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Abstract. We tested the ability of eddy covariance (EC) to detect, locate, and quantify
surface CO, flux leakage signals within a background ecosystem. For 10 days starting on
07/09/2007, and for seven days starting on 08/03/2007, 0.1 (Release 1) and 0.3 (Release
2)t CO,d™, respectively, were released from a horizontal well ~100 m in length and ~2.5
m in depth located in an agricultural field in Bozeman, MT. An EC station measured net
CO, flux (F.) from 06/08/2006 to 09/04/2006 (mean and standard deviation = -12.4 and
28.1 gm™ d™, respectively) and from 05/28/2007 to 09/04/2007 (mean and standard
deviation = -12.0 and 28.1 g m™ d”', respectively). The Release 2 leakage signal was
visible in the F time series, whereas the Release 1 signal was difficult to detect within
variability of ecosystem fluxes. To improve detection ability, we calculated residual
fluxes (F.,) by subtracting fluxes corresponding to a model for net ecosystem exchange
from F.. F,, had reduced variability and lacked the negative bias seen in corresponding F.
distributions. Plotting the upper 90" percentile F., versus time enhanced the Release 2
leakage signal. However, values measured during Release 1 fell within the variability
assumed to be related to unmodeled natural processes. F. measurements and
corresponding footprint functions were inverted using a least-squares approach to infer
the spatial distribution of surface CO, fluxes during Release 2. When combined with
flux source area evaluation, inversion results roughly located the CO; leak, while

resolution was insufficient to quantify leakage rate.
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1. Introduction

One approach being considered to help mitigate rising atmospheric CO, concentrations is
geologic carbon sequestration (GCS) [e.g., International Energy Agency, 1997, 2004;
IPCC, 2005]. The possibility of leakage of CO, from underground storage sites along
permeable pathways such as well bores or faults is a primary concern for the safety and
effectiveness of GCS. Should it occur, this leakage could have harmful effects on the
near-surface environment. Therefore, in addition to CO; capture, transportation, and
injection technology, GCS requires monitoring approaches with the ability to detect,

locate, and quantify potential CO, leakage in the near-surface environment.

While numerous techniques are available to measure CO, concentrations and fluxes
within the near-surface environment, detection and characterization of potential CO,
leakage from geologic storage reservoirs will pose a challenge due to the large spatial and
temporal variation in background CO, fluxes [e.g., Lewicki et al., 2005; Cortis et al.,
2008]. Eddy covariance (EC) is a micrometeorological approach traditionally used to
measure trace gas and heat fluxes across the interface between the atmosphere and a plant
canopy under certain atmospheric and terrain conditions [e.g., Baldocchi, 2003]. EC
offers the benefit of an automated flux measurement that does not interfere with the
ground surface and is averaged over both time and space, with the spatial scale
significantly larger (m”*-km?) than that of many other ground-based techniques. For these
reasons, EC has been proposed for use in GCS monitoring programs [e.g., Oldenburg et

al., 2003; Miles et al., 2005; Benson, 2006; Leuning et al., 2008]. Several studies have



used EC to measure artificial tracers released at the surface in simple geometric
configurations to verify footprint models [e.g., Foken and Leclerc, 2004 and references
therein]. EC has also been shown to provide reliable measurements of relatively large-
magnitude volcanic CO; fluxes resulting from gas migration from natural geologic
reservoirs to the surface [4nderson and Farrar, 2001; Werner et al., 2000; 2003; Lewicki
et al., 2008]. However, the ability of EC to detect, locate, and quantify potentially small
subsurface-derived CO; leakage signals within the large background variability of

ecological fluxes is largely untested.

A facility was recently built in an agricultural field at Montana State University by the
Zero Emissions Research and Technology (ZERT) Project, where CO, can be released
into the shallow subsurface from point and line sources that emulate leakage along, e.g.,
abandoned wells or faults [Lewicki et al., 2007]. In July and August 2007, two controlled
releases of CO, were carried out at different rates from a shallow horizontal well; the
spatio-temporal evolution of surface leakage signals was characterized by repeated
measurements of soil CO; flux using the accumulation chamber method [Lewicki et al.,
2007]. In this study, we deployed an EC station in the field from 06/08/2006 to
09/04/2006 and from 05/28/2007 to 09/04/2007, which allowed us to establish a baseline
of background summertime net CO; flux variability for the study site. To improve our
ability to detect CO, leakage, we apply a filter to the time series that removes the
ecological CO; flux signal that is correlated with changes in intensity of light and soil
temperature. Once leakage is detected, we use least-squares inversions of measured EC

CO; fluxes and modeled footprint functions to roughly locate and image the geometry of



the surface CO; leak. To our knowledge, this represents the first time that such
inversions of EC measurements have been used to model the spatial distribution of
heterogeneous surface CO; fluxes. Our results suggest that under careful, site-specific
experiment design, EC is a promising tool to detect and locate leakage signals of
moderate to high magnitude and/or spatial extent, while detection of relatively small

leakage signals may require the use of alternative measurement approaches.

2. Field Site and CO; Release Experiments

The CO; release experiments were conducted at Montana State University, at the
Montana Agricultural Experiment Research Center in Bozeman, MT (45°39'N,
111°04'W). The study site was a ~0.12 km?, nearly flat field, with vegetation composed
primarily of prairie grasses, alfalfa, and Canadian thistle. The field was mowed/hayed on
11 July 2006 and then on 22 June 2007. While leaf area index was not measured in this
study, it would have been greatly reduced when the field was mowed, thus reducing plant
photosynthetic uptake of CO,. A ~0.2 to 1.2 m-thick clay topsoil here overlies an alluvial
sandy cobble. A well, oriented 45° to the northeast, was installed in the field using
horizontal drilling in December 2006. This well had a 70-m long perforated and nearly-
horizontal section at its center and unperforated sections on its two sloping ends (Figure
1). The perforated section was located at ~1.3-2.5 m depth, sub-water table, within the
alluvial sandy cobble and was divided into six zones separated by 0.4-m wide inflatable
packers. Five zones were 12 m in length and one zone (on the far southwest end of the

well) was 9 m in length. When inflated, the packers prevented fluid flow between the six



perforated well zones. Packer inflation and CO, delivery lines were installed in the well
to flow air to the packers and CO, to each of the six perforated well zones, respectively.
Because horizontal drilling was used to install the well, the original soil profile and
vegetation over the well were minimally disturbed. From 9-18 July 2007, 0.1 t CO, d™!
(100 kg CO, d™") were released from the well, 13.0 kg CO, d”' from the far southwest
perforated zone and 17.4 kg CO, d”' from each of the other five zones (hereafter referred
to as Release 1). This rate was chosen based on numerical simulations to provide a
challenging detection problem while still ensuring that injected CO, would reach the
ground surface. Then, from 3-10 August 2007, 0.3 t CO, d”' (300 kg CO, d™") were
released (hereafter referred to as Release 2). This rate was chosen to obtain a larger
surface flux for demonstration purposes. CO, flow rate to, and pressure within each of the

perforated well zones were monitored during the releases.

Lewicki et al. [2007] measured soil CO; flux repeatedly on a daily basis from 7-18 July
and from 7-12 August 2007 using the accumulation chamber method [e.g., Chiodini et
al., 1998]. An opaque chamber was used and vegetation within the chamber footprint
area was clipped so that only soil CO, efflux (ecosystem respiration + leakage) was
measured. Figure 2 shows contour maps of soil CO, flux measured prior to Release 1, on
Day 8 of Release 1, and on Day 8 of Release 2. Surface CO, leakage occurred during
both releases at 5-6 points aligned along surface trace of the well (Figure 2 b and ¢). The
maximum soil CO, flux measured during Release 1 was high, ~1600 g m™>d™" (~420 pmol
m~ s relative to background ecosystem respiration fluxes; however, the total CO,

release rate of 0.1 t d”' was of similar magnitude as background ecosystem respiration



flux integrated over the relatively small grid area (7.7 x 10> m®) [Lewicki et al., 2007].
Leakage fluxes measured during Release 2 along the well trace increased (up to 6000 g
m~ d) relative to Release 1 and the total CO, release rate of 0.3 t d”' was approximately
three times that of background ecosystem respiration flux integrated over the grid area at
that time. Further details of soil CO, flux measurements and the relationship of surface

CO; leakage flux distribution to the well design are found in Lewicki et al. [2007].

3. Measurement of EC Net CO; Flux and Environmental Parameters

An EC station was deployed near the center of the field from 8 June to 4 September 2006
and then 27 m northwest of the release well from 28 May to 4 September 2007 (Figure
2a). The location of the station was chosen to take advantage of east-southeasterly
prevailing winds, which would frequently situate the EC station downwind of the well
leakage source (Section 4.1). The station was similar in design to that described by
Billesbach et al. [2004] and was composed of fast- and slow-response subsystems. The
fast-response subsystem included two sensors used to measure the variables necessary to
calculate turbulent fluxes of CO,, H,O, heat, and momentum. A Gill-Solent WindMaster
Pro sonic three-dimensional anemometer/thermometer (Gill Instruments, Ltd) measured
wind speeds in three orthogonal directions and sonic temperature at 10 Hz. A LI-COR
7500 open-path CO,-H,O infrared gas analyzer (LI-COR, Inc) measured CO, and water
vapor densities at 10 Hz. Both sensors were mounted atop a tripod tower at 3.2 m height
from 8 June to 4 September 2006, 3.0 m height from 28 May to 18 July 2007, and 2.8 m

height from 19 July to 4 September 2007.



The slow-response subsystem included sensors (Table 1) associated with a second tripod
tower that measured auxiliary meteorological and soil physical parameters. Radiation
sensors were mounted to a horizontal bar extending from the tripod tower at 2 m height.
Soil moisture profiles (10 and 30 cm depth) were measured at two locations. Since the
soil moisture probes were not calibrated for the soil at the study site, we refer to
measurements as “relative soil moisture”, and only assess the data qualitatively. Soil
temperature profiles (10, 20, and 30 cm depth) were measured at two locations. Soil heat
flux was measured at four locations at 5 cm depth near the radiometer. Slow-response
subsystem variables were measured every 5 seconds and averaged over 30 minutes for

comparison with turbulent fluxes.

Net CO, flux (F.) was calculated as the temporal covariance of CO; density (c) and

vertical wind velocity (w):

F.=w'c (1)

where the overbar denotes time averaging and primes denote fluctuations in w and ¢
relative to their mean values. Fluxes were calculated for 30-minute periods. Equation 1
gives the mean vertical turbulent flux of CO, over a horizontally homogeneous surface
under steady-state conditions. The lower measurement detection limit is estimated to be 2
gm™ d” over relatively short vegetation when ecosystem F, is relatively high. For each

half-hour of data, the mean lateral (v ) and then the mean vertical (w ) wind velocities



were rotated to zero [Kaimal and Finnigan, 1994]. The WPL correction for the effects of
fluctuation in heat and water vapor on the density of air [Webb et al., 1980] was applied.
Raw signals from the infrared gas analyzer and sonic anemometer were evaluated for
spikes and all points more than ten standard deviations (thereby accepting a non-Gaussian
tail to the data) away from a 600 s moving average were removed from the data; gaps
were then filled using a 10 s moving average. Turbulent fluxes measured during the
nighttime under low turbulent conditions can be systematically underestimated [e.g.,
Aubinet et al., 2000; Massman and Lee, 2002]. Supplement 1 shows a plot of F. versus
friction velocity (u+), calculated as the square root of the momentum flux, for nighttime
EC measurements made in 2006 and 2007, excluding data collected during Releases 1
and 2, the week following mowing of the field in 2006, and the week following mowing
of the field in 2007. We chose two u« thresholds (0.15 and 0.23 m s™') below which
nighttime F, was discarded in 2006 and 2007 time series to compare their effects on loss
of underestimated fluxes. Because nighttime half-hour and average-daily F,. measured in
2006 and 2007 were similar for u«>0.15 and u+> 0.23 m s™' thresholds (Supplement 2)
and the 0.15 m s 'threshold allowed us to retain a larger number of data for further
analysis and modeling of ecosystem CO; fluxes (Section 4.2), we discarded nighttime F
data corresponding to u+<0.15 m s”'. Data were tested for stationarity according to Foken
and Wichura [1996]. Each 30-minute F. measurement was divided into six five-minute
segments. If the difference between the average of the five-minute segments and the 30-
minute measurement was greater than 30%, then the measurement was considered non-
stationary and discarded. Based on filtering F, time series for u and stationarity criteria,

43 and 50% of data points were rejected in 2006 and 2007, respectively.



4. Results

4.1. Meteorology

Winds were primarily either from the east-southeast or from the northwest, with the
highest wind speeds measured typically from easterly directions (Figure 3). Figure 4
shows average daily atmospheric temperature, vapor pressure deficit (VPD), PAR, and
relative soil moisture and daily cumulative precipitation measured in 2006 and 2007.
Average summertime (June-August) atmospheric temperatures were comparable for 2006
and 2007 (~18°C), with maximum average daily values observed in July (Figure 4a and
d). Cumulative summertime rainfall was 118.4 mm in 2006; neglecting the week of data
loss in July 2007, it was 43.9 mm over the same timeframe in 2007 (Figure 4c and f).

The highest summertime rainfall occurred in June of 2006 and 2007. In July-August
2007, daily cumulative precipitation exceeded ~1 mm on only three days, which occurred
either during or several days prior to Releases 1 and 2 (Figure 4f). The rain during
Release 2 on 6 August 2007 was associated with a decrease in both atmospheric
temperature and VPD. Average daily relative soil moisture showed a long-term decline
over the summers of 2006 and 2007, with shorter-term increases observed associated

with heavy rain events (Figure 4b and e).

4.2. Detection of CO; leakage signal within ecosystem variability
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The 2006 and 2007 F, time series are shown in Figure 5. Data gaps were caused by loss
of power, intense precipitation events, or filtering with respect to u+ and non-stationarity.
Based on these data, the field was a net sink for CO; prior to mowing in both 2006 and
2007. After mowing, the field rapidly became a net source for CO, when plant leaf area
and photosynthetic uptake were dramatically decreased. Daytime CO, uptake then
gradually increased through late July/early August, thereafter remaining relatively
constant for the remainder of the 2006 and 2007 observation periods. CO, leakage
during Release 1 was not possible to detect within the large background variability of the
F. time series (Figure 5b). F. values measured during Release 2 showed a positive shift
upwards, relative to the weeks prior to and following the release. The mean and standard
deviation of the 2006 F, time series were -12.4 and 28.1 gm™ d”', respectively (Figure
6a), whereas the mean and standard deviation of the 2007 F, time series were -12.0 and

28.1 gm™ d™, respectively (Figure 6b).

As observed, the large variability of ecosystem fluxes can mask CO, leakage signals
similar to those studied here, particularly if we lack a priori knowledge of the location of
the leakage source. While the location of the leakage source was known in this study,
this will not necessarily be the case at many GCS sites where monitoring for potential
CO; leakage is carried out. Consequently, we chose not to filter /. data for wind direction
(i.e., eliminate data corresponding to times when the EC station was located upwind of
the well). Estimation and removal of the contribution of net ecosystem exchange (NEE)
from the total measured flux, . may instead improve our ability to detect leakage at

many sites. NEE can be partitioned into photosynthetic uptake by the plant canopy and
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ecosystem respiration from plants and soil. These constituent fluxes are influenced by a
broad range of factors such as meteorology, soil physical and chemical properties, and
plant functional and structural characteristics. However, intensity of light and soil
temperature are strong drivers of short time-scale variations in plant photosynthetic
uptake and ecosystem respiration, respectively. As a result, empirically derived
relationships between these environmental parameters and /. have been used to
decompose F, into respiration and photosynthetic flux components and gap-fill F time
series [e.g., Aubinet et al., 2000; Falge et al., 2001; Reichstein et al., 2005; Fischer et al.,
2007]. Here, we estimate the ecological F. signals correlated with changes in light and

soil temperature and remove them from the 2006 and 2007 F, time series.

We use a rectangular hyperbolic function [e.g., Falge et al., 2001] to describe NEE in

terms of photosynthetic uptake and respiratory release of CO;:

(2)

NEE=_( F,0PAR ) R

—_— |+
aPAR+ F,

where F4, is the maximum CO; flux at infinite light, a is the apparent quantum yield,
and R, 1s the respiration CO; flux from plants and soil. Substituting an exponential
function that describes the relationship between soil temperature (7)) and R, [Lloyd

and Taylor, 1994] into equation (2) yields:

F. aPAR

NEE = -| —"*———
aPAR+F,

) +b,exp(bT,,,) 3)
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where b and by are empirical coefficients. Using nonlinear optimization methods,
equation (3) was fit to half-hour F,, Ts,; (20 cm depth), and PAR data for three-day
moving (half-hour time step) windows through the entire 2006 and 2007 measurement
periods to estimate o, Fyuy, b and by parameters for the center point in the moving
window. Predicted values of NEE were then calculated for the center point based on
measured F, T, and PAR values and best-fit parameters. We required a minimum of
20 data points within the three-day moving window for estimation of o, Fax, b and by. If
fewer data points were present within the window for a given time step, then a gap
occurred for predicted NEE. Supplement 3 shows RMS errors as the misfit between
predicted NEE and F_ for the three-day moving windows versus time for 2006 and 2007

time series.

Residual F, (F,) was calculated by subtracting predicted NEE from measured F,.. This
simple “ecological flux filter” only reduces fluctuations in F. that are correlated with
variations in 7y, and light. The filter does not account for fluctuations in F, that may be
related to variations in, for example, soil moisture, litter, and perhaps even photosynthetic
uptake associated with elevated atmospheric CO, concentrations during a leak.
Consequently, F, values represent our best estimate of fluxes that may result from
unmodeled natural processes, background instrument noise, and the CO; leak of interest.
F., for 2006 and 2007 time series were normally distributed and nearly unbiased (Figure
6¢ and d), with 2006 mean and standard deviation = 0.0 and 8.1 g m™ d”', respectively,

and 2007 mean and standard deviation = -0.1 and 9.3 g m™ d™', respectively. Since we
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expect a CO, leakage flux signal to be expressed more strongly in the upper tail of a F,
distribution, we isolated the upper 90™ percentile F,. to identify points that may be
indicative of leakage. A cumulative distribution function of F was calculated for a
seven-day moving window (advancing in half-hour time steps) and the upper 90"
percentile flux of that distribution was assigned to center point of the window. The time
series of these upper 90" percentile F., values for 2006 and 2007 are shown in Figure 7.
For a stationary Gaussian distribution, the upper 90" percentile F,. is 1.3 standard
deviations above the mean. Assuming stationarity and that the mean is zero for 2006 and
2007 F.,, distributions, the upper 90" percentile F., for these distributions = 10.5 and 12.1
gm™ d”, respectively. These values are shown as the dashed horizontal lines on Figure 7.
With the exception of several high-frequency increases in the upper 90" percentile F,
values near the beginning of the 2006 and 2007 observation periods, and the longer-lived,
relatively high values observed during Release 2, upper 90" percentile F.., lie close to or
below those expected from random sampling a normal distribution. Upper 90™ percentile
F., observed near the timing of 2006 and 2007 mowing are close to the 10.5 and 12.1 g
m™? d' thresholds, respectively. While upper 90" percentile F,. observed during Release 1
lie within the variability of background values, those measured during Release 2 are

highly anomalous and sustained over multiple days (Figure 7).

4.4. Location and quantification of CO, leakage signal

After CO, leakage was detected during Release 2, we used a radial plot of ;- as a

function of mean horizontal wind direction (Figure 8) to determine the direction from
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which the leakage signal was derived. Figure 8 shows F, color coded for measurement
time, where the relatively large orange dots with black outlines were measured during
Release 2. If we assume that F,,, > 18 gm™ d"' is anomalously high (greater than ~ two
standard deviations above the mean), then 19 anomalously high values were measured
during Release 2, while 68 were measured during the entire 2007 observation period.
Since 28% of anomalously high F, values were measured during Release 2 and the
release only lasted for 8% of the 2007 observation period, anomalously high F, are more
than three times over-represented during Release 2, relative to the rest of the observation
period. Anomalously high F, values were typically measured during Release 2 when the
EC station was downwind of the release well (mean horizontal wind direction between 45

and 225°; Figure 8).

The F. measured by EC at a point (x,, ym, zn) 1S representative of the weighted average of
the upwind surface CO, emissions. The influence of each surface point source emission
on F, depends on its location relative to the EC sensors. F. is related to the distribution
of source CO; fluxes (Q.) at the surface (x', ', z'= zy) determined by the footprint or

source weight function, f(x,- X', Y-V, Zm-20):

Fc(xm’ymazm)=ﬁwmﬁwac(x,’y,’Z/ = ZO )f(xm _x(’ym _y/’Zm _ZO yx/dy’ (4)

[e.g., Horst and Weil, 1992; Schmid, 1997]. The footprint function varies with factors
such as EC sensor height, atmospheric stability, and surface roughness; however, the

value (weight) of the footprint function generally rises to a maximum some distance
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upwind of the EC sensors, then smoothly falls off in all directions. The total surface
influence on F,, or the source area, is the integral beneath the footprint function. Should
the spatial distribution of Q. remain constant over time, changes in F. will reveal this
distribution as the footprint function varies with atmospheric conditions. Thus, in
principle, it should be possible to infer the spatial distribution of Q. using a number of F,
measurements that source different areas, with the purpose of locating and quantifying a

potential CO; leak [e.g., Miles et al., 2005].

We attempt to infer the spatial distribution of surface fluxes during Release 2 using a
linear, least-squares inversion [e.g., Menke, 1989] of 75 modeled footprint functions and
F., observed during the release. This approach is similar to other geophysical inversions,
such as geodetic inferences of fault slip rates based on surface deformations [e.g., Harris
and Segall, 1987] or tomographic imaging of the seismic velocity structure of the earth
based on multiple travel times of teleseismic waves [e.g., Dahlen and Tromp, 1998]. In
this particular application, we note that the F, can be modeled as the weighted sum of the
Q. distribution from which ecological signals have been removed (Q.,), hereafter

approximated as unvarying in time. Thus, F, can be written as:

F.=GQ, (%)

where FL; is a vector whose length is the number of observations collected during the
release, and G is a matrix that contains the modeled footprint functions (f) that map the

unknown surface fluxes (Q,, ) into F.. Given G, we estimate the spatial distribution O,

16



that best explains the observed FL; We use a least-squares solution to this problem,

which allows us to write the unknown spatial distribution of surface fluxes in terms of

F_and G as follows:

—_—

0. =(G'"WG)'G"WF, (6)

where W is the covariance matrix of the observed FL; ,and G is the transpose of the

A

data kernel. If we assume that fluctuations in FL; are independent from one another, W
reduces to a diagonal matrix whose dimensions are equal to the number of observations,

and whose values are the inverse of the variance of the FL; data (7.4 x 10° g* m* d%). If
many more observations of FL; exist than there are unknown Q_L; values, then Equation 6

is sufficient to infer the spatial distribution of Q_L;

In the current study, there are more Q_L; values to be inferred than there are observations
of FL; In addition, when Equation 6 is applied to, for example, geodetic data, the best-fit

solutions for Q_L; often vary abruptly in space and produce extremely rough solutions that
are physically untenable [e.g., Harris and Segall, 1987]. For these reasons, following
methods developed in the geodetic and seismological communities, we apply an

additional constraint to the weighted least squares inversion that requires spatial
continuity when finding the best-fit values for Q_L; This constraint requires the curvature
in the values of Q_L; to be minimized between adjacent points while satisfying the

observed FL; values. This is accomplished by combining G with a second m x m matrix
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(where m is the number of cells within which Q_L; is inferred), hereafter referred to as

CA}m. This matrix uses a finite difference expression to calculate curvature based on the
inferred flux values at each grid point and those points directly adjacent to it within the

inferred source area (assuming points outside of the source area have zero surface flux).

B —

In addition, a second vector (referred to as F

sm

) is combined with FC;; this vector’s

—_—

length is that of and its values are set to zero to minimize the curvature of Q_L; By

cr 2

FC; with F_, and applying Equation 6, the values of Q_L; will

sm

combining G with CA}W,
reflect a compromise between the surface flux values inferred from F, and the
requirement of smoothness across the solution space. This has the effect of overly

smoothing Q_L; in areas that are poorly defined by the observed FL; values, while

honoring Q_L; in areas well defined by the observed data.

The distribution of Q_L; inferred from this method represents a compromise between the
constraints provided by observations versus those that require a spatially smooth solution.
The relative influence of these two sets of constraints is controlled by specifying the
weight that the smoothing function receives in the solution relative to the observations,

which we refer to as wy,,. When wy, is set to a large value, the smoothness of modeled
Q. will be favored over the fit between measured and modeled F.,. However, when wy,

is set to a small value, the solution will become rougher and more poorly defined for

—_—

many values of while the fit between measured and modeled Fc;will improve. As is

cr 2

customary in the geophysical literature [e.g., Harris and Segall, 1987], for different wy,
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we plot the misfit between measured and modeled FL; (as the weighted residual sum of

squares; WRSS) versus roughness of Q_L;

roughness = i(Q”’[ - Q_C,) (7)

By systematically changing the value of wy,,, we can determine values of this parameter
that result in the greatest decrease in the solution roughness that does not necessitate a
correspondingly large change in the data misfit. Thus, we use this plot to identify the
optimal wy,, that produces a reasonably smooth model result and maintains an acceptable

level of misfit.

—_—

To model we discretized the surface surrounding the EC station into an 800 m x 800

m solution domain. The linear dimension of each square pixel for which Q_L; was
determined was equal to 10 m. The Flux Source Area Model (FSAM) of Schmid [1997],
based on analytic solutions of the advection-diffusion equation [Horst and Weil, 1992]
was used to model footprint functions using the following inputs: (1) z,, = 2.8 m; (2)
surface roughness height, zy = 0.05 m, based on vegetation height measured during
Release 2; (3) measured mean horizontal wind direction; (4) cross-wind turbulence near
the surface characterized by calculated o,/u+, where o, is the standard deviation of the
wind speed in the cross-wind direction; (5) calculated Monin-Obukhov length, L

(Supplement 4). We calculated f at the center of each 10 m x 10 m pixel. Since the

source area here was defined as the area from which 90% of the FL; was derived, we
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renormalized f'to reflect this partial sampling by the model. FL; values corresponding to
source areas greater than the 0.64 km” area of the model domain and/or footprint models

that did not converge were not considered in the inversion.

Figure 9 shows a plot of the misfit between measured and modeled FL; (WRSS) versus

—_—

Q. roughness. A smoothing weight of 10 was selected for the model inversion, which
provided the optimal compromise between spatial continuity across the model solution
space and misfit between measured and modeled FL; Inversion results are shown in
Figure 10 for a 400 x 400 m area to highlight the region close to the EC station. Results

for the full 800 x 800 m model domain are given in Supplement 5. The inversion results
show large-scale areas of relatively high Q_L; values located at distances greater than ~75

m from, and to the NE and SW of the EC station (Figure 10a). A smaller area of positive

—_—

Q. values was modeled closer to and southeast of the EC station. Based on the footprint
function, only surface fluxes located upwind of the EC station will contribute to F,.
Also, surface fluxes located far away from the EC station will tend to contribute a lesser
extent to F, than those located in relatively close proximity. Thus, in minimizing the
misfit, the model tends to push extreme flux values into portions of the solution domain
for which the EC measurements provide little constraint. We constructed a contour map
of the sum of footprint weights based on the 75 modeled footprint functions (Figure 10b),
the “footprint climatology” [e.g., Amiro, 1998; Gbckede et al., 2008]. This map
highlights those portions of the solution space that were well defined by the EC
measurements and provides a qualitative assessment of the relative uncertainty of the

model inversion results. Surface areas located within ~50 m of the EC station were
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—_—

weighted most highly in modeled footprint functions; Q_ values modeled within those
regions were therefore well defined by EC measurements and associated with the greatest
certainty. Surface fluxes located greater than ~ 75 m from the EC station were poorly

resolved by EC measurements; smoothing thus dominates inversion results in these

regions. Figure 10c shows the map of modeled Q_L; values, shaded for relative
uncertainty so that Q_L_;wﬂues that are not resolved by observations are masked. An area

of relatively high Q_L_;is located within ~30 m and southeast of the EC station. While the
shape of this region is less elongate than the surface CO, flux leakage signal measured
during Release 2 (Figure 10d), its location relative to the EC station is similar.
Importantly, the central portion of the linear surface CO; flux leakage signal in Figure

10d is located in an area of greater footprint weight (Figure 10b) than the two ends of the

—_—

signal. For comparison, Supplement 5 shows maps of modeled using wy, values of

10"°,10™°, and 10™*. The area of relatively high Q_L; located within ~30 m and southeast

of the EC station is consistent for all three inversions, while those areas defined only by

smoothing vary strongly with w,,.

To test our ability to quantify the surface leakage rate associated with Release 2 based on

—_—

modeled we integrated Q_L; values over the area of the accumulation chamber

measurement grid (Figures 2 and 10d), which yielded CO, discharge = 0.02 t d”'. Based
on accumulation chamber measurements, Lewicki et al. [2007] estimated a leakage CO,

discharge on Day 8 of Release 2 =0.33 t d”'. Assuming that the surface leakage CO,

discharge was equal to the CO, release rate during Release 2 (0.3 t '), accumulation
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chamber measurements recorded 110% of the surface leakage rate, while EC

—_—

measurements, based on modeled recorded 7% of the surface leakage rate.

cr

5. Discussion and Conclusions

The CO; release rates of Releases 1 and 2 and their associated surface leakage signals
provided a challenge for detection of CO; leakage by EC. For example, the surface CO,
leakage rate measured using the accumulation chamber method during Release 1 was less
than or similar to the background ecosystem respiration flux integrated over the relatively
small measurement grid area [Lewicki et al., 2007]. Also, both releases resulted in surface

CO; flux leakage signals of small spatial extent, relative to the EC flux source areas.

Measurements of F. made during Summer 2006 and prior to Release 1 in 2007 allowed
us to establish a baseline of background summertime variability for the study site.

We first examined the raw 2007 F, time series (Figure 5b) to assess whether CO, leakage
signals associated with Releases 1 and 2 were possible to detect. No convincing change
in F. was discernable during the timeframe of Release 1, whereas a positive shift upwards
in F. was detectable during Release 2, relative to the week prior to and those following

the release.

Removal of the ecosystem signal from the F, time series that was correlated with changes
in PAR and soil temperature greatly improved our ability to detect CO, leakage during

Release 2. Application of this ecological flux filter reduced the variability of and
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removed the negative bias from the 2006 and 2007 F,, distributions, relative to the
corresponding F, distributions (Figure 6). Plotting the upper 90™ percentile F., versus
time (Figure 8) allowed us to isolate anomalously high residual fluxes associated with
CO, leakage during Release 2. The 90" percentile F., values expected assuming
stationary Gaussian distributions for 2006 and 2007 were similar (10.5 and 12.1 gm™>d",
respectively), suggesting that similar factors controlled variability of the residuals during
both years. These factors likely include the influence of fluctuations in VPD,
precipitation, and soil moisture on F,, other unmodeled natural processes, and to a lesser
extent, EC instrument noise. Since the 2006 and 2007 F, distributions were not truly
stationary, we observed variations in the upper 90" percentile F,. away from the expected
values. For example, the high frequency spikes in these values that occurred at the
beginning of the 2006 and 2007 measurement periods are likely related to measurement
noise during heavy precipitation events. Finally, while the CO, leakage signal associated
with Release 2 emerged clearly in Figure 7, CO; leakage during Release 1 remained
undetectable after the ecological F. signal was removed. Detection of relatively small
CO; leakage signals by EC will likely be difficult at many sites. However, if we are able
to model and remove F. signals associated with additional natural processes and

instrument noise, detection ability may be improved.

Once a CO; leakage signal has been detected, EC may assist in its location and
quantification when used in concert with other surface CO, flux measurement techniques.
For example, we constructed a radial plot of £, as a function of wind direction (Figure

8), which confirmed that anomalously high F, values were measured during Release 2
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typically when the EC station was downwind of the well leakage source. Without a priori
knowledge of the leakage source location, such a radial plot could be used to estimate the
direction from which CO, leakage is derived. EC footprint modeling would determine the
approximate source areas from within which directionally consistent anomalously high
F., values originate. A point CO, flux measurement approach such as the accumulation
chamber method could then be used to locate and quantify CO, leakage [e.g., Lewicki et

al., 2007] within those areas.

Alternatively, EC has the potential to locate and quantify CO, leakage signals when used
alone if (1) multiple EC stations are deployed in different locations or an array of EC
sensors is installed at more than one height at a given location and simultaneously sample
a leakage area with different flux footprints or (2) a leakage area is relatively stable over
time and is sampled repeatedly by a single EC station with varying flux footprints. We
showed that it was possible to locate a leakage signal with a location, geometry, and
magnitude such as that of Release 2 using a single EC station by inversion of 75 F,,
measurements and corresponding footprint functions (Figure 10). To our knowledge, this
is the first study to invert EC measurements to infer the spatial distribution of
heterogeneous surface fluxes. Importantly, however, our map of modeled Q_L; only
roughly resolved the location and geometry of the leakage signal, while the leakage rate
was underestimated by ~93 %. Overall, the ability to locate, map the geometry of, and
quantify a given CO, leakage signal using EC will be very challenging and depend on a
wide range of factors, such as location of the EC sensors, magnitude, geometry, and

spatio-temporal stability of the signal, atmospheric conditions at the time of the
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measurements, surface roughness, site topography, and the number of EC measurements
available for the inversion. Also, relatively high and heterogeneous CO, leakage
emissions could potentially cause advection, leading to underestimation of the leakage
signal by EC. In our case, the limited number of EC measurements available for

inversion during the relatively short timeframe of Release 2 strongly impacted the

—_—

resolution of modeled Q_ ; a greater number of measurements would presumably
improve the results. Furthermore, we showed that based on factors such as EC sensor
location, site surface roughness, and atmospheric conditions, only the area within ~75 m
of the EC station contributed substantially to /. measurements (Figure 10b). Since the
CO; leakage source was situated within this region, we were able to detect and locate it.

In particular, the central part of the linear surface CO; flux leakage signal (Figure 10d)
was located within an area of high footprint weight, relative to the two ends of the signal.
This likely led to the anomalously high modeled Q_L; within a point-source region (Figure
10c) near the center of the measured signal in Figure 10d, and could have contributed to
our underestimation of total leakage discharge based on Q_L; . Given the challenges
associated with the use of EC to detect, locate, and quantify CO, leakage signals of small
magnitude and/or spatial extent within a background ecosystem, the application of EC in
GCS monitoring programs should be guided by detailed site characterization, careful EC

experiment design, and, ideally, the use of complementary measurement techniques.
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Table 1. Slow-response subsystem instrumentation and measurements.

Instrument

Measured variable

PTB101B barometer (Vaisala, Inc.)

Atmospheric pressure

HMP50 humidity and temperature probe
(Vaisala, Inc.)

Atmospheric temperature and relative
humidity

CS800-12 wind set (Climatronics Corp.)

Mean horizontal wind speed and direction

CNR-1 radiometer (Kipp & Zonen)

Net radiation

LI-200SA pyranometer (LI-COR)

Total insolation

LI-190SA quantum sensor (LI-COR)

Photosynthetically active radiation (PAR)

TES2S5 tipping bucket rain gage (Texas
Electronics)

Cumulative precipitation

ECH20 soil moisture probe (Decagon
Devices)

Relative soil moisture profiles

Thermocouples (in house)

Soil temperature profiles

HFT3 soil heat flux plates (Radiation and
Energy Balance Systems)
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Figure Captions

Figure 1. Schematic of the CO, release well at Montana State University. Gray zone is
expanded to show example of a ~12 m perforated well zone from which CO, was

released, bounded by two ~0.4 m inflatable packers.

Figure 2. Contour maps of log soil CO; flux for measurements made on (a) 7 July 2007
(background), (b) 16 July 2007 (Day 8 of Release 1), and (c) 10 August 2007 (Day 8 of
Release 2). Dots show measurement locations. Black line and gray square in (a) show
approximate locations of surface well trace and 2007 EC station, respectively. The 2006

EC station was located ~60 m north of the 2007 station.

Figure 3. Wind rose showing joint frequency distribution of mean horizontal wind speed

and direction (half-hour averages) measured in 2006 and 2007.

Figure 4. Time series of (a) average daily atmospheric temperature (stars) and vapor
pressure deficit (VPD; dots), (b) average daily PAR (dots) and relative soil moisture
(stars), and (c) daily cumulative precipitation measured in 2006. Time series of (d)
average daily atmospheric temperature (stars) and VPD (dots), (e) average daily PAR
(dots) and relative soil moisture (stars), and (f) daily cumulative precipitation measured
in 2007. Dashed vertical lines show timing of mowing of field. Gray zones show timing

of Releases 1 and 2.
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Figure 5. Half-hour F time series measured in (a) 2006 and (b) 2007. Dashed vertical

lines show timing of mowing of the field. Gray zones show timing of Releases 1 and 2.

Figure 6. Histograms of (a) 2006 F,, (b) 2007 F., (c) 2006 residual F, (F,,) after

ecological flux filter applied, and (d) 2007 F,, after ecological flux filter applied.

Figure 7. Upper 90" percentile residual F.. (F,,) for seven-day moving window in 2006
(black dots) and 2007 (red dots). Black and red horizontal dashed lines show 90"
percentile residual flux for an exhaustively sampled stationary Gaussian distributions
with mean and standard deviation = 0 and 8.1 g m™ d”' (2006) and 0 and 9.3 gm™ d”'
(2007), respectively. Vertical dashed lines show timing of 2006 and 2007 mowing. Gray

zones show timing of Releases 1 and 2.

Figure 8. Radial plot of F, as a function of mean horizontal wind direction and time for
2007 data. Color bar denotes timing of measurements. Relatively large orange dots with

black outlines are residuals measured during Release 2 (3-10 August 2007).

Figure 9. Plot of misfit between measured and modeled FL; (as weighted residual sum of

squares; WRSS) versus Q_L_;roughness for different wgy. A wen = 10 was used in

inversion.

Figure 10. Maps of (a) modeled surface CO, flux (Q_L_;) (note scale on color bar, where

Q.->60and <0 g m™ d"' are dark red and blue, respectively), (b) footprint climatology
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(contour map of sum of footprint weights based on 75 inverted footprint functions), and
(c) modeled surface CO; flux shaded for uncertainty based on sum of footprint weights
(b), where degree of masking increases with uncertainty. (d) Contour map color-coded
for log soil CO; flux measured during Release 2 on 08/10/2007 (Figure 2¢). White or

black squares indicate location of EC station.
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