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We study the edge states in graphene in the presence of a magnetic field perpendicular to the 
plane of the lattice. Most of the works done so far discuss the edge states in either zigzag or armchair 
edge graphene considering an isotropic electron hopping. In practice, graphene can have mixture 
of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of 
this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at 
E = 0 of the zigzag edge and, on the other hand, the anisotropic hoping gives rise to the enhanced 
LDOS at E=O in the armchair edge. The behavior of the LDOS can be studied using scanning 
tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting 
the STM data. It is because the clear distinction between the zigzag edge (enhanced LDOS at 
E = 0) and armchair edge (suppressed LDOS at E = 0) can be lost if the hopping is not isotropic 
and if the edges are mixed. 

I. INTRODUCTION 

Graphene is a one-atom-thick honeycomb lattice of 
carbon atoms. The experimental success of extract­
ing graphenel has attracted multifarious research activi­
ties recently.2-l2 The excitement in various discipline of 
physics is originated from graphene's unique two dimen­
sional structure.3 The tight binding calculations show 
that the low energy excitations in graphene are lin­
early dispersive, hence massless, and the linear disper­
sion is confirmed through integer quantum HaH measure­
ments.2,3 The Hall conductivity in these experiments is 
shown to behave differently from that of the conventional 
two dimensional electron system created in semiconduct­
ing hetero structures , namely the conductivity shows half 
integer rather than the integer effect. The study of the 
edge states in the presence of the magnetic field provides 
one way of understanding the results of the quantum Hall 
measurements. 13-15 

Several research works have been focused on the study 
of the edge states in graphene l 6-27 having two types of 
edges: a) armchair edge, and b) zigzag edge. In the ab­
sence of the magnetic field, in the nearest neighbor hop­
ping approximation , the zigzag edge graphene has non 
dispersive zero energy states at the edge which are also 
known as surface states. In the armchair edge graphene 
these states are absent . In the presence of the magnetic 
field, a bulk graphene has a set of quantized energy bands 
(Landau levels), whereas both the zigzag and armchair 
edge graphene develop dispersive edge states between the 
Landau levels. The surface states of the zigzag edge 
graphene survive in the presence of the magnetic field. 
Therefore the presence (absence) of the surface states in 
the zigzag (armchair) edge grahpene signals about the 
type of the edge a given honeycomb lattice has. The 
presence of the surface states in a zigzag edge graphene 

gives rise to an enhanced local density of states (LDOS) 
at energy E = 0 close to the edge. 

However, the result that the zigzag edge has the sur­
face states (characterized by the enhanced local density of 
states at E = 0 at the edge) and the armchair edge does 
not is obtained by assuming isotropic hopping of the elec­
trons between the nearest neighbor carbon atoms. Here, 
we investigate the effect of possible anisotropic hopping 
on the edge states in graphene. Whether the hopping can 
indeed be anisotropic in graphene is a legitimate ques­
tion. It is easy to conceive that a graphene lattice on a 
Si wafer can more likely have anisotropic hopping because 
of the strain induced by the lattice mismatch. Moreover, 
one can always apply an intentional external strain on 
the lattice to induce the anisotropic hopping. 

If we consider such a possibility of the anisotropic hop­
ping of the electrons in graphene, the band structure of 
the armchair edge graphene changes. It has been shown 
that the zero energy states appear even in the armchair 
edge graphene19 at zero magnetic 'field. We numerically 
determine the LDOS for anisotropic hopping and show 
that a) the enhanced LDOS at E = 0 appears in the 
armchair edge graphene, b) in the zigzag edge graphene, 
the band structure changes slightly but the surface states 
do not disappear, c) the surface states persist in !both the 
zigzag and armchair edge graphene in the presence of the 
magnetic field. 

The study of the edge states done so far considers an 
ideal edge having either only an armchair or a zigzag 
edge. It has been shown experimentally that a practical 
graphene lattice has mixed armchair and zigzag edges. 11 

By mixed edges we refer to a region of the lattice where 
edges of different geometry cross. We mimic those cross­
ing in a model where a vertical armchair edge crosses 
a horizontal and a tilted zigzag edge, and a horizontal 
zigzag edge crosses a tilted zigzag edge. We study the ef­
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fects of this edge mixing on the edge states of graphene. 
The mixture of the different edges changes the local den­
sity of states at the edges. Here we mainly focus on the 
effect of the mixed edges on the surface states. For our 
chosen geometry of the edges (see Fig. (ll)) we show 
that a) a zigzag edge close to an armchair edge has re­
duced LOOS at E = 0, b) an armchair edge close to a 
zigzag edge has enhanced LOOS at E = 0, c) near the 
crOSSing of two zigzag edges the LOOS at E=O can be 
completely suppressed. 

The edge states in graphene can be studied experimen­
tally by using a local probe such as scanning tunneling 
microscopy (STM). The STM experiments measure the 
differential conductance which is proportional to the den­
sity of states. So we have calculated averaged DOS over 
a unit hexagonal cell. 

The paper is organized as follows. In section II we give 
an overview of the edge states in graphene nanoribbon 
with isotropic hopping in the absence and presence of 
the magnetic field. In section III we discuss the effect of 
the anisotropic hopping on the edge states. The effect of 
the random mixing of edges is discussed in section IV. 
We conclude our work in section V. 

II. 	 EDGE STATES IN GRAPHENE HAVING 
ISOTROPIC HOPPING 

The honeycomb lattice of graphene has two nonequiv­
alent lattice sites (A, B) per unit cell. The Hamiltonian 
then takes the form of a matrix. The band structure 

32is calculated using tight binding mode128- where the 
nearest neighbor hopping scales the kinetic energy of the 
electrons. The diagonalization of the Hamiltonian re­
veals that the valence and the conduction bands meet 
each other at the corners of the Brillouin zone. The den­
sity of states is linear in energy close to the Fermi energy. 

A uniform magnetic field can be included in the tight­
binding Hamiltonian by introducing the Peierls phase 
characterized by the inclusion of a magnetic vector po­
tential A in the electron hopping term 

H = - L tijere;ei2"'</>'j (1) 
ij 

where i and j are the nearest-neighbor sites, Ci and C{ are 
fermion annihilation and creation operat.ors respectively, 
and ¢ij is the phase factor which is given by the line 
integral of the magnetic vector potential as: 

¢'ij = ~ j j A· dl. (2)
hc i 

We write the Hamiltonian matrix for different geome­
tries of the graphene lattices such as bulk, armchair edge, 
zigzag edge and mixed edge graphene, We diagonalize 
the Hamiltonian to get the eigen-values and the eigen­
vectors which is used to calculate the local density of 
states. First, we reproduce the results obtained based on 
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FIG. 1: (color online) The density of states as a function of 
magnetic field and energy is shown. The Landau levels are 
clearly resolved as indicated by the enhanced density of states. 
The small decay of the amplitude of the density of states at 
higher energy is due to the finite size effect. The magnetic 
field is expressed in terms of the magnetic flux quantum (¢ = 
~: = if>o/q) . The energy scale is the hopping term t which is 
set to unity. 
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FIG. 2: (color online) The lattice structure of the graphene 
sheet with zigzag edge and armchair edge. While considering 
the armchair edge, we rotate it by 900 to make the edge along 
X-axis. The directions of the bonds are labelled by a, band 
c. 

the standard assumption of the isotropic hopping. For 
bulk graphene we reproduce the linear in k dispersion of 
the quasi-particle excitations and the linearly vanishing 
density of states at the Fermi energy. In the presence of 
the magnet.ic field eigen states split into discrete bands 
(Landau Levels). No state is allowed between the Lan­
dau levels without disorder. The density of states for this 
system is shown in Fig. (1). From this result the relation 
bet.ween the Landau level (LL) energy and Landau level 
index n can be extracted. It can be shown that the en­
ergy is proportional to the square root of the LL index, 
and the magnetic field33 . 

For t.he study of the edge staes we assume either one 
of the edge along the X-axis (Fig.2) and write a tight­
binding Hamiltonian for a lattice having 600 lattice sites 
along X-axis and a periodicity along Y-axis with 400 rep­
etition. For zigzag edge graphene we choose the carbon 
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FIG. 3: (color online) The dispersion relation of the electrons 
in a) armchair and b) zigzag edge graphene in the absence of 
the magnetic field is shown. The zigzag edge graphene has 
zero energy states whereas they are absent in the armchair 
edge graphene. The zero energy states correspond to the lo­
calized surface states of the zigzag edge graphene. 

atom at the edge to be sublattice A. In armchair edge 
graphene both A and B sublattices are at the edge. The 
dispersion relation of the electrons in the armchair and 
zigzag edge graphene in the absence of the magnetic field 
are shown in Fig. (3). 

The dispersion relation of the electrons in the armchair 
edge graphene is qualitatively similar to that of the bulk 
graphene, Le., the dispersion is linear in k close to the 
half filling point. The valence and conduction bands meet 
at the Fermi point, although we would like to mention 
here that depending upon the width of the nano ribbon 
a gap can open up in the armchair edge graphene. 17 In 
the case of zigzag edge graphene the dispersion relation 
is quite different from that of the armchair edge and bulk 
graphene due to the presence of the zero energy states. 
The zero energy states are called surface states. 

We calculate the local density of states (LDOS) close 
to and away from the edge. The LDOS at the sublattices 
A and B close to the zigzag edge is not the same. The 
sublattice A has enhanced LDOS at E = 0 whereas the 
sublat.tice B has zero LDOS at E = O. In the armchair 
edge graphene the LDOS at A and B are equal and it 
is zero at E = O. For the the reason discussed in the 
introduction, we average the local density of states over 
the six lattice sites of the hexagon, and study its variation 
as a function of distance of each hexagon away from the 
edge. The result is shown in Fig. (4). In this figure 
"d" represents the number of the hexagonal cell away 
from the edge. We see in this figure that there is an 
enhanced LDOS at E = 0 at the zigzag edge but there is 
no weight of the LDOS at E = 0 in the armchair edge. 
The amplitude of the density of state peak decays sharply 
away from the zigzag edge. 

We repeat the above discussed comparison of the edge 
states when the magnetic field is applied perpendicu­
lar to the graphene lattice. Fig. (5) shows the dis­
persion relations of the electrons in the armchair and 
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FIG. 4: (color online) The LDOS as a function of the dis­
tance from the edge in the absence of the magnetic field is 
shown for a) armchair edge and b) zigzag edge. The LDOS 
is the averaged LDOS over each hexagon. The .label axis d 
represents the position of the hexagon away from the edge. 
The enhanced LDOS close to the zigzag edge graphene signi­
fies the surface states. Such states are absent in the armchair 
edge. 
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FIG. 5: The dispersion relation of the electrons in a) armchair 
and b) zigzag edge graphene in the presence of the magnetic 
field. The magnetic field is such that ¢ = ~. 

zigzag edge graphene. We see the emergence of addi­
tional states between the quantized Landau level. These 
are the edge states. The edge states are gapless and dis­
persive. There is a significant difference between the edge 
states of the armchair and zigzag edge graphene. Al­
though the number of the edge states branches below 
certain energy is equal for both types of edges, they orig­
inate in pairs in the armchair edge graphene (except for 
the lowest Landau level). Due to the magnetic field there 
are zero energy states in both the armchair and zigzag 
edge graphene. To distinguish between the n=O Landau 
level states (which are zero energy states) and the surface 
states we need to calculate the local density of states. 

We calculate the LDOS on the hexagonal cells as a 
function of their distance (d) from the edge. The results 
are shown in Fig. (6). In the left figure we can see that 
there is an enhanced LDOS at E = 0, which corresponds 
to the surface states of the zigzag edge. These surface 
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FIG. 6: (color online) The 2D plot of LDOS as a function of 
the distance of the hexagonal cell from the edge for a) zigzag 
edge and b) armchair edge. d represents the number of the 
hexagonal cells away from the edge. This figure clearly shows 
the surface states and the dispersive edge states in the zigzag 
edge graphene. It also shows the edge states in armchair edge 
graphene. The magnetic field is quantified by the flux per 
unit cell: ¢ = ¢0/701. 

states are absent near the armchair edge. On the other 
hand, in the presence of the magnetic field, the zigzag 
edge and the armchair edge give rise to finite LDOS be­
tween the Landau levels close to the edges. It character­
izes the dispersive edge states. Similar results have been 
presented in Ref. [34] ·by Abanin et. al., using effective 
Dirac Hamiltonian near the Dirac point. In contrary our 
results rely on the full tight-binding Hamiltonian. Note 
that we can see the dispersive edge states more clearly. 

Next, we consider the possibility bf the anisotropic 
hopping of the electrons between the nearest neighbor 
carbon atoms. We study the effect of this anisotropy on 
the edge states of the armchair and zigzag edge graphene 
in the absence and presence of the magnetic field. 

III. 	 EDGE STATES IN GRAPHENE HAVING 
ANISOTROPIC HOPPING 

We use the similar geometry as sown in Fig. (2) 
to study the effects of the anisotropic hopping on the 
edge states of graphene. The directions of the bonds in 
graphene are labelled by a, b and c. In the case of the 
zigzag edge, by changing the hopping energy along any 
combination of the three bonds, we did not see any qual­
itative change in the band structure, especially the sur­
face states. In the absence ofthe magnetic field, there are 
zero energy states which give rise to the enhanced LDOS 
at E = 0 at the edge. In the presence of the magnetic 
field the dispersive edge states appear and the enhanced 
LDOS at E = 0 corresponding to the surface states are 
also present. 

The situation is different in the armchair edge 
graphene. When the armchair edge is along the X-axis 
and the ribbon repeats along the Y-axis (Fig.(2) rotated 
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FIG. 7: The dispersion relation of the armchair edge graphene 
having anisotropic hopping along the bonds in the direction 
b or c in the absence of magnetic field. The hopping energy 
is reduced by 30% compare with the unchanged bonds which 
have unity hopping. We can see the presence of the zero 
energy states similar to that of the isotropic and anisotropic 
zigzag edge graphene. 

by 900 ), let us assume that the hopping energy along 
direction "a" is reduced. In this situation the dispersion 
relation remains similar to that of the isotropic case (note 
that we are focusing our discussion on the edge states). 
But the band structure change dramatically when the 
hopping along the angled bond "b" or "c" is changed. 
(If we change the hopping along both the angled bonds 
with equal magnitude, the band structure again becomes 
qualitatively the same to that of the isotropic armchair 
edge graphene.) When the hopping along the "b" or "c" 
bonds is changed, the band structure of the armchair 
edge graphene becomes qualitatively similar to that of 
the zigzag edge graphene. The presence of the zero en­
ergy states as shown in Fig. (7) (compare with Fig. (3b)) 
is one of the examples. Now the electron wave function 
also changes, namely it is localized at the edge of the 
lattice. Fig. (8) shows the LDOS as a function of the 
distance of the hexagonal cell away from the edge. There 
is a clear enhancement in the LDOS at E = 0; which is 
the generic behavior of the zigzag edge graphene. 

In the presence of the magnetic field the dispersion 
relation of the electron in the armchair edge graphene 
(having anisotropic hopping along the bond "b" or "c") 
looks similar to that of the zigzag edge graphene as shown 
in Fig. (9) (compare with Fig. (5)b). The main similarity 
is that the edge states now do not come in pair (see Fig. 
Sa for isotropic case) which is similar to what is seen 
in the zigzag edge graphene (see Fig. 5b). The wave 
function also behaves similar to that of the zigzag edge 
graphene in the presence of the magnetic field. The wave 
functions corresponding to the surface st.ate and the edge 
states are localized at the edge. The LDOS is also similar 
to that of the zigzag edge graphene as shown ill Fig. (10). 
There is an enhanced LODS at zero energy at the edge. 

From the above discussions we conclude that the 
strained armchair edge graphene can have similar edges­
tates as that of the zigzag edge graphene. We want to 
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FIG. 8: (color online) The LDOS as a function of the dis­
tance of a hexagonal cell away from the edge of the armchair 
edge graphene having anisotropic hopping in the absence of 
magnetic field. We see an enhanced LDOS at E = 0 which 
corresponds to non dispersive the surface states. This behav­
ior is similar to that of the isotropic zigzag edge graphene. 
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FIG. 9: The dispersion relation of the armchair edge graphene 
having anisotropic hopping along the bonds "b" or "c" (Fig.2) 
in magnetic field. It is similar to that of the isotropic zigzag 
edge graphene in the presence of the magnetic field. The 
similarity is inferred from the disappearance of the pairwise 
dispersive edge states and appearance of the unpaired edge 
states as it is seen in the zigzag edge graphene. The magnetic 
field is given by <f> = Ifs-. 

point out that in the armchair edge graphene the ampli­
tude of LDOS at E = 0 depends upon the strength of the 
anisotropy, the smaller the anisotropy the smaller is the 
amplitude. Next we calculate the LDOS in the vicinity 
of the edge crossing to study the effect of the edge mixing 
Oll the edge states of graphene. 

IV. MIXED EDGE GRAPHENE 

To study the effects of the mixed edge on the edge 
states of graphene, instead of considering the graphene 
ribbon, we directly diagonalize a finite size system with 
length LX and width LY in the sense of a topologi­
cal equivalent shape of square lattice, as shown in Fig. 
(ll) . The size of the lattice is given by LX = 100 and 
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FIG. 10: (color online) The enhancement of the LDOS at E = 
o is shown in the armchair edge graphene having anisotropic 
hopping along the bonds b or c in a magnetic field given by 
<f> = tfs· The LDOS behaves similar to that of the zigzag 
edge graphene. 
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FIG. 11: (color online) The schematic figure of the arbitrary 
edge graphene. The length is LX "" 100 and the width 
is LY = 50 in the sense of topological equivalent shape of 
square lattice. There are two zigzag edges pro-allel to the X­
axis, two armchair edges parallel to the Y-axis and one tilted 
zigzag edge (guided by a red line). The dotted lines represent 
the part of the lattice where there are missing carbon atoms. 
We would like to mention that LX = 100 corresponds to 50 
hexagon along the X-axis. 

LY = 50 with open boundary conditions which means 
that the sizes in both of the directions have the length 
of 50 hexagonal cells. We label each hexagonal cell by 
a number P which starts from the top left corner and 
increases from left to the right and from the top to the 
bottom. Theoretically, there are many ways to form a 
lattice which has mixed edges. The one we choose actu­
ally represents a lattice where there is a tilted zigzag edge 
along the red line in in Fig. (ll), two vertical armchair 
edges and two horizontal zigzag edges. We diagonalize 
the tight-binding Hamiltonian for the whole lattice, and 
calculate the LDOS for each lattice site. As mentioned 
above, in the discussion of the zigzag edge, we denote the 
lattice site at the edge by sublattice A. 

We first imagine the lattice without the tilted zigzag 
edge in the presence of the magnetic field. Our calcu­
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lation shows that all the hexagonal cells along the hor­
izontal zigzag edge have enhanced LDOS at E = 0 (we 
would like to remind here that we calculated the LDOS 
averaged over the six sites of the hexagon) . Along a line 
parallel to the Y-axis from the middle of the zigzag edge 
the LDOS at E=O first decreases sharply and then in­
creases gradually to give the bulk value deep inside the 
lattice. Along the armchair edge, all the hexagonal cells 
have suppressed LDOS at E = 0 except when theses cells 
are close to the zigzag edge where due to the proximity 
effect these cells acquire finite LDOS at E=O. Along a 
line parallel to the X-axis from the middle of the arm­
chair edge, the LDOS at E=O increases gradually from 
zero to give the bulk value deep inside the lattice. 

Next, we consider the tilted zigzag edge which is in­
troduced as shown in Fig. (11). The figure shows that 
the tilted zigzag edge crosses one horizontal zigzag edge 
and one vertical armchair edge. Due to the presence of 
the two zigzag edges of different geometry, for the tech­
nicality of the discussion, we need to redefine the type 
of atoms which are sitting at the edges of the horizon­
tal and tilted zigzag edges. We can see from the figure 
that if the edge atom on the horizontal zigzag edge is de­
noted by sublattice A, the edge atom on the tilted edge 
will be sublattice B. Lets redefine the sublattice of the 
tilted zigzag edge by A'(=B with respect to the hori­
zontal zigzag edge). Then close to these two edges, any 
sublattice of type A (B) corresponding to the horizontal 
zigzag edge will be of type B' (A ') for the tilted zigzag 
edge. Now, since a sublattice A (B) or A' (B') always has 
enhanced (suppressed) LDOS at E=O, what will be the 
resultant LDOS on a hexagonal cell that has sites which 
sinmltaneously behave like sublattice A (B') and B (A') 
for the horizontal (tilted) zigzag edge? Similar question 
can be asked for the hexagonal cell which are close to the 
crossing of the vertical armchair and tilted zigzag edges. 
In the later case a sublattice A close to the zigzag edge 
(which has enhanced LDOS at E=O) is also a sublattice 
A for the armchair edge (which has zero LDOS at E=O). 
In what follows we have calculate the LDOS to address 
these scenarios. 

In Fig. (12) we show the LDOS averaged over six lat­
tice sites of the hexagonal cells which lie on the line 1 
as shown in Fig. (11). Along this line there is a tilted 
zigzag edge on the left, a horizontal zigzag edge parallel 
and close to it and an armchair edge on the right side. At 
the left side, each atom sees the effect of both the hori­
zontal and the tilted zigzag edge. For example, lets have 
a close look at the 57th cell. The atom at the top left 
corner of this cell is of type B for the horizontal zigzag 
edge and of type A' for the tilted zigzag edge. Because 
of the horizontal zigzag edge the LDOS at this sublattice 
should have zero magnitude at E = 0, but from the refer­
ence of the tilted edge, it has to have an enhanced LDOS 
at E = O. The same logic applies to the other sublattices 
of this cell. Because of this competition there will be a 
destructive interference and LDOS will be very small at 
E = O. Now if we go towards the right of the line 1, the 
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FIG. 12: (color online) The LDOS averaged over the six lat­
tice sites of each hexagon along the line 1 of Fig. (11) is 
shown. The combined effect of the mixed edge is that each 
atom is either B (A') type or A (B') type which reduces the 
LDOS at E=O. So when we sum the LDOS of each lattice 
sites of a hexagon close to the left end of line 1, we do not see 
the LDOS peak at E = O. On the right end of the line where 
the zigzag 1j.nd armchair edges cross, the LDOS peak close 
to the zigzag edge is absent due to the presence of the arm­
chair edge. In the middle of the line 1 we see the effect of the 
proximal zigzag edge. For this calculation we use cP = cPo/50. 

effect of the tilted zigzag edge should be reduced but the 
effect of the proximal horizontal zigzag edge should still 
be present. Therefore we see a gradual increase in the 
LDOS at E = O. At the far right, we have a proximal 
horizontal zigzag edge and a vertical armchair edge. For 
armchair edge the LDOS at E = 0 is small for both A 
and B sublattices. On the other hand the zigzag edge has 
a high LDOS at E = 0 at site A close to the edge. Be­
cause of this competition the LDOS over the hexagonal 
cell is reduced at the far right end. It is not zero because 
of the presence of the proximal zigzag edge. 

We also calculate the LDOS over the hexagonal cell 
along the line 2 of the Fig. (11). Along this line, there 
is a tilted zigzag edge on left side, two horizontal zigzag 
edges (which are quite far) and an armchair edge on the 
right end of the line. The result is shown in Fig. (13). 
In this case, the two horizontal zigzag edges are out of 
the picture. The appearance of the enhanced LDOS at 
E = 0 for smaller 'd' signals the presence of the tilted 
zigzag edge close to the corresponding hexagonal cell. 
The amplitude of this LDOS peak decays as we move 
inside the bulk along the line 2. It is expected beeause 
the effect of the zigzag edge decays away from the edge. 
Far from the tilted zigzag edge the bulk behavior charac­
terized by the finite LDOS at E = 0 is restored. At the 
far right end of the line 2 the LDOS at E = 0 starts to 
gradually reduce from the bulk value and becomes zero 
because of the presence of the armchair edge. 

We also calculate the LDOS in the scenario when the 
tilted zigzag edge is close to the armchair edge, e.g. along 
the line 3 in Fig. (ll) . To the left of this line we have 
tilted zigzag edge in the proximity of the armchair edge. 
The two horizontal zigzag edges are far from it so they 

75 
d 
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FIG. 13: (color online) The LDOS summed over each lattice 
sites of the hexagonal cell along the line (2) of Fig. (11). 
At the far left end of the line there is an enhanced LDOS 
and at the far right end the LDOS is reduced at E = O. 
The tilted zigzag edge at the left end of line (2) is far from 
the horizontal zigzag edges, and the vertical armchair edges 
leaving the effect of the tilted zigzag edge unaffected. This 
leads to the appearance of the enhanced LDOS at the left end. 
The LDOS at the far right end is affected by the presence of 
the armchair edge hence we get almost zero LDOS at E = 0 
at this end. In the middle of the line the LDOS shows the 
behavior of the bulk graphene.The magnet field is 4> = 4>0/50. 

are out of the picture. There is an armchair edge at the 
far right of the line. The result is shown in Fig. (14). The 
LDOS peak at E = 0 at the far left of the line is due to 
the presence of the tilted zigzag edge. But the amplitude 
is reduced compared to that of the hexagonal cell which 
is at the left of the line 2 because of the presence of the 
proximal armchair edge. At the far right of the line 3 the 
LDOS is suppressed due to the presence of the armchair 
edge. In the middle of the line we see the bulk behavior. 

To sum up the effects of the mixed edge on the LDOS, 
we calculate the LDOS along the tilted edge which is rep­
resented by the zigzag red line in Fig. (11). The result is 
shown in Fig. (15). The distance d = 1,2,3, ...... , 14 
stand for the hexagonal cells labelled by the index 
7,57,106, .... . ,651 along the tilted zigzag edge. We see 
that when the hexagonal cell is close to the intersection 
of the horizontal and the tilted zigzag edge (close to the 
top-right) the LDOS at E = 0 is very small. As we move 
along this tilted edge the LDOS at E = 0 increases. This 
is expected since we have a tilted zigzag edge which is 
far from the horizontal zigzag edge and also far from the 
vertical armchair edge. Close to the bottom-left end of 
the tilted zigzag edge the weight of the LDOS at E = 0 
decreases but remains finite. The reduction is due to the 
presence of the proximal armchair edge. 

V. CONCLUSION 

Most of the previous studies of the edge states in 
graphene have been done with the considerations that 

325 
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FIG. 14: (color online) The LDOS summed over each lattice 
site of the hexagonal cell along the line (3) of Fig. (11). At 
the left side of the lattice we see an enhanced LDOS at E = 0 
corresponding to the presence of the tilted zigzag edge and a 
reduced LDOS at the other side corresponding to the presence 
of the armchair edge. If we compare the LDOS at the left end 
of line (2) and (3), we see a reduced amplitude of the LDOS 
at E = 0 at the left end of the line (3), which is due to the 
proximity of the tilted edge to the armchair edge. The magnet 
field is 4> = 4>0/50. 

0 .0012 

0.00060.0012 

0.0006 
o 

o 

LDOS 

o 

FIG. 15: (color online) The LDOS in the middle of the new 
zigzag edge along tilted zigzag edge (redline) of the Fig. (11) . 
The distance d = 1,2,3, ...... , 14 stands for the leftmost unit 
cell labelled by the number 7,57,106, ..... , 651. The LDOS 
at E = 0 first decreases due to the destructive interference 
caused by the presence of the horizontal and tilted zigzag 
edge. As we go inside the lattice along Y-axis the role of 
the horizontal zigzag edge decreases and the role of the titled 
zigzag edge increases leading to the enhanced LDOS at E = 0, 
where, in the absence of the titled edge the LDOS would 
behave as that of the bulk graphene. As we move close to 
the left most armchair edge the amplitude of the LDOS again 
decreases. The magnet field is 4> = 4>0/50. 

the graphene lattice has only one type of the edges, ei­
ther armchair or zigzag, and that the hopping energy of 
the electrons is isotropic. In reality the hopping can be 
anisotropic and the edges can be mixed. In this paper 
we study the edge states conSidering a lattice which has 
anisotropic electron hopping and mixed edges. Our focus 
was on the behavior of the LDOS in the vicinity of the 
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edges. 
We show that the band structure of the armchair edge 

graphene changes qualitatively when hopping becomes 
anisotropic. It develops zero energy states. The lo­
cal density of states also changes. It now gives rise to 
the enhanced LDOS at E = 0 which is similar to what 
zigzag edge does whether there is isotopic hopping or 
the anisotropic hopping. The amplitude of the enhanced 
LDOS in the strained armchair edge graphene depends 
on the degree of the anisotropy. 

In the mixed edge structure we assumed to have a tilted 
zigzag edge which meets with the horizontal zigzag edge 
at one side and the armchair edge at the other side. In 
this situation we show that a) near the crossing of the 
horzontal and slanted zigzag edge the enhanced LDOS 

at E=O will be completely suppressed, b) near the cross­
ing of the arm chair and slanted zigzag edge the LDOS 
at E=O at the zigzag edge is smeared out, and c) near 
the crossing of the horizontal zigzag and vertical arm 
chair edge, the LDOS at E=O at the armchair edge is en­
hanced. So, depending upon the structure of the lattice 
and the position where the LDOS is going to be probed, 
the surface state of the zigzag edge can have weight be­
tween zero to some maximum values. We believe that 
our results should be important to interpret data of the 
LDOS measurements in the STM experiments. 

This work was carried out under the auspices of the 
National Nuclear Security Administration of the U.S. De­
partment of Energy at Los Alamos National Laboratory 
under Contract No. DE-AC52-06NA25396. 
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