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 22 

Abstract.  We tested the ability of eddy covariance (EC) to detect, locate, and quantify 23 

surface CO2 flux leakage signals within a background ecosystem.  For 10 days starting on 24 

07/09/2007, and for seven days starting on 08/03/2007, 0.1 (Release 1) and 0.3 (Release 25 

2) t CO2 d-1, respectively, were released from a horizontal well ~100 m in length and ~2.5 26 

m in depth located in an agricultural field in Bozeman, MT.  An EC station measured net 27 

CO2 flux (Fc) from 06/08/2006 to 09/04/2006 (mean and standard deviation = -12.4 and 28 

28.1 g m-2 d-1, respectively) and from 05/28/2007 to 09/04/2007 (mean and standard 29 

deviation = -12.0 and 28.1 g m-2 d-1, respectively). The Release 2 leakage signal was 30 

visible in the Fc time series, whereas the Release 1 signal was difficult to detect within 31 

variability of ecosystem fluxes.  To improve detection ability, we calculated residual 32 

fluxes (Fcr) by subtracting fluxes corresponding to a model for net ecosystem exchange 33 

from Fc. Fcr had reduced variability and lacked the negative bias seen in corresponding Fc 34 

distributions.  Plotting the upper 90th percentile Fcr versus time enhanced the Release 2 35 

leakage signal.  However, values measured during Release 1 fell within the variability 36 

assumed to be related to unmodeled natural processes.  Fcr measurements and 37 

corresponding footprint functions were inverted using a least-squares approach to infer 38 

the spatial distribution of surface CO2 fluxes during Release 2.  When combined with 39 

flux source area evaluation, inversion results roughly located the CO2 leak, while 40 

resolution was insufficient to quantify leakage rate. 41 

 42 

Keywords: Eddy covariance; Carbon dioxide flux; Geologic carbon storage monitoring; 43 

Leakage; Accumulation chamber method 44 

45 
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1. Introduction 45 

 46 

One approach being considered to help mitigate rising atmospheric CO2 concentrations is 47 

geologic carbon sequestration (GCS) [e.g., International Energy Agency, 1997, 2004; 48 

IPCC, 2005].  The possibility of leakage of CO2 from underground storage sites along 49 

permeable pathways such as well bores or faults is a primary concern for the safety and 50 

effectiveness of GCS. Should it occur, this leakage could have harmful effects on the 51 

near-surface environment.  Therefore, in addition to CO2 capture, transportation, and 52 

injection technology, GCS requires monitoring approaches with the ability to detect, 53 

locate, and quantify potential CO2 leakage in the near-surface environment.   54 

 55 

While numerous techniques are available to measure CO2 concentrations and fluxes 56 

within the near-surface environment, detection and characterization of potential CO2 57 

leakage from geologic storage reservoirs will pose a challenge due to the large spatial and 58 

temporal variation in background CO2 fluxes [e.g., Lewicki et al., 2005; Cortis et al., 59 

2008].  Eddy covariance (EC) is a micrometeorological approach traditionally used to 60 

measure trace gas and heat fluxes across the interface between the atmosphere and a plant 61 

canopy under certain atmospheric and terrain conditions [e.g., Baldocchi, 2003].  EC 62 

offers the benefit of an automated flux measurement that does not interfere with the 63 

ground surface and is averaged over both time and space, with the spatial scale 64 

significantly larger (m2-km2) than that of many other ground-based techniques.  For these 65 

reasons, EC has been proposed for use in GCS monitoring programs [e.g., Oldenburg et 66 

al., 2003; Miles et al., 2005; Benson, 2006; Leuning et al., 2008]. Several studies have 67 
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used EC to measure artificial tracers released at the surface in simple geometric 68 

configurations to verify footprint models [e.g., Foken and Leclerc, 2004 and references 69 

therein].  EC has also been shown to provide reliable measurements of relatively large-70 

magnitude volcanic CO2 fluxes resulting from gas migration from natural geologic 71 

reservoirs to the surface [Anderson and Farrar, 2001; Werner et al., 2000; 2003; Lewicki 72 

et al., 2008].  However, the ability of EC to detect, locate, and quantify potentially small 73 

subsurface-derived CO2 leakage signals within the large background variability of 74 

ecological fluxes is largely untested. 75 

 76 

A facility was recently built in an agricultural field at Montana State University by the 77 

Zero Emissions Research and Technology (ZERT) Project, where CO2 can be released 78 

into the shallow subsurface from point and line sources that emulate leakage along, e.g., 79 

abandoned wells or faults [Lewicki et al., 2007].  In July and August 2007, two controlled 80 

releases of CO2 were carried out at different rates from a shallow horizontal well; the 81 

spatio-temporal evolution of surface leakage signals was characterized by repeated 82 

measurements of soil CO2 flux using the accumulation chamber method [Lewicki et al., 83 

2007].  In this study, we deployed an EC station in the field from 06/08/2006 to 84 

09/04/2006 and from 05/28/2007 to 09/04/2007, which allowed us to establish a baseline 85 

of background summertime net CO2 flux variability for the study site. To improve our 86 

ability to detect CO2 leakage, we apply a filter to the time series that removes the 87 

ecological CO2 flux signal that is correlated with changes in intensity of light and soil 88 

temperature.  Once leakage is detected, we use least-squares inversions of measured EC 89 

CO2 fluxes and modeled footprint functions to roughly locate and image the geometry of 90 
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the surface CO2 leak.  To our knowledge, this represents the first time that such 91 

inversions of EC measurements have been used to model the spatial distribution of 92 

heterogeneous surface CO2 fluxes. Our results suggest that under careful, site-specific 93 

experiment design, EC is a promising tool to detect and locate leakage signals of 94 

moderate to high magnitude and/or spatial extent, while detection of relatively small 95 

leakage signals may require the use of alternative measurement approaches. 96 

 97 

2. Field Site and CO2 Release Experiments 98 

 99 

The CO2 release experiments were conducted at Montana State University, at the 100 

Montana Agricultural Experiment Research Center in Bozeman, MT (45o39'N, 101 

111o04'W).  The study site was a ~0.12 km2, nearly flat field, with vegetation composed 102 

primarily of prairie grasses, alfalfa, and Canadian thistle.  The field was mowed/hayed on 103 

11 July 2006 and then on 22 June 2007.  While leaf area index was not measured in this 104 

study, it would have been greatly reduced when the field was mowed, thus reducing plant 105 

photosynthetic uptake of CO2.  A ~0.2 to 1.2 m-thick clay topsoil here overlies an alluvial 106 

sandy cobble. A well, oriented 45o to the northeast, was installed in the field using 107 

horizontal drilling in December 2006. This well had a 70-m long perforated and nearly-108 

horizontal section at its center and unperforated sections on its two sloping ends (Figure 109 

1). The perforated section was located at ~1.3-2.5 m depth, sub-water table, within the 110 

alluvial sandy cobble and was divided into six zones separated by 0.4-m wide inflatable 111 

packers.  Five zones were 12 m in length and one zone (on the far southwest end of the 112 

well) was 9 m in length.  When inflated, the packers prevented fluid flow between the six 113 
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perforated well zones.  Packer inflation and CO2 delivery lines were installed in the well 114 

to flow air to the packers and CO2 to each of the six perforated well zones, respectively. 115 

Because horizontal drilling was used to install the well, the original soil profile and 116 

vegetation over the well were minimally disturbed. From 9-18 July 2007, 0.1 t CO2 d-1 117 

(100 kg CO2 d-1) were released from the well, 13.0 kg CO2 d-1 from the far southwest 118 

perforated zone and 17.4 kg CO2 d-1 from each of the other five zones (hereafter referred 119 

to as Release 1). This rate was chosen based on numerical simulations to provide a 120 

challenging detection problem while still ensuring that injected CO2 would reach the 121 

ground surface.  Then, from 3-10 August 2007, 0.3 t CO2 d-1 (300 kg CO2 d-1) were 122 

released (hereafter referred to as Release 2). This rate was chosen to obtain a larger 123 

surface flux for demonstration purposes. CO2 flow rate to, and pressure within each of the 124 

perforated well zones were monitored during the releases. 125 

 126 

Lewicki et al. [2007] measured soil CO2 flux repeatedly on a daily basis from 7-18 July 127 

and from 7-12 August 2007 using the accumulation chamber method [e.g., Chiodini et 128 

al., 1998].  An opaque chamber was used and vegetation within the chamber footprint 129 

area was clipped so that only soil CO2 efflux (ecosystem respiration + leakage) was 130 

measured.  Figure 2 shows contour maps of soil CO2 flux measured prior to Release 1, on 131 

Day 8 of Release 1, and on Day 8 of Release 2. Surface CO2 leakage occurred during 132 

both releases at 5-6 points aligned along surface trace of the well (Figure 2 b and c).   The 133 

maximum soil CO2 flux measured during Release 1 was high, ~1600 g m-2d-1 (~420 µmol 134 

m-2 s-1) relative to background ecosystem respiration fluxes; however, the total CO2 135 

release rate of 0.1 t d-1 was of similar magnitude as background ecosystem respiration 136 
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flux integrated over the relatively small grid area (7.7 x 103 m2)  [Lewicki et al., 2007].   137 

Leakage fluxes measured during Release 2 along the well trace increased (up to 6000 g 138 

m-2 d-1) relative to Release 1 and the total CO2 release rate of 0.3 t d-1 was approximately 139 

three times that of background ecosystem respiration flux integrated over the grid area at 140 

that time. Further details of soil CO2 flux measurements and the relationship of surface 141 

CO2 leakage flux distribution to the well design are found in Lewicki et al. [2007]. 142 

 143 

3. Measurement of EC Net CO2 Flux and Environmental Parameters  144 

 145 

An EC station was deployed near the center of the field from 8 June to 4 September 2006 146 

and then 27 m northwest of the release well from 28 May to 4 September 2007 (Figure 147 

2a).  The location of the station was chosen to take advantage of east-southeasterly 148 

prevailing winds, which would frequently situate the EC station downwind of the well 149 

leakage source (Section 4.1).  The station was similar in design to that described by 150 

Billesbach et al. [2004] and was composed of fast- and slow-response subsystems.  The 151 

fast-response subsystem included two sensors used to measure the variables necessary to 152 

calculate turbulent fluxes of CO2, H2O, heat, and momentum.  A Gill-Solent WindMaster 153 

Pro sonic three-dimensional anemometer/thermometer (Gill Instruments, Ltd) measured 154 

wind speeds in three orthogonal directions and sonic temperature at 10 Hz.  A LI-COR 155 

7500 open-path CO2-H2O infrared gas analyzer (LI-COR, Inc) measured CO2 and water 156 

vapor densities at 10 Hz.  Both sensors were mounted atop a tripod tower at 3.2 m height 157 

from 8 June to 4 September 2006, 3.0 m height from 28 May to 18 July 2007, and 2.8 m 158 

height from 19 July to 4 September 2007.  159 
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 160 

The slow-response subsystem included sensors (Table 1) associated with a second tripod 161 

tower that measured auxiliary meteorological and soil physical parameters.  Radiation 162 

sensors were mounted to a horizontal bar extending from the tripod tower at 2 m height.  163 

Soil moisture profiles (10 and 30 cm depth) were measured at two locations.  Since the 164 

soil moisture probes were not calibrated for the soil at the study site, we refer to 165 

measurements as “relative soil moisture”, and only assess the data qualitatively.  Soil 166 

temperature profiles (10, 20, and 30 cm depth) were measured at two locations.  Soil heat 167 

flux was measured at four locations at 5 cm depth near the radiometer.  Slow-response 168 

subsystem variables were measured every 5 seconds and averaged over 30 minutes for 169 

comparison with turbulent fluxes. 170 

 171 

Net CO2 flux (Fc) was calculated as the temporal covariance of CO2 density (c) and 172 

vertical wind velocity (w): 173 

 174 

          (1) 175 

 176 

where the overbar denotes time averaging and primes denote fluctuations in w and c 177 

relative to their mean values.  Fluxes were calculated for 30-minute periods. Equation 1 178 

gives the mean vertical turbulent flux of CO2 over a horizontally homogeneous surface 179 

under steady-state conditions. The lower measurement detection limit is estimated to be 2 180 

g m-2 d-1 over relatively short vegetation when ecosystem Fc is relatively high. For each 181 

half-hour of data, the mean lateral ( ) and then the mean vertical ( ) wind velocities 182 
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were rotated to zero [Kaimal and Finnigan, 1994]. The WPL correction for the effects of 183 

fluctuation in heat and water vapor on the density of air [Webb et al., 1980] was applied.  184 

Raw signals from the infrared gas analyzer and sonic anemometer were evaluated for 185 

spikes and all points more than ten standard deviations (thereby accepting a non-Gaussian 186 

tail to the data) away from a 600 s moving average were removed from the data; gaps 187 

were then filled using a 10 s moving average.  Turbulent fluxes measured during the 188 

nighttime under low turbulent conditions can be systematically underestimated [e.g., 189 

Aubinet et al., 2000; Massman and Lee, 2002].  Supplement 1 shows a plot of Fc versus 190 

friction velocity (u*), calculated as the square root of the momentum flux, for nighttime 191 

EC measurements made in 2006 and 2007, excluding data collected during Releases 1 192 

and 2, the week following mowing of the field in 2006, and the week following mowing 193 

of the field in 2007. We chose two u* thresholds (0.15 and 0.23 m s-1) below which 194 

nighttime Fc was discarded in 2006 and 2007 time series to compare their effects on loss 195 

of underestimated fluxes. Because nighttime half-hour and average-daily Fc measured in 196 

2006 and 2007 were similar for u* > 0.15 and u* > 0.23 m s-1 thresholds (Supplement 2) 197 

and the 0.15 m s-1threshold allowed us to retain a larger number of data for further 198 

analysis and modeling of ecosystem CO2 fluxes (Section 4.2), we discarded nighttime Fc 199 

data corresponding to u*≤0.15 m s-1.  Data were tested for stationarity according to Foken 200 

and Wichura [1996].  Each 30-minute Fc measurement was divided into six five-minute 201 

segments.  If the difference between the average of the five-minute segments and the 30-202 

minute measurement was greater than 30%, then the measurement was considered non-203 

stationary and discarded.  Based on filtering Fc time series for u* and stationarity criteria, 204 

43 and 50% of data points were rejected in 2006 and 2007, respectively.  205 
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 206 

4.  Results 207 

 208 

4.1. Meteorology 209 

 210 

Winds were primarily either from the east-southeast or from the northwest, with the 211 

highest wind speeds measured typically from easterly directions (Figure 3).   Figure 4 212 

shows average daily atmospheric temperature, vapor pressure deficit (VPD), PAR, and 213 

relative soil moisture and daily cumulative precipitation measured in 2006 and 2007.  214 

Average summertime (June-August) atmospheric temperatures were comparable for 2006 215 

and 2007 (~18oC), with maximum average daily values observed in July (Figure 4a and 216 

d).  Cumulative summertime rainfall was 118.4 mm in 2006; neglecting the week of data 217 

loss in July 2007, it was 43.9 mm over the same timeframe in 2007 (Figure 4c and f).  218 

The highest summertime rainfall occurred in June of 2006 and 2007.  In July-August 219 

2007, daily cumulative precipitation exceeded ~1 mm on only three days, which occurred 220 

either during or several days prior to Releases 1 and 2 (Figure 4f). The rain during 221 

Release 2 on 6 August 2007 was associated with a decrease in both atmospheric 222 

temperature and VPD. Average daily relative soil moisture showed a long-term decline 223 

over the summers of 2006 and 2007, with shorter-term increases observed associated 224 

with heavy rain events (Figure 4b and e). 225 

 226 

4.2. Detection of CO2 leakage signal within ecosystem variability 227 

 228 
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The 2006 and 2007 Fc time series are shown in Figure 5.  Data gaps were caused by loss 229 

of power, intense precipitation events, or filtering with respect to u* and non-stationarity.  230 

Based on these data, the field was a net sink for CO2 prior to mowing in both 2006 and 231 

2007.  After mowing, the field rapidly became a net source for CO2 when plant leaf area 232 

and photosynthetic uptake were dramatically decreased.  Daytime CO2 uptake then 233 

gradually increased through late July/early August, thereafter remaining relatively 234 

constant for the remainder of the 2006 and 2007 observation periods.  CO2 leakage 235 

during Release 1 was not possible to detect within the large background variability of the 236 

Fc time series (Figure 5b). Fc values measured during Release 2 showed a positive shift 237 

upwards, relative to the weeks prior to and following the release.  The mean and standard 238 

deviation of the 2006 Fc time series were -12.4 and 28.1 g m-2 d-1, respectively (Figure 239 

6a), whereas the mean and standard deviation of the 2007 Fc time series were -12.0 and 240 

28.1 g m-2 d-1, respectively (Figure 6b).    241 

 242 

As observed, the large variability of ecosystem fluxes can mask CO2 leakage signals 243 

similar to those studied here, particularly if we lack a priori knowledge of the location of 244 

the leakage source.  While the location of the leakage source was known in this study, 245 

this will not necessarily be the case at many GCS sites where monitoring for potential 246 

CO2 leakage is carried out. Consequently, we chose not to filter Fc data for wind direction 247 

(i.e., eliminate data corresponding to times when the EC station was located upwind of 248 

the well). Estimation and removal of the contribution of net ecosystem exchange (NEE) 249 

from the total measured flux, Fc may instead improve our ability to detect leakage at 250 

many sites.  NEE can be partitioned into photosynthetic uptake by the plant canopy and 251 
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ecosystem respiration from plants and soil.  These constituent fluxes are influenced by a 252 

broad range of factors such as meteorology, soil physical and chemical properties, and 253 

plant functional and structural characteristics.  However, intensity of light and soil 254 

temperature are strong drivers of short time-scale variations in plant photosynthetic 255 

uptake and ecosystem respiration, respectively.  As a result, empirically derived 256 

relationships between these environmental parameters and Fc have been used to 257 

decompose Fc into respiration and photosynthetic flux components and gap-fill Fc time 258 

series [e.g., Aubinet et al., 2000; Falge et al., 2001; Reichstein et al., 2005; Fischer et al., 259 

2007].  Here, we estimate the ecological Fc signals correlated with changes in light and 260 

soil temperature and remove them from the 2006 and 2007 Fc time series.   261 

 262 

We use a rectangular hyperbolic function [e.g., Falge et al., 2001] to describe NEE in 263 

terms of photosynthetic uptake and respiratory release of CO2: 264 

 265 

       (2) 266 

 267 

where Fmax is the maximum CO2 flux at infinite light, α is the apparent quantum yield, 268 

and Reco is the respiration CO2 flux from plants and soil.  Substituting an exponential 269 

function that describes the relationship between soil temperature (Tsoil) and Reco [Lloyd 270 

and Taylor, 1994] into equation (2) yields: 271 

 272 

      (3) 273 
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 274 

where b and b0 are empirical coefficients. Using nonlinear optimization methods, 275 

equation (3) was fit to half-hour Fc, Tsoil (20 cm depth), and PAR data for three-day 276 

moving (half-hour time step) windows through the entire 2006 and 2007 measurement 277 

periods to estimate α, Fmax, b and b0 parameters for the center point in the moving 278 

window.  Predicted values of NEE were then calculated for the center point based on 279 

measured Fc, Tsoil, and PAR values and best-fit parameters.  We required a minimum of 280 

20 data points within the three-day moving window for estimation of α, Fmax, b and b0.  If 281 

fewer data points were present within the window for a given time step, then a gap 282 

occurred for predicted NEE.  Supplement 3 shows RMS errors as the misfit between 283 

predicted NEE and Fc for the three-day moving windows versus time for 2006 and 2007 284 

time series.   285 

 286 

Residual Fc (Fcr) was calculated by subtracting predicted NEE from measured Fc.  This 287 

simple “ecological flux filter” only reduces fluctuations in Fc that are correlated with 288 

variations in Tsoil and light.  The filter does not account for fluctuations in Fc that may be 289 

related to variations in, for example, soil moisture, litter, and perhaps even photosynthetic 290 

uptake associated with elevated atmospheric CO2 concentrations during a leak.   291 

Consequently, Fcr values represent our best estimate of fluxes that may result from 292 

unmodeled natural processes, background instrument noise, and the CO2 leak of interest. 293 

Fcr for 2006 and 2007 time series were normally distributed and nearly unbiased (Figure 294 

6c and d), with 2006 mean and standard deviation = 0.0 and 8.1 g m-2 d-1, respectively, 295 

and 2007 mean and standard deviation = -0.1 and 9.3 g m-2 d-1, respectively.  Since we 296 
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expect a CO2 leakage flux signal to be expressed more strongly in the upper tail of a Fcr 297 

distribution, we isolated the upper 90th percentile Fcr to identify points that may be 298 

indicative of leakage.  A cumulative distribution function of Fcr was calculated for a 299 

seven-day moving window (advancing in half-hour time steps) and the upper 90th 300 

percentile flux of that distribution was assigned to center point of the window.  The time 301 

series of these upper 90th percentile Fcr values for 2006 and 2007 are shown in Figure 7.   302 

For a stationary Gaussian distribution, the upper 90th percentile Fcr is 1.3 standard 303 

deviations above the mean.  Assuming stationarity and that the mean is zero for 2006 and 304 

2007 Fcr distributions, the upper 90th percentile Fcr for these distributions = 10.5 and 12.1 305 

g m-2 d-1, respectively. These values are shown as the dashed horizontal lines on Figure 7.  306 

With the exception of several high-frequency increases in the upper 90th percentile Fcr 307 

values near the beginning of the 2006 and 2007 observation periods, and the longer-lived, 308 

relatively high values observed during Release 2, upper 90th percentile Fcr lie close to or 309 

below those expected from random sampling a normal distribution. Upper 90th percentile 310 

Fcr observed near the timing of 2006 and 2007 mowing are close to the 10.5 and 12.1 g 311 

m-2 d1 thresholds, respectively.  While upper 90th percentile Fcr observed during Release 1 312 

lie within the variability of background values, those measured during Release 2 are 313 

highly anomalous and sustained over multiple days (Figure 7). 314 

 315 

4.4. Location and quantification of CO2 leakage signal 316 

 317 

After CO2 leakage was detected during Release 2, we used a radial plot of Fcr as a 318 

function of mean horizontal wind direction (Figure 8) to determine the direction from 319 
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which the leakage signal was derived.  Figure 8 shows Fcr color coded for measurement 320 

time, where the relatively large orange dots with black outlines were measured during 321 

Release 2.  If we assume that Fcr > 18 g m-2 d-1 is anomalously high (greater than ~ two 322 

standard deviations above the mean), then 19 anomalously high values were measured 323 

during Release 2, while 68 were measured during the entire 2007 observation period.  324 

Since 28% of anomalously high Fcr values were measured during Release 2 and the 325 

release only lasted for 8% of the 2007 observation period, anomalously high Fcr are more 326 

than three times over-represented during Release 2, relative to the rest of the observation 327 

period.  Anomalously high Fcr values were typically measured during Release 2 when the 328 

EC station was downwind of the release well (mean horizontal wind direction between 45 329 

and 225o; Figure 8).   330 

 331 

The Fc measured by EC at a point (xm, ym, zm) is representative of the weighted average of 332 

the upwind surface CO2 emissions.  The influence of each surface point source emission 333 

on Fc depends on its location relative to the EC sensors.  Fc is related to the distribution 334 

of source CO2 fluxes (Qc) at the surface (x´, y´,  z´= z0) determined by the footprint or 335 

source weight function, f(xm- x´,  ym- y´, zm-z0): 336 

 337 

  (4) 338 

 339 

[e.g., Horst and Weil, 1992; Schmid, 1997].  The footprint function varies with factors 340 

such as EC sensor height, atmospheric stability, and surface roughness; however, the 341 

value (weight) of the footprint function generally rises to a maximum some distance 342 
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upwind of the EC sensors, then smoothly falls off in all directions.  The total surface 343 

influence on Fc, or the source area, is the integral beneath the footprint function.  Should 344 

the spatial distribution of Qc remain constant over time, changes in Fc will reveal this 345 

distribution as the footprint function varies with atmospheric conditions.  Thus, in 346 

principle, it should be possible to infer the spatial distribution of Qc using a number of Fc 347 

measurements that source different areas, with the purpose of locating and quantifying a 348 

potential CO2 leak [e.g., Miles et al., 2005]. 349 

 350 

We attempt to infer the spatial distribution of surface fluxes during Release 2 using a 351 

linear, least-squares inversion [e.g., Menke, 1989] of 75 modeled footprint functions and 352 

Fcr observed during the release.  This approach is similar to other geophysical inversions, 353 

such as geodetic inferences of fault slip rates based on surface deformations [e.g., Harris 354 

and Segall, 1987] or tomographic imaging of the seismic velocity structure of the earth 355 

based on multiple travel times of teleseismic waves [e.g., Dahlen and Tromp, 1998].  In 356 

this particular application, we note that the Fcr can be modeled as the weighted sum of the 357 

Qc distribution from which ecological signals have been removed (Qcr), hereafter 358 

approximated as unvarying in time.  Thus, Fcr can be written as: 359 

 360 

          (5) 361 

 362 

where  is a vector whose length is the number of observations collected during the 363 

release, and  is a matrix that contains the modeled footprint functions (f) that map the 364 

unknown surface fluxes ( ) into .  Given , we estimate the spatial distribution  365 
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that best explains the observed .  We use a least-squares solution to this problem, 366 

which allows us to write the unknown spatial distribution of surface fluxes in terms of 367 

and  as follows: 368 

 369 

        (6) 370 

 371 

where  is the covariance matrix of the observed , and is the transpose of the 372 

data kernel.  If we assume that fluctuations in  are independent from one another,  373 

reduces to a diagonal matrix whose dimensions are equal to the number of observations, 374 

and whose values are the inverse of the variance of the  data (7.4 x 10-3 g-2 m4 d2).  If 375 

many more observations of  exist than there are unknown  values, then Equation 6 376 

is sufficient to infer the spatial distribution of . 377 

 378 

In the current study, there are more  values to be inferred than there are observations 379 

of .  In addition, when Equation 6 is applied to, for example, geodetic data, the best-fit 380 

solutions for  often vary abruptly in space and produce extremely rough solutions that 381 

are physically untenable [e.g., Harris and Segall, 1987].  For these reasons, following 382 

methods developed in the geodetic and seismological communities, we apply an 383 

additional constraint to the weighted least squares inversion that requires spatial 384 

continuity when finding the best-fit values for .  This constraint requires the curvature 385 

in the values of  to be minimized between adjacent points while satisfying the 386 

observed  values.  This is accomplished by combining  with a second m x m matrix 387 
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(where m is the number of cells within which  is inferred), hereafter referred to as 388 

.  This matrix uses a finite difference expression to calculate curvature based on the 389 

inferred flux values at each grid point and those points directly adjacent to it within the 390 

inferred source area (assuming points outside of the source area have zero surface flux).  391 

In addition, a second vector (referred to as ) is combined with ; this vector’s 392 

length is that of , and its values are set to zero to minimize the curvature of .  By 393 

combining  with ,  with , and applying Equation 6, the values of  will 394 

reflect a compromise between the surface flux values inferred from  and the 395 

requirement of smoothness across the solution space.  This has the effect of overly 396 

smoothing  in areas that are poorly defined by the observed  values, while 397 

honoring  in areas well defined by the observed data. 398 

 399 

The distribution of  inferred from this method represents a compromise between the 400 

constraints provided by observations versus those that require a spatially smooth solution.  401 

The relative influence of these two sets of constraints is controlled by specifying the 402 

weight that the smoothing function receives in the solution relative to the observations, 403 

which we refer to as wsm.  When wsm is set to a large value, the smoothness of modeled 404 

 will be favored over the fit between measured and modeled .  However, when wsm 405 

is set to a small value, the solution will become rougher and more poorly defined for 406 

many values of , while the fit between measured and modeled will improve.  As is 407 

customary in the geophysical literature [e.g., Harris and Segall, 1987], for different wsm 408 
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we plot the misfit between measured and modeled  (as the weighted residual sum of 409 

squares; WRSS) versus roughness of : 410 

 411 

        (7) 412 

 413 

By systematically changing the value of wsm, we can determine values of this parameter 414 

that result in the greatest decrease in the solution roughness that does not necessitate a 415 

correspondingly large change in the data misfit.  Thus, we use this plot to identify the 416 

optimal wsm that produces a reasonably smooth model result and maintains an acceptable 417 

level of misfit.   418 

 419 

To model , we discretized the surface surrounding the EC station into an 800 m x 800 420 

m solution domain.  The linear dimension of each square pixel for which  was 421 

determined was equal to 10 m. The Flux Source Area Model (FSAM) of Schmid [1997], 422 

based on analytic solutions of the advection-diffusion equation [Horst and Weil, 1992] 423 

was used to model footprint functions using the following inputs:  (1) zm = 2.8 m; (2) 424 

surface roughness height, z0 = 0.05 m, based on vegetation height measured during 425 

Release 2; (3) measured mean horizontal wind direction; (4) cross-wind turbulence near 426 

the surface characterized by calculated σv/u*, where σv is the standard deviation of the 427 

wind speed in the cross-wind direction; (5) calculated Monin-Obukhov length, L 428 

(Supplement 4). We calculated f at the center of each 10 m x 10 m pixel.  Since the 429 

source area here was defined as the area from which 90% of the  was derived, we 430 
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renormalized f to reflect this partial sampling by the model.  values corresponding to 431 

source areas greater than the 0.64 km2 area of the model domain and/or footprint models 432 

that did not converge were not considered in the inversion. 433 

 434 

Figure 9 shows a plot of the misfit between measured and modeled  (WRSS) versus 435 

 roughness.  A smoothing weight of 10-8.5 was selected for the model inversion, which 436 

provided the optimal compromise between spatial continuity across the model solution 437 

space and misfit between measured and modeled . Inversion results are shown in 438 

Figure 10 for a 400 x 400 m area to highlight the region close to the EC station.  Results 439 

for the full 800 x 800 m model domain are given in Supplement 5.  The inversion results 440 

show large-scale areas of relatively high  values located at distances greater than ~75 441 

m from, and to the NE and SW of the EC station (Figure 10a). A smaller area of positive 442 

values was modeled closer to and southeast of the EC station.   Based on the footprint 443 

function, only surface fluxes located upwind of the EC station will contribute to Fcr.  444 

Also, surface fluxes located far away from the EC station will tend to contribute a lesser 445 

extent to Fcr than those located in relatively close proximity. Thus, in minimizing the 446 

misfit, the model tends to push extreme flux values into portions of the solution domain 447 

for which the EC measurements provide little constraint.  We constructed a contour map 448 

of the sum of footprint weights based on the 75 modeled footprint functions (Figure 10b), 449 

the “footprint climatology” [e.g., Amiro, 1998; Göckede et al., 2008]. This map 450 

highlights those portions of the solution space that were well defined by the EC 451 

measurements and provides a qualitative assessment of the relative uncertainty of the 452 

model inversion results.  Surface areas located within ~50 m of the EC station were 453 
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weighted most highly in modeled footprint functions; values modeled within those 454 

regions were therefore well defined by EC measurements and associated with the greatest 455 

certainty.  Surface fluxes located greater than ~ 75 m from the EC station were poorly 456 

resolved by EC measurements; smoothing thus dominates inversion results in these 457 

regions.  Figure 10c shows the map of modeled  values, shaded for relative 458 

uncertainty so that values that are not resolved by observations are masked.  An area 459 

of relatively high is located within ~30 m and southeast of the EC station.  While the 460 

shape of this region is less elongate than the surface CO2 flux leakage signal measured 461 

during Release 2 (Figure 10d), its location relative to the EC station is similar.  462 

Importantly, the central portion of the linear surface CO2 flux leakage signal in Figure 463 

10d is located in an area of greater footprint weight (Figure 10b) than the two ends of the 464 

signal.  For comparison, Supplement 5 shows maps of , modeled using wsm values of 465 

10-13, 10-8.5, and 10-4.   The area of relatively high  located within ~30 m and southeast 466 

of the EC station is consistent for all three inversions, while those areas defined only by 467 

smoothing vary strongly with wsm.   468 

 469 

To test our ability to quantify the surface leakage rate associated with Release 2 based on 470 

modeled , we integrated  values over the area of the accumulation chamber 471 

measurement grid (Figures 2 and 10d), which yielded CO2 discharge = 0.02 t d-1. Based 472 

on accumulation chamber measurements, Lewicki et al. [2007] estimated a leakage CO2 473 

discharge on Day 8 of Release 2 = 0.33 t d-1.  Assuming that the surface leakage CO2 474 

discharge was equal to the CO2 release rate during Release 2 (0.3 t d-1), accumulation 475 
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chamber measurements recorded 110% of the surface leakage rate, while EC 476 

measurements, based on modeled , recorded 7% of the surface leakage rate.   477 

 478 

5. Discussion and Conclusions 479 

 480 

The CO2 release rates of Releases 1 and 2 and their associated surface leakage signals 481 

provided a challenge for detection of CO2 leakage by EC.  For example, the surface CO2 482 

leakage rate measured using the accumulation chamber method during Release 1 was less 483 

than or similar to the background ecosystem respiration flux integrated over the relatively 484 

small measurement grid area [Lewicki et al., 2007]. Also, both releases resulted in surface 485 

CO2 flux leakage signals of small spatial extent, relative to the EC flux source areas.  486 

 487 

Measurements of Fc made during Summer 2006 and prior to Release 1 in 2007 allowed 488 

us to establish a baseline of background summertime variability for the study site.  489 

We first examined the raw 2007 Fc time series (Figure 5b) to assess whether CO2 leakage 490 

signals associated with Releases 1 and 2 were possible to detect. No convincing change 491 

in Fc was discernable during the timeframe of Release 1, whereas a positive shift upwards 492 

in Fc was detectable during Release 2, relative to the week prior to and those following 493 

the release.  494 

 495 

Removal of the ecosystem signal from the Fc time series that was correlated with changes 496 

in PAR and soil temperature greatly improved our ability to detect CO2 leakage during 497 

Release 2. Application of this ecological flux filter reduced the variability of and 498 
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removed the negative bias from the 2006 and 2007 Fcr distributions, relative to the 499 

corresponding Fc distributions (Figure 6).  Plotting the upper 90th percentile Fcr versus 500 

time (Figure 8) allowed us to isolate anomalously high residual fluxes associated with 501 

CO2 leakage during Release 2.  The 90th percentile Fcr values expected assuming 502 

stationary Gaussian distributions for 2006 and 2007 were similar (10.5 and 12.1 g m-2 d-1, 503 

respectively), suggesting that similar factors controlled variability of the residuals during 504 

both years.  These factors likely include the influence of fluctuations in VPD, 505 

precipitation, and soil moisture on Fc, other unmodeled natural processes, and to a lesser 506 

extent, EC instrument noise.  Since the 2006 and 2007 Fcr distributions were not truly 507 

stationary, we observed variations in the upper 90th percentile Fcr away from the expected 508 

values.   For example, the high frequency spikes in these values that occurred at the 509 

beginning of the 2006 and 2007 measurement periods are likely related to measurement 510 

noise during heavy precipitation events. Finally, while the CO2 leakage signal associated 511 

with Release 2 emerged clearly in Figure 7, CO2 leakage during Release 1 remained 512 

undetectable after the ecological Fc signal was removed. Detection of relatively small 513 

CO2 leakage signals by EC will likely be difficult at many sites.  However, if we are able 514 

to model and remove Fc signals associated with additional natural processes and 515 

instrument noise, detection ability may be improved.   516 

 517 

Once a CO2 leakage signal has been detected, EC may assist in its location and 518 

quantification when used in concert with other surface CO2 flux measurement techniques.  519 

For example, we constructed a radial plot of Fcr as a function of wind direction (Figure 520 

8), which confirmed that anomalously high Fcr values were measured during Release 2 521 
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typically when the EC station was downwind of the well leakage source. Without a priori 522 

knowledge of the leakage source location, such a radial plot could be used to estimate the 523 

direction from which CO2 leakage is derived. EC footprint modeling would determine the 524 

approximate source areas from within which directionally consistent anomalously high 525 

Fcr values originate.  A point CO2 flux measurement approach such as the accumulation 526 

chamber method could then be used to locate and quantify CO2 leakage [e.g., Lewicki et 527 

al., 2007] within those areas.   528 

 529 

Alternatively, EC has the potential to locate and quantify CO2 leakage signals when used 530 

alone if (1) multiple EC stations are deployed in different locations or an array of EC 531 

sensors is installed at more than one height at a given location and simultaneously sample 532 

a leakage area with different flux footprints or (2) a leakage area is relatively stable over 533 

time and is sampled repeatedly by a single EC station with varying flux footprints.  We 534 

showed that it was possible to locate a leakage signal with a location, geometry, and 535 

magnitude such as that of Release 2 using a single EC station by inversion of 75 Fcr 536 

measurements and corresponding footprint functions (Figure 10).  To our knowledge, this 537 

is the first study to invert EC measurements to infer the spatial distribution of 538 

heterogeneous surface fluxes.  Importantly, however, our map of modeled  only 539 

roughly resolved the location and geometry of the leakage signal, while the leakage rate 540 

was underestimated by ~93 %.  Overall, the ability to locate, map the geometry of, and 541 

quantify a given CO2 leakage signal using EC will be very challenging and depend on a 542 

wide range of factors, such as location of the EC sensors, magnitude, geometry, and 543 

spatio-temporal stability of the signal, atmospheric conditions at the time of the 544 
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measurements, surface roughness, site topography, and the number of EC measurements 545 

available for the inversion. Also, relatively high and heterogeneous CO2 leakage 546 

emissions could potentially cause advection, leading to underestimation of the leakage 547 

signal by EC.  In our case, the limited number of EC measurements available for 548 

inversion during the relatively short timeframe of Release 2 strongly impacted the 549 

resolution of modeled ; a greater number of measurements would presumably 550 

improve the results.  Furthermore, we showed that based on factors such as EC sensor 551 

location, site surface roughness, and atmospheric conditions, only the area within ~75 m 552 

of the EC station contributed substantially to Fc measurements (Figure 10b).  Since the 553 

CO2 leakage source was situated within this region, we were able to detect and locate it. 554 

In particular, the central part of the linear surface CO2 flux leakage signal (Figure 10d) 555 

was located within an area of high footprint weight, relative to the two ends of the signal.  556 

This likely led to the anomalously high modeled within a point-source region (Figure 557 

10c) near the center of the measured signal in Figure 10d, and could have contributed to 558 

our underestimation of total leakage discharge based on . Given the challenges 559 

associated with the use of EC to detect, locate, and quantify CO2 leakage signals of small 560 

magnitude and/or spatial extent within a background ecosystem, the application of EC in 561 

GCS monitoring programs should be guided by detailed site characterization, careful EC 562 

experiment design, and, ideally, the use of complementary measurement techniques.   563 
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Table 1.  Slow-response subsystem instrumentation and measurements. 662 

Instrument Measured variable 
PTB101B barometer (Vaisala, Inc.) Atmospheric pressure 
HMP50 humidity and temperature probe 
(Vaisala, Inc.) 

Atmospheric temperature and relative 
humidity 

CS800-12 wind set (Climatronics Corp.) Mean horizontal wind speed and direction 
CNR-1 radiometer (Kipp & Zonen) Net radiation 
LI-200SA pyranometer (LI-COR) Total insolation 
LI-190SA quantum sensor (LI-COR) Photosynthetically active radiation (PAR) 
TE525 tipping bucket rain gage (Texas 
Electronics) 

Cumulative precipitation 

ECH2O soil moisture probe (Decagon 
Devices)  

Relative soil moisture profiles 

Thermocouples (in house) Soil temperature profiles 
HFT3 soil heat flux plates (Radiation and 
Energy Balance Systems) 

Soil heat flux 

 663 
664 
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Figure Captions 664 

 665 

Figure 1.  Schematic of the CO2 release well at Montana State University.  Gray zone is 666 

expanded to show example of a ~12 m perforated well zone from which CO2 was 667 

released, bounded by two ~0.4 m inflatable packers.  668 

 669 

Figure 2. Contour maps of log soil CO2 flux for measurements made on (a) 7 July 2007 670 

(background), (b) 16 July 2007 (Day 8 of Release 1), and (c) 10 August 2007 (Day 8 of 671 

Release 2).  Dots show measurement locations. Black line and gray square in (a) show 672 

approximate locations of surface well trace and 2007 EC station, respectively.  The 2006 673 

EC station was located ~60 m north of the 2007 station. 674 

 675 

Figure 3. Wind rose showing joint frequency distribution of mean horizontal wind speed 676 

and direction (half-hour averages) measured in 2006 and 2007.  677 

 678 

Figure 4. Time series of (a) average daily atmospheric temperature (stars) and vapor 679 

pressure deficit (VPD; dots), (b) average daily PAR (dots) and relative soil moisture 680 

(stars), and (c) daily cumulative precipitation measured in 2006.  Time series of (d) 681 

average daily atmospheric temperature (stars) and VPD (dots), (e) average daily PAR 682 

(dots) and relative soil moisture (stars), and (f) daily cumulative precipitation measured 683 

in 2007. Dashed vertical lines show timing of mowing of field.  Gray zones show timing 684 

of Releases 1 and 2. 685 

 686 
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Figure 5.  Half-hour Fc time series measured in (a) 2006 and (b) 2007. Dashed vertical 687 

lines show timing of mowing of the field. Gray zones show timing of Releases 1 and 2. 688 

 689 

Figure 6.   Histograms of (a) 2006 Fc, (b) 2007 Fc, (c) 2006 residual Fc (Fcr) after 690 

ecological flux filter applied, and (d) 2007 Fcr after ecological flux filter applied.  691 

 692 

Figure 7.  Upper 90th percentile residual Fc (Fcr) for seven-day moving window in 2006 693 

(black dots) and 2007 (red dots).  Black and red horizontal dashed lines show 90th 694 

percentile residual flux for an exhaustively sampled stationary Gaussian distributions 695 

with mean and standard deviation = 0 and 8.1 g m-2 d-1 (2006) and 0 and 9.3 g m-2 d-1 696 

(2007), respectively.  Vertical dashed lines show timing of 2006 and 2007 mowing.  Gray 697 

zones show timing of Releases 1 and 2. 698 

 699 

Figure 8.  Radial plot of Fcr as a function of mean horizontal wind direction and time for 700 

2007 data.  Color bar denotes timing of measurements.  Relatively large orange dots with 701 

black outlines are residuals measured during Release 2 (3-10 August 2007).   702 

 703 

Figure 9. Plot of misfit between measured and modeled  (as weighted residual sum of 704 

squares; WRSS) versus roughness for different wsm.  A wsm = 10-8.5 was used in 705 

inversion. 706 

 707 

Figure 10. Maps of (a) modeled surface CO2 flux ( ) (note scale on color bar, where 708 

Qcr ≥ 60 and ≤ 0 g m-2 d-1 are dark red and blue, respectively), (b) footprint climatology 709 
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(contour map of sum of footprint weights based on 75 inverted footprint functions), and 710 

(c) modeled surface CO2 flux shaded for uncertainty based on sum of footprint weights 711 

(b), where degree of masking increases with uncertainty.  (d) Contour map color-coded 712 

for log soil CO2 flux measured during Release 2 on 08/10/2007 (Figure 2c).  White or 713 

black squares indicate location of EC station. 714 
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