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Abstract 
Remote detection and identification of chemicals 
in a scene is a challenging problem. We 
introduce an approach that uses some of the 
image’s pixels to establish the background 
characteristics while other pixels represent the 
target for which we seek to identify all chemical 
species present. This leads to a generalized least 
squares problem in which we focus on “subset 
selection” to identify the chemicals thought to be 
present. Bayesian model selection allows us to 
approximate the posterior probability that each 
chemical in the library is present by adding the 
posterior probabilities of all the subsets which 
include the chemical. We present results using 
realistic simulated data for the case with 1 to 5 
chemicals present in each target and compare 
performance to a hybrid of forward and 
backward stepwise selection procedure using the 
F statistic. 

Introduction 
We consider infrared hyperspectral image data in 
which we first locate chemical plumes and then 
characterize the chemical components of the 
plume (McVey et. al., 2002). Our focus is 
chemical identification from a library of tens to 
hundreds of chemicals using a passive infrared 
(IR) detector several kilometers above the 
ground. A typical scene is 1000 x 128 pixels, 
where the detected signal at each pixel depends 
on the ground radiance, atmospheric 
transmission, instrument noise, and whether a 
chemical plume lies between the ground and the 
detector. A prior analysis identifies the plume 
pixels (pixels that have a plume influencing the 
signal) from among the background pixels 
(pixels that do not have a plume influencing the 
signal). Simplifying assumptions lead to a 
general least squares (GLS) problem for which 
we choose which subset (up to 3 chemicals from 
approximately 100 chemicals for example) of 
chemicals is most likely to be present in the 
plume. 
The next section presents a physical model and 
the assumptions to convert this to a GLS 
problem. Following sections present model 
selection approaches including Bayesian model 

averaging (BMA) and “pick the winner” (PW) 
using penalized likelihood (the F test is a special 
case). We present results with simulated data, 
and include cases where the errors do not have a 
Gaussian distribution and the predictors have 
nonnegligible measurement error. We conclude 
that the false positive and negative rates for 
BMA are similar to those for PW provided the 
appropriate penalty is used with PW. 

Background 
A hyperspectral detector detects photons emitted 
in the IR region from the ground. The signal 
from background pixel i is 

(11, 
si b =&i (v j )Lf (v j ) z ( v j )+Ni (v j )  

where q ( v j )  is the emissivity at wavelength (or 

frequency) vj , Lf ( v j )  is the Planck function at 
ground temperature, z ( v j )  is the atmospheric 

transmission, and Ni(vj) is the noise. The signal 
from plume pixel i is 

si” =a,(vj)[L;(”j)-&i(”j)Lf(vj)]t(“j)+s~ (2), 

where a,,(vj) is the plume absorption 

andL;(vi) is the Planck function at plume 
temperature. The plume has two effects: it emits 
in the IR region, but it also absorbs the radiation 
emitted from itself and from the ground. 
The ci (v j )  terms (emissitivites) depend on the 
properties of the background. Concrete, asphalt, 
buildings, grass, dirt, water, and other common 
background features each have their 
characteristic emissitivity. Our synthetic 
background scenes are generated from various 
mixtures of approximately 100 typical 
background emissitivites. Our synthetic plumes 
are generated from a library of approximately 
100 chemical species of interest. Typically there 
are 10,000 to 16,000 pixels in a scene with 1 to a 
few plumes. The number of pixels in a plume is 
10’s to 100’s. 



For each wavelength vi,  we subtract the mean 
response 7 (over all pixels), from the responses 
so that the centered response y has mean 0. We 
then assume that y - N(O,$), where i is the n- 
by-n sample covariance matrix, where n is the 
number of wavelengths, and 
all of the pixels. Alternatively, i is estimated 
using only the background (nonplume) pixels, 
but in practice there is little difference between 
using all or just the background pixels to 
estimate E .  
Next, the effect of the plume is assumed to be 
linear and additive in the chemicals present 
(assuming Beer’s law, and a weak plume so that 
1 -e-’ z x ). Therefore, the model for the plume 
pixels is 

is estimated using 

y = X/3 + e,  with e - N(0,E) (3). 

Equation (3) is effectively solved using GLS in 
which we multiply both sides of (3) by i-1’2 to 
convert to ordinary least squares with 
transformed data. To simplify notation, we will 
continue to use y as the transformed response 
and X as the transformed predictor matrix. 
We have a library of 100’s of chemicals so we 
cannot usually fit the full model. Instead, we 
assume that the true model has 1 to 3 chemicals 
present, so the problem reduces to model 
selection (actually, to subset selection, which is a 
special case of model selection). Challenging 
issues include: (a) the error distribution is not 
necessarily well approximated by a Gaussian; (b) 
there are errors in X due to imperfect corrections 
for atmospheric transmission, and (c) a more 
realistic model is a mixture of Gaussians, each 
with different mean to represent a heterogeneous 
scene with concrete, grass, dirt, and other 
patches. We will consider issues (a) and (b) in 
this paper. 

Model Selection 
There are 

M = ( ~ ) + ( ~ ) + ( ~ ) + ( ~ )  models 

if we allow the null model, all single-chemical 
models, all paired-chemical models, and all 
triple-chemical models. We will report results for 
two cases: 
(1) P L i b  is too large for an exhaustive search 

(2)  P L i b  is small enough that an exhaustive 
over all possible models; and 

search is possible ’ 

If exhaustive search is not possible, several 
stochastic searches could be considered. We 
report results only for a strategy involving the 
leaps algorithm and Occam’s window (Raftery 
et. al. 1997), as implemented in Splus6 (2002). 

BMA description. 
Following Raftery et. al. (1997), and Neath and 
Cavanaugh (1 997), we approximate the Bayesian 
information criterion (BIC) using 

where r j  is the number of chemicals in model i, 

RSSi = 2 ( y j  - x P ) ~  is the the residual sum of 

squares from model i, and y is the prior 
probability for rj chemicals. Then the probability 
of model i is approximated using 

P ( M i )  oc e 
chemical j is present is 

j=1 

The probability that 

M 

i=l 
P(Cj )  = I (C j  E M i ) P ( M i )  , where 

Z(9 equals 1 if its argument is true. We select a 
tunable threshold, such as T = 0.90 and predict 
that chemical j is present if P( C j )  exceeds T. 

Although it is tempting to conclude that the false 
positive probability is 1-T, we show elsewhere 
that the false positive probability must be 
evaluated by considering the distribution of 
P ( C j )  givenX, p, and C. 

PW description 
We use RSSi from model i and the estimated 

residual variance using the best fitting model in 
the criterion L, where 
L . = L  RSS’ + Kq for model i. (George, 2000, 

- 2  
Obest 

except we use 
model having smallest Li is the chosen model. 
The value K = 2 corresponds to the Aikike 
information criterion (AIC) or Mallow’s C, and 
K = ln(n) corresponds to the BIC (George, 2000). 
The usual F test is a special case of a PW 
method, in which the model having the largest F 
test (compared to the null model) is the selected 
model. It is often implemented using a stepwise 

2 rather than &Full 1. The 
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search, but the F statistic can be evaluated for all 
models if M is not too large. 
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Results on simulated scenes. 
Example l a  
Stochastic search using leaps/Occam with n = 

300 wavelengths, p = 1 16 chemicals for BMA 
and stepwise forward regression as implemented 
in HIP(McVey et al, 2002) for PW. The true 
model was chemicals (64,69,82, and 83). For 4 
different signal-to-noise ratios (SNR), BMA and 
PW results using F as special case of the PW 
method. We assume there is no error in X. 
Figure 1 is a typical example of the results of a 
matched filter ( bi ) over all frequencies for 
chemical k on a synthetic image using the HIP 
software. In this case, the signal strength is 
defined empirically as the noise equivalent 
concentration length (NECL), where 

NECLk = {- 

average over all pixels of the estimate of the 
coefficient for chemical k andp is the number of 
plume pixels. Results are in Table 1 as applied to 
the “superpixel” which is the average over all 
plume pixels. 

1 p  
P i=l 

(bi - p)2}-”2 where p i s  the 

I OOOeMDO 

0 OOOeMOO 
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Figure 1. Synthetic image with the background 
emissitivitiess varying randomly across the 
scene. A plume is visible in the lower portion. 

BMA PW 
NECLl I 64,69,82,83 I 64,69,82,83 
NECL2 I 64,69,82 I 64,69,82 
NECL3 1 64,82 I 64,82 
NECL4 I 21.80 I 82 
Table 1. The found chemicals for each of 4 
NECLs. The true model is chemicals 
(64,69,82,83). The BMA threshold was 0.90 
and the PW threshold was 0.001. 

Note that BMA and PW give the same results 
except for NECL4 (worst case). For NECL4, 
BMA has 4 FNs and 2 FPs, and PW as 3 FNs. 

Example l b  
Same as Example l a  using NECLl, but we 
scaledy and the Xcolumns to have a variance 
equal to 1, and added additional error toy and 
introduced error in X. Results are in Table 2. 

Table 2. False positive (FP) and false negative 
(FN) counts for each of 5 ox and cry values for 
BMA and PW. Overall, the BMA and PW 
results are very similar. The BMA threshold 
was 0.90 and the PW threshold was 0.001. 

Example IC. True model is randomly selected 
subset of 0 to 4 of the 1 16 chemicals. Results are 
in Table 3. The BMA threshold was T = 0.99 

QX cry BMA PW 
FP. FN FP. F N  

0.02 51,O 
0.03 0.3 80,O 
0.04 0.4 79.0 86.0 

I TOTAL ERRORS I317 I316 
Table 3. False positive (FP) and false negative 
(FN) counts for each of 5 ox and cry values for 
BMA and PW. Overall, the BMA and PW 
results are very similar. 



Note from Table 3 that for the smaller values of 
ox and o,,, the FP rate is higher for PW. We have 
not yet thoroughly explored the operating 
characteristic curves that evaluate FP and FN 
rates as a function of the decision thresholds. 
Also, in this case, there is a threshold that the F 
test (a special case of the PW method) must 
exceed in order for a chemical to be included in 
the chosen model. This absolute threshold can be 
chosen empirically just as the threshold T for 
BMA. 

Example 2. Exhaustive search, p~ib=13, n =300. 
Here we restricted the library to only 13 
chemicals so that exhaustive search would be 
feasible in our Splus code. Elsewhere (McVey et. 
al. 2002) we report on exhaustive search results 
using larger libraries with the search executed in 
C++. 
We randomly generated artificial X matrices 
(artificial chemicals) having unit variance, zero 
mean, and 0.9 or 0.5 as the correlation (all off- 
diagonal entries ofXTX/n were either 0.9 or 0.5). 
Results are in Tables 4a and 4b for 2 BMA 
methods and 2 PW methods. The first BMA 
method uses only the first term in Eq. 4, which is 
the most common approximation to the Bayes 
factor. The second BMA method uses all terms 
in Eq. 4, which are the same as Neath and 
Cavaneaugh, 1997 plus the r, ln(27r) term that 
appears to have been dropped in Neath and 
Caveneaug by mistake. The threshold T = 0.9 
was used to decide whether a chemical was 
present. The first PW method using K = ln(n) 
and the second uses K = 1.5 ln(n), where the 
factor of 1.5 was chosen to reduce the FP rate. 
Although the results are not shown here, the 
value K = 2 (corresponds to the AIC) was too 
small, leading to a large FP rate of approximately 
6 times the FP rate of the K = ln(n) = 5.7. It is 

known that unless the true model size increases 
with n, the AIC selects models that are too large 
(George, 2002). 

negative (FN) counts for each of 5 ox and oy 
values for BMA and PW for XTWn= 0.5 on 
the off-diagonal. 

Overall, there is little difference between BMA 
using only the first term in Eq. (4) and BMA 
using all terms in Eq. (4). This contrasts with the 
results in Neath and Cavanaugh which suggested 
that the extra terms in Eq. (4) would improve 
performance. Comparing BMA to PW, because 
BMA has a lower FP rate, it also had a higher 
FN rate. However, because the total error rate 
was much lower for the PW methods, we have 
little reason to suspect that the BMA 
performance can be better than the PW 
performance in any general sense. 
Also note that the only change between Tables 
4a and 4b is the value of the off-diagonal entry in 
XTX. Because the erformance was much worse 
in Table 4b with X Xln - 0.5, this shows that the 
FP and FN rates of BMA cannot be extracted 
from the threshold value of T = 0.9. Also, 
because of the very high false negative rate in the 
X T X h  = 0.5 case, we expect that if we lowered 
the threshold we could reduce the error rate. 
However, the false positive rate is already as 
high or nearly as high as the X T X h  = 0.9 case, so 
we expect to still do worse in the XTXln = 0.5 
case. This is a surprising result that warrants 
further study. 

Model Departure Results 

We simulated data having Gaussian, Uniform, 
and Gaussian mixture (GM, to mimic the effect 
of outliers) distributions, each with the same 
variance. We used a bimodal GM to mimic 
having a main distributionfi from whch most 
(more than 90%) of the errors arise and an 
outlying distributionfi from whch the rest of the 

Y -  

Table 4a. False positive (FP) and false 
negative (FN) counts for each of 5 ox and cy 
values for BMA and PW for XTWn= 0.9 on 
the off-diagonal. 



errors arise. The GM arises from a combining the 
two distributions resulting in a probability 
density off= alfi + (1- a&, where where 
chose al= 0.9. We used PLib=13, n =300, and the 
true model had chemicals (1,2,3) present. First 
we evaluated P(C,), P(C,), . . ., P(C,,) for each of 
the 13 chemicals and compared these 13 
probabilities in the Uniform errors case and in 
the GM case to the Gaussian errors case. 
Qualitatively, the conclusion is that there is mild 
disagreement in Uniform vs Gaussian, and 
moderate disagreement in GM vs Gaussian. 
More quantitatively, 65 t-scores (estimated 
probabilities for 13 chemicals, each with 5 error 
variances) with many degrees of freedom that 
should have been approximately N(0,l) 
distributed had several values exceeding 3 and a 
few exceeding 4 for Uniform vs G, and many 
values exceeding 4 for GM vs G. 
The most relevant effect of model departure is 
the potential for the FP and FN rates to be 
impacted. Using the same three error models 
(Gaussian, Uniform, and GM), and repeating the 
analysis from Example 1 c, we find that the FP 
and FN rates are not noticeably impacted with 
Uniform or GM errors compared to the Gaussian 
error case. This is tentative good news that 
suggests performance can be reasonably well 
evaluated assuming Gaussian errors even if the 
errors are rather badly non-Gaussian. 

Summary 

Overall, the BMA performance (FP and FN 
rates) is similar to the PW performance. Also, 
both methods exhibit similar robustness to model 
departure of the types evaluated. For both BMA 
and PW, it is important to select good thresholds, 
which is always possible using simulation. It 
would be useful to have analytical 
approximations to complement simulation 
results. 
The main source of errors in the predictor matrix 
Xis a transmission-through-the atmosphere 
correction step. Current work is aimed at 
quantifying how errors in transmission 
corrections propagate into errors in X. This work 
evaluated the impact of errors in X in a generic 
way, and simultaneously increased errors in X 
and y. A more systematic exploration of the 
impact of error sources is under way. Also, we 
are addressing issue (c) mentioned in the 
Introduction regarding whether the most 
appropriate data model is a mixture of 
Gaussians, each having a different mean vector. 

This would model the fact that each type of non- 
plume pixel falls into a category such as 
concrete, grass, water, etc. Similarly, each 
plume pixel has its own background effect. 
Therefore, model (3) does not physically 
represent any given plume pixel (unless there is 
only one type of background pixel, such as 
concrete) because the covariance matrix C is 
estimated by pooling all non-plume pixels. A 
more realistic model is a Gaussian mixture 
model on a per-plume-pixel basis. However, 
unless we could estimate the true background of 
the plume pixels, this approach would be 
infeasible. A compromise approach would be to 
cluster the non-plume pixels into categories such 
as concrete and grass, assume the plume is 
entirely over concrete and apply model (3), using 
2 as estimated using the concrete-background 
pixels, then repeat by assuming the plume is 
entirely over grass, water, etc. Such a strategy 
would extend our current BMA or PW 
approaches regarding assessing confidence in the 
chosen solution. 
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