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I. Introduction 

The Implicit Monte Carlo (IMC) method [ 11 has been used for over 30 years to analyze radiative 
transfer problems, such as those encountered in stellar atmospheres or inertial confinement 
fbsion. Reference [2] provided an exact error analysis of IMC for 0-D problems and 
demonstrated that IMC can exhibit substantial errors when timesteps are large. These temporal 
errors are inherent in the method and are in addition to spatial discretization errors and 
approximations that address nonlinearities (due to variation of physical constants). In Reference 
[3], IMC and four other methods were analyzed in detail and compared on both theoretical 
grounds and the accuracy of numerical tests. As discussed in [3], two alternative schemes for 
solving the radiative transfer equations, the Carter-Forest (C-F) method [4] and the Ahrens- 
Larsen (A-L) method [5], do not exhibit the errors found in IMC; for 0-D, both of these methods 
are exact for all time, while for 3-D, A-L is exact for all time and C-F is exact within a timestep. 
These methods can yield substantially superior results to IMC. 

This work develops a non-analog transport scheme for the C-F method, extending it beyond the 
original work, to permit the straightforward integration of the method into existing IMC codes. 
With the new sampling scheme derived below, upgrading an existing IMC code to use the more 
accurate C-F method should be a straightforward exercise, involving only a few dozen lines of 
coding. Tests of the new sampling scheme demonstrate its correctness. 

/ '  

11. Radiative Transfer Equations and Solution Methods 

The coupled equations of grey radiative transfer [2,3] are: 

where the notation is standard [cf 2,3]. We assume local theriiiodynaiiic equilibrium, no 
scattering, and that material properties (e.g., p, CF ) are held constant within a tiinestep. Equations 
(1,2) are solved over a timestep At = - t ,  . 

In Reference [3], five computational methods for solving Eqs. (1,2) were compared and tested 
using analog Monte Carlo techniques, in order to clearly illustrate hndamental differences in the 
methods. For analog simulation, when a photon emerges from either a collision, source, or 
emission event, a free-flight distance to the next collision event is randomly sampled using t he  



total opacity cr , and then the random selection of either absorption or effective scattering is 
made using us / u , where os is a time-dependent effective scattering cross-section. Tallies of 
the energy absorbed by the material are made at collision points, not during flights. 

For practical application in conventional IMC codes, photon transport is modeled in a non- 
analog manner, as described in [l], in order to reduce statistical fluctuations and improve the 
computer run time. For this non-analog simulation, the free-flight distance is sampled using only 
the effective scattering cross-section (not the total), and then the photon energy is reduced to 
account for the expected absorption along the chosen flight path. The energy lost during the 
flight is tallied as absorption in the material. Only effective scattering is permitted at collision 
points. For the IMC method, the effective scattering cross-section is approximated by a constant, 
a, = (1 - f) - o , with f = 1 /(1+ acaflAt) during the timestep At , so that the fiee-flight distance 
is sampled in a simple fashion as s t - ln(Q / a, , where 6 is a uniform random deviate. The 
expected fractional loss in particle energy is (1 - e - fos ) .  To develop a compatible non-analog 
scheme for the C-F method is challenging and nontrivial, since the effective scattering and 
absorption cross-sections are time dependent. The derivation below provides the first known 
scheme for doing so. 

111. New Pree-flight Sampling Scheme for the C-F Method 

During a timestep in the C-F method, the effective Scattering cross-section is given by [3]: 

where t, I t 5 Assume that the photon emerges from an event (emission, source, or 
collision) at time t' to begin a flight, with t ,  5 t' I tn+] . We want to sample the fiee-fight 
distance using the effective scattering cross-section given by Eq. (3). Defining t" as the time to 
the next collision, where 0 5 t" 5 tn+] - t' , and the corresponding flight distance x = ct" , Eq. (3) 
can be used to define the effective scattering cross-section as a h c t i o n  of the photon night 
distance: 

for 0 I x 5 a , where a = c(t,,, -t') and y = e-@' . Note that a, (x) decreases smoothly from 
a(1- y )  at x=O to 0 at x=a.  

o,(t) = o.[l-e-""B"n+'-') 1 (3) 

a,(x> =a.[l-ye+'pL] (4) 

Proceeding similar to [6],  define 
v 

z(x)= ~ o , ( x ' ) d x f = C T x - y ( ( e ~ " s  -1)/p ( 5 )  
IJ 

so that the probability of 

With probability Pc = 1 - PNc , a collision occurs within the interval [O,a], and the flight distance 
must be sampled from the probability density hnction (pdf) 

colliding in the interval [O,a] is 
p .\'C =e-""' = exp[--oa+y(eC'jc' -1)lpI = exp[-ou+(~ - y ) / ~ ]  (6)  



where G is a normalization factor given by 
r f  11 I 

C; = f e-rc~r = 1 -e-""' = I - exp [-on + (1 - y ) / ~ ]  (8) 
0 

We have devised efficient rejection methods for sampling Eq. (7) for the case of p > 1, but have 
not been successfill for ,B << 1. Since p can vary arbitrarily as material properties change and 
extreme changes are expected, rejection methods will not be used. Instead, a direct sampling 
method will be derived. Using Eq. ( 5 ) ,  Eq. (7) may be rewritten as 

tis 1 -, f ( z )  = f ( s ) - - =  - e 
d r  (3 (9) 

for 0 z 5 r,, , where T , , , ~ ~  = rs-a - (1 - y ) / P  . Given that a collision occurs in the interval [O, a], 
the free-flight distance is found from Eq. (9) by solving the following equation for i' , and then 
solving Eq. (5) for the corresponding free-flight distance: 

T 

5 = Js (z)dz, 0 I .i? 5 z,, (10) 
0 

Eqs. (8-10) are immediately recognized as sampling ẑ  from a truncated exponential pdf, which 
has the solution 

Substituting i' for z , and ŝ  for x in Eq. (1 1) gives: 

Equation (12) is a transcendental equation for s^ which is readily solved numerically using a 
simple Newton iteration with an initial guess of 3, = ? / 0 : 

This will always converge for an initial guess in the interval (0,a) because g'(s) < 0, hence g(s )  
is monotone. We have found that only 1-3 iterations are needed to converge s^ within lo", even 
for extreme values of 0, p, and a ,  so that this approach is actually faster than rejection schemes. 
Figure (1) compares the results of this direct sampling method to the exact PDF given by Eq. (7) 
for several values of t' for collisions near the beginning, middle, and end of the timestep. 

t =-ln(l-G.e) (1 1) 

,' .i = ( T i  - y (e"/'i - 1)/P (12) 

,i,?+, = i17 -g(i,,)/g'(i,,), where g(s )  = I^ - r (s ) ,  g'(s) = -(T$(,S) (13) 

111. Modifications to the C-F Method 

To summarize, the modifications necessary to the C-F method are: 
1. Sample the flight distance to effective scattering, ŝ  : 

If c, 5 PNc , set i = a .  Otherwise, set ? = -ln(l - G .c2), then use Eq. (1 3) to solve for i . 
2. Transport the photon a distance s^ . 
3. Reduce the photon energy to E' = E exp -5 [ CT - (T, ( x ) p x  = E exp [ -y (eG/'$ - l)/P] . [ :  
4. Tally the absorbed energy for the fight given by (E - E') . 



5 .  For collision analysis, consider only effective scattering (i.e., absorption-reemission), 
disallowing absorption events. 

Numerical tests of the modified C-F method were carried out for the Su-Olsen transport 
benchmark problem [7] and compared with the conventional IMC method, the exact analog 
method of Ahrens and Larsen [SI, and the exact analytic solution. Figure(2) shows the results for 
t=10 and t = 30, using a coarse timestep of At = 10.  It can be seen that the modified C-F method 
gives essentially exact results, while IMC shows substantial errors. Computer running times were  
60 seconds for the C-F method and 50 seconds for IMC using a 1 GHz Pentium-I11 processor and 
the Metroworks C++ compiler, 

V. Summary and Conclusions 

We have extended the C-F method for solving the grey radiative transfer equations to the case of 
non-analog transport. A new method for sampling the fight distance using the C-F effective 
scattering cross-section was developed and verified. Testing of the modified C-F method has 
demonstrated that it can give nearly exact results for radiative transfer problems even when very 
large timesteps are used, eliminating the significant temporal errors inherent in the conventional 
IMC method at a modest 20% increase in computer time. 
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Figure 1. Verification of Sampling Scheme for Modified Carter-Forest Method, 
for scattering at beginning, middle, and end of timestep 
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Figure 2. Integrated Radiation Intensity for Su-Olsen Benchmark Problem, 
200,000 particles, 200 mesh cells, At =lo, 0 = p=  c = 1, no scatter@ 
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