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Abstract. This paper considers a complex real-life short-haul/long haul 
pickup and delivery application. The problem can be modeled as double 
traveling salesman problem (TSP) in which the pickups and the deliv
eries happen in the first and second TSPs respectively. Moreover, the 
application features multiple stacks in which the items must be stored 
and the pickups and deliveries must take place in reserve (LIFO) order 
for each stack. The goal is to minimize the total travel time satisfying 
these constraints. This paper presents a large search (LNS) 
algorithm which improves the best-known results on 65% of the available 
instances and is always within 2% of the best-known solutions. 

Introduction 

Vehicle routing problems (VRP) and traveling salesman problems (TSP) have 
received considerable attention in the last decades due to the crucial role they 
play in many supply-chain and logistics operations. These problems are often 
approached by meta-heuristics, since problems with as few as 100 customers are 
often beyond the scope of state-of-the-art systematic search algorithms. Recent 
work on the VRP and TSP has produced significant improvements in solution 

and execution often by combining several approaches or 
and has focused on problems with traditional constraints such as capacities 
time windows. Comparatively little research has been devoted to side constraints 
that, while less prevalent in the literature, are ubiquitous in practice. 

This paper considers the Double Traveling Salesman Problem with Multi
ple Stacks (DTSPMS) which was introduced recently in [13J. Customers in the 
DTSPMS are divided into pickup and delivery pairs. Given such a pair (p, d), a 
routing must schedule the pickup customer p before the delivery customer d. In 
addition, the vehicle mnst visit all the pickup customers first, returns to a depot, 
and then visits all the delivery customers, which explains the the double TSP 
nature of the problem. Finally, the vehicle has a fixed number of rows/stacks 
which are used to store the picked up items and the deliveries must take 
in the reverse order in which they were loaded into a row, giving rise to the 
multi-stack nature of the problem. The objective is to minimize the total travel 
cost incurred by the vehicle. 



2 

The DTSPMS was introduced in [13] to model a real-life short-haul/long haul 
combined pickup and delivery applications. Goods are picked up in one local area 
and delivered "en mass" to a long-haul operation (e.g., a freight train) where, 
due to labor, time, union rules, and fragility, the goods cannot be re-packed and 
must be shipped as is. Upon reaching the long-haul destination, the goods are 
delivered in reverse order in which they were packed. Once again, due to labor 
and time-intensive costs, the vehicle may only deliver goods that are not blocked 

other 
The difficulty in the DTSPMS lies in the side-constraints and the stack as

signment variables, which complicate the neighborhoods and invalidates many 
of the traditional VRP moves [14J. Indeed, the stack in which a pickup cus
tomer is placed severely restricts the order in which a delivery customer may 
be served. The pickup and delivery constraints are more standard and arise in 
many applications sl1ch as dial-a-ride problems, airline scheduling, bus routing, 
tractor-trailer problems, helicopter support of offshore oil field platforms, and 
logistics and maintenance support [12J, many of which may exhibit the types of 
constraints described in the DTSPMS. Because of these side constraints, the DT
SPMS is an appealing application to evaluate and compare various approaches 
and methodologies. Indeed, industrial vehicle routing problems are rarely pure 
and often feature complex side-constraints, which make it incrPJL.~i'lwlll imvortlLnt 
to compare existing algorithms on such applications, 

This paper proposes a Large Neighborhood Search (LNS) algorithm for the 
DTSPMS, since the constraint-based nature of LNS makes it a natural candi
date to gracefully accommodate the problem-specific structure of the DTSPMS. 
Experimental results on difficult DTSPMS problems demonstrate the effective
ness of the algorithm. On the benchmarks provided by [13], our LNS algorithm 
matches or improves the best-known solutions in 65% of the instances, improv
ing the best-known solution by more than 5% in one case. Moreover, the LNS 
algorithm is always within 2% of the best-known solution, indicating that the 
LNS algorithm is also robust. 

The rest of this paper is organized as follows. Section 2 specifies the DTSPMS 
and describes the notations. Section 3 an overview of the overall algorithm. 
Section 4 presents the experimental results. Section 5 discusses related work and 
Section 6 concludes the paper. 

Problem Formulation 

This section defines the double traveling salesman problem with mUltiple stacks 
(DTSPMS) and various concepts used in the paper. 

Customers The problem is defined in terms of n customers who are represented 
the numbers 0, ... ,n -1 and four depots represented by do, dlJ d2 , d3 . The set 
1, ... ,n - 1, do, dlJ d2 , d3 } represents all the sites considered in the problem. 

We use Customer's to represent the set of customers and Sites to represent the set 
of sites (The distinction between customers and sites simplifies the formalization 



of the problem and of the algorithm). We use Customer!:? and Customersd to 
denote the pickup and delivery customers respectively. Given a pickup customer 
i, its delivery counterpart is denoted by @i. 

Travel Costs The travel cost between sites i and j is denoted by Cij' Travel 
costs satisfy the triangular inequality Cij + Cjk ~ Cik. 

Tour A traveling salesman tour, or tour for short, starts from depot do, visits 
all of the pickup customers, travels to depots d1 and d2 , visits all of the delivery 
customers, and then returns to depot d3 . In other words, a tour is a sequence 
(do, vi, ... , v~, d1 , d2 , vr, ... , v~, d3 ). The travel cost of a tour denoted by t(r), is 
the cost of visiting all its customers, i.e., 

t(r) = cdovP + CvPvP + ... + CvP vP + CVPd, + Cd v d + Cvdvd + ... + Cvd vd +Cvdd3'
1 1 2 n-l n n 2 1 1 2 n-l n n 

Observe that a tour assigns a unique successor and predecessor to every site 
(except for the initial and final depots). The successor and predecessor of a site i 
in tour a are denoted by succ(i, a) and pred(i, a). For simplicity, our definitions 
often assume an underlying tour a and we use i+ and i- to denote the successor 
and predecessor of i in a. 

Departure Times The departure time of site i, denoted by tSi, is defined re
cursively as 

tSdo = 0 
{ tSi =tSi-+Ci-i (iESites\do). 

Pickup and Deliveries The pickup and deliveries are represented by a prece
dence constraint. The precedence constraint of C E CustomersP is satisfied if 
tSe $ tS@e' 

Stack Coupling The vehicle (or salesman) has available to it M stacks in 
which to store pickups. Each customer C E Customers is assigned a stack Se and 
the stack couplirig constraint is satisfied when Se = S@e for all C E Customers. 

Last-in First-out The last-in first-out (LIFO) constraint requires that a deliv
ery can occur if it is the most recent undelivered pickup on a stack. To specify 
the constraint formally, we need a number of operations on the set of stacks 
M: push(c,s,M) pushes customer c on stack s of M and returns the stack set, 
top(s,M) returns the customer on top of stack s of M, and pop(s,M) pops cus
tomer s of m and return the stack set. Given these operation, we can define a 
recursive algorithm to verify the LIFO constraint on a tour T (which is a se
quence of sites). In the algorithm, we use :: to denote the concatenation of a site 
and a sequence of sites. 

LIFO((),M) = true; 

LIFO(d:: T, M) = LIFO(T,M) (d E {do,d1 ,d2 ,d3 }); 




LIFO(c:: M) = LIFO(T,push(e, Se, M)) (e E CustamersP); 
LIFO(@e :: T, M) = if top(s@e, M) = e (e E Custamersd) 

then LIFO(T,pop(s@e, M)) 
else false. 

The first rule states that the constraint is satisfied for an empty sequence. The 
second rule deals with the depots which do not affect the stacks. The third 
rule concerns the pickups which are pushed onto their chosen stack. The last 
rule deals with the deliveries. For a delivery @e. it must be the case that the 
customer on top of stack S@e is its ntl'=lrn~rt c. 

Double Constraint Finally, there is the double tour constraint ofthe DTSPMS 
which states all pickups must occur prior to visiting d1 and all deliveries must 
occur after visiting d2 • This constraint is satisfied for a customer e E CustomersP 
if 6e < 6d1 and is satisfied for e E Customersd if 6e > 6d2 . 

The DTSPMS A solution to the DTSPMS is a tour T satisfying the LIFO con
straints, double constraints, stack coupling, and pickup and delivery constraints, 

Si = S@i (i E Customers) 
6i < 6d1 (i E CustomersP ) 

6i > 6d2 (i E Custamersd ) 

{ 6·, <- (i E 

The DTSPMS problem mnsists of finding a solution a which minimizes the the 
total travel cost, i.e., a solution a minimizing the objective function specified by 
f(a) = t(a). 

3 The LNS Algorithm 

Our algorithm is motivated by the success of large neighborhood search (LNS) 
on a variety of vehicle routing problems. LNS was proposed in [15] for the 
VRPTW, where it was shown particularly effective on the class 1 prohlems 
from the Solomon benchmarks, producing several improvements over the then 
best published solutions. It was later used as part of a two-stage approach for 
the VRPTW [1] and PDPTW [2]. The rest of this section describes the LNS al

in detail. In general, the algorithm adapts the heuristics and strategi 
described in [15], although it departs on a number of issues which are critical 
in generalizing LNS to the DTSPMS. The algorithm is presented incrementally, 

functionalities to remedy limitations observed in experiments. 

3.1 The Neighborhood and the Evaluation Function 

Given a solution a, the neighborhood of LNS, denoted by NR(a), is the set of 
solutions that can be reached from a by relocating the position and reassigning 



the stacks of at most p pairs of customers (where p is a parameter of the im
plementation). Since LNS also uses subneighborhoods and explores them in a 
specific order, we use additional notations. In particular, NR(O', S) denotes the 
set of solutions that can be reached from 0' by relocating and the 
customers in S. Also, given a partial solution 0' with customers Customers \ S, 
N[(O', S) denotes the solutions that can be obtained bv insertinl!: the customers 
S in 0' and customers S to stacks in 0'. 

3.2 The Algorithm 

At a high level, the LNS algorithm can be seen as a local search where each 
iteration selects a neighbor O'c in NR(O'b) and accepts the move if f(O'c) < f(O'b)' 
It can be formalized as follows: 

for(i t- 1 ... rnaxltemtions) { 
SELECT O'c E Nn(O'b); 
if f(O'c) < f(O'b) then 

O'b t- O'c; 
} 

In practice, it is important to refine and extend the above algorithm in three 
ways. The first modification consists of exploring the neighborhood by increasing 
number of allowed relocations. The second change generalizes the algorithm to 
a sequence of local searches. The third modification consists of exploring the 
sub-neighborhood Nn(O'b, S) more exhaustively to find its best solution. 

is depicted in Figure 1. It a number of 
searches (line 1). Each search iterates over an increasing number of customers 

2) and tries to improve the best found solution for a number of iterations 
Each iteration consists in removing a nnmber 2k the algo

rithm always removing pickup and delivery pairs (line 4), and in a best 
neighbor in Nn(O'b, S) (line 5). Whenever a new best solution is found, the num
ber of allowed iterations is re-initialized (line 8). In a sense, the algorithm is now 
very close to variable neighborhood search [9], but the neighborhood is hard to 
explore. It remains to describe how to select customers and how to implement 
line 5 in the above algorithm. 

3.3 Selecting Customers to Relocate 

The LNS algorithm adopts the customer selection strategy of [2] but modifies 
it to select pickup and delivery pairs. The implementation is depicted in Fig
ure 2. It first selects a customer pair randomly (lines 1-2) and iterates lines 4-7 
to remove the k 1 remaining customer pairs. Each such iteration selects a 
pickup customer from S (the already selected customers) and ranks the remain
ing pickup customers according to a relatedness criterion (lines 4-5). The new 
customer to insert is randomly selected in line 6 once the algorithm 



M1N1MIZE( 0'0) 

1 for l <- 1 ... max8earehes 
2 do for k <- 1. .. P 
3 do for i <- 1 ... maxIterations 
4 do 8 <- SELECTCUSTOMERS(O'o, k); 
5 SELECT un E NR ( U O , 8) SUCH THAT = min"ENll(C'o,S)!(U); 
6 if f(O'n) < 
7 then 0'0 <- Un; 

8 i <- 1; 

Fig. 1. The Abstract LNS 
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4 do e <- RANDOM(8 n CustomersP ); 


5 (co, ... ,elf-i) <- Uustomers P 
\ 8 SUCH THAT relateness ~ relateness(c, ~ 


6 r <- LRANDOM([O, 1])1:l x IUustomersP \ 


7 8 <- 8u {c,.,@cr }; 


Fig. 2. Selecting Customers in the LNS Algorithm 

bia.'les the selection toward related neighbors. The relatedness measure is simply 
defined as the distance between the customers, i.e., 

relateness(i, j) = Cij' 

3.4 The Exploration Algorithm 

Our LNS algorithm uses a branch and bound algorithm to explore the selected 
sub-neighborhood. The algorithm is depicted in Figure 3. If the set. of customers 
to insert is empty (line 1), the algorithm checks whether the current solution 
improves the best solution found so far (lines 2-3). Otherwise, it selects the 
customer pair whose best insertion degrades the objective function the most (line 
4). The algorithm then computes all the partial solutions obtained by 
C arid @c by increasing order of their travel costs (line 6). It then 
resulting partial solutions recursively (lines 7-9). Also, observe that only the 

solutions whose lower bounds are better than the best solution found 
the algorithm (line 8). The lower bound satisfies the 

S) ~ 
function is the cost of a minimum spanning I-tree bound of 

_ problem. The insertion graph vertices are the customers. 
Given a solution a over customers C = urErrcust(r') and a set S of vertices to 

the insertion graph edges come from three different sets: 



EXPLORE(O'c,S, 
1 if S 0 
2 then if f(O'c ) < 
3 then O'b <- O'c ; 

4 else c <- arg- maxc€S min,,€NI(U,{e,@e)) f(O'); 
5 Se .-- S \ {c, 
6 (O'O, ... ,O'k) <-NI(O',{c,@C})WHEREf(O'i) ~f(O'j) (i ~ 
7 for i .-- 1. .. k 
8 do if BOUND(O'" Se) < f(O'b) 
9 then EXPLORE(O'i, Se, erb); 

Fig. 3. The Branch and Bound Algorithm for Exploring the Neighborhood. 

DISExPLORE(O'c , S, erb, d, dmax) 
1 if d ~ dmax 
2 then if S 0 
.3 then if f(erc ) < f(erb) 
4 then erb <- ere; 
5 else c <- arg-maxe€s minu€Ndu,{c.@c)) f(er); 
6 Se'-- S\ {c,@c}; 
7 (ero, ... ,erk) +- NI (er, {c, @C})WHEREf(eri) ::; f(O'j) (i ~ j); 
8 for i +- 1. .. k 
9 do if BOUND(eri, Se) < f(erb) 

10 then SelO'b,d, dmax); 
11 d 

Fig. 4. The Branch and Bound Algorithm with a Discrepancy Limit. 

1. the edges already in 0'; 
2. all the edges between customers in 
3. all the feasible a site from Sites \ S and a customer from 

S. 

3.5 Using Discrepancy Search 

For many problems, finding the best reinsertion is too time-consuming. Our 
algorithm (depicted in Figure 4 uses discrepancy search (e.g., [10]) to explore only 
a small part of the search tree. More precisely, the algorithm allows up to dma:c: 
discrepancies. The changes are in line 1, which tests whether the discrepancy 
limit is reached and in line 11, which increases the namber of discrepancy. Note 
that the tree is not binary and the heuristic selects the insertion points by 
increasing lower bounds. Observe also that the neighborhood NJ (0', {c, @c}) is 
of size O(N2 M), of which only a portion is explored by LDS. 

mailto:minu�Ndu,{c.@c


DISExPLORE(l7e, S, 17b, d, dmax) 
1 if d $ dmax 
2 then if S = 0 
3 then if f(l7c ) < f(l7b) 
4 then 17b +- l7e; 
5 else c +- arg-maxeES mina EN l(a,{e,@c) f(l7)j 
6 Se+-S\{C,@c}j 
7 for mE M 
8 do Se +- mj 
9 S@c -t- mj 

10 {170, ... ,17k} +-.Ni(I7,{C,@C})WHEREf(17i) $ f(l7j) (i $j)j 
11 for i +- 1 ... k 
12 do if BOUNO(17i, Se) < f(l7b) 
13 then DISExPLORE(17i, Se,17b, d, dmax)j 
14 d +- d+ Ij 

Fig. 5. Limited Discrepancy Strategy with Explicit Stack Assignments. 

3.6 Decoupling Decision Variables 

The algorithm depicted in Figure 4 was not particularly effective. An analysis of 
its behavior revealed that the stack assignments were deteriorating the search. 
Indeed, there were many moves that differed only in the stack assignment, had 
the same objective value, and incremented the discrepancy count, so only a small 
portion of the search space was explored. The reason, of course, comes from 
the fact that stack allocations have no direct effect on the objective function: 
they simply restrict the set of subsequent moves. To address the bias on the 
discrepancy count coming from stack allocation, the new version of algorithm 
(see Figure 5) iterates over all stack allocations which are not longer part of the 
discrepancy computation. In other words, the algorithm makes decisions in two 
steps: First, it chooses the customer pair (line 5) and then iterates over the stack 
allocation (lines 7-9). Then, the algorithm generates the insertion points (line 
10) and explores them recursively (lines 12-14). Note that the discrepancies only 
concern the insertion points, not the stack allocations. 

3.7 Restarts 

The algorithm presented in Figure 5 produced high-quality results on many 
instances but the experimental results reported a high variance on almost all the 
benchmarks. These results motivated a careful study of the execution of large 
neighborhood search on these problems. The analysis yielded the observation 
that the search tended to discover its local minimum very early in the search 
process. Then, it spent considerable computation time trapped in one section 
of the search space and was unable to progress towards better solutions. This 
behavior was not observed in LNS algorithms for other routing problems and 
is probably due to the stack constraints which reduce the flexibility of LNS 



MINIMIZEO 
1 for l +- 1 ... maxStarts 
2 do (10 +- INITSOLUTlONO; 
:3 for l -- 1 ... maxSearches 
4 do for k <- 1. .. P 
5 do for i -- 1 ... maxlterations 
6 do S-
7 
8 
9 then (10 <- (1n; 

10 i <- 1; 
11 return (10; 

Fig. 6. The Abstract LNS Algorithm Revisited 

considerably. This behavior was addressed by introducing a multistart strategy 
(see 6): the search is restarted from an initial random solution periodically. 
The random initial solution is obtained by using a single stack. 

3.8 Constraint Propagation 

It also to discuss how the constraints are used in the LNS 
rithm. The primary role of constraints in the LNS algorithm is to prune the set 
of feasible iIL'lertions and stack assignments. More precisely, every time a cus
tomer is assigned a stack or a position on the tour, the constraints are invoked 
individually to prune the possible assignments and tour insertions of the remain
ing customers. The constraints take advantage of the search structure (Le., the 
fact that (pickup,delivery) pairs are inserted sequentially) to implement efficient 
pruning algorithms. Each insertion of a customer generates a new insertion point 
for each customer not on the tour. This insertion point must check for feasibility 
in order to be added as a possible insertion for each customer. The presentation 
below explains the behavior of the constraints for the filial algorithm, although 
they can be used in other ways. 

and Deli11ery This constraint ignores stack assignments, 
not interact with stack assignments. Without loss of generality (just reverse the 
logic). assume the first customer inserted of a pair is the pickup customer c. 
Upon this insertion, the constraint eliminates all insertion points for @c prior 
to this insertion point on the tour in O(n) time. Interestingly, in the DTSPMS, 
this operation turns out to take 0(1) time because the double tour constraint. 

Stack Coupling Whenever a customer pair is inserted onto a tour, its location 
can reduce the set of feasible stack assignments. However, since the pairs are 
inserted onto tours after the stacks are assigned in the LNS algorithm presented 
here, this constraint does nothing when a customer insertion occurs. When one 



customer c of a pair is assigned a stack m, this constraint removes all assignments 
but m from @c in O( m) time. 

Double Constraint This cOIJ.'ltraint is only invoked on the initial generation of 
feasible insertion points for LNS: It is always satisfied after that. 

LIFO Constraint This constraint is the most complicated of the four. 
each customer c uses M variables, denoted by top(c, m), to maintain the LIFO 
constraint. The variable top(c, m) represents the customer at the top of the m
th stack after customer c is visited. This allows us to use only O(M) space per 
customer as opposed to (Mn) if the algorithm would store the entire stack. It 
makes it possible to improve the computational efficiency as the algorithm only 
needs to update top(c, m) for those customers and stacks that are changed by a 
stack assignment or an insertion. 

As stack assignments occur prior to tour assignments, the LIFO constraint 
does nothing when a customer is assigned a stack in this LNS implementation. 
It is during the pair insertion of customers that this constraint takes advantage 
of the fact that pairs are inserted sequentially. Under this scenario, when the 
first customer c of a pair is inserted, the feasible insertions of @c are updated. 
After @c is inserted, the appropriate top values are updated. Let us describe 
these operations in more details assuming, once gain without loss of generality, 
that c is the pickup customer. 

After c is inserted, the only insertion points to update are those of @c. Clearly, 
the insertion point between c and c+ (the successor of c) remains feasible as do 
all subsequent insertion points whose customer is on a stack other than Be. 
Upon reaching an insertion point whose customer is on Se, the algorithm needs 
to perform a case analysis. If this customer is a delivery customer, then every 
subsequent insertion point for @c is infeasible by definition. If this customer, 
say p, is a pickup customer, then every subsequent insertion point up to @p 
is infeasible. After which all subsequent insertion points for @c remain fea!lible 
until an insertion point whose customer is on Be. At which point the original 
case analysis is epeated until the last insertion point i!l checked or a delivery 
customer is observed. This operation takes O(n) time. This is not an issue, since 
the update of top (described next) also takes 0 (n) time, 

After @c is inserted, top needs to be updated. First, top(c, Be) = c and 
top(c, m) ,m) for m E M \ Be, where c- denotes the predecessor of c. 
Second, top(@C,Be ) top(C-, Be) and top(@c, m) top(@c-, m) for m E M \ Se. 

Finally, the remaining top entries are updated by calling UPDATETop(c, C+, Be) 
defined as follows: 
UPDATETop(p, u, m) 
1 while 811.::/: m 
2 do top( u, Su) t-- p; 
3 U u+; 
4 if u E CustomersP 
5 then UPDATETop(p, @1l, 



This algorithm takes as arguments a pickup customer to update top (p), a cus
tomer to start updating top (u) and a stack to update (m). It is designed to 
propagate the value of top(p, m) forward to all places that need to be updated 
(i.e. propagating c as a top value all the way to @c). It updates all the top values 
of m to p for subsequent customers until a customer, u, with the same stack is 
found (lines 1-3). If u is a pickup, the algorithm skips ahead to @u, which is 
where the updating of top needs to restart (line 5). If u is a delivery, by defini
tion it must be @c and all top values have been updated appropriately. The nice 
aspect of this operation is that it only views those values of top that actually 
need to be updated, so it is fully incremental. As the actual stack is not stored 
at every customer, we can skip those top variables where c is not on the top of 
the stack. 

4 Experimental Results 

This section presents our experimental results on the only set of publicly available 
benchmarks for the Double TSP with Multiple Stacks that were provided by 
[13]. All results were obtained on an Intel2.4Ghz chip using Java version 1.6 and 
double precision numbers. For all the experimental results reported, the following 
parameters for Large Neighborhood Search were used: p = 15, maxIterations = 
100, dmax = 5, and f3 = 15. The algorithms is restarted every 90 seconds when 
restarts are used. Each problem was solved 10 times for a maximum of fifteen 
minutes. 

4.1 The Benchmarks 

As mentioned, the benchmarks were taken from [13]. They are created by gen
erating two sets of thirty-three customers in a 100xlOO square. The pickup and 
delivery pairs were randomly assigned between the two sets. All four depots are 
located at coordinate (50,50) and all travel distances are produced using the 
Euclidean distance between the sites. These problems include three stacks. 

4.2 Solution Quality Without Restarts 

Table 4.2 provides results when no restarts are used. As seen from Table 1, the 
algorithm finds 10 new best solutions over [13] within the same time limits (15-20 
minutes in [13]). However, one can easily see the high variance in the the worst 
and average results. The worst results across the runs can be as bad as almost 
15% of the best known solution, while the average results can be as much as 
8.2% away. These are precisely those observation that motivated us to include a 
restart strategy from a random initial solution. 

4.3 Solution Quality With Restarts 

Table 4.3 provides results when LNS is restarted every ninety seconds with a 
random initial solution utilizing a single stack. The algorithm improves the best
known solution on 12 instances and matches another one. Moreover, the best 
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Problem Best % Worst % Average % [13] Result 
ROO 1098.48 2.7% 1199.77 12.2% 1150.85 7.6% 1069 
R01 1064.77 -0.7% 1154.22 7.6% 1112.08 3.7% 1072 
R02 1076.37 0.5% 1147.51 7.2% 1116.19 4.3% 1070 
R03 1113.16 0.2% 1240.99 11.6% 1182.79 6.4% 1111 
R04 1096.76 0.5% 1194.02 9.5% 1150.29 5.5% 1090 
R05 1029.75 -2.5% 1144.82 8.4% 1064.37 0.9% 1055 
R06 1104.73 -1.3% 1281.42 14.6% 1186.45 6.1% 1118 
R07 1125.77 0.6% 1268.25 13.4% 1200.85 7.3% 1118 
R08 1113.09 0.2% 1258.66 13.2% 1202.35 8.2% 1111 
R09 1096.38 -0.9% 1227.32 10.9% 1154.40 4.4% 1106 
RlO 1016.04 -0.5% 1170.81 14.6% 1083.66 6.1% 1021 
R11 1034.72 -0.6% 1179.35 13.4% 1083.70 4.1% 1040 
R12 1135.42 2.0% 1250.57 12.3% 1196.40 7.5% 1113 
R13 1090.87 -1.0% 1199.07 8.8% 1136.79 3.1% 1102 
R14 1050.30 -0.9% 1099.60 3.4% 1075.53 1.5% 1059 
R15 1177.64 1.3% 1274.86 9.6% 1225.28 5.4% 1162 
R16 1115.45 0.9% 1204.34 9.0% 1158.88 4.8% 1105 
R17 1113.96 1.6% 1238.58 13.0% 1167.56 6.5% 1096 
R18 1161.68 -1.6% 1284.58 8.8% 1235.91 4.7% 1180 
R19 1077.11 -41.% 1230.21 9.5% 1155.19 2.8% 1123 

Table 1. Solution Quality of LNS for the DTSPMS: Results without Restarts. 

solution of the algorithm is never worse than of the best-known solution 
and almost always well below 1%. It can also be seen from these results that the 
variance has been reduced considerably. On three instances, the average solution 
quality is lower than the best-known solution and the average solution is never 
worse than 4.6% of the best-known solution. LNS is thus a particularly effective 
solution technique for the DTSPMS. 

Discussion and Related Work 

Recent years has seen an increase in attention to vehicle routing and traveling 
salesman problems variants where the way in which commodities are loaded onto 
a vehicle has an influence on the tours the vehicle is allowed to traverse. Most 
of the literature (except [13]) has considered variations that do not include the 
Double TSP constraint that 1.., described here. [4] considers the pickup and deliv
ery traveling salesman problem with LIFO constraints on a single stack where a 
delivery can occur at any time as long as the LIFO order is preserved. One of the 
major contributions here is a number of customized traveling salesman neigh
borhood move operations for this problem as many of the traditional TSP move 
operations do not preserve feasibility. It tests the effectiveness of the operations 
by embedding them in a variable neighborhood search. Reference [5] considers 
the same class of problems as [4] but instead focuses on global optimization 



Problem Best % Worst % Average % [13] Result 
ROO 1069.12 0.0% 1142.69 6.8% 1104.74 3.3% 1069 
ROl 1043.64 -2.7% 1108.02 3.4% 1076.13 0.4% 1072 
R02 1074.29 0.4% 1118.25 4.5% 1095.39 2.3% 1070 
R03 1129.29 1.6% 1197.48 7.7% 1155.80 4.0% 1111 
R04 1079.93 -1.0% 1133.60 3.9% 1101.66 1.0% 1090 
R05 1001.01 -5.2% 1066.34 1.0% 1038.04 -1.6% 1055 
R06 1120.50 0.2% 1236.05 10.6% 1169.29 4.6% 1118 
R07 1114.55 -0.4% 1218.62 8.9% 1166.66 4.3% 1118 
ROB 1133.43 2.0% 1173.51 5.6% 1154.04 3.9% 1111 
R09 1093.70 -1.2% 1172.62 6.0% 1123.95 1.5% 1106 
RIO 1016.04 -0.5% 1135.15 11.2% 1059.B8 3.7% 1021 
R11 1046.35 0.6% 1090.07 4.B% 1062.12 2.1% 1040 
R12 1115.30 0.2% 1200.79 7.B% 1154.77 3.7% 1113 
R13 1082.01 -1.8% 1142.94 3.6% 1115.40 1.2% 1102 
R14 1032.83 -2.5% 1099.57 3.4% 1067.35 0.8% 1059 
R15 1171.75 O.B% 1215.14 4.6% 1195.BO 2.8% 1162 
R16 1087.46 -1.6% 1169.50 5.8% 1133.27 2.5% 1105 
R17 1077.25 -1.7% 1139.69 3.9% 1115.09 1.7% 1096 
RIB 1153.79 -2.3% 1201.51 1.8% 1172.92 -0.7% 1180 
R19 1097.66 -2.3% 1135.78 1.1% 1111.97 -1.1% 1123 

Table 2. Solution Quality of LNS for the DTSPMS; Results with Restarts. 

approaches. They describe a branch-and-cut algorithm that is able to push the 
size of tractably solvable problems from 25 to 36 customers by introducing a 
novel set of cuts. [16] also considers global search optimization techniques for 
this vehicle routing problems with LIFO constraints on a single pickup and de-

stack. This paper is motivated by rE'-al problems, so they include a much 
richer set of constraints than is typically considered in the literature and 
describe techniques for generating realistic benchmarks. They propose decom
posing the problem into component vehicles a column generation approach 
and heuristics to find good solutions to routing the customers assigned to the 
individual vehicles. 

Reference [7] considers a vehicle routing problem with an embedded three
dimensional bin packing problem. The bin packing problem implies the existence 
of a LIFO constraint as a delivery can be made only if it is reachable without 
moving any other packages in the vehicle. The paper approaches the problem 

the bin packing problem from the routing problem, i.e. their tabu 
search first finds a bin packing arrangement and then searches for feasible routing 
solutions that obey the bin packing. found that allowing the tabu search 
to explore infeasible regions of the search space improved the quality of their 
results. [11] and [8J consider similar problems as [7] except that the bin packing 
problem is two-dimensional. They consider branch-and-cut algorithms and tabu 
search respectively. It is important to note that the multi-stack traveling sales
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man problem considered here may be thought of as a three or two dimensional 
bin packing problem with the special property that all items to be packed are 
of the same size. 

The most related reference to this paper is [13] on which the description of a 
single vehicle, multi-stack with a Double TSP constraint is first provided. The 
reference evaluates three different local search heuristics (tabu search, simulated 
annealing, and steepest descent) with a V'driety of different of parameter settings 
and suggests that simulated annealing was their most effective appro8.<'n. 

there is recent work on similar problems where the packing order is 
constrained by first-in first-out considerations (FIFO) constraints (i.e., a queue) 
ill situations such as dial-a-ride where early customers are not satisfied if later 
pickups are delivered earlier than they are. Reference [6] a number of 
local search neighborhoods for handling the FIFO constraint in the context of 
tabu search. 

Conclusion 

This paper proposed a large neighborhood search algorithm for the Double Trav-
Salesman Problem with Multiple Stacks (DTSPMS). The algorithm mini

mizes the total travel distance given pickup and delivery, stack coupling, LIFO, 
and double tour constraints. Experimental results show the effectiveness of the 
approach which produced many new best solutions on benchmarks in the lit
erature. The paper also demonstrates positively that LNS is easily modified to 
handle side assignments such as stack packing order. 

There are many open issues that deserve attention. As research moves to 
large-scale problems involving several hundreds or thousands of customers, scal

the algorithms raise new interesting challenges that were not systematically 
studied here. One promising area is in decomposition techniques such as in [3J 
where new techniques for decomposing constraints of the DTSPMS in a natural 
way will need to be developed. It would be interesting to study the impact of 
various parameters on the behavior of the algorithm and to study how to tune 
these decisions dynamically during search. Of course, it will be interesting to 

LNS for DTSPMS on more complex vehicle routing problems including 
mumple vehicles, time windows, and capacities and considering how the number 
of stacks impacts the difficulty of the problem sets. Finally, it will be interesting 
to study other side constraints such as first-in first-out (FIFO) constraints and 
side decision variables such as multiple pickup and delivery problems where there 
are decision variables &<;sociated with assigning pickup points for each delivery. 
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