constraint on a tour T (which is a se
quence of sites). In the algorithm, we use :: to denote the concatenation of a site
and a sequence of sites.

LIFO((),M) = true;

LIFO(d:: T, M) = LIFO(T,M) (d E {do,d1 ,d2 ,d3 });

LIFO(c:: M) = LIFO(T,push(e, Se, M)) (e E CustamersP);
LIFO(@e :: T, M) = if top(s@e, M) = e (e E Custamersd)

then LIFO(T,pop(s@e, M))
else false.

The first rule states that the constraint is satisfied for an empty sequence. The
second rule deals with the depots which do not affect the stacks. The third
rule concerns the pickups which are pushed onto their chosen stack. The last
rule deals with the deliveries. For a delivery @e. it must be the case that the
customer on top of stack S@e is its ntl'=lrn~rt c.

Double Constraint Finally, there is the double tour constraint ofthe DTSPMS
which states all pickups must occur prior to visiting d1 and all deliveries must
occur after visiting d2 • This constraint is satisfied for a customer e E CustomersP
if 6e < 6d1 and is satisfied for e E Customersd if 6e > 6d2 .

The DTSPMS A solution to the DTSPMS is a tour T satisfying the LIFO con
straints, double constraints, stack coupling, and pickup and delivery constraints,

Si = S@i (i E Customers)
6i < 6d1 (i E CustomersP)

6i > 6d2 (i E Custamersd)

{ 6·, <- (i E

The DTSPMS problem mnsists of finding a solution a which minimizes the the
total travel cost, i.e., a solution a minimizing the objective function specified by
f(a) = t(a).

3 The LNS Algorithm

Our algorithm is motivated by the success of large neighborhood search (LNS)
on a variety of vehicle routing problems. LNS was proposed in [15] for the
VRPTW, where it was shown particularly effective on the class 1 prohlems
from the Solomon benchmarks, producing several improvements over the then
best published solutions. It was later used as part of a two-stage approach for
the VRPTW [1] and PDPTW [2]. The rest of this section describes the LNS al

in detail. In general, the algorithm adapts the heuristics and strategi
described in [15], although it departs on a number of issues which are critical
in generalizing LNS to the DTSPMS. The algorithm is presented incrementally,

functionalities to remedy limitations observed in experiments.

3.1 The Neighborhood and the Evaluation Function

Given a solution a, the neighborhood of LNS, denoted by NR(a), is the set of
solutions that can be reached from a by relocating the position and reassigning

the stacks of at most p pairs of customers (where p is a parameter of the im
plementation). Since LNS also uses subneighborhoods and explores them in a
specific order, we use additional notations. In particular, NR(O', S) denotes the
set of solutions that can be reached from 0' by relocating and the
customers in S. Also, given a partial solution 0' with customers Customers \ S,
N[(O', S) denotes the solutions that can be obtained bv insertinl!: the customers
S in 0' and customers S to stacks in 0'.

3.2 The Algorithm

At a high level, the LNS algorithm can be seen as a local search where each
iteration selects a neighbor O'c in NR(O'b) and accepts the move if f(O'c) < f(O'b)'
It can be formalized as follows:

for(i t- 1 ... rnaxltemtions) {
SELECT O'c E Nn(O'b);
if f(O'c) < f(O'b) then

O'b t- O'c;
}

In practice, it is important to refine and extend the above algorithm in three
ways. The first modification consists of exploring the neighborhood by increasing
number of allowed relocations. The second change generalizes the algorithm to
a sequence of local searches. The third modification consists of exploring the
sub-neighborhood Nn(O'b, S) more exhaustively to find its best solution.

is depicted in Figure 1. It a number of
searches (line 1). Each search iterates over an increasing number of customers

2) and tries to improve the best found solution for a number of iterations
Each iteration consists in removing a nnmber 2k the algo

rithm always removing pickup and delivery pairs (line 4), and in a best
neighbor in Nn(O'b, S) (line 5). Whenever a new best solution is found, the num
ber of allowed iterations is re-initialized (line 8). In a sense, the algorithm is now
very close to variable neighborhood search [9], but the neighborhood is hard to
explore. It remains to describe how to select customers and how to implement
line 5 in the above algorithm.

3.3 Selecting Customers to Relocate

The LNS algorithm adopts the customer selection strategy of [2] but modifies
it to select pickup and delivery pairs. The implementation is depicted in Fig
ure 2. It first selects a customer pair randomly (lines 1-2) and iterates lines 4-7
to remove the k 1 remaining customer pairs. Each such iteration selects a
pickup customer from S (the already selected customers) and ranks the remain
ing pickup customers according to a relatedness criterion (lines 4-5). The new
customer to insert is randomly selected in line 6 once the algorithm

M1N1MIZE(0'0)

1 for l <- 1 ... max8earehes
2 do for k <- 1. .. P
3 do for i <- 1 ... maxIterations
4 do 8 <- SELECTCUSTOMERS(O'o, k);
5 SELECT un E NR (U O , 8) SUCH THAT = min"ENll(C'o,S)!(U);
6 if f(O'n) <
7 then 0'0 <- Un;

8 i <- 1;

Fig. 1. The Abstract LNS

3

4 do e <- RANDOM(8 n CustomersP);

5 (co, ... ,elf-i) <- Uustomers P
\ 8 SUCH THAT relateness ~ relateness(c, ~

6 r <- LRANDOM([O, 1])1:l x IUustomersP \

7 8 <- 8u {c,.,@cr };

Fig. 2. Selecting Customers in the LNS Algorithm

bia.'les the selection toward related neighbors. The relatedness measure is simply
defined as the distance between the customers, i.e.,

relateness(i, j) = Cij'

3.4 The Exploration Algorithm

Our LNS algorithm uses a branch and bound algorithm to explore the selected
sub-neighborhood. The algorithm is depicted in Figure 3. If the set. of customers
to insert is empty (line 1), the algorithm checks whether the current solution
improves the best solution found so far (lines 2-3). Otherwise, it selects the
customer pair whose best insertion degrades the objective function the most (line
4). The algorithm then computes all the partial solutions obtained by
C arid @c by increasing order of their travel costs (line 6). It then
resulting partial solutions recursively (lines 7-9). Also, observe that only the

solutions whose lower bounds are better than the best solution found
the algorithm (line 8). The lower bound satisfies the

S) ~
function is the cost of a minimum spanning I-tree bound of

_ problem. The insertion graph vertices are the customers.
Given a solution a over customers C = urErrcust(r') and a set S of vertices to

the insertion graph edges come from three different sets:

EXPLORE(O'c,S,
1 if S 0
2 then if f(O'c) <
3 then O'b <- O'c ;

4 else c <- arg- maxc€S min,,€NI(U,{e,@e)) f(O');
5 Se .-- S \ {c,
6 (O'O, ... ,O'k) <-NI(O',{c,@C})WHEREf(O'i) ~f(O'j) (i ~
7 for i .-- 1. .. k
8 do if BOUND(O'" Se) < f(O'b)
9 then EXPLORE(O'i, Se, erb);

Fig. 3. The Branch and Bound Algorithm for Exploring the Neighborhood.

DISExPLORE(O'c , S, erb, d, dmax)
1 if d ~ dmax
2 then if S 0
.3 then if f(erc) < f(erb)
4 then erb <- ere;
5 else c <- arg-maxe€s minu€Ndu,{c.@c)) f(er);
6 Se'-- S\ {c,@c};
7 (ero, ... ,erk) +- NI (er, {c, @C})WHEREf(eri) ::; f(O'j) (i ~ j);
8 for i +- 1. .. k
9 do if BOUND(eri, Se) < f(erb)

10 then SelO'b,d, dmax);
11 d

Fig. 4. The Branch and Bound Algorithm with a Discrepancy Limit.

1. the edges already in 0';
2. all the edges between customers in
3. all the feasible a site from Sites \ S and a customer from

S.

3.5 Using Discrepancy Search

For many problems, finding the best reinsertion is too time-consuming. Our
algorithm (depicted in Figure 4 uses discrepancy search (e.g., [10]) to explore only
a small part of the search tree. More precisely, the algorithm allows up to dma:c:
discrepancies. The changes are in line 1, which tests whether the discrepancy
limit is reached and in line 11, which increases the namber of discrepancy. Note
that the tree is not binary and the heuristic selects the insertion points by
increasing lower bounds. Observe also that the neighborhood NJ (0', {c, @c}) is
of size O(N2 M), of which only a portion is explored by LDS.

mailto:minu�Ndu,{c.@c

DISExPLORE(l7e, S, 17b, d, dmax)
1 if d $ dmax
2 then if S = 0
3 then if f(l7c) < f(l7b)
4 then 17b +- l7e;
5 else c +- arg-maxeES mina EN l(a,{e,@c) f(l7)j
6 Se+-S\{C,@c}j
7 for mE M
8 do Se +- mj
9 S@c -t- mj

10 {170, ... ,17k} +-.Ni(I7,{C,@C})WHEREf(17i) $ f(l7j) (i $j)j
11 for i +- 1 ... k
12 do if BOUNO(17i, Se) < f(l7b)
13 then DISExPLORE(17i, Se,17b, d, dmax)j
14 d +- d+ Ij

Fig. 5. Limited Discrepancy Strategy with Explicit Stack Assignments.

3.6 Decoupling Decision Variables

The algorithm depicted in Figure 4 was not particularly effective. An analysis of
its behavior revealed that the stack assignments were deteriorating the search.
Indeed, there were many moves that differed only in the stack assignment, had
the same objective value, and incremented the discrepancy count, so only a small
portion of the search space was explored. The reason, of course, comes from
the fact that stack allocations have no direct effect on the objective function:
they simply restrict the set of subsequent moves. To address the bias on the
discrepancy count coming from stack allocation, the new version of algorithm
(see Figure 5) iterates over all stack allocations which are not longer part of the
discrepancy computation. In other words, the algorithm makes decisions in two
steps: First, it chooses the customer pair (line 5) and then iterates over the stack
allocation (lines 7-9). Then, the algorithm generates the insertion points (line
10) and explores them recursively (lines 12-14). Note that the discrepancies only
concern the insertion points, not the stack allocations.

3.7 Restarts

The algorithm presented in Figure 5 produced high-quality results on many
instances but the experimental results reported a high variance on almost all the
benchmarks. These results motivated a careful study of the execution of large
neighborhood search on these problems. The analysis yielded the observation
that the search tended to discover its local minimum very early in the search
process. Then, it spent considerable computation time trapped in one section
of the search space and was unable to progress towards better solutions. This
behavior was not observed in LNS algorithms for other routing problems and
is probably due to the stack constraints which reduce the flexibility of LNS

MINIMIZEO
1 for l +- 1 ... maxStarts
2 do (10 +- INITSOLUTlONO;
:3 for l -- 1 ... maxSearches
4 do for k <- 1. .. P
5 do for i -- 1 ... maxlterations
6 do S-
7
8
9 then (10 <- (1n;

10 i <- 1;
11 return (10;

Fig. 6. The Abstract LNS Algorithm Revisited

considerably. This behavior was addressed by introducing a multistart strategy
(see 6): the search is restarted from an initial random solution periodically.
The random initial solution is obtained by using a single stack.

3.8 Constraint Propagation

It also to discuss how the constraints are used in the LNS
rithm. The primary role of constraints in the LNS algorithm is to prune the set
of feasible iIL'lertions and stack assignments. More precisely, every time a cus
tomer is assigned a stack or a position on the tour, the constraints are invoked
individually to prune the possible assignments and tour insertions of the remain
ing customers. The constraints take advantage of the search structure (Le., the
fact that (pickup,delivery) pairs are inserted sequentially) to implement efficient
pruning algorithms. Each insertion of a customer generates a new insertion point
for each customer not on the tour. This insertion point must check for feasibility
in order to be added as a possible insertion for each customer. The presentation
below explains the behavior of the constraints for the filial algorithm, although
they can be used in other ways.

and Deli11ery This constraint ignores stack assignments,
not interact with stack assignments. Without loss of generality (just reverse the
logic). assume the first customer inserted of a pair is the pickup customer c.
Upon this insertion, the constraint eliminates all insertion points for @c prior
to this insertion point on the tour in O(n) time. Interestingly, in the DTSPMS,
this operation turns out to take 0(1) time because the double tour constraint.

Stack Coupling Whenever a customer pair is inserted onto a tour, its location
can reduce the set of feasible stack assignments. However, since the pairs are
inserted onto tours after the stacks are assigned in the LNS algorithm presented
here, this constraint does nothing when a customer insertion occurs. When one

customer c of a pair is assigned a stack m, this constraint removes all assignments
but m from @c in O(m) time.

Double Constraint This cOIJ.'ltraint is only invoked on the initial generation of
feasible insertion points for LNS: It is always satisfied after that.

LIFO Constraint This constraint is the most complicated of the four.
each customer c uses M variables, denoted by top(c, m), to maintain the LIFO
constraint. The variable top(c, m) represents the customer at the top of the m
th stack after customer c is visited. This allows us to use only O(M) space per
customer as opposed to (Mn) if the algorithm would store the entire stack. It
makes it possible to improve the computational efficiency as the algorithm only
needs to update top(c, m) for those customers and stacks that are changed by a
stack assignment or an insertion.

As stack assignments occur prior to tour assignments, the LIFO constraint
does nothing when a customer is assigned a stack in this LNS implementation.
It is during the pair insertion of customers that this constraint takes advantage
of the fact that pairs are inserted sequentially. Under this scenario, when the
first customer c of a pair is inserted, the feasible insertions of @c are updated.
After @c is inserted, the appropriate top values are updated. Let us describe
these operations in more details assuming, once gain without loss of generality,
that c is the pickup customer.

After c is inserted, the only insertion points to update are those of @c. Clearly,
the insertion point between c and c+ (the successor of c) remains feasible as do
all subsequent insertion points whose customer is on a stack other than Be.
Upon reaching an insertion point whose customer is on Se, the algorithm needs
to perform a case analysis. If this customer is a delivery customer, then every
subsequent insertion point for @c is infeasible by definition. If this customer,
say p, is a pickup customer, then every subsequent insertion point up to @p
is infeasible. After which all subsequent insertion points for @c remain fea!lible
until an insertion point whose customer is on Be. At which point the original
case analysis is epeated until the last insertion point i!l checked or a delivery
customer is observed. This operation takes O(n) time. This is not an issue, since
the update of top (described next) also takes 0 (n) time,

After @c is inserted, top needs to be updated. First, top(c, Be) = c and
top(c, m) ,m) for m E M \ Be, where c- denotes the predecessor of c.
Second, top(@C,Be) top(C-, Be) and top(@c, m) top(@c-, m) for m E M \ Se.

Finally, the remaining top entries are updated by calling UPDATETop(c, C+, Be)
defined as follows:
UPDATETop(p, u, m)
1 while 811.::/: m
2 do top(u, Su) t-- p;
3 U u+;
4 if u E CustomersP
5 then UPDATETop(p, @1l,

This algorithm takes as arguments a pickup customer to update top (p), a cus
tomer to start updating top (u) and a stack to update (m). It is designed to
propagate the value of top(p, m) forward to all places that need to be updated
(i.e. propagating c as a top value all the way to @c). It updates all the top values
of m to p for subsequent customers until a customer, u, with the same stack is
found (lines 1-3). If u is a pickup, the algorithm skips ahead to @u, which is
where the updating of top needs to restart (line 5). If u is a delivery, by defini
tion it must be @c and all top values have been updated appropriately. The nice
aspect of this operation is that it only views those values of top that actually
need to be updated, so it is fully incremental. As the actual stack is not stored
at every customer, we can skip those top variables where c is not on the top of
the stack.

4 Experimental Results

This section presents our experimental results on the only set of publicly available
benchmarks for the Double TSP with Multiple Stacks that were provided by
[13]. All results were obtained on an Intel2.4Ghz chip using Java version 1.6 and
double precision numbers. For all the experimental results reported, the following
parameters for Large Neighborhood Search were used: p = 15, maxIterations =
100, dmax = 5, and f3 = 15. The algorithms is restarted every 90 seconds when
restarts are used. Each problem was solved 10 times for a maximum of fifteen
minutes.

4.1 The Benchmarks

As mentioned, the benchmarks were taken from [13]. They are created by gen
erating two sets of thirty-three customers in a 100xlOO square. The pickup and
delivery pairs were randomly assigned between the two sets. All four depots are
located at coordinate (50,50) and all travel distances are produced using the
Euclidean distance between the sites. These problems include three stacks.

4.2 Solution Quality Without Restarts

Table 4.2 provides results when no restarts are used. As seen from Table 1, the
algorithm finds 10 new best solutions over [13] within the same time limits (15-20
minutes in [13]). However, one can easily see the high variance in the the worst
and average results. The worst results across the runs can be as bad as almost
15% of the best known solution, while the average results can be as much as
8.2% away. These are precisely those observation that motivated us to include a
restart strategy from a random initial solution.

4.3 Solution Quality With Restarts

Table 4.3 provides results when LNS is restarted every ninety seconds with a
random initial solution utilizing a single stack. The algorithm improves the best
known solution on 12 instances and matches another one. Moreover, the best

5

Problem Best % Worst % Average % [13] Result
ROO 1098.48 2.7% 1199.77 12.2% 1150.85 7.6% 1069
R01 1064.77 -0.7% 1154.22 7.6% 1112.08 3.7% 1072
R02 1076.37 0.5% 1147.51 7.2% 1116.19 4.3% 1070
R03 1113.16 0.2% 1240.99 11.6% 1182.79 6.4% 1111
R04 1096.76 0.5% 1194.02 9.5% 1150.29 5.5% 1090
R05 1029.75 -2.5% 1144.82 8.4% 1064.37 0.9% 1055
R06 1104.73 -1.3% 1281.42 14.6% 1186.45 6.1% 1118
R07 1125.77 0.6% 1268.25 13.4% 1200.85 7.3% 1118
R08 1113.09 0.2% 1258.66 13.2% 1202.35 8.2% 1111
R09 1096.38 -0.9% 1227.32 10.9% 1154.40 4.4% 1106
RlO 1016.04 -0.5% 1170.81 14.6% 1083.66 6.1% 1021
R11 1034.72 -0.6% 1179.35 13.4% 1083.70 4.1% 1040
R12 1135.42 2.0% 1250.57 12.3% 1196.40 7.5% 1113
R13 1090.87 -1.0% 1199.07 8.8% 1136.79 3.1% 1102
R14 1050.30 -0.9% 1099.60 3.4% 1075.53 1.5% 1059
R15 1177.64 1.3% 1274.86 9.6% 1225.28 5.4% 1162
R16 1115.45 0.9% 1204.34 9.0% 1158.88 4.8% 1105
R17 1113.96 1.6% 1238.58 13.0% 1167.56 6.5% 1096
R18 1161.68 -1.6% 1284.58 8.8% 1235.91 4.7% 1180
R19 1077.11 -41.% 1230.21 9.5% 1155.19 2.8% 1123

Table 1. Solution Quality of LNS for the DTSPMS: Results without Restarts.

solution of the algorithm is never worse than of the best-known solution
and almost always well below 1%. It can also be seen from these results that the
variance has been reduced considerably. On three instances, the average solution
quality is lower than the best-known solution and the average solution is never
worse than 4.6% of the best-known solution. LNS is thus a particularly effective
solution technique for the DTSPMS.

Discussion and Related Work

Recent years has seen an increase in attention to vehicle routing and traveling
salesman problems variants where the way in which commodities are loaded onto
a vehicle has an influence on the tours the vehicle is allowed to traverse. Most
of the literature (except [13]) has considered variations that do not include the
Double TSP constraint that 1.., described here. [4] considers the pickup and deliv
ery traveling salesman problem with LIFO constraints on a single stack where a
delivery can occur at any time as long as the LIFO order is preserved. One of the
major contributions here is a number of customized traveling salesman neigh
borhood move operations for this problem as many of the traditional TSP move
operations do not preserve feasibility. It tests the effectiveness of the operations
by embedding them in a variable neighborhood search. Reference [5] considers
the same class of problems as [4] but instead focuses on global optimization

Problem Best % Worst % Average % [13] Result
ROO 1069.12 0.0% 1142.69 6.8% 1104.74 3.3% 1069
ROl 1043.64 -2.7% 1108.02 3.4% 1076.13 0.4% 1072
R02 1074.29 0.4% 1118.25 4.5% 1095.39 2.3% 1070
R03 1129.29 1.6% 1197.48 7.7% 1155.80 4.0% 1111
R04 1079.93 -1.0% 1133.60 3.9% 1101.66 1.0% 1090
R05 1001.01 -5.2% 1066.34 1.0% 1038.04 -1.6% 1055
R06 1120.50 0.2% 1236.05 10.6% 1169.29 4.6% 1118
R07 1114.55 -0.4% 1218.62 8.9% 1166.66 4.3% 1118
ROB 1133.43 2.0% 1173.51 5.6% 1154.04 3.9% 1111
R09 1093.70 -1.2% 1172.62 6.0% 1123.95 1.5% 1106
RIO 1016.04 -0.5% 1135.15 11.2% 1059.B8 3.7% 1021
R11 1046.35 0.6% 1090.07 4.B% 1062.12 2.1% 1040
R12 1115.30 0.2% 1200.79 7.B% 1154.77 3.7% 1113
R13 1082.01 -1.8% 1142.94 3.6% 1115.40 1.2% 1102
R14 1032.83 -2.5% 1099.57 3.4% 1067.35 0.8% 1059
R15 1171.75 O.B% 1215.14 4.6% 1195.BO 2.8% 1162
R16 1087.46 -1.6% 1169.50 5.8% 1133.27 2.5% 1105
R17 1077.25 -1.7% 1139.69 3.9% 1115.09 1.7% 1096
RIB 1153.79 -2.3% 1201.51 1.8% 1172.92 -0.7% 1180
R19 1097.66 -2.3% 1135.78 1.1% 1111.97 -1.1% 1123

Table 2. Solution Quality of LNS for the DTSPMS; Results with Restarts.

approaches. They describe a branch-and-cut algorithm that is able to push the
size of tractably solvable problems from 25 to 36 customers by introducing a
novel set of cuts. [16] also considers global search optimization techniques for
this vehicle routing problems with LIFO constraints on a single pickup and de-

stack. This paper is motivated by rE'-al problems, so they include a much
richer set of constraints than is typically considered in the literature and
describe techniques for generating realistic benchmarks. They propose decom
posing the problem into component vehicles a column generation approach
and heuristics to find good solutions to routing the customers assigned to the
individual vehicles.

Reference [7] considers a vehicle routing problem with an embedded three
dimensional bin packing problem. The bin packing problem implies the existence
of a LIFO constraint as a delivery can be made only if it is reachable without
moving any other packages in the vehicle. The paper approaches the problem

the bin packing problem from the routing problem, i.e. their tabu
search first finds a bin packing arrangement and then searches for feasible routing
solutions that obey the bin packing. found that allowing the tabu search
to explore infeasible regions of the search space improved the quality of their
results. [11] and [8J consider similar problems as [7] except that the bin packing
problem is two-dimensional. They consider branch-and-cut algorithms and tabu
search respectively. It is important to note that the multi-stack traveling sales

6

man problem considered here may be thought of as a three or two dimensional
bin packing problem with the special property that all items to be packed are
of the same size.

The most related reference to this paper is [13] on which the description of a
single vehicle, multi-stack with a Double TSP constraint is first provided. The
reference evaluates three different local search heuristics (tabu search, simulated
annealing, and steepest descent) with a V'driety of different of parameter settings
and suggests that simulated annealing was their most effective appro8.<'n.

there is recent work on similar problems where the packing order is
constrained by first-in first-out considerations (FIFO) constraints (i.e., a queue)
ill situations such as dial-a-ride where early customers are not satisfied if later
pickups are delivered earlier than they are. Reference [6] a number of
local search neighborhoods for handling the FIFO constraint in the context of
tabu search.

Conclusion

This paper proposed a large neighborhood search algorithm for the Double Trav-
Salesman Problem with Multiple Stacks (DTSPMS). The algorithm mini

mizes the total travel distance given pickup and delivery, stack coupling, LIFO,
and double tour constraints. Experimental results show the effectiveness of the
approach which produced many new best solutions on benchmarks in the lit
erature. The paper also demonstrates positively that LNS is easily modified to
handle side assignments such as stack packing order.

There are many open issues that deserve attention. As research moves to
large-scale problems involving several hundreds or thousands of customers, scal

the algorithms raise new interesting challenges that were not systematically
studied here. One promising area is in decomposition techniques such as in [3J
where new techniques for decomposing constraints of the DTSPMS in a natural
way will need to be developed. It would be interesting to study the impact of
various parameters on the behavior of the algorithm and to study how to tune
these decisions dynamically during search. Of course, it will be interesting to

LNS for DTSPMS on more complex vehicle routing problems including
mumple vehicles, time windows, and capacities and considering how the number
of stacks impacts the difficulty of the problem sets. Finally, it will be interesting
to study other side constraints such as first-in first-out (FIFO) constraints and
side decision variables such as multiple pickup and delivery problems where there
are decision variables &<;sociated with assigning pickup points for each delivery.

Acknowledgments This work was supported in part by the U.S. Department
of Homeland Security's National Infrastructure Analysis and Simulation Center
(NISAC) Program, by NSF award DMI-0600384, and ONRAward N000140610607.

References

1. 	 Russell Bent and Pascal Van Hentenryck. A Two-Stage Hybrid Local Search for the
Vehicle Routing Problem with Time Windows. Transportation Science, 38(4):515
530,2004.

2. 	 Russell Bent and Pascal Van Hentenryck. A Two-Stage Hybrid Algorithm for
Pickup and Delivery Vehicle Routing Problems with Time Windows. Computers
and Operations Research, 33 (4):875-893, 2006.

3. 	 Russell Bent and Pascal Van Hentenryck. Randomized Adaptive Spatial Decou
piing For Large-Scale Vehicle Routing with Time Windows. In Proceedings of the
Twenty-Second Conference on Artificial Intelligence (AAAI), Vancouver, Canada,
2007.

4. 	 Francesco Carrabs, Jean-Francois Cordeau, and Gilbert Laporte. Variable neigh
borhood search for the pickup and delivery traveling salesman with lifo loading.
INFOR Journal on Computing, 19:618-632, 2007.

5. 	 Jean-Francois Cordeau, Manuel lori, Gilbert Laporte, and Juan Gonzalez. A
branch and cut algorithm for the pickup and delivery traveling salesman prob
lem with lifo loading. Networ-ks, to appear.

6. 	 Gunes Erdogan, Jean-Francois Cordeau, and Gilbert Laporte. The pickup and
delivery traveling salesman problem with first-in-first-out loading. CORS Opti
mization Days, 2008.

7. 	 Michel Gendreau, Manuel lori, Gilbert Laporte, and Silvano Martello. A tabu
search algorithm for a routing and container loading problem. Transportation
Science, 40:342-350, 2006.

8. 	 Michel Gendreau, Manuel lori, Gilbert Laporte, and Silvaro Martello. A tabu
search heuristic for the vehicle routing problem with two-dimensional loading con
straints. Networks, 51 (1):4-18, 2007.

9. 	 Pierre Hansen and Nenad Mladenovic. An Introduction to Variable Neighbor
hood Search. In Meta-heuristics, Advances and Trends in Local Search Paradigms
for Optimization, pages 433-458, Boston, Massachusetts, 1998. Kluwer Academic
Publishers.

10. 	 William Harvey and Matthew Ginsberg. Limited Discrepancy Search. In Pro
ceedings of the Forteenth International Joint Conference on Artifical Intelligence
(IJCAI), pages 607-615, Montreal, Canada, 1995.

11. 	 Manuel lori, Juan Jose Salazar Gonzalez, and Daniele Vigo. An exact approach
for the vehicle routing problem with two-dimensional loading constraints. Trans
portation Science, 41:253-264, 2007.

12. 	 William Nanry and J. Wesley Barnes. Solving the Pickup and Delivery Problem
with Time Windows Using Reactive Tabu Search. Transportation Researeh Part
B, 34:107-121, 2000.

13. 	 Hanne Peterson. Heuristic solution approaches to the double tsp with
stacks. CORS Optimization Days, 2006.

14. 	 Martin Savelsbergh and Marc Sol. The General Pickup and Deliverv Problem.
Transportation Science, 29: 107-121, 1995.

15. 	 Paul Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In Proceedings of the Foudh International Conference
on the Principles and Practice of Constraint Programming (CP), pages 417-431,
Pisa, Italy, 1998.

16. 	 Hang Xu, Zhi-Long Chen, Srinivas Rajagopal, and Sundar Arunapuram. Solving a
practical pickup and problem. 'lmnsportation Science, 37:347-364, 2003.

