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Abstract 
 
 

Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be 

effectively smoothed through the use of high-temperature localized CO2 laser heating, thereby 

enhancing optical properties.  However, the details of the mass transport and the effect of 

hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not 

completely understood.  In this study, we examine the morphological evolution of sub-micron, 

dry-etched periodic surface structures on type II and type III SiO2 substrates under 10.6µm CO2 

laser irradiation using atomic force microscopy (AFM).  In-situ thermal imaging was used to 

map the transient temperature field across the heated region, allowing assessment of the T-

dependent mass transport mechanisms under different laser-heating conditions.  Computational 

fluid dynamics simulations correlated well with experimental results, and showed that for large 

effective capillary numbers (Nc>2), surface diffusion is negligible and smoothing is dictated by 

capillary action, despite the relatively small spatial scales studied here.  Extracted viscosity 

values over 1700-2000K were higher than the predicted bulk values, but were consistent with the 

surface depletion of OH groups, which was confirmed using confocal Raman microscopy.   



 

 

I.  Introduction  

 

Thermal modification of nano- and micro-structures on a wide variety of material 

surfaces to create or enhance surface properties using long-wave CO2 lasers has enjoyed 

significant success in recent decades [1, 2].  Recently, localized CO2 laser heating of silica glass 

has been successfully applied to control and mitigate surface damage on optics used in high 

power laser applications such as inertial confinement fusion (ICF) [3-5].  In particular, 

minimizing damage initiation and shot-to-shot damage growth on UV-grade optics surfaces 

which have been mechanically polished [6], laser machined [7] or optically damaged [8] is 

crucial to enhancing overall laser performance.  However, the physics of the apparent extrinsic 

damage threshold of fused silica surfaces is still a subject of debate, and therefore the mechanism 

by which this threshold is enhanced by CO2 laser heating is also not completely clear.  Because 

the nano- and micro-scale fractured surfaces associated with polishing/machining are believed to 

be associated with a higher concentration of UV-absorbing damage precursors [9, 10], thermal 

treatment may act to allow these defects to anneal by way of surface or bulk diffusion.  On the 

other hand, enhancement of local field intensity from irregular interfaces, clearly present on 

optically damaged and laser machined surfaces, could also act to lower the damage threshold of 

laser optics [11, 12].  In this case, CO2 laser heating would act to macroscopically smooth these 

surfaces into more regular interfaces, thus lowering near-field intensification effects.  Therefore, 

the exact role and contribution from each of these mechanisms and the optimization of CO2 laser 

surface treatment from a fundamental point of view, remains somewhat unclear.   It is of interest 

therefore to explore the temperature dependence of the reshaping of model surfaces to 



understand the relative contributions from capillarity and diffusion, as well as influence from 

structural-chemical changes, to the mitigation of specific defects associated with UV absorption.   

Previous theoretical studies of the isothermal relaxation of modulated surfaces under 

capillary, evaporative and diffusive processes can be traced back to the pioneering work by 

Mullins nearly four decades ago [13, 14].  For an arbitrary surface decomposed into Fourier 

components ω=2π/λ, where λ is the spatial period, the relative importance of each transport 

process to the evolution of a nearly-flat surface of height S(x,y,t) can be described by 

 

       (1) 

 

where F, A, D, and B are the decay constants for capillary flow, evaporation-condensation, bulk 

diffusion, and surface diffusion respectively.  Although for the relaxation of nanoscale surface 

features both surface diffusion and viscous flow should be the dominant transport processes, 

Wang et al. [15] recently concluded that, for isothermal heating of sub-micron Al-Ca-Si oxide 

gratings, the effect of surface diffusion is negligible. One possible explanation the author 

attributed to the observation is the existence of defects which reduces surface diffusion [16], 

though the mechanism of surface diffusion on highly defective ceramic surfaces is still poorly 

understood.  A similar, yet somewhat empirical, approach derived for borosilicate thin films [17] 

was used by Nowak et al. [18] to study laser polishing of micron-scale features in fused silica.  A 

decay function, similar to that in Eq.(1) was used to fit data, but deviation in the expected spatial 

power scaling was left unresolved.  Because laser materials processing of roughened and 

defective surfaces is subject to a dynamic and non-uniform temperature field, it is not clear what 
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mechanisms are at play, particularly at the relatively shorter time scales and higher transient 

temperatures characteristic of laser processing.  

It is well-known that OH content plays a significant role in determining the 

thermomechanical properties of fused silica glass, particularly viscosity. For example, in the 

low water content regime (<0.1 wt%), water exits mainly as structurally bound and immobile 

hydroxyl groups [19], yielding viscosities (in Poise) of logη~14 at 1400K.  In contrast, high 

water content silica can contain more loosely bound and mobile OH groups and H2O, leading to 

viscosities of logη~12 at 1400K.  One model developed by Adam and Gibbs [20] to understand 

the mechanism by which water affects glass melts quantifies the rate of structural relaxation as a 

function of both kinetic and  thermodynamic parameters. The fundamental idea of the model is 

that the relaxation of a liquid to an equilibrium configuration following a change in external 

conditions is limited not only by local bond strengths (i.e., Si-O), but also by the number of 

configurations the liquid can access at any particular temperature, which is enhanced by OH 

mobility. Therefore, the introduction of different amounts of OH content in silica glass leads 

to variation in configurationally entropy and the heat capacity of the glass, affecting their 

viscosity.   

In this work, we simulate the process of viscous glass flow using computational fluid 

dynamics (CFD) software and compare it to the measured decay kinetics of semi-square sub-

micron gratings etched on fused silica glass with different OH content.  Direct measurement of 

the transient temperature field and changes in near-surface glass structure and composition are 

used to estimate viscosities and relaxation times associated with grating decay.  As surmised in 

previous studies, depletion of OH from the surface, confirmed by Raman microscopy, leads to a 

shift in viscosity to higher values than predicted for the bulk.  However, for large effective 



capillary numbers, Nc, i.e. shorter time scales (<1s) and lower temperatures (<1700K), this shift 

is less dramatic, and may indicate an enhancement of surface relaxation caused by either surface 

diffusion or an incomplete near-surface depletion of OH species. 

  

II. Sample preparation and experimental procedure 

 

We used two types of fused silica glass in the study, Corning 7980 (type III, 

800~1000ppm OH content by weight) and Heraeus Suprasil 312 (type II ~200ppm OH content 

by weight), which we will refer to as samples C-3 and H-2 respectively.  These samples were 

chosen primarily because of their relatively wide use in UV-grade laser optics, and their 

disparate OH levels.  One-dimensional trapezoidal gratings with a period of ~650nm and a 

height of ~700nm were patterned on 51mm round, 10mm thick, silica samples using e-beam 

lithography and ion-beam etching [21] as shown in Fig. 1.  Grating shapes were nearly isosceles, 

with grating tops ~250nm wide with RMS roughness of ~1%. Patterned silica samples were 

exposed to focused CW 10.6µm CO2 laser light from a Synrad firestar V20, with a maximum 

output power of 20 watts and power stability of ±5%. The laser beam profile was nearly a perfect 

Gaussian a 1/e2 diameter of ~1mm, as characterized by a beam profiler (Pyrocam III, Spiricon). 

The laser power delivered to the sample was set to between 3.8 and 4.7W, while the exposure 

time was adjusted from 100ms to 100s. This narrow power range was chosen to observe surface 

relaxation over reasonable experimental time spans, while also staying well below the 

evaporation threshold of ~3000K[4]. During each laser exposure, the sample surface temperature 

was monitored in-situ by using a calibrated LN-cooled HgCdTe camera operating at 33fps, with 

an optical resolution of ~100µm (sampled at 40µm spacing).  Although this spatial resolution is 



quite coarse relative to the grating geometry, it can be shown that, in fact, the calculated 

temperature profile established by a 1mm beam varies quite slowly over the length scales studied 

here. Further details of the laser exposure setup and thermographic analysis can be found in Ref. 

[22]. The surface morphology of each laser exposed region of the etched samples was 

characterized before and after exposure using a Digital Instrument Dimension 3100 atomic force 

microscope (AFM). We used high aspect ratio silicon tips (Veeco OTESPAW) to ensure the 

accuracy of our AFM results, and to minimize any tip convolution of the shapes measured.  

Instrument resolution was <1nm vertically and ~10nm laterally.  Finally, spatially-resolved 

variations in OH content caused by laser heating were measured using confocal Raman 

microscopy operating at 532nm (CW), with a spatial (depth) and spectral resolution of 5µm and 

4 cm-1 respectively.[23]. Our detection limit of OH content was estimated to be roughly 100ppm 

by weight. 

 

III. Simulation of the surface relaxation 

 

The surface evolution of the 2D periodic step during laser heating was simulated using a 

commercial computational fluid dynamics code optimized for free surface flow [24]. Because 

our goal was to use the simulation as a basis for comparison with experiment, explicit viscous 

stress and surface capillary pressure evaluations were used to ensure maximum accuracy of the 

numerical solution. Taking as a characteristic velocity U=W/t, where W is the grating period, t 

the exposure time, and evaluating Reynolds Number, Weber Number and Froude Number ratios 

to determine the relative roles of inertial, viscous, capillary and gravitational forces we find all 



these ratios are «1:NRe=2x10-15(1/t),  NWe=9x10-15(1/t2) ,   NRe /(NFr)2=2.2x10-8(t),  and  NWe/ 

(NFr)2=8.6x10-8.   

Hence, with typical flow times of 1-100 seconds and in the non-evaporative regime, only viscous 

and capillary forces are important in determining surface reshaping and material transport. 

Unfortunately, this problem resists solution by explicit algorithm because the small spatial scale 

in conjunction with large shear forces leads to a severe restriction in maximum computational 

time steps.  For example, the maximum computation time step associated with viscous 

momentum transport for fused silica at 2000K is limited to  ~ 10-16 sec, a 

very impractical value.  However, by taking the ratio NRe/NWe we can define a non-dimensional 

relaxation variable τ (the inverse capillary number, Nc),  

 

            (2) 

 

which gives the only required equivalence condition of formal dynamic similarity. We are 

therefore free in the numerical simulation to uniformly reduce surface tension and viscosity 

without influencing the essential character of the system.  The only restriction is that we not 

decrease viscosity to the point where inertial effects become appreciable, because as previously 

established, inertia plays no significant role in this problem. This practical constraint is simply 

that NRe in the simulation remain below approximately 0.01. 

The flow of a periodic surface structure closely approximating those formed by 

photolithography (Fig. 1) for our study was simulated. Taking advantage of the inherent 

symmetry, only one half of the periodic structure was included in the calculation.  A uniform 

10nm finite difference grid was used with 90º free surface contact angle constraints and free-slip, 
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zero flux conditions imposed at domain boundaries. The simulation was performed using 

constant (local) viscosity and surface tension, consistent with W<<lth where lth~1mm is the 

thermal diffusion length. The model geometry and results of the simulation are shown in Fig. 2, 

indicating snapshots of the surface profile as it evolves during the surface tension driven flow 

process. As shown, the surface assumes a sinusoidal profile at a dimensionless time between τ=1 

and τ=2.  It is evident that pure exponential decay of the step height commences around τ=2. The 

early time behavior is consistent with the findings of Cassidy and Gjostein [25] who analyzed 

similar idealized flat top structures by the phenomenological theory of Mullins [13] based on 

Fourier decomposition of the surface profile into a set of independent decay modes. The long 

time behavior follows simple exponential decay corresponding to viscous relaxation of a pure 

sinusoidal surface under forces of capillary pressure [17].  Therefore, the time evolution of 

grating height h(t) from an initial height h0 can be reasonably approximated in these two regimes 

using two analytic functions of the form 

 

(3) 

 

where the parameters C, K, M for small (τ<2) and large (τ>2) values of τ are given in Table I.  

These analytic functions could then be used to directly fit experimental surface height data 

corresponding to surface treatments at varying temperatures and times. 

 

IV.  Results 
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Due to the non-uniform heating inherent to laser materials processing, the spatial profile 

of the laser power translates into a variation in surface temperature resulting in an effective 

viscosity profile (Fig. 3). The resulting spatial non-uniformity in flow dynamics was probed by 

measuring the height change of the grating at different locations within one laser beam, and 

correlating each spatial subset of data with in situ surface temperature measurements.  Figure 3a 

shows a microscope image of sample C-3 treated with a 3.8W, 100s exposure, with square boxes 

indicating radial sub-regions that were scanned using AFM.  For comparison, the Gaussian laser 

beam profile and the resulted spatial distribution of grating heights were illustrated with 

schematics in Fig. 3a.  High-resolution AFM scans along the radius of the exposed regions 

separated by 25µm were taken for each case studied, as shown in the upper graph of Fig. 3b.  

Simultaneous to the laser exposure, 2D thermographic images were taken using the HgCdTe 

camera, which could be spatially registered with subsequent AFM scans, as indicated by the 

temperature profile shown in the lower panel of Fig. 3b.  The peak on-axis temperature ranged 

from 1140 to 1640K and 1340 to 1960K for the 3.8W and 4.7W exposures respectively, with the 

temperature rise scaling with exposure time 100ms<t<100s roughly as √t.  Although the steady-

state temperature profile is known to vary as a Bessel-weighted Gaussian [26], near the peak we 

use a simple Gaussian fit to extract the temperature variation, as indicated in Fig. 3b.   

As described in Sec. III, the surface flow dynamics are expected to depend principally on 

the viscosity, which, for a wide range of glasses and temperatures follows the so-called Vogel-

Fulcher-Tammann (VFT) expression [27],  
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where η0, B0 and T0 are temperature-independent constants.  However, since we are studying the 

behavior of glass flow in a relatively narrow temperature range (1700~2000K), the VFT equation 

can be well-approximated by an Arrhenius relation, η=η0exp(Ea/RT), where Ea is the activation 

energy of viscous glass flow and R is the gas constant.  The values of η0 and Ea have been 

reviewed and summarized for a wide range of OH containing SiO2 samples by Zandian [28].  

The C-3 sample is a type III glass containing ~1000ppm OH corresponding to a reported value of 

η0=8.81×10-5 Poise and Ea=434 kJ/mole. Applying these values into our expression for viscosity 

for the 3.8W, 100s exposure condition and comparing it with our CFD simulation, a significant 

discrepancy was found between simulation and experiment (Fig. 4). In the experiment, since the 

laser exposure time and local surface temperature are known for each sub-region studied within 

the treated regions, measurement of the grating morphology changes can, in fact, be used to 

estimate local viscosity [25]. By using the Arrhenius approximation for viscosity in the 

expression for τ (Eq.2), and fitting h(t)/h0 as a function of T for a single case (3.8W/100s), we 

could obtain η0 and Ea for sample C-3 under CO2 laser polishing conditions (Fig. 5a). Using the 

same approach, we also calculated η0 and Ea for sample H-2 (Fig. 5b). Table II summarizes the 

values of the activation energy for the two types of silica glass found in the literature and 

measured under our experimental conditions.  The extracted viscosity was then applied to all 

laser exposure conditions for sample C-3 and H-2.  A reasonable agreement between the 

experiment and simulation is achieved with several different laser parameters when we used this 

new Arrhenius expression for viscosity (Fig. 6). However, for small τ (short exposure times and 

lower temperatures), there existed a deviation in the data away from the curve indicating a faster 

relative decay rate.   

 



V.  Discussion  

 

For capillary-driven flow, viscosity limits the relaxation processes near glass transition 

temperature. Therefore knowing the viscosity of a glass is important to predicting processing 

results. Direct measurement of the viscosity of glass at high temperature is often difficult, 

especially under extreme, non-uniform conditions such as CO2 laser mitigation. Study of the 

relaxation of grating structures may provide an attractive method to indirectly fine-tune the 

temperature dependant viscosity at high temperature. It is worth noting that the non-dimensional 

parameter τ gives some insight on the relationship between time and viscosity (temperature) 

during laser polishing. When designing methods for polishing a feature of size w, it is possible to 

achieve smoothing by optimizing either the transient exposure time t or temperature to reach a 

desired viscosity. 

Although we simplified the problem of surface relaxation by considering only the heat 

activated surface tension driven mass flow, the model adequately describes the CO2 laser 

smoothing of sub-micron sized SiO2 gratings for most of the temperature/time scales examined 

here. The computational fluid dynamics simulation based on this model afforded us the ability to 

treat exactly realistic (e.g. trapezoidal) gratings of any aspect ratio, without the constraints 

typical of the nearly-flat plane solution [13, 25].  In particular, deviation from a pure exponential 

decay can be observed due to relaxation of higher spatial frequency components.  For example, 

the spatial power scaling M shown in Table II was found to be 1 – 1.35 for our geometry, similar 

to the values found by Nowak et al. for larger scale surface features [18].  It is important to point 

out that, although a power scaling M>1 might imply the contribution of other mechanisms 



through Eq.(1), capillary flow of high aspect ratio, non-sinusoidal geometries leads to a similar 

effect.      

A key consideration here with regard to capillarity is the proper temperature dependent 

viscosity, which for silica is strongly dependent on OH content [28].  The viscosity extracted 

from our simulation and experiments for both high and low OH samples for τ larger than ~0.5 

(Nc<2) indicated a shift in Ea towards higher values.  The higher activation energy Ea could 

suggest that the hydroxyl content may have diffused out during laser heating. The apparent 

increase in viscosity due to an assumed OH diffusion was reported by Wang et al., and though 

highly plausible, only bulk OH was actually measured [15].  Indeed, given the smaller starting 

OH content, it is interesting to note that the viscosity shift for the lower OH sample (H-2) was 

somewhat less.  In order to explore laser heating-induced chemical changes that may correspond 

to higher activation energies estimated from our surface smoothing results, we performed 

spatially-resolved confocal Raman microscopy to monitor the OH variation on the sample 

surface and in bulk.  The normalized intensity of the SiOH stretch at ~3700cm-1 has been shown 

to give a reasonable estimate of the amount of OH [23], given the spectra can be calibrated with 

a known OH sample.  Bulk infrared transmission measurements of sample H-2 were performed 

by the vendor [29] and used to calibrate OH changes detected by Raman for both samples.  

Figure 7 shows the OH variation as a function of depth (axial resolution ~5µm) for each sample 

type, for different exposure times.  The estimated bulk OH content ~900ppm for sample C-3 was 

consistent with quoted vendor specs (800~1000ppm).  As shown, a clear OH depletion region is 

evident for sample C-3, consistent with the relative increase in viscosity predicted by our 

relaxation analysis.  As expected, when exposure time is decreased from 100 to 1s, less OH is 

depleted from the C-3 sample, a ~200ppm decrease as opposed to ~400ppm.  On the other hand, 



the H-2 sample showed much less of an effect, though the low starting OH content and relative 

sensitivity of our measurement (~100ppm) may limit our ability to assess OH depletion for this 

sample.  It is interesting to note that the variation in the OH content of sample C-3 at the surface 

for different laser parameters may explain some of the scatter in h/h0 vs τ below τ=0.5 shown in 

Fig. 4: while the viscosity was estimated using a heavily depleted case (t=100s), shorter times 

may retain more bulk-like OH levels and hence viscosity closer to that of the bulk.  On the other 

hand, a stronger decay of h/h0 could also point to a possible contribution from surface diffusion, 

not accounted for in our model.  Although this deviation was not as strong in sample H-2, thus 

supporting a possible non-uniform OH effect, further studies are planned to elucidate this 

apparent discrepancy for small τ in high OH samples.        

 

VI. Conclusions 

 

The smoothing of nanometer-scale, dry-etched periodic surface structures on type II and 

type III SiO2 substrates with 10.6µm CO2 laser has been studied using atomic force microscopy 

(AFM).  In-situ thermal imaging was used to map the transient temperature field across the 

heated region, allowing assessment of the T-dependent mass transport mechanisms and surface 

reshaping under different laser-heating conditions.  Computational fluid dynamics simulations 

correlated well with experimental results, and showed that capillary-driven flow dominates, even 

at the relatively small spatial scales studied here.  The transient local viscosity of the silica glass 

appears to deviate from typical literature values, consistent with a depletion of OH content that 

varies with exposure conditions.  However, at shorter time scales (<1s) and lower temperatures 



(<1700K), this shift is less dramatic, and may indicate an enhancement of surface relaxation 

caused by either surface diffusion or an incomplete near-surface depletion of OH species. 

Direct measurement of the OH content using micro-Raman confirmed these general conclusions, 

though the possible influence of surface diffusion in altering relaxation behavior remains 

somewhat unclear and is a subject of future study.  
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TABLES 

 
 

Table I. Function parameters used to approximate viscous relaxation behavior.  
 C K M 

τ<2 1.00 0.80 1.35 
τ>2 3.14 1.57 1.00 

 
 

Table II. Viscous flow activation energies for different fused silica glass samples.  

Sample 
Arrhenius fitting parameters Reported value 

Pre-exponential Activation energy 
(kJ/mole) Pre-exponential Activation energy 

(kJ/mole) 
Corning 7980 3×10-9 603 8.81×10-5 434 
Suprasil 312 2.05×10-8 578 5.8×10-7 515 

 



 
FIGURE CAPTIONS 

 
Figure 1: Typical AFM images of grating (a) before and (b) after CO2 laser polishing. 
 
Figure 2: Simulated grating height evolution with analytical fit. 
 
Figure 3: Spatial map of the region where surface profiles of the grating were measured using 
AFM and the corresponding temperature at that location. (a) Microscopy image of region treated 
with the Gaussian CO2 laser beam; (b) the grating height at different locations relative to laser 
beam center and the in-situ temperature measurement.  
 
Figure 4: Experiential (open circle) and simulation (straight line) results of normalized grating 
height vs. τ. The values of τ was calculated using Arrhenius relation η=η0exp(Ea/RT) for 
literature reported viscosity for silica glasses with ~1100 OH content where η0=8.81×10-5 Poise 
and Ea=434 kJ/mole. 
 
Figure 5: Arrhenius temperature dependent viscosity relation η=η0exp(Ea/RT) obtained by fitting 
experiment data for (a) type III (C-3) and (b) type II (H-2) silica glasses.  
 
Figure 6: Experimental (open symbols) and simulation (solid line) of the evolution of the grating 
height vs. τ. For (a) type III (C-3), the laser parameters are 3.8W 10s (   ), 3.8W 100s (   ), 4W 
100s (   ), 4.2W 10s (   ), 4.5W 5s (   ), 4.5W 30s (   ), 4.7W 1s (   ) and 4.7W 10s (   ).  For (b) 
type II (H-2) silica glass, the laser parameters are 3.8W 10s (   ), 4.5W 10s (   ).  
 
Figure 7:  Measured OH concentration as a function of depth for 1s (closed symbols) and 100s 
(open symbols) exposures, for samples C-3 (triangles) and H-2 (circles).   
 

 

 

 

 

 

 

 





 

 



 



 





 



 

 


