
Work supported in part by US Department of Energy contract DE-AC02-76SF00515.
 1

Origin of charge density at LaAlO3-on-SrTiO3 hetero-

interfaces; possibility of intrinsic doping 

 

Wolter Siemons1,2,*, Gertjan Koster1,*, Hideki Yamamoto1,3, Walter A. Harrison1, Gerald 

Lucovsky4, Theodore H. Geballe1, Dave H.A. Blank2 and Malcolm R. Beasley1 

 

1 Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California, 94305, 

United States of America. 2 Faculty of Science and Technology and MESA+ Institute for 

Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands. 3 NTT Basic 

Research Laboratories, 3-1 Wakamiya Morinosato, Atsugi-shi, Kanagawa, 243-0198 Japan. 

 4 Physics Department, North Carolina State University, Raleigh, North Carolina, 27695, United 

States of America. *Contributed equally to this work 

Correspondence should be addressed to gkoster@stanford.edu [G.K.] 

 

Abstract 

As discovered by Ohtomo et al., a large sheet charge density with high 

mobility exists at the interface between SrTiO3 and LaAlO3. Based on 

transport, spectroscopic and oxygen-annealing experiments, we conclude 

that extrinsic defects in the form of oxygen vacancies introduced by the 

pulsed laser deposition process used by all researchers to date to make 

these samples is the source of the large carrier densities. Annealing 

experiments show a limiting carrier density. We also present a model that 
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explains the high mobility based on carrier redistribution due to an 

increased dielectric constant. 

 

Recently, Ohtomo and Hwang [1, 2] reported the existence of a conducting electron layer 

at the hetero-interface between two nominal insulators, SrTiO3 and LaAlO3. This is a remarkable 

result and has intrigued many researchers in the field [3, 4]. Equally remarkably, Ohtomo and 

Hwang [1, 2] found that for the TiO2/LaO interface between SrTiO3 and LaAlO3 has a sheet 

carrier density of ~1017 electrons/cm2 and a mobility of 104 cm2V-1s-1, as inferred from 

conductivity and Hall-effect measurements; each of these is strikingly large. 

 Some insight into the possible sheet charge densities at a SrTiO3/LaAlO3 interface can be 

seen from the following considerations, which relate to an intrinsic doping mechanism. SrTiO3 

consists of charge neutral SrO and TiO2 layers, whereas the AlO2
- and LaO+ layers in LaAlO3 

have net charge and for an ideal planar interface yield a net interface charge equal to half that of 

the last plane [5]. Indeed a neutralizing charge at the interface is required to avoid a polarization 

catastrophe that arises due to this net interface charge. If left uncompensated, the energy 

associated with this polarization grows indefinitely as the thickness of the LaAlO3 layer 

increases. Therefore, electrons have to be promoted to the conduction band of LaAlO3 at some 

point. The charge that is necessary to prevent this polarization catastrophe is equal to half an 

electron per unit cell, one is led to 1/2 of an electron per unit cell or 3.2 x 1014 cm-2. Note that 

this estimate applies only for perfectly stoichiometric LaAlO3 and in this sense is an approximate 

upper limit in the intrinsic case. Any defects will reduce this number. In any event, clearly this 

line of reasoning cannot explain the very large charge densities observed. Of course, in the case 

of lower carrier densities, an intrinsic doping mechanism may become operative. Hence, an 
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important subsidiary question is whether experimental conditions can be identified for which the 

intrinsic limit can be achieved.  

The high sheet conductivities and carrier densities found by Ohtomo and Hwang have 

been linked in preliminary arguments by us and by others to possible oxygen vacancies (i.e., 

extrinsic doping) in the SrTiO3 substrate. We further suggested that these vacancies are a result 

of high energy particle bombardment during the Pulsed Laser Deposition (PLD) process [6, 7] 

used so far by all workers in the field to make these hetero-structures. In addition, we proposed 

that the high mobility results from the thermal distribution of electrons away from the interface 

(consistent with Poisson’s equation) where the intrinsic (dopant free) high mobility of SrTiO3
 is 

available. As we shall see, because of the very large dielectric constant of SrTiO3 at low 

temperatures, this distribution can reach a large distance into the SrTiO3. 

In this Letter, we present a much more thorough study of the nature and origins of this 

conducting layer that puts our initial proposal on much firmer ground. We also show that 

annealing these interfaces at elevated temperatures in oxygen leads to a greatly reduced carrier 

density that is close in magnitude to that expected on simple ground from an ideal interface. 

More explicitly, transport, in situ UPS, Near Edge X-ray Absorption Spectroscopy (NEXAS) and 

visible to vacuum UV-Spectroscopic Ellipsometry (vis-VUV-SE) measurements have been 

performed on samples prepared under different oxidation conditions. From these experiments it 

is clear that, over a wide range of growth conditions, the large sheet charge density observed at 

these hetero-interfaces is due almost certainly to oxygen vacancies (donating electrons) in the 

SrTiO3 substrate. 

All of the films reported here were grown using Pulsed Laser Deposition (PLD) as 

described previously [6]. During growth, Reflection High Energy Electron Diffraction (RHEED) 
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was used both to determine the amount of material deposited and to monitor the morphology of 

the samples. RHEED intensity oscillations reveal that typically 120 laser pulses are required to 

grow a monolayer of LaAlO3. We found that if atomic oxygen is introduced during deposition, 

the growth proceeds in a multilayer fashion, as revealed by the damping of the RHEED 

oscillations, and thus could complicate the transport properties. Therefore, in order to achieve 

high degrees of oxidation without such degradation, atomic oxygen was only introduced after 

deposition during sample cooling, or after taking the sample out of the system for 

characterization and subsequently reintroducing it for a post oxidation treatment.  

After deposition, the samples were moved in situ into an adjacent photoemission analysis 

chamber (<5×10-10 Torr base pressure) where their electronic structure was studied. Electrical 

transport properties were measured ex situ with a Quantum Design Physical Properties 

Measurement System (PPMS) using the Van der Pauw geometry, taking appropriate precautions 

to avoid photo-induced carriers. NEXAS and vis-VUV-SE are described elsewhere [8, 9]. 

In Table 1, we first summarize the results of transport measurements on two classes of 

samples. The first was prepared under relatively low oxidation conditions (10-6 Torr, as 

measured with a hot cathode ion gauge), resulting in a high number of carriers [10]. The second 

was deposited and cooled at higher oxidation conditions (2×10-5 Torr), resulting in a reduced 

carrier density. Within each class, samples with LaAlO3 thicknesses of 1 and 5ML were studied, 

the thinner samples being used for surface sensitive measurements. The transport data are very 

much in line with what has been reported by us and others, and demonstrate directly that the 

oxygen pressure during deposition clearly affects the transport properties of these hetero-

structures [11]. 
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As discussed previously in Ref [6], analysis of the UPS data on the 1ML LaAlO3 samples 

shows the existence of a finite density of states at the Fermi energy that is sensitive to the 

oxidation history of the sample, being lowered by further oxidation. A measure of the density of 

states near the Fermi energy was determined by subtracting from the UPS data a background 

function given by the overall trend in the data from -3 eV to +2 eV. Integrating the density of 

states so obtained over energy to average the noise, one obtains a relative measure of the number 

of carriers per unit volume in the conduction band of the SrTiO3. The results are shown in 

column 5 of Table 1 where the result for the sample fabricated at low oxidation conditions was 

set arbitrarily at 100%. The values found for various samples were correlated with their 

respective deposition oxidation conditions as expected from our arguments. A comparison of the 

density of states produced using various deposition conditions was reported elsewhere [6]. 

 The NEXAS O K1 edge absorption results are shown in Fig. 1(a). As is evident, the Ti 3d 

and 4s features in the sample prepared at high oxidation conditions are significantly stronger 

relative to the La 5d features. The half-width-at-half-maximum (hwhm), at the low energy side 

of the Ti T2g feature relative to TiO2 is smaller for the sample prepared at high oxidation 

conditions compared with the sample at low oxidation conditions. The actual values are shown in 

Table 1. This is indicative of decrease in the density of O-atom vacancies, or alternatively Ti3+ 

bonding. Due to the presence of oxygen defects all features in the NEXAS spectrum tend to 

broaden and therefore affecting all peaks in the spectrum. The absorption constants, α, in Table 

1, extracted from vis-VUV-SE measurements in Fig. 1(b) support the interpretation of the of the 

O K1 spectra. The band edge defect state features between 2.3 and 3.5 eV at the onset on 

conduction band Ti 3d absorption edge, are stronger in the sample deposited at the lower oxygen 
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pressure consistent with a higher concentration of O-atom vacancies, or equivalently Ti3+ defect 

sites. 

 The data presented in Table 1 confirm the strong dependence of the properties of the 

conducting layer at these SrTiO3/LaAlO3 interfaces on the oxidation conditions under which the 

samples were made. More importantly, they correlate these results, through the bonding 

conditions of the Ti, to oxygen vacancies in the SrTiO3. 

We turn now to the question of how low the carrier density can be made at these 

interfaces. In order to address this question, we annealed various samples in atomic oxygen at 

elevated temperatures (350-800 °C). The results of these measurements are shown in Fig. 2. To 

exclude the possibility of introducing interstitial oxygen, we cooled the samples below 250 °C in 

vacuum, after annealing in vacuum for one hour at that temperature. The samples annealed up to 

800 °C show a reduced sheet carrier density: 1.2-1.3 x 1013 down from 2.3 x 1013 at 4 K, whereas 

the mobility remains unchanged. Most strikingly, for anneals above 500 °C, the carrier sheet 

density appears to settle at a lower limit value and becomes independent of temperature, 

consistent with the findings of the Augsburg group [4]. Clearly these suggestive results warrant 

further investigation. 

Regardless of the mechanism that created the carriers, there remains the question of what 

causes the high mobility, what causes the temperature dependence and where the carriers reside. 

The carriers cannot be distributed uniformly over the bulk unless there were an equal density of 

compensating charged donors, and then the mobility would be much lower than we observe 

[12]. The other extreme would be that they occupied surface bands at the interface, but there is no 

evidence to support this and we so no reason to suggest that such bands exist for this type of 

interface. The more plausible scenario is that this is a kind of modulation doping, where a high 
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mobility conducting layer results because the carriers are separated in space from the charged 

vacancies due to their thermal distribution in space.  

To support this scenario, we have modeled the distribution of the electrons in the SrTiO3. 

We assume that the vacancies are distributed homogeneously in a narrow region of depth 6 nm in 

the SrTiO3 at the interface. We assume a Thomas-Fermi distribution of the carriers, which is 

valid when V(x)<kT, appropriate for the cases that follow. Using this source distribution, we 

solve Poisson’s equation to obtain the potential and charge density as a function of depth in the 

SrTiO3, which is linked to the carrier density at a depth x by n(x)=-n0V(x)3/2, with 

n0=(2m/ħ2)3/2/3π2 and V(x) being the potential at depth x. The outcomes for both a high (1016) 

and the low (1014) carrier density cases are shown in Fig. 3 at 300 and 4K.  

The calculations show that the electrons move into the material over 50 nm at low 

temperatures and that this depth decreases dramatically at high temperatures (see dotted lines in 

Fig. 3) – a rather counterintuitive result. The reason for this unusual behavior is the very large 

and strongly temperature dependent dielectric constant of SrTiO3, some 20,000 at low 

temperature compared to 300 at room temperature [13,14]. It also offers an explanation of the high 

mobility that is measured especially for the samples deposited at low pressures: the carriers are 

moved away from the defects into the pristine SrTiO3, where they are highly mobile. 

Furthermore, it explains the absence of Shubnikov-de Haas oscillations, since the carrier density 

varies with depth.  

In summary, measurement of the electronic properties of the interfaces created by 

depositing LaAlO3 on SrTiO3 show electronic properties similar to the remarkable values found 

originally by Ohtomo and Hwang [1]. Also, UPS spectra show states at the Fermi level, 

indicating a conducting interface. The number of these states is lowered when the sample is 
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oxidized, suggesting that oxygen vacancies play an essential role in supplying the charge 

carriers. This is further confirmed by NEXAS and vis-VUV-SE measurements, which show 

more Ti3+ for samples made at lower pressures. We argue that the vacancies are created by the 

PLD process itself where relatively high energy particles sputter off oxygen. To reduce the 

number of vacancies we have annealed samples in atomic oxygen, which reduces the number of 

carriers, but keeps the mobility the same. The dependence of sheet carrier density as a function 

of temperature is changed dramatically. To determine where the electrons are located we have 

calculated the potential and the carrier density in the SrTiO3 as a function of distance from the 

interface and calculated that the electrons move into the pristine SrTiO3 over large distances, 

mainly due to the high dielectric constant of SrTiO3 at low temperatures.  
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TABLE 1. A comparison between samples made at low and high pressures. The most important 

parameters, measured with different techniques, are shown. 

 

FIG 1. a) NEXAS OK1 of sample 0728 (deposited at 10-5 Torr) and sample 0802 (deposited at 

10-6 Torr) b) vis-VUV Spectroscopic Ellipsometry absorption constant, α, spectrum of the same 

samples as in a). 

 

FIG 2. Sheet carrier densities at 20 K (blue symbols) and 300 K (red symbols) as a function of 

annealing temperature in 600 W atomic oxygen, for samples made at 10-5 Torr of O2 600 W of 

atomic oxygen corresponds to ~1017 oxygen atoms cm-2 s-1. The latter value was taken after Ingle 

et al. [15] who worked on the same system in our laboratory. The values at 25 °C indicate the as 

deposited samples. The different symbol shapes indicate different samples made under similar 

conditions: two made at Stanford (circles and triangles), the other two made at the University of 

Twente (crosses and squares). Sample thickness ranges from 5 to 26 ML. 

 

FIG 3. Calculations of the electron density as a function of distance from the interface for two 

different total numbers of electrons per cm2 (3×1014 and 1×1016) at two different temperatures. 

The shaded blue area indicates the location of the oxygen vacancies for the high carrier density 

case, 1016, for the low carrier density case no oxygen vacancies were assumed, hence the 

different slopes at the interface. 
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Table 1 Siemons et al. 

Prep. cond. 
(pO2 in Torr) 

Thickness 
[ML LaAlO3] 

ns [cm-2] 
4K/300K 

μ [cm2 V-1s-1] 
4K/300K 

UPS (relative 
int. at EF) 

NEXAS 
δ(hwhm) Ti2g 

** 
Vis-VUV-SE 
Δ(3.5-2.5)***  

10-6 1 N/A N/A 100% N/A N/A 

10-6 + 6000L*  1 2×1016 / 2×1016 1×104 / 5 40% 1.3 3.9 

10-6 5 2×1016 / 2×1016 1×104 / 5 N/A N/A N/A 

10-5  1 Not conducting Not conducting N/A 1.1 5.8 

10-5 5 2×1013 / 2×1014 3×102 / 4 N/A N/A N/A 
 

* 1 ML sample prepared at 10-6 Torr of O2 and after in situ exposure to 10-6 Torr of O2 for 10 

min. at 150 °C 

** ratios of hwhm of T2g d-state relative to TiO2 

*** ratios of α between 3.5 and 2.5 eV
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Figure 1. W. Siemons et al. 
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Figure 2. W. Siemons et al. 
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 Figure 3. W. Siemons et al. 
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