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Abstract

It is anticipated that in the near future disk storage systems will surpaskcappn servers and will
become the primary consumer of power in the data centers. Shutting afowactive disks is one of the
more widespread solutions to save power consumption of disk systdwnsssolution involves spinning
down or completely shutting off disks that exhibit long periods of inactivity @acing them in standby
mode. A file request from a disk in standby mode will incur an 1/O costlfyeas it takes time to spin up
the disk before it can serve the file. In this paper, we address the praiflelesigning and implementing
file allocation strategies on disk storage that save energy while meetingrperice requirements of file
retrievals. We present an algorithm for solving this problem with guarantemdhds from the optimal
solution. Our algorithm runs in @hlogn) time where n is the number of files allocated. Detailed simulation
results and experiments with real life workloads are also presented.

1. Introduction

Enterprises, research institutions and governmental agencies noidemwline or near-line access to
massively large data resources. The declining cost of commodity dislgetbigss now made such data
resources very affordable for large data centers. However, mdngdimese data resources over hundreds
and thousands of spinning disks comes at a considerable expenseafymsage. A recent paper states
that about 26% of the energy consumption at data centers is attributed tstoliage systems [7]. This
percentage of disk storage power consumption will continue to incresi§astar and higher capacity disks
are deployed with increasing energy costs and also as data intenslicatpps demand reliable on-line
access to data resources. It has become necessary to employ sttateg&e disk system usage more en-
ergy efficient independent of manufacturers efforts. The problesguslly significant in high performance
scientific computing centers, such as NERSC [10], that manage largedstaleesources that are accessed

by collaborating scientists around the world.
The solution is being addressed at two levglsysical devicendsystemdevel. At the physical device

level, disk manufacturers are developing new energy efficient digsafdd hybrid disks (i.e., disks with
integrated flash memory caches). At the system level, a number of integtatage solutions such as
MAID [4], PARAID [16], PERGAMUM [15] and SEA [17] have emergeall of which are based on the
general principle of spinning down and spinning up disks. Disks cordyeither as RAID sets or as
independent disks, are configured with idle time-out periods, also ddltess thresholdafter which they

are automatically spun down into a standby mode. A read or write /O requgstedd to a standby disk
causes the disk to spin-up again in order to service it. This of course caintke expense of a longer
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response time. A spun up disk stays spun up until it becomes idle againradrosuof the time-out period
(see Figure 1).
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Figure 1. Power consumption of the different disk modes and tranmstiimes

1.1. Proposed Approach

Most existing research work in storage power management assumesetltaintients of the disks are
static and power saving can be realized during lengthy idle periods of tke dir approach is different
(but complementary) in that we also allow reorganization of disk contents eifimamically or at periodic

reorganization points in order to create more opportunities for powergavin
To understand the reasoning behind this approach, let us considseeavdaere the file accesses are

uniformly distributed among all the disks. There will be very little power savinthis case, since there
are relatively short idle periods on each disk which are not sufficigjuistdy powering the disk down and
then up again. Now, consider another case, where the disks are spiwingmoups, with the great majority
of the accesses being made to the first group of files with high frequdraxcesses. The infrequent file
accesses go to the second group of disks with less frequently acéiéssethis creates longer idle periods
on the second group with an opportunity to shut down these disks for@awimg. The more disks we have
in the second group, the more power we can save. The trade-off boviethat the frequent accesses to the
disks in the first group, may result in longer response times. Thus, wetbdead these disks maximally,
but without exceeding some guaranteed acceptable response timesowks ishSection 5, our strategy
improves power savings also with the presence of a cache in front ofigskesytem (or individual disk

caches).
Our experience with the workload oéad accesset the data resources at NERSC [10], one of the

national high performance computing centers, shows that the accgssgrimes of files follow Zipf-like
distributions. That is, at periodic intervals there are a large number ofcfilesa requests that are directed
to a small number of files. We propose to exploit these observations fayyeeticiency, using a strategy

to transform these file access patterns to disk access patterns throwdjodédion strategies.
In this paper we focus on read requests, in case the access setunbes write requests we propose to

follow one of the energy-friendly approaches given in [15], i.e., wrlsfinto an already spinning disk if
sufficient space is found on it or write it into any other disk (using bestiirst-fit policy) where sufficient
space can be found. The written file may be re-allocated to a better locationllgileg a reorganization

process.
The main contributions of this paper are:

e The use of file allocation strategies to significantly reduce energy consungftitisk systems. These
strategies can be used in conjunction with other techniques in the literature.

e We present a mapping of the problem of file allocation on disks with maximal pooveservation and
response time constraints to a generalized bin packing problem tabtiedimensional vector packing
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problem (2DVPP)This mapping allowed us to use algorithms that solve 2DVPP with provablalsoun
from the optimum.

e We give an algorithm that improves on the running time of a 2DVPP algorithr(ttaj has the best
known bounds from optimality), fror®(n?) to O(nlogn)

e The use of extensive simulations with both simulated and realistic workloadscandate disk char-
acteristics, to calculate the energy savings and response times achieusithdpyur file allocation
techniques as compared with random file allocation. We demonstrate thatloniguges achieve sig-
nificant energy savings over a wide range of workload parametersssalith minimal response time
degradation.

Although our solution may be characterized as an off-line solution, it caappked in a semi-dynamic
manner by accumulating access statistics over periodic intervals andrpegoreorganization of file al-
locations. Another use of the solution presented is for computing the pagesenf disks that must be

maintained on-line to meet file access response time under budget constraints
The remainder of the paper is organized as follows. In the next sectigresent the background and

related work on energy saving approaches in large scale disk-stoazge data centers. We present our
heuristic algorithm in Section 3 where a variant for a special case axbarour generated workload based
on real life logs is also given. A discussion of our simulation environmentvisngin Section 4. Section 5
presents our experimental results and we conclude in Section 6 whetsondistuss directions for future
work.

2. Related Work

The general techniques being advocated in this work are based on semg eonservation techniques
used in computing. In particular, we employ three principles: massive afralle disks (MAID) [4],
popular data concentration [11] and energy-aware caching [20]. Sitnithe work in [11], our approach
is to concentrate short term and frequent data accesses on a frddiiendisk arrays, while the rest are,
for most times, set in standby mode due to their long periods of inactivity. Madisks provide multiple
power modes: active, idle, and standby modes and most operating systdre configured for the power

management of these disks.
Conserving energy in large scale computing has been recently explojgdLii. Colarelli and Grun-

wald [4] proposedMAID for near-line access to data in a massively large disk storage environfienyt.
show, using simulation studies, that a MAID system is a viable alternativeapabte of considerable en-
ergy savings over constantly spinning disks. A related system was implain@mecommercialized by
COPAN systems [5, 6]. This system, which is intended for a general datercis not focused on scientific
applications and is not adaptively reconfigurable based on workl&adither, the disks are remotely acces-
sible via NFS mounts. Our approach uses iSCSI protocol for remotesascesich provides a better /0O

bandwidth than NFS.
The theory of Dynamic Power Management of disks has also drawn a &dtesftion recently from the

theoretical computer science community (see [8] for an extensive owenfiehis work). Most of this
work considers a single disk only and attempts to find an optimal idle waiting p&isad called idleness
threshold time) after which a disk should be moved to a state which consumes\ess More specifically,
the problem discussed in these research works is based on the assuhmititve disk can be transitioned
amongn power consumption states where tiestate consumes less power than jfiestate fori < j. The
disk can serve file requests only when it is in the highest power state!{te&ate) which is also called the
active state. The system must pay a pen@lifa request arrives when the disk is in tiffestate, the penalty
is proportional to the power needed to spin up from dtaighe active state. The penalty is decreasing with



the state number, i.e3; < 3, for j > i, andf3, = 0. The problem is that of devising online algorithms for
selecting optimal threshold times, based on idle periods between requsasato transition the disk from
one power state to another. The most common case has only two states nativeltate (full power) and
standby (sleep) state. The quality of these algorithms is measured by theetitbrapatio which compares
their power consumption to that of an optimal offline algorithm that can seentire eequest sequence in
advance before selecting state transition times. For a two state system theighist@und of 2 for the

competitive ratio of any deterministic algorithm. Response time penalty is not evedith this work.
Another theoretical work which also deals with the affects of power managepolicy on the latency

of a single disk is described in [13]. Our work is complementary to that werlve consider multiple
disks rather than just one disk and attempts to allocate files among the disks teerttpgdotal power con-
sumption of the storage system subject to response time constraints. Gilgr eonservation techniques
proposed are addressed in [2,9,11,15,16,19].

3. Optimal File Allocation Algorithm

This section deals with the combinatorial problem of allocating files to disks sthaeninimum number
of disks are used and the response time for file requests is below a spauifighold. To define this problem
formally, we first introduce some notations. We start with a setfilés. For the'" file let s, denote its size
and letp; denote the fraction of accesses to it relative to the total file accessesiincd time. We observe
that the amount of time a disk will spend on servicing requests for a gives fiteongly correlated with the
frequency of accessing the file as well as its size. For simplicity, we ttrerdfgine the load of thé" file,

li asli = Rpw whereyy is the service time for the file which is a function of its size, g+ f(s) andRis

the rate at which requests arrive in the system. Any functigs) can be used in the proposed algorithms.
With this definition, the load corresponds to the fraction of the disk service fret®n servicing thé"

file. We useSto denote the total storage capacity of a disk that we are allowed to usk,tardenote the
load capacity of a disk. We assume the response time constraint is satidfed¢ifmulative loads of files
on any disk are below. In our experiments, we defileas a percentage of the maximum disk transfer rate.
Formally, we define our problem as follows.

Definition 1. Given a list of tuples(&i,11), (S2,12), ... (Sh, In), @and bounds S and L, find a minimum number
of sets Q, Dy, ..., Dy, so that each tuple is assigned to a setBdy (s )ep, S < Sandy s 1yep i <L fori=
1.,k

This problem has been studied in the literature as2tgémensional vector packing problef2DVPP).
It is known to be NP-Complete and several approximation algorithms for krmoen [3]. We will now
describe an approximation algorithm, calledck Disks which improves on the algorithm in [3], by in-
troducing an efficient data structure that cuts down the time complexity @om) to O(nlogn). Our
file allocation algorithm can be applied periodically based on specifiedasization intervals or triggered
automatically whenever the energy consumption of the system exceeds gecifeed threshold or the re-
sponse time exceeds the guranteed upper bound.

3.1. The Algorithm

The input to the algorithm is a collectidn of n elements corresponding to the files to be allocated.
Each elementq, |;) corresponds to a fild; with sizes and loadl;. For simplicity, we will normalize
the constraints based on the disk capa&8tgnd loadL so they are both equal to 1 and th&s andl;’s
represent fractions dd andL respectively, so they are all within the rani@e1], i.e., s = (size of f;)/S)
and |; = ( load of f;) /L. We also assume that a&ls andl;’s are bounded by some small constart p < 1.

We will later prove that the number of disks loaded by the algorithm is withint@fad (1/(1— p) of the
optimum.



Our algorithm uses max heaplata structure which is a full binary tree with keys on the nodes.niaa
heap the following property is always maintained: if nogés a child of nodex , thenkey(x) > keyy). In
the running time analysis we use the fact thatax heagcan be created i®(n) time and maintained after
an insertion or removal of an element@tlogn) time (See [1] for more details) . This implies that the key
of the the root node is the maximum of the set of keys. Before running tloetilign we will construct two
heapsSandL. The heapSandL are constructed fror as follows. LetST(F) contain all elements from
F wheres > |; (also called size-intensive elements) dridl(F) all the other elements (also called load-
intensive elements), i.eST(F) = (s,l;) : 5 > |; andLD(F) = (s, ;i) : i > 5. For each element i8T(F),
we compute the valug = s — |; and construct a headwith §'s as keys. Similarly we compute the value
[i = I; — s for each element dfD(F) and construct a hedpwith Ii's as keys. We keep with every element
of each list its original index in the s&t The algorithm given below then partitions the elementS ahd
L into subset®;. This in turn induces an allocation of the files representef hy disks where the original
indices of the elements allocated to a suliBetorrespond to the files allocated to tifedisk. For that
reason we will use the terms subset or diknterchangeably. For a skivhereX C F we denote by5(X)

the total storage required byand byL (X) the total load o, i.e.,.SX)= S s;andL(X)= Y |,
(s.li)ex (s,lex

A subsetD; is s-completéf 1 > S(Dj) > (1—p) and it isl-completeif 1 > L(D;) > (1—p). Itis called
completeif it is both s-complete andl-complete Intuitively, packing all disks such that they are either
complete s-completeor I-completeguarantees that our algorithm will not use more disks than a factor of

1/(1—p) from the optimal algorithm.
The algorithm assigns elements to one disk at a time, called the current dskufrent disk is packed

with elements (one at a time) until it is determined that it cannot take anymore ateorehhas enough
elements to guarantee that the specified bounds from optimality will be sati$tiedcurrent disk is then
closed and a new empty disk becomes the current disk. The main idea of dhighahgis to maximize the
number of elements packed into a disk by selecting the next packed elemerditbdr storage-sensitive or
load-sensitive based on the the current state of the packed disk. pemifically, the next element assigned
to a disk which is dominated by storage-intensive elements §#®,) > L(D;)) comes from the load-
intensive heap and vice versa. The next few lemmas and theorem pabvedlalgorithm terminates within
O(nlogn) steps with the number of subs@gscreated bounded from the optimum. The main improvement
we made to the algorithm of [3] is to better organize the items added tdaisedrder to avoid searching for
an element that needs to be removed from it and placed back in the®eapsThis is done by separating
the items added to a subdatinto two lists, namelys-list[i] andl-list[i] , based on whether an item’s origin

is from Sor L. As proven below, this allows us to find an appropriate element to be renfa®d; in
O(1) time rather thar©(n) time required by the algorithm presented in [3]. For lack of space, we s&te th
necessary lemmas and only include here proofs of the lemmas that showetladgadhithm terminates in
O(nlogn) time and packs the disks within the specified bounds from optimality after our rwetitfns.

Lemma 1. If S(D;) > L(D;) and §D;) +s; > 1 (lines 5 and 7 of the algorithm), then the last elengrin
s-list[i] satisfies the condition ®;) — L(Dj) < & (line 8).

Lemma 2. If L(D;) > S(Dj) and L(D;) +1; > 1 (Iines 12 and 14 of the algorithm), then the last elemignt
in I-list[i] satisfies the condition [D;) — S(D;) < I (line 15).

Lemma 3. After removings and addingf,- to D; (lines 10 and 11), the diskis complete.

Lemma 4. After removingdy and addings; to D (lines 17 and 18), the disk;is complete.

Lemma 5. After exiting the while loop (line 22), all disks except the last one are comgleteat most one
of the heaps orL is non-empty.

Lemma 6. After performing PackRemaining (or Pack Remaining) all disks, except possibly the last one,
are either s-complete or I-complete.



Lemma 7. Given a set F of n elements, Algorithm Pdglsks requires @nlogn) steps.

Proof. As mentioned before, the formation of the he&@sdL can be done i®(n) steps For each element,
the algorithm removes it from a heap and packs it into a disk exactly oncepenxnder the condition of line

7 or line 14 where an element is removed from the currently packed digilaceld back in one of the heaps
Sor L respectively. However by Lemmas 3 and 4, whenever this event hapiencurrent disk becomes
complete and the packing of a new disk is started. Since the algorithm nesemase tham disks, the
total number of element removals is at mosiMaintaining the heap structure after removal of the largest
element or insertion of an element can be done at a cd3tlofyn). Thus the running time of the algorithm
is O(nlogn) as claimed. O

Function Pack _Remai ni ng_S

1 begin

2 | while S£0do

3 remove next elemer from list S;

4 if S(Dj) +sj > 1then
[+ start loading a new disk */
i<—i+1, Dj«<0;
s-list[i] < O; I-list[i] < 0

7 | inserts; at the end of the-list[i]

8 end

Function Pack_Remai ni ng_L
1 (Same as PacRemainingS() with §and§j replaced with_ andrj respectively )

For completeness we include a proof of the bound on the number of pdidtedused by the algorithm,
it is similar to the one found in [3].

Theorem 1. Let the minimum number of disks needed to pack F by any algorithm bé&eddnoC and let
the number of disks used by Algorithm Pdisks be P then

CPD§C—+1
1-p

Proof. ClearlyC*>max. Y s, Y lij),as S s;and 3 [ arelower bounds on the number of
(s,h)eF  (s,li)eF (s,h)eF (s,h)eF

disks required to satisfy the total size and load requirements respectively.
On the other hand, by Lemmas 5 and 6, the algoriBank Diskspacks all subset®; (except possibly

for the last one) such that exactly one of the following 3 cases occurs:

1. all subset®;sarecomplete
2. all subset®|s ares-completeone or more are ndtcompete

3. all subset®;’s arel-complete one or more are n&complete



Under case 1, the theorem follows directly. Under case 2,

1 1
CPP<14+_— s<1+-—C"
1_p(s%€F 1=p

An analogous argument also works under case 3 thus proving oudboun Ol

3.2. A Variant of the Algorithm

The advantage d®ack Disks may be diminished in some special cases, which were observed in our real
life workload log, when many users request a batch of files of similar sikzasance. As PaclDisks tends
to pack many “same size” files on the same disk it may cause long response laye fide such batched
requests. In fact, this case degrades the effect of all the algorithmb veimid to pack similar-size files into
one disk. To avoid the long response time caused by this case, we intredimeerandomization in the
packing by modifying the Packisks algorithm to partition the disks into groups and then packditesp-
by-group instead of disk at a time. The disks within a single group are packed in d+rm@»m manner. We
call this variant of the algorithm PadRisks v, where v denotes the number of disks in one group.

4. The Simulation

We developed a simulation model to examine the tradeoffs between poweg sanirequest response
time. Our simulation environment was developed using SimPy (a simulation fraké@wBython). The
environment consists of a workload generator, a file dispatcher, amoua of hard disks. The workload
generator produces file requests based on the configuration paraugigesr in Table 1. We followed the
request patterns used in [17] for generating file sizes and accgsefit@es using Zipf-like distributions. In
this simulation, we assumed that a file has an inverse relation between its fiegessicyp; and its size
s, i.e., the access frequencies of the files follow a Zipf-like distribution whiledtkgibution of their sizes
follows inverse Zipf-like distribution. Interestingly, in Section 5, where wealgzed real life work logs we
found that this assumption doesn’t always hold. Assuming the arrit@lafarequests follows a Poisson
distribution with expected valuR, the access rate for the file f; is pi*R. In this simulation we assumed
that a file request always asks for the whole file. Then the disk loadilbotad by the filef; is|; = r; x 5.
Note that in case we would like to model requests for parts of the file, onlyate wfs can be adjusted
accordingly. Once a request is generated, the file dispatcher fatdodthe corresponding disk based on
the file-to-disk mapping table, which is built usiRgck Disks our file allocation algorithm. In addition, for
the purpose of comparison of power consumption and response timetsovgeaerated a mapping table
that randomly maps files among all disks. The mapping time in the dispatcher isdgsince it is negligible
when compared with the access time of the big files. Table 2 shows the chistastef the disk drive used
in the simulation. Using the specifications in [14, 18], we built our own diskedsimulation modules. To
save energy, the hard disk would be spun down and go into standby Figdes(1) after it has been idle for
a fixed period which is calleitlleness threshold11, 12]. Similar to [11, 12], we set thdleness threshold
to be equal to the time that the disk has to be in the standby mode in order to sasentnamount of power
that will be consumed by spinning it down to standby mode and subsequpitthjirgy it up to the active
mode.

5. Experimental Results

In the following discussion, we examine the behavior of the Haigks algorithm under varying levels
of disk load constraintd,. The value oL is expressed as a fraction of the maximum transfer rate of the disk
(72MB/s). The results for the group-version of Pablsks is ignored here, due to space limitation, but are
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similar to those of PacbBisks because the bursty-arrival phenomenon mentioned does notiectes the
Poisson arrival.
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Figure 2. The ratio of power saving v.s. the arrival rate of fil e access

As shown in Figure 2, when the expected arrival rate of file requBsis,less than 4 per second, over
60% of power consumption can be saved by using the Pasks algorithm, compared to random placement
of files. However, the ratio of power saving, as shown in Figure 5, mayedse along with increasirig
since more active disks are necessary to support the increasing luiaidhated by these files accesses.

4
35 HL=80% I"* s e

(0]
£ L=70%
R 1 R
A I e S s S
I A e S e e S
5 15F = —
2 1t .
£ 05F .

0 | | | | | |

0 2 4 6 8 10 12
R (Arrival Rate Per Sec)
Figure 3. The ratio of the Pack _Disks algorithm to the random allocation in terms of respons e

time

Figure 3 shows the response-time ratio of the PAddks algorithm to random allocation for different
L's. The response time in Padkisks is 0.5-2.5 times of that under the random allocation. Figure 4 shows
the trade-offs between power cost and access response time fabDi&skalgorithm while varyind., the
constraint on the disk load and settiR@t 6. As expected, increasihgcan allow us to store files in fewer
disks and therefore save more power. This is done at the expensegef lmyuest queues for each of the
active disks resulting in longer response times.

5.1. Generated Workload from NERSC Traces

To further demonstrate the effect of Pablsks, we collected real life workload logs from NERSC [10]
and then used these in the workload generator. NERSC manages ldeyscieatific observational and
experimental data, which are accessed by collaborating scientists arenarid. File requests arriving
in the center were logged for 30 days (between May 31 and June 28).Zlere are 88,631 distinct files
involved in the 115,832 read requests. The average arrival rate€pend) of the requests is 0.044683. The
mean size of files accessed by these requests is 544 MB, which incboed7a56 sec of service time when
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Figure 4. Power cost and response time for different values o fL

the disk transmission rate is 72MBps. The minimum space required for stdrihg aequested files is 95

disks. Next we classified the 88,631 files into 80 bins by their size.
We then computed the proportion of the number of files in each bin comparedheitbtal number of

files. The computation shows that the distribution of file sizes is closely relatedifi distribution because
the proportion decreases almost linearly in the log-log scale. Besides, iwdhidoad, no significant

relationship can be observed between the file size and its access frgquen
In our experiment, we let the random placement algorithm pack files into R§ siimilar to the number of

disks used by PacBisks. Our goal was to examine whether P&xikks still saves power even when it uses
the same number of disks as the random placement. The simulation was r@ feimulation hours, and
all of the 115,832 requests are regenerated based on the time in the rneafkfead data. For conveniently
observing power savings, we normalized the power cost of both algorilyntesking the power cost as a
fraction of the power cost incurred by spinniNglisks without any power-saving mechanism. As shown in

1 ! : ,
2
< 06 OSSO SRR N i
> ]
& RND =~
- 04 Pack_Disk —<— S
q;’ Pack Diskd4 —x—
g 02r RND+LRU — & —
Pack_DisIk4+LRU ) .
0
0 05 1 15 2

Idleness threshold (hrs)
Figure 5. Power Savings under different Idleness Threshold

Figure 5, both Paclbisks and PaclDisks 4 can save on the average about 85% of the power consumption.
This is much more than that of random placement, which varies from 30% to@@3ér different values of
idleness threshold. In fact, saving power even when a long idleneshtide e.g. 2 hours, is given would

be an important feature, because it implies the low frequently spinning dodimu, which can prevent
the mean-time-to-failure of disks from dramatically decreasing. Figure @sshite response time of both
algorithms. Although PacbBisks 4 saves much more power, the requests under_Béglks 4 still exhibit
response times which are very similar or better to of that random replacefignte 6 also reveals that
idleness threshold larger than 0.5 hours is necessary for randonmaaté guarantee that the response

time will be within 10 seconds.
Figures 5 and 6 also plot the effects of random placement and Piakk4 when a 16GB LRU cache is

used to cache the frequently accessed files. Unfortunately, for swonkéoad, the LRU cache does not
have much help, where the average hit ratio is only 5.6%. In addition, towebde effect of Pacloisk v,
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Figure 6. Response times under different Idleness Threshol d

with different values of/, we measured the response time and power saving ratio of[Piakkv when v is
changed from 1 to 8, and Paéksk 1 is equal to Pacloisk. The idleness threshold is set at 0.5 hour. The
results reveal 4 is the ideal number of disks to be packed concurreatigube packing disks more than 4
in one time no more reduces response time but degrades the capability ofqamivey.

6. Conclusions and Future Work

In this paper we demonstrated the importance file allocation strategies for pongervation on disk
systems. We showed that careful packing of the files on disks resultsnalées number of spinning disks
leading to energy savings of up to a factor of 4 with modest increasesganss time. The results of this
paper can also be used as a tool for obtaining reliable estimates on the aidiskfarm needed to support
a given workload of requests while satisfying constraints on 1/0O reggimes. The simulation showed that

power saving decreases with arrival rates and increases with hidgwealale constraints on disk loads.
In the future we plan to work on improvement of the file allocation algorithm dsaseémproved mod-

eling of the system in terms of additional workloads as well as more detailedlimpdé the disk storage
system. More details about planned future work is given below. As dtresaur extensive simulation
we discovered that further improvements to the response time can be magksrimting the types of files
that are allocated to the same disk. For example, we noted that large filestbdtige long response time
delays, residing on the same disk with small and frequently accessed fitetol&ae formation of long
gueues of requests for the latter files waiting for completion of servicing the fde. Additional work also
needs to be done to make dynamic decisions about migrating files betweeif diskdiscovered that the
frequency of retrieval of a file deviates significantly from the initial estimatgesd as an input to the file
allocation algorithm. We also plan to investigate our techniques with more realdifd@ads that include
various mixes of read and write requests. In addition, we will include aecashwe believe that cache size
and replacement policies may also affect the trade-off between powsamption and response time.
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Algorithm 3 Algorithm PackDisks

0 N o o b~ W N

10

11
12
13
14
15

16
17

18

19

20
21

22
23
24

Input: A set ofn elements = {(s,l1), (S1,12),. .., (Sn;In)}, two heapsSandL

Output: Partition ofF into subset®1,D»,...,Dq

begin

[+ start loading first disk

i—1;, Dj+0;

s-list[i] < O; I-list[i] — 0;

while ((S(D;) > L(D;) andL # 0) or (S(D;) < L(D;)andS+ 0)) do

if (S(Di) > L(Di)) then

remove an elemerj from the heafi’;

if S(Di)+sj > 1then
let the element, be the last element added to thist[i] ;
/+ we will prove that (SDj)—L(Di)<%)
adds back to the lisS;
removes from s-list[i] ;

insertrj at the end of-list[i] ;

else

remove an elemers from the heas

if L(Dj)+1; > 1then
let the elemenﬂfk, be the last element added to tHest[i] ;
/+ we will prove that (L(Dj)—S(Dj)<Iy)
addI back to the heap ;
removely from I-list[i] ;

inserts; at the end oB-list[i] ;

if Dj is completethen

[+ start new disk

i—i+1; Dj«<0;
s-list[i] < O; I-list[i] «— 0;

if (S+# 0) then PackRemainingS ;
if (L # 0) then PackRemainingL ;
end

*/

*/

«/
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Table

1. System Parameters

Parameter

Value

n =Number of files

n= 40000

R = Expected reques

t Poisson arrival rate expected valu

rate of files R per second (3 12)

pi = Access fre-| Zipf-like distribution.

quency of a file pi :e c/ranlgl*e, where c = 1 —
HE-®,
6 =1log06/log0.4, and
Hy ® = zE:lle—e

ri = Access rate of g ri = pi xR

file

s = File size

Inverse Zipf-like distribution
Minimum: 188MB, Maximum: 20
GB

li = Disk load con-| | =rjxs
tributed by a file

Number of disks 100
Simulated Time 4000 sec
Space requirement 12.86 TB
for all files

Table 2. The Characteristics of The Hard Disk

Description Value

Disk model Seagate ST3500630A5
Standard interface SATA
Rotational speed 7200 rpm

Avg. seek time 8.5 msecs
Avg. rotation time 4.16 msecs
Disk size 500GB

Disk load (Transfer rate} 72 MBytes/sec
Idle power 9.3 Watts
Standby power 0.8 Watts
Active power 13 Watts

Seek power 12.6 Watts
Spin up power 24 Watts

Spin down power 9.3 Watts

Spin up time 15 secs

Spin down time 10 secs
Idleness threshold 53.3 secs
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