SANDIA REPORT

SAND2006-2540
Unlimited Release
Printed May 2005

Staggered-Grid Finite-Difference Acoustic
Modeling With the Time-Domain
Atmospheric Acoustic Propagation Suite
(TDAAPS)

Neill P. Symons, David F. Aldridge, Sandia National Laboratories; David H. Marlin, Sandra L.
Collier U.S. Army Research Laboratory; D. Keith Wilson, U.S. Army Cold Regions Research
& Engineering Lab.; Vladimir E. Ostashev, NOAA/Environmental Technology Laboratory

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/ordering.htm

SAND2006-2540
Unlimited Release
Printed May 2005

Staggered-Grid Finite-Difference Acoustic
Modeling With the Time-Domain Atmospheric
Acoustic Propagation Suite (TDAAPS)

Neill P. Symons, David F. Aldridge
Sandia National Laboratories
Geophysics Department
Albuquerque, NM 87185-0750
npsymon @sandia.gov

David H. Marlin, Sandra L. Collier
U.S. Army Research Laboratory

D. Keith Wilson
U.S. Army Cold Regions Research
Engineering Lab.

Vladimir E. Ostashev
NOAA/Environmental Technology Laboratory

Abstract

This document is intended to serve as a users guide for the time-domain atmospheric
acoustic propagation suite (TDAAPS) program developed as part of the Department of
Defense High-Performance Modernization Office (HPCMP) Common High-Performance
Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-
difference modeling of the acoustic velocity-pressure system with the incorporation of spa-
tially inhomogeneous winds. Wherever practical the control structure of the codes are
written in C++ using an object oriented design. Sections of code where a large number of
calculations are required are written in C or F'77 in order to enable better compiler optimiza-
tion of these sections. The TDAAPS program conforms to a UNIX style calling interface.
Most of the actions of the codes are controlled by adding flags to the invoking command
line. This document presents a large number of examples and provides new users with the
necessary background to perform acoustic modeling with TDAAPS.

Acknowledgment

Funding for this work provided by the Department of Defense High-Performance Modern-
ization Office (HPCMP) Common High-Performance Computing Scalable Software Initia-
tive (CHSSI), project CEA-11. Thanks to the TDAAPS Alpha tester Micheal White from
ERDC-CERL and Beta tester Rodney Whitaker from Los Alamos National Laboratory,
who also provided many helpful comments on this document. This document was vastly
improved after thoughtful and complete reviews by Mattew M. Haney and Sandford Bal-
lard.

For code distribution, contact Dr. David Marlin (dmarlin @arl.army.mil).

Contents

Nomenclature
1 Introduction
1.1 Document Purpose
1.2 Export Control
1.3 Design ChOICES v.tvt ittt e e e et et
131 C++and C ..o
1.3.2 NetCDFFiles i,
1.3.3 Message Passing Protocol
1.4 Concurrent Version System (CVS)
1.4.1 CVS LogEING . ..ot e et e
1.5 Background
1.5.1 Moving-Media Acoustic Equations
1.5.2 Finite-Difference
1.5.3 Parallel Implementation,
2 Running the TDAAPS Algorithm

2.1 Basics of Running TDAAPS oot
2.1.1 CheckpointS.ot
2.2 Dispersionand Stability

11

13

13

13

14

14

14

15

15

17

19

19

19

23 InputFiles 25

231 UNitS .ot e 25
2.3.2 Model Construction and Matlab™ 25
233 TextInputFiles i 30
24 OutputFile Formats e 30
2.5 Boundary Conditionsttt e 32
2.5.1 Zwikker-Kosten (Mass-Resistance) Boundary Condition. 33
2.5.2 Rock Property (Irregular Surface) Boundary Condition 34
2.6 Quasi-Waveletst e 34
2.7 Usage and Definitionof Flags 35
2.7.1 BNF Definition of TDAAPS call 37
2.7.2 Description of TDAAPS flags 37
Model Generation 41
3.1 Introduction 41
3.2 Model Building with Matlab™ 42
3.3 Model Building with buildSgfdModel 48
3.3.1 Usage and Definitionof Flags 48
3.3.2 BNF Definition of buildSgfdModel call 50
3.3.3 Description of buildSgfdModel flags 50
Examples 51
4.1 Transmission Loss with Vertical Wind Gradient 51
4.2 Extinction and Coherence 54
4.3 AlphaTest Scalability 59
4.4 Long Range Ultra-Low Frequency, 62

Bibliography

Appendix

A TDAAPS Calling Flags Quick Reference

B

Examples from the Beta Test

B.l Hill Testo e

B.2 Extinction and Coherence

B.3 Zwikker-Kosten Partially Absorbing Boundary Condition

Large Eddy Simulation (LES) Example

71

73

75
75
83
90

95

List of Figures

1.1 Double Time-Step Temporal Update 21
1.2 Domain Decompositionvuttt it e 22
2.1 Comparison of Slices from 3D and ID Model 29
2.2 QW Velocity Distributions oottt 36
3.1 Three Cross Sections Through the Hill Model 49
4.1 100Hz mono-frequency source wavelet............................. 53
4.2 Trace output from Transmission Loss Example.................... ... 55
4.3 Trace output from Extinction and Coherence Example 58
4.4 3D Wind Model for Low Frequency Example........................ 67
4.5 Time-Slice from Low Frequency Example 68

List of Tables

1.1 CVS Revision Numbers: src/acousticsgfd

1.2 CVS Revision Numbers: src/sgfd

1.3 CVS Revision Numbers: src/utils

10

Nomenclature

ARL Army Research Laboratory

BNF Backus-Naur Form

CHSSI Common High-Performance Computing Software Support Initiative
CRREL Cold Regions Research and Engineering

CVS Concurrent version system

DOD Department of Defense

FFP Fast field program

G2S Ground to Space

HPCMP High-Performance Computing Modernization Program
LES Large eddy simulation

MPI Message passing interface

NetCDF Network Common Data Format

NCAR National Center for Atmospheric Research

PML Perfectly matched layer

SGFD Staggered-Grid Finite-Difference

TDAAPS Time-Domain Atmospheric Acoustic Propagation Suite
QW Quasi-wavelet

- Symbols

C Acoustic Sound Speed
K Bulk Modulus
p Density

11

This page intentionally blank

12

Chapter 1

Introduction

1.1 Document Purpose

Staggered-grid finite-difference (SGFD) seismic modeling of the velocity-stress system of
elastodynamics has been described by a number of authors. Some of the most impor-
tant papers include Virieux (1986); Bayliss et al. (1986); Levander (1988); Graves (1996).
However, modeling of the similar acoustic, velocity-pressure equations with the incorpo-
ration of spatially inhomogeneous wind is a fairly recent development. This document is
intended to serve as a users guide for the TDAAPS program which has been developed
as a joint project of the Army Research Laboratory (ARL), Sandia National Laboratories
(SNL), U. S. Army Engineer Research and Development Center Cold Regions Research
and Engineering Laboratory (ERDC-CRREL), National Oceanic and Atmospheric Admin-
istration Environmental Technologies Laboratory (NOAA-ETL), and the National Center
for Atmospheric Research (NCAR). Funding for the his project has been provided by the
Department of Defense Common High-Performance Software Support Initiative (CHSSI).

1.2 Export Control

The source and executable code for TDAAPS are export controlled at the present time.
Some of the code is shared with other staggered-grid finite-difference applications devel-
oped by Neill Symons at SNL and is not export controlled. All export controlled files
contain the following warning (usually in a C style comment) at the top:

WARNING - This document contains technical data whose export is
restricted by the Export Administration Act of 1979, as amended, (50
App. U.S.C. 2401 et seq). Violations of these export laws are subject
to severe civil and criminal penalties.

The output of the code, operational manuals (such as this document), and mathematical

13

descriptions are not export controlled.

1.3 Design Choices

1.31 C++and C

Wherever practical, the control structure of the codes are written in C++ using an object
oriented design. This makes for clear, well-documented code that can easily be modified
to include more features. For instance, the model for static acoustics consists of only two
model parameters: ¢ and p. When modeling moving-media, a subclass of this main model
is used containing the extra model parameters needed to specify the wind speeds.

Object oriented C++ classes are used to define: models, collections of dependent vari-
ables, networks of receivers and individual receiver types, networks of sources and individ-
ual source types, and the variety of possible types of boundary conditions.

Sections of code where a large number of calculations are required are written in C or
F77 in order to enable better compiler optimization of these sections. Examples are the
velocity and pressure updating subroutines that access every interior model point for every
time-step. These subroutines are linked into the C++ control structure using the

#if defined(__cplusplus)
extern "C" {
#endif

#if defined(__cplusplus)
}
#endif

directive set.

1.3.2 NetCDF Files

A major feature of TDAAPS is the extensive use of NetCDF (Rew et al., 1997) for input
and output files. NetCDF files have five advantages over other possible formats for use in
this context. (1) These files are machine portable. As long as the files are accessed using
the provided interface, any conversion necessitated by different numerical storage schemes
(i.e. big endian to little endian) is performed transparently to the user. (2) NetCDF files
are small and fast to access, the files are only slightly larger than a raw binary format,
and moreover, the time to read or write NetCDF format is only slightly slower that for
a raw binary file. This was not true for earlier versions of the interface. (3) The format
is self documenting and unlike binary files, NetCDF uses named variables which provide

14

some information about what is contained within the file. The values of variables can be
examined by using the program ncdump, which is part of the NetCDF package. (4) It is
easy to add or delete additional information as required. Since the file is accessed via the
named NetCDF variables, adding additional fields to the file does not require updating all
programs that use that file format. (5) NetCDF files are easily read into and written from
Matlab™ using the Denham (2000) MexCDF package. This allows for easy visualization
of the model results and can be invaluable for interpretation of the modeling results from
a complex atmospheric model. Use of Matlab™ for writing model files gives the user an
easy way to build complex 3D atmospheric models to be used in TDAAPS.

1.3.3 Message Passing Protocol

Message passing for TDAAPS is accomplished using either the Message Passing Interface
(MPI) or the Parallel Virtual Machine (PVM) interface (Geist et al., 1996). The choice
is determined by the inclusion of one of two possible object files during the link phase
of compiling the executable. The MPI interface is the standard and is the only available
method on many platforms including many of the DOD HPC platforms. The PVM interface
is widely available on Linux Beowulf platforms and has some advantages for application
development; there is a better suite of debugging tools available. In order the allow the
use of either of these two protocols, all message passing calls within the application are
made through a set of wrapper subroutines that have been implemented in different files,
one using MPI and the other with PVM.

1.4 Concurrent Version System (CVS)

The TDAAPS executable is compiled from approximatly 60 seperate source files. In order
to maintain current versions of the source code across multiple computer platforms and
allow tracking of a large number of source code changes a repository using the CVS system
(Berliner, 1990) has been established. The version of the codes described in this document
has been designated release 1.0. The source code is contained in three separate directories:
acoustic_sgfd, sgfd, and utils. Tables 1.1, 1.2, and 1.3 show the CVS revision numbers of
the source code files that make up Release 1.0.

15

Table 1.1. CVS Revision Numbers: src/acoustic _sgfd

Name Revision Number | Date Time File Size (kb)
acousticBoundary.cc 1.3 2003/07/23 | 19:55:41 | 93
acousticBoundary.hh 1.67 2005/04/08 | 15:17:42 | 2816
acoustic_boundary_subroutines.c | 1.4 2003/07/10 | 19:08:44 | 1307
acoustic_boundary_subroutines.h | 1.3 2003/07/10 | 19:08:44 | 255
acoustic_control.hh 1.33 2005/01/04 | 18:26:07 | 655
cowork_control.hh 1.6 2005/04/14 | 22:11:39 | 1102
fortran_declarations.h 1.18 2004/08/26 | 17:18:32 | 342
generateQW.cc 1.15 2004/12/02 | 00:53:08 | 911
parallel_acousti.hh 1.73 2005/04/08 | 15:17:42 | 1512
moving_acoustic.hh 1.110 2005/04/14 | 22:11:39 | 2724
parallel_acousti.cc 1.46 2005/04/04 | 18:58:09 | 282
quasi_wavelet.hh 1.4 2005/04/04 | 20:17:55 | 1470
TDAPS _usage.h 1.1 2005/01/28 | 22:57:11 | 127
Table 1.2. CVS Revision Numbers: src/sgfd
Name Revision Number | Date Time File Size (kb)
boundary_subroutines.c | 1.3 2003/05/07 | 19:13:01 | 1608
boundary_subroutines.h | 1.3 2003/05/07 | 19:13:01 | 155
buildSgfdModel.cc 1.7 2004/12/06 | 15:10:01 | 734
extra_output.hh 1.30 2005/04/04 | 20:17:55 | 1331
sgfd.cc 1.5 2004/02/18 | 20:08:11 | 383
sgfd.h 1.7 2005/01/04 | 18:26:07 | 238
sgfd.hh 1.60 2005/03/31 | 20:03:33 | 2207
sgfdBoundary.cc 1.6 2003/08/06 | 14:40:39 | 628
sgfdBoundary.hh 1.21 2005/04/07 | 20:09:22 | 957
sgfdLoops.hh 1.13 2004/11/18 | 16:25:42 | 362
sgfdReceivers.hh 1.12 2004/11/15 | 16:59:23 | 2455
sgfdSources.hh 1.12 2005/01/28 | 22:57:11 | 3010
sgfd_util.c 1.1 2003/04/11 | 13:12:50 | 344

16

Table 1.3. CVS Revision Numbers: src/utils

Name Revision Number | Date Time File Size (kb)
array.hh 2.12 2004/05/27 | 14:27:02 | 533
constants.h 2.5 2005/03/30 | 17:00:48 | 215
10_procs.c 2.8 2003/11/19 | 16:30:09 | 640
io_procs.h 22 2001/02/14 | 00:09:14 | 78
message_passing.h | 2.26 2004/03/30 | 15:34:21 | 205
model_util.cc 247 2005/03/30 | 17:00:48 | 3539
model_util.hh 2.26 2005/03/30 | 23:54:09 | 587
mpi_procs.c 2.39 2004/11/23 | 16:10:39 | 1382
nstdutil.cc 2.12 2004/12/01 | 17:50:46 | 479
nstdutil.h 2.6 2005/01/04 | 18:26:07 | 49
nstdutil.hh 2.7 2004/08/23 | 18:15:57 | 97
nstdutil_c.c 2.7 2005/04/04 | 20:18:10 | 106
nstdutil_c_proto.h | 2.1 2000/03/22 | 21:29:57 | 17
nstdutil_c_proto.hh | 2.1 2000/03/22 | 21:29:57 | 17
readfile.cc 2.1 2000/03/22 | 21:29:57 | 492
readfile.hh 2.1 2000/03/22 | 21:29:57 | 127
selector.hh 1.7 2003/12/05 | 19:40:12 | 609
wavelets.cc 22 2003/02/20 | 20:02:31 | 91
wavelets.hh 2.1 2000/03/22 | 21:29:58 | 15
xtrautil.cc 2.7 2005/04/04 | 20:18:10 | 1263
xtrautil.hh 2.15 2005/04/08 | 17:41:35 | 607

1.4.1 CVS Logging

An advantage of maintaining a CVS archive on a complex and evolving project such as
TDAAPS is the logging utility. Approved developers can be given access permission to
the CVS archive. Whenever a new revision is checked into the archive, a message is at-
tached that should be filled with information on the changes from the previous version. An

example of the log generated for the current version of TDAAPS is shown below:

RCS file: /home/npsymon/cvs/src/acoustic_sgfd/parallel_acousti.hh,v
Working file: /home/npsymon/src/acoustic_sgfd/parallel_acousti.hh
head: 1.73

branch:)

locks: strict

access list:

symbolic names:

17

25

50

keyword substitution: kv
total revisions: 73; selected revisions: 73
description:

revision
date: 2005/04/08 15:17:42; author: npsymon; state: Exp; lines: +3 -2

-Added the scalar dt factor to the 3D ZK constructor. Also modified some of
the conditionals to report ZK information for the 3D as well as the 1D

implementation.

revision
date: 2005/04/07 22:19:31; author: npsymon; state: Exp; lines: +3 -2
-Syncing code after changes for debugging. Should be nothing substantive.

revision

date: 2005/04/06 16:24:07; author: npsymon; state: Exp; lines: +18 -6
-Added code to the new ZK implementation to print a diagnositic with the
resultant omega, boy, bulk, and C min and max values. Still not seeing the
expected results on liberty.

revision
date: 2005/04/04 20:17:55; author: npsymon; state: Exp; lines: +1 -1

-Minor fixes to WARNINGS that came up when compiling on Ross.

revision

date: 2005/04/04 18:58:09; author: npsymon; state: Exp; lines: +39 -18
-Implemented the 1rregular surface ZK boundary condition. This version has
not been well tested but compiles and starts to run in a single processor
mode. Need to look closely at what happens if the subdomains in the Z
direction span the boundary zone.

revision
date: 2005/03/31 20:03:33; author: npsymon; state: Exp; lines: +52 -13

-Working on an 1mplementlon of the ZK boundary condition based on Keiths

3D Matlab code. So far I have what I think is the framework implementation
without including the special terms relating to omega_vor. This compiles
but is not tested.

revision

date: 2005/01/28 22:57:11; author: npsymon; state: Exp; lines: +5 -3
-Made some changes to TDAPS: moved the main doxygen comment into its own
header file. Fixed a problem with the static code message passing but I did
not do this in the most efficient way.

-Also made some changes to matlab scripts.

revision

date: 2005/01/07 20:50:20; author: npsymon; state: Exp; lines: +28 -1
-More changes to the QW code, now have the local QWs working TDAAPS. Still
need to work out the message passing so the results look reasonable.

This log can be used to return to a previous version of the codes if a modification turns out

to have unexpected consequences.

18

1.5 Background

1.5.1 Moving-Media Acoustic Equations

The algorithm discussed in this document is based on the non-dimensionalized velocity-
pressure equations of linear elastodynamics, a set of four, coupled, first-order partial dif-

ferential equations (Ostashev et al., 2005):

ow(xX, 1)

(V- V)W (W V)V bVp = bf (1.1)
and
ap(x,t) _ de(x,t)
o +v-Vp+kV.-w= 5 (1.2)

where w is the particle velocity, p is the pressure, and the ambient wind velocity is v. K is
the bulk modulus, and b = é is the mass buoyancy. The inhomogeneous terms correspond
to the sources: f are force sources and e are energy density scalars corresponding to moment

sources.

1.5.2 Finite-Difference

An explicit, time-domain, finite-difference (FD) scheme is used to solve these four equa-
tions for the three components of the particle velocity vector and the pressure (e.g., Virieux,
1986; Bayliss et al., 1986; Levander, 1988; Graves, 1996). Centered spatial and temporal
FD operators possess 4th-order and 2nd-order accuracy in the discretization intervals, re-
spectively. The four independent variables are stored on uniform, but staggered, spatial and
temporal grids. The grid is chosen such that the primary (corner) nodes contain the six at-
mospheric model parameters and the pressure. The velocities are stored on the edges of the
unit cell. The velocity and pressure updates are also temporally offset by % of a time-step.
Because the updating equations (Equations 1.1 and 1.2) include terms relating to both the

variable that is being updated and the variable stored at the staggered time we need to save

19

two time steps to keep all of the temporal updating equations centered in time. Figure 1.1

shows a pictorial version of the update stencils for one spatial dimension and time.

This computational algorithm is a direct numerical implementation of the governing
partial differential equations of linear acoustic propagation. No theoretical approxima-
tions, such as far-field distances, high frequencies, weak scattering, or one-way wave prop-
agation, are adopted. Hence, the algorithm generates all arrival types (direct, reflections,
refractions, multiples, diffractions, head waves, etc.) with fidelity, provided spatial and

temporal gridding intervals are chosen appropriately.

1.5.3 Parallel Implementation

In order to treat large-scale atmospheric model and datasets within reasonable execution
times, TDAAPS implements a parallel computational version of the basic algorithm (Symons
et al., 2003; Symons and Aldridge, 2000). This parallel implementation utilizes spatial do-
main decomposition: different portions of the 3D gridded atmospheric model are allocated
to different processors so that calculations within each such sub-domain take place syn-
chronously. Sufficient overlap between adjacent subdomains/processors must be provided
so that the 4¢h-order spatial FD operators can address all dependent variables at their partic-
ular staggered grid storage locations (Figure 1.2). This results in a number of “ghost nodes”
in each sub-domain. For instance, during the update of the pressure nodes we require val-
ues of velocity nodes whose values cannot be calculated within a given sub-domain. The
values of these nodes must be passed from the adjacent sub-domain. This sharing of pro-
cesses necessitates the passing of large blocks of information between adjacent processes
twice for each time-step of the algorithm (once for the velocity update and once for the

pressure update).

TDAAPS uses a master-slave paradigm where one processor is responsible for job con-
trol and IO but performs no actual finite-difference updating. The result of this paradigm

is that a run requires 1+ the number of processors specified in the domain decomposi-

20

o Staggered stencil for w, updating

B e i
T LI o - - - w -
a - e -
1 LTI 8 - iy A= ¥
i i i - L i +3
ey "Vl L. R
i

st
Staggered stencil for p updating

ol]
I e vy, [E]
-

dduiet fan 1]

A [S E——
oy & ik :
i)
2 2 4 i &5
X, K, X Ny T
L P N

Figure 1.1. Pictorial version of the double time-step updating
stencil. In the lower panel the green symbols represent the values

used for the velocity update at the previous half time-step.

tion. For example, a 2 x 2 x 2 parallel decomposition requires a total of nine computational

Processors.

21

£ Increasing

iy

R N (2

i
i
%

4

Figure 1.2. Decomposition of the full model into two separate
subdomains. The main nodes (spheres) and velocity storage nodes
(ellipses oriented along the axis that corresponds to the compo-
nent) are colored by the sub-domain that preforms the update. The
planes show the nodes that are stored in each domain, which indi-

cates the overlay of different domains.

22

Chapter 2

Running the TDAAPS Algorithm

2.1 Basics of Running TDAAPS

The TDAAPS program conforms to a UNIX style calling interface. Most of the actions
of the codes are controlled by adding flags (beginning with “-”’) to the invoking command
line. For instance, to define 2 x 2 x 2 parallel decomposition in TDAAPS, the call takes the

form:

> mpirun -np 9 \$\{TDAAPS_PATH\}/TDAAPS -p 2 2 2

where ${TDAAPS_PATH}is an environment variable defined as the full path to the exe-
cutable. See Section 1.5.3 for an explanation of why nine processors are required for this
run. In order to reduce the length of the command line, several arguments can be combined
into a file which is specified on the command line. Recursion of argument files is allowed
(e.g., acommand file may contain the name of another file, etc.); however, there is no check

for infinite recursion.

23

2.1.1 Checkpoints

Since large runs of TDAAPS may take a (very) long time on a large number of processors,
the algorithm incorporates a checkpoint utility. If this option is activated (using the -C flag),
TDAAPS will write the current state into a number of files in the user specified directory.
For large runs this will take significant space, so care must be applied to make sure that
the directory exists on a disk with enough free space. The directory must be fully qualified
since the individual processes will be writing several separate files. If TDAAPS is called
with the checkpoint option, it first checks for an existing checkpoint in the specified direc-
tory. If a checkpoint exists and the model and call are identical, then the run will commence

using the stored information from the iteration where the checkpoint was written.

2.2 Dispersion and Stability

A critical factor for any numerical simulation is that the solution be stable. Finite-difference
algorithms (such as TDAAPS) must also satisfy a dispersion criteria if the solution is to
provide meaningful results. A common rule of thumb for 4th order spatial algorithms (such
as this one) is the requirement of 5 nodes per wavelength of the source. This rule is often
stated (or refuted) without further elaboration. In reality, any source-time function that the
user chooses to input will contain a range of frequencies. To get good results, it is the
highest far-field propagating frequency that must fit the 5 nodes per wavelength criteria.
For high wind speeds it is also important to account for the reduced apparent velocity (and
therefore wavelength) of a signal that propagates upwind. The stability limit is related to
the Courant (CFL) number (~ 2v,,,At /h). For the moving-media acoustic problem this

number must be less than 1.

For a given modeling situation, a typical sequence of calculations to determine the
model parameters might be: (1) determine the minimum apparent velocity (c-v); (2) deter-
mine the highest frequency energy that will be propagating from the source (this is usually

taken as the 1% level of the amplitude spectrum of the source-time function); (3) using

24

these values, determine a reasonable grid spacing; (4) use the grid spacing and the highest
apparent velocity in the model determine a Ar that yields a CFL less than 1. Note that
doubling the highest frequency typically requires halving the grid spacing which further
implies that the time step must be cut in half. This means that the work required increases

by 2* for every doubling of the source frequency.

2.3 Input Files

2.3.1 Units

TDAAPS does not enforce any specific set of units for the input files. However, the units
used on the input files will determine the units of the output files. In use, we have commonly
found it convenient to use MKS units for the input files; then pressure traces will have units
of Pa and velocity traces will have units of m/s. For large scale (i.e. hundreds of km)
simulations is can be more convenient to define the axis in km instead of m. This requires
that the acoustic velocity be specified in km /s, the result is that output velocity traces will
also be in km /s and pressure output will have units of N /km?. Internally the TDAAPS algo-
rithm works with non-dimensionalized values to provide the maximum possible numerical
accuracy with single precision values. The default non-dimensionalizing scalars are appro-
priate for MKS units, and “normal” atmospheric properties up to distances of several km.
Much longer or shorter propagation distances and different units might achieve increased

numerical accuracy by modification of the these values but this has not been investigated.

2.3.2 Model Construction and Matlab™

All of the following discussion assumes that the Denham (2000) MexCDF package has
been correctly installed on the user’s system. This package allows the reading and writing

of NetCDF files from within Matlab™ using standard Matlab™ object oriented program-

25

ming constructs. The primary input to any run of TDAAPS is a model file. Chapter 3
contains descriptions of a variety of methods to create simple model files. The model is
always a NetCDF file with a certain minimum number of dimensions and variables. The

file must define:

1. The dimensions NX, NY, NZ, and NT.

2. The starting points for each of the vectors defining the axes in a variable called

minima.
3. The increments for each of the vectors defining the axes in a variable called increments.

4. A specification of the acoustic velocity (c¢) for all the points of the 3D grid in variable

named either C or Vp.

5. The density (p) for all the points of the 3D grid in a variable named Rho.

The most obvious (but also the most disk intensive) way to define ¢ and p is to define two
3D variables in the model with point by point values. To utilize this method of model
definition two 3D variables named C and Rho are defined in the model and the desired
values are assigned to them. The following Matlab™ script (simple model.m) builds a

minimum input model:

1 g% ?efine the axes vectors and sizes.
x=1;
dt=01001;
x=[-100:dx:1007;
y=[-50:dx:501];
z=[-2:dx:75];
t=[0:dt: ;

10 NX=length(x
NY=length(y
NZ=length(z
NT=length(t

%% Open the model for writing.
out=netcdf (’simple_model.cdf’,’clobber’);
%% Define the four reqgired dimensions.
out ('NX’)=NX;

20 out(’NY’)=NY;
out (’'Nz’)=Nz;
out ('NT')=NT;

%% Define and fill the increment variables; note, this requires another

26

30

40

10

20

30

40

% dimension that is not used by TDAAPS.

out (’'numCoord’)=4; %This is used internally so we can define a vector of
% starting values and increments.
out{’'minima’}=ncfloat(’'numCoord’);

out{’minima’}(:)=[x(1) Y(l) z(1) t(1)];
out{’increments’}=ncfloat(’numCoord’);
out{’increments’}(:)=[dx dx dx dt];

%% Define and flll the values that define the model.
out{’C’'}= ncfloat(Nz','NY’, 'NX'

out{'C'"}(:,:,:)= 342*ones([NZ NY NX]), %$Sound speed 342 m/s
out{’Rho’}= ncfloat(NZ','NY','NX");
out{’Rho’}(:,:,:)=1.2*ones([NZ NY NX]); %Density 1.2 kg/m"3
%% And close the file

close(ou

Since the atmospheric model is often 1D (with 3D features added with quasi-wavelets or
other complex wind conditions) the code will also read a model file which defines the model
values with 1D arrays of the same length as the z-axis. These variables have oneDModel
pre-pended to the analogous 3D names. The following Matlab™ script (simple model_1D.m)
builds a model which is identical to the 3D model (when read by TDAAPS):

N X
I
11
e DO
e O
O, .-
X o
..
~J
[GaN@,]

NX=length(x);
NY=length(y
NZ=length(z
NT=length(t

%% Open the model for writing.
out=netcdf (’simple_model_1D.cdf’,’clobber’);

%% Define the four reqgired dimensions.
out ("NX') NX'

out (/NY’)=N
out ’NZ)=N
out (’NT’)=N

% Define and fill the increment variables; note, this requires another
dimension that is not used by TDAPS.
ut ('numCoord’)=4; %This is used internally so we can define a vector of
starting values and increments.
out{'minima’}=ncfloat(’numCoord’);

o\ o\

o° O

out{’minima’}(:)=[x(1) Y(l) z(1) t(1)];
out{’increments’}=ncfloat(’numCoord’);
out{’increments’}(:)=[dx dx dx dt];

%% Deflne and fill the values that define the model.
out{’oneDModelVp’ }= ncfloat(NZ');

out{’ oneDModele’}(Ly,)= 342*ones([1 NZ1);
out{’onebDModelRho’ ncfloat(NZ');
out{’oneDModelRho’}(:,:,:)=1. 2*ones([1 NZ1);

% And close the file
lose(ou

%
¢

27

However, the 1D model occupies 916bytes while the 3D model takes 12Mb on a Linux
workstation. As will be discussed in more detail in Section 2.4, TDAAPS creates two
primary types of output files. Trace files contain the complete time history at a given point,
and slice files contain a (set of) snapshot(s) of the entire space of the model along a user

defined plane at a single time.

We have verified that runs of TDAAPS with the 3D and 1D models yield identical results

by performing runs with both and examining the slice output with Matlab™"

1 %% Open the slice files that we are comparing.
in3D=netcdf(’slice.3D.cdf’);
inlD=netcdf(’slice.1D.cdf’);

%% Get some vectors for the axes.
x=in3D{’'x"}(:);
z=1in3D{’'z"}(:);

%% Plot the 40th slice from each file in the upper left and right panels.
10 sliceIndex=40;

subplot(2,2,1;

imagesc(x,z,squeeze(in3D{’'xzPressure’}(slicelndex,:,:)));

axis image;

caxis([-1le-3 1le-31]);

set(gca,’FontSize’,15,'LineWidth’,2,’Box’,’on’,’YDir’, 'normal’);

title(’'Results from 3D Model’,’FontWeight’,’Bold’);

subplot(2,2,2);
imagesc(x,z,squeeze(inlD{’'xzPressure’}(slicelndex,:,:)));
20 axis image;
caxis([-1le-3 1le-31]);
set(gca,’FontSize’,15,'LineWidth’,2,’Box’,'on’,’YDir’, 'normal’);
title(’'Results from 1D Model’,’FontWeight’,’Bold’);
%% And plot the difference x100 in the lower left panel.
subplot(2,2,3);
imagesc(x,z,...
squeeze (in3D{’'xzPressure’}(slicelndex,:,:))-..
squeeze(inlD{’xzPressure’}(slicelndex,:,:)));
30 axis image;
caxis([-1le-5 le-51]);
set(gca,’FontSize’,15,'LineWidth’,2,’Box’,'on’,’YDir’, 'normal’);
title('Difference’,'FontWeight’,’Bold’);

This script gives the result shown in Figure 2.1.

Spatially variable 3D wind fields can also be input in a similar format. For the the
wind model files the 3D variables are WindVx, WindVy, and WindVz. As with the atmo-
spheric model definitions the user can substitute oneDModelWindVx, oneDModelWindVy,
and oneDModelWindVz if desired to decrease the file size. Note that all the runs performed

for the Alpha and Beta tests build a wind profile using the limited menu of pre-defined

28

Results from 3D Model Results from 1D Model

60 60
40 40}
20 20}
0 1 . L 0 | .)
-100 -50 0 50 100 -100 -50 0 50
Difference
60
40
20
0
-100 -50 0 50 100

Figure 2.1. Comparison of the 50¢h slice from the 3D and 1D
models. Upper left is the 3D model, upper right is the 1D model,

and the lower left panel is the differencex 100.

29

100

types on the TDAAPS command line.

2.3.3 Text Input Files

There are a few types of text input files. Two examples are source-time functions, which
are input as two columns of time and value, and receiver locations which can be read as

either three column (x, y, z) or four column (X, y, z, sensitivity).

2.4 Output File Formats

There are two major types of output files produced by TDAAPS, trace files and slice files.
Chapter 4 contains examples of using Matlab™ to plot results directly from these files.
Both file types contain dimensions that define the model size (NX, NY, NZ, and NT). There
are corresponding variables that define the axes (x, v, z, and time). In the trace file, there
are also dimensions that define the number of receivers (numReceivers). There are then a
set of variables that show: the receiver type, sensitivity, location, orientation, if the values
have been integrated or differentiated, and a numReceivers XNT matrix of results. For
convenience, if the output is to be compared to the source waveform, this file also contains
a description of the sources used during the run (either defined as part of the model or on

the TDAAPS command line). The following is the output from running the command

> ncdump -h trace.cdf

on the trace file created from the simplest possible run of TDAAPS. The ncdump command
is part of the NetCDF package and can be used to view the entire contents (or just the

header with the -h flag) of a NetCDF file.

1 netcdf trace {
dimensions:
numCoord = 4 ;
numSpatialCoord = 3 ;

NX = 50 ;
NY = 25 ;
NZ = 50 ;

30

10

20

30

NT = 501 ;

numReceivers = 33 ;

numMSources = 1 ;
variables:

float minima(numCoord) ;

float increments(numCoord) ;

float x(NX) ;

float y(NY) ;

float z(NZ) ;

float time(NT) ;

float receiverType(numReceivers) ;

float receiverAmp(numReceivers) ;

float receiverX(numReceivers) ;

float receiverY(numReceivers) ;

float receiverZ(numReceivers) ;
float receiverBx(numReceivers) ;
float receiverBy(numReceivers) ;
float receiverBz(numReceivers) ;
int receiverlIntegrate(numReceivers) ;
float receiverData(numReceivers, NT) ;
float mSourcesXs(numMSources) ;
float mSourcesYs(numMSources) ;
float mSourcesZs(numMSources) ;
float mSourcesSamp(numMSources)
float mSourcesXxS(numMSources)
float mSourcesYyS(numMSources)
float mSourcesZzS(numMSources)
float mSourcesXyS(numMSources)
float mSourcesXzS(numMSources
float mSourcesYzS(numMSources
float mSourcesXyA(numMSources)
float mSourcesXzA(numMSources)

()

float mSourcesYzA(numMSources
float mSourcesData(numMSources, NT) ;

// global attributes:
:title = "parallel elasti
generic NETcdf file" ;
:history = "TDAAPS earthmodel.cdf";

4

Ne NeNeNe NeNe Ne~e

~

The slice file contains an additional dimension for each slice type; the first two charac-
ters indicate the slice plane— xy, xz, or yz. The remaining characters can be: Vx, Vy, Vz,
or Pressure and indicate the slice component. Each slice type has variables defined for
the times, positions, and a 3D matrix of the results (here xzVxTime, xzVxPos, xzVx,
xzVzTime, xzVzPos,and xzVz). An example of the NetCDF header from a simple slice

file created with ncdump is shown below:

netcdf slice {
dimensions:
NX = 50 ;
NY = 25 ;
Nz = 50 ;
xzVxDim = 100 ;
xzVzDim = 100 ;
variables:

float x(NX) ;
float y(NY) ;
float z(NZ) ;
float xzVxTime(xzVxDim) ;

31

float xzVxPos(xzVxDim) ;
float xzVx(xzVxDim, Nz, NX) ;
float xzVzTime(xzVzDim) ;
float xzVzPos(xzVzDim) ;
float xzVz(xzVzDim, Nz, NX) ;

// global attributes:
:title = "parallel elasti slice file" ;
:history = "parallel_elasti
earthmodel.cdf";

2.5 Boundary Conditions

We have found that good absorbing boundary condition results are obtained by combining
a a finite-width attenuative layer (Cerjan et al., 1985) with off-center derivatives at the flank
of the model. Within the attenuative layer the field variables are reduced by multiplication
with a scale factor at the end of each time-step. We spent some time investigating the
perfectly-matched layer (PML) boundary condition (Berenger, 1994) but implementation
was judged too complex for the time and money available for this project, particularly
because of the complications introduced by propagation in the moving-medium. We have
obtained good results with attenuation zones with a thickness of 20 to 50 nodes and final
taper values of 99% to 90%. The scale factor is multiplied by one fourth of a cycle of a
cosine scaled and shifted such that it has a value of 1 at the inside edge of the sponge zone
and the final taper value at the edge of the domain. Longer wavelengths in the sources
require wider sponge zones to ensure that significant reflections are not generated from
the start of the sponge zone. The sponge zone has the additional benefit of preventing the
growth of instabilities when large contrasts in material properties are present at the edge of
the model. Note that the space for the attenuation zone must be included in the model.
This means that if the user wants to have 100 nodes for the x-axis and a 20 node attenuation

zone; then the x-axis must be defined as 140 nodes (20 nodes for attenuation on each side).

The TDAAPS code provides either an explicit free-surface (Levander, 1988) or an ex-
plicit rigid (w, = 0) boundary condition (Aldridge, 2005). The actual boundary is im-

32

plemented 2 nodes below the bottom of the model. The code also implements a mass-
resistance partially reflecting boundary which is described in more detail in the next sec-

tion.

2.5.1 Zwikker-Kosten (Mass-Resistance) Boundary Condition

One critical issue to properly modeling acoustic propagation is accounting for porous
ground. In TDAAPS we extend the computational domain into the ground which is modeled
as a porous medium described by its fluid dynamic equations. This is not strictly speaking
a boundary-condition since we are really just modeling an extended region with a different
set of partial differential equations. TDAAPS implements the Zwikker-Kosten (ZK) phe-
nomenological model of the ground (Zwikker and Kosten, 1949). In the ZK model, the

acoustic velocity, w, and acoustic pressure, p, satisfy the following set of equations:

Q Jdp
and
=—%%—V:—ow 2.2)

where p is the density of air, ¢ the adiabatic sound speed in air, Q is the porosity of the
ground medium, c; is the structure constant of the ground medium, and ¢ is the flow resis-
tivity of the ground medium. This model assumes a rigid frame. The ZK model may be

related to the relaxation model of Wilson (1993, 1997) through

2 2
Tvor = ([:—ng and Ty = NprTvor (2.3)

where 71,,, and T, are the relaxation times of the vorticity and entropy modes, respectively,
q is the tortuosity, and N, is the Prandlt number. It was shown in Collier et al. (2002) that

the ZK model is valid for low frequencies ® that satisfy:

(,\)’cvor << 1 and Men[<< 1- (2.4)

33

For air the Prandlt number is close to 1; therefore, these two conditions are essentially

equivalent.

As part of the Beta test (see Section B.3 for details), a TDAAPS run using ZK properties
appropriate for snow yielded results within 0.3dB of a benchmarked wavenumber integra-
tion scheme at 500m and 100Hz. Runs with higher flow resistivities, appropriate for harder
materials were less accurate. We have not had time to ascertain where the breakdown yields

unacceptable results or if the results can be “fixed” with minor changes to the parameters.

2.5.2 Rock Property (Irregular Surface) Boundary Condition

Although not strictly speaking a boundary condition, a common method of implementing
an irregular surface (terrain) with TDAAPS is to give nodes below the boundary properties
of rock (Bartel et al., 2000). This method is stable if three conditions are met: (1) the CFL
must be appropriate for the high subsurface velocities; (2) a single node of intermediate
density is required between the air (p ~ 1.2Kg/m?) and the rock (p ~ 2000Kg/m?); and
(3) the high velocity stops short of the edge of the model. For reasons that presumably
have to do with the different dispersion and stability characteristics of the boundaries the
simulation will go unstable if the material contrast intersects with the model edge (see

Sections 3.2 and B.1 and Figure 3.1 for an example of this type of model).

2.6 Quasi-Wavelets

One method of generating 3D heterogeneous models is the use of quasi-wavelets to create
complex, statistically realistic atmospheric turbulence and/or wind fields. TDAAPS has the
capability to build up quasi-wavelet distributions on the fly during the initialization phase

(see Section B.2 for an example).

Turbulence occurs in the atmosphere when heat is transferred from the ground to the

overlying air, or when the flow is sheared through interaction with surfaces such as the

34

ground, vegetation, or man-made structures. The resulting rotational motions in the air
are referred to as eddies. The largest eddies progressively break down into smaller ones
until the motion is eventually dissipated by viscosity. This process can be observed in a
rising smoke plume or the mixing of fluids, such as when cream is poured into a cup of
coffee. Most of the energy enters this cascade process in motions on the scale of meters
or larger, while most of the dissipation occurs in eddies on a scale of millimeters. In be-
tween, the energy cascade is represented by a turbulence spectrum, for which several forms
have been proposed. Statistical characterizations attempt to describe the turbulence by var-
ious representations of these eddies, or their effects on propagating wavefronts, with size
and location distributions which satisfy one of the spectra. The method of quasi-wavelets
(Goedecke and Auvermann, 1997; Goedecke et al., 2004) represents this cascade of ed-
dies by a collection of localized rotating structures which are similar to wavelets, although
they do not satisfy all the requirements of true wavelets. Like wavelets, quasi-wavelets
are based on dilations and translations of a localized function. Unlike wavelets, they have
random orientations and positions, are not required to be zero-mean functions, and do not
form a complete basis. There are various forms of these quasi-wavelets, including Gaus-
sian and von Kdrmén. A given turbulence realization defines a fixed set of scale factors for
one particular form. These scaled eddies are distributed in space with random orientation
and location, where the relative proportion of eddies of each size, the number of eddies
per unit volume, and the rotational velocities are adjusted to reproduce a particular turbu-
lence spectrum. Figures 2.2 a and b depict the envelopes for Gaussian and von Karmén
quasi-wavelets, respectively. The Gaussian quasi-wavelet has a simple, Gaussian envelope.
The velocity is zero at the center. It also has a more sharply peaked spectrum than von
Ké4rmén. The von Kdarmén quasi-wavelet has a more complicated envelope, but reproduces
the well known von Kdrmén turbulence spectrum (Goedecke and Auvermann, 1997). The
velocity is maximum at the center. The Gaussian quasi-wavelet is much simpler and is the
only type that has been implemented in TDAAPS at present. This quasi-wavelet distribution

approximately reproduces the statistics of von Karmén turbulence.

35

Figure 2.2. (a) Gaussian and (b) von Kdrmdn quasi-wavelets.

The arrowheads indicate the rotational velocity, with the size pro-
portional to the relative magnitude. Actual velocities and spatial
dimensions are determined by appropriate scale factors in order to

reproduce a given turbulence spectrum.

36

2.7 Usage and Definition of Flags

Following is a Backus-Naur Form (BNF) definition (Backus, 1959) of a call of TDAAPS.
This is followed by a brief description of each possible flag. Certain experimental options
are not listed here, but can be obtained by calling TDAAPS—help. Flags are show in bold-
face and arguments are shown in italic face. Note that the options to TDAAPS may change

in the future. An up to date list of options and arguments can be obtained by running:

> TDAAPS -help

Depending on the details of the operating system being used this command may have to be

run in a parallel environment and the output captured.

2.7.1 BNF Definition of TDAAPS call

vecspec: (start:[inc:]end)|(start inc N)

TDAAPS filename {ARGUMENT _FILE:filename} [-p n, ny n;] [-C vecspec directory]
[-bF][-bV] [-bS nodes value] [-R[1] type x y z amplitude [0 ¢]] [-R(v|d|a)][-Ru]
[-Rg type x-vecspec y-vecspec z-vecspec] [-Rf[3] type filename] [-Sw filename] [-
Sr[0] frequency] [-Su] [-Sf x y z amplitude © ¢] [-Se x y z amplitude] [-Sm x y z
amplitude xx xy xz yx yy yz zx zy zz] [-Es time component plane coordinate] [-En
number component plane coordinate] [-Eo filename] [-Mp direction u* zp] [-Mc
vy vyl [-Mg zo 0vy/0z vy /0z vio vyl [-MI filename] [-M1 filename] [-Mq (auto|
none|count)[outer][inner][dissipation_rate]] [-Mqh][-Mqp value] [-Mdf filename][-

Mgy iterations)

2.7.2 Description of TDAAPS flags

filename: Name of the atmospheric model (NetCDF) file. Note that this file is directly

read by the sub-domain processes; it must be accessible and specified with a full

37

UNIX pathname.

ARGUMENT _FILE:filename: Read additional arguments from filename. This can be
any combination of additional ARGUMENT FILE: arguments and flags. Avoid
circular references or undefined results will occur. This is useful to avoid extremely

long command lines.

-p n, ny ny: Set the parallel domain decomposition in the x, y, and z directions. Note,
since TDAAPS uses a master-slave paradigm, the the total number of processes will

be ny *xnyxn, + 1.

-t count: Write the trace output after this many iterations. This is useful to record early

results if the simulation is going unstable in later iterations.

-C vecspec: Add checkpoints at iterations specified by the vecspec. Data will be written
into the user specified directory which must already exist. If TDAAPS is re-started
with the same model and exactly the same command line it will look for a previ-
ously written checkpoint. If one is present, the run will start from the time of the

checkpoint.

-bF: Use a pressure free surface at the top of the model. The surface is actually at z,,;, +

2dz.

-bV: Use a rigid (zero w;) surface at the top of the model. The surface is actually at

Zmin + 2dz.

-bS nodes value: Use a spongy boundary in addition to the off center derivatives on the
model flanks. The default settings are 25 nodes with a final taper value of 95%. Note

that -bF|V automatically turns off any sponge at z,;.
-R*: Flags that deal with defining receivers:

-R[1] type x y z amp [theta phi]: Add one receiver at the given location. Type must

be one of: Velocity, Pressure, 3C, or 4C. If type is “Velocity” 0 and ¢ specify

38

the orientation. Type “3C” is a set of three velocity receivers in the X, y, and z

directions. Type “4C” also includes a pressure receiver.

-R(v|d|a): Subsequent velocity receivers will record: velocity (default), displace-

ment (integrated velocity), or acceleration (differentiated velocity).

-Ru: Subsequent velocity receiver directions specified in radians (default is de-

grees).

-Rg type x-vecspec y-vecspec-zvecspec: Add a grid of receivers. Type must be one

Of: “VX”’ ‘6Vy9’, “VZ”, G‘Pressure’,, 6L3C’9’ OI‘ ‘64C”.

-Rf{3] filename: Add receivers from locations specified in file. Type must be one
of: “Vx”, “Vy”, “Vz”, “Pressure”, “3C”, or “4C”. Each line of the file should
consist of 4 numbers: x location, y location, z location, amplitude. If the option

3 is present skip the amplitude and it will be set to unity.

-S*: Flags that deal with defining sources:

-Sw filename: Read a source wavelet from file.

-Sr F: Generate a Ricker wavelet with given central frequency. Note that -Sw or

-Sr must be used before any sources can be defined.
-Su: Subsequent source directions specified in radians (default is degrees).

-St x y z amp theta phi: Add a force source at the specified location and direction.

0 is measured from the z-axis, ¢ is measured from the x-axis.
-Se x y z amp: Add an explosive source.

-Sm X y z amp ayy axy Ax; Gyx Qyy Gy, Gzx Agy A7 - Add a general moment source with

user defined values.

-E*: Flags that deal with extra output:

-Eo filename: Time-slice output file.

-Es time component plane coordinate: Add a single slice at the given time.

39

-M*:

-En number component plane coordinate: Add n slices evenly distributed through

the run.
Flags that deal with defining the moving-medium:

-Mp direction u* zo: Create a logarithmic wind profile of the form w(z) = u*log(%).
Note that this also sets up a height dependent quasi-wavelet distribution unless

it is followed by -Mq none.

-Mc v, vy: Build a constant horizontal wind with the given v, and vy.

-Mg z9 %sz %‘ Vvx0 Vy0: Build a horizontal wind model with a gradient in z.

-Mf filename: Read a 3D wind field from the NetCDF file specified. The file must

contain variables to define the three components of the wind velocity.

-M1 filename: Read a 2D wind field for the text file specified. This file should have
three columns of z, vy, and vy. If the last z value does not reach the top of the

model the final value is upward continued.
-Mq*: Options to control the use of quasi-wavelets:

-M((auto|none|count)[outer][inner][dissipation rate]: Use (or don’t use with
the none option) quasi-wavelets. With the user specified inner and outer

radii and dissipation rate.
-Mgh: Make the quasi-wavelet distribution height dependent.

-Mgqp value: If the number of quasi-wavelets is auto this controls the number
of quasi-wavelets generated.

-M(f filename: Read (if quasi-wavelet generation has not been enabled) or
write the quasi-wavelet distribution. This makes it possible for successive
runs to use identical quasi-wavelet distributions.

-Mqyv iterations: Update quasi-wavelet locations. The locations are moved
with the background velocity in jumps when this number of iterations have

passed.

40

Chapter 3

Model Generation

3.1 Introduction

A significant technical challenge in performing acoustic modeling of realistic atmospheric
scenarios is the generation of the atmospheric model. An acoustic atmospheric model is
defined by five parameters; TDAAPS assumes those parameters are ¢, p, and v (acoustic

velocity, density, and the 3 components of the wind velocity, respectively).

The atmospheric model actually consists of several parts: (1) a description of the model
size—this includes the number of nodes in the x, y, and z directions and the number of time-
steps. The model size information also includes the increments and starting point for each
of these four dimensions. (2) The wavespeed and densities at each of the grid-points in the
xyz grid. (3) A definition of the recording geometry (if any)-this is the number and layout
of the receivers. (4) A definition of the sources. (5) A definition of extra output (i.e. time
slice output). The first two parts are required and all the additional parts are optional (these

can be specified on the TDAAPS command line if desired).

There are two distinct methods of building model files that are described in this chapter:

the first uses Matlab™ directly, and the second uses the program buildSgfdModel.

41

10

20

30

40

50

3.2 Model Building with Matlab™

This is probably the easiest method to understand and illustrate. Over time the author has
moved most model-building tasks to this environment. The use of Matlab™ to build the
most trivial model possible was illustrated in Section 2.3. To reduce repetitive chores the
following (long) Matlab™ function provides tools for basic model definition (with some

extra variables defined to simplify later examination of the data):

function writeSgfdModel(filename,x,y,z,t,varargin)
sfunction writeSgfdModel(filename,x,vy,z,t,varargin)
$Write a Symons style netcdf file for sgfd modeling. Can be used for either

jJ

% elastic or acoustic models.
%$Neill Symons; Sandia National Laboratories; 4/24/03
SArguments: filename--file to write
% X, y, z-—-vectors with spatial position of node centers
t--time vector.
Optional Arguments: vp, vs, rho--these are done optionally for some
flexability in what is actually defined.
comment--add a comment to the file
noclobber--add variables to an exisiting file, useful
for large models.
NOTE: because of the way NetCDF stores variables
size(vp,1l)==length(z)
size(vp,2)==length(y)
size(vp,3)==length(x)

o\° 0\° 0\° o\° o\° A\° AP0\ O\° O\C B\ o\

%Check varargin for modifiers to the default arguments.
i=1;
while i<=length(varargin)
currArg=varargin{i};
i=i+l;
argType=whos('currArg’);
if "strcmp(argType.class,’char’)
error(sprintf(’Optional argument %i, type %s must be char’,...
i,argType.class));
end

switch lower(currArg)
case {'velocity’ 'vel’ 'vp’' 'v
vp=varargin{i};
i=1+1;
case {’density’ ’'rho’}
rho=varargin{i};
i=1+1;

r Ialphal ICI}

case ’'slice’

sliceName=varargin{i};

sliceTimes=varargin{i+1l};

slicePos=varargin{i+2};

i=1+3;

if exist(’slices’) =1
numSlices=length(sliceTimes);
lslices:{{sliceName,sliceTimes,slicePos}};

else
numSlices=numSlices+length(sliceTimes);
slices={slices{:} {sliceName,sliceTimes,slicePos}};

end

clear sliceName sliceTimes slicePos;

case 'pressurereceivers’

42

receiverX=varargin{i+0};
receiverY=varargin{i+l};
receiverZ=varargin{i+2};
1=1+3;

receiverType=2+0*receiverX;
60 receiverAmp=1+0*receiverX;

receiverBx=0*receiverX;
receiverBy=0*receiverX;
receiverBz=0*receiverX;
receiverIntegrate=0*receiverX;

case {’source’ ’pressuresource’ ’explosion’}
pressureSource=varargin{i};
sourceWaveform=varargin{i+l};
70 i=1i+2;

case 'comment’
comment=varargin{i};
i=i+1;

case 'history’
history=varargin{i};
i=1+1;

case {’'noclobber’ ’addvar’ ’add’}
80 %Add a new time plane to an existing file.
noclobber=1;

otherwise _
error(sprintf (’Unknown option %s’,currArqg));

end
end

$Check that the sizes match up.
NX=length(x);
90 Ny=length(y);
NZ=length(z);
NT=length(t);
if exist('vp’)==1 & (...
size(vp,1) =NZ | size(vp,2) =NY | size(vp,3) =NX)
fprintf(’Because of the way NetCDF stores variables\n’);
fprintf(’ size(vp,1l)==length(z)\n’);
fprintf(’ size(vp,2)==length(y)\n’);
(x

fprintf(’ size(vp,3)==length(x)\n’);
100 grror(’Can not write file’);
en

if exist(’rho’)==1 & (...
size(rho,1) =NZ | size(rho,2) =NY | size(rho,3) =NX)

fprintf(’Because of the way NetCDF stores variables\n’);
fprintf(’ size(rho,1)==length(z)\n’);

fprintf(’ size(rho,2)==length(y)\n’);

fprintf(’ size(rho,3)==length(x)\n’);

error(’Can not write file’);

110 end

%$0pen the file.

if exist(’noclobber’)==1 & noclobber
out=netcdf(filename, 'write’);

else
out=netcdf(filename, 'clobber’);

%$Set some global attribute describing how this file was created.
out.title='Staggered Grid Finite-Difference Model Input File’;
120 if exist(’/comment’)==
out.comment=comment;
end
if exist(’history’)==
out.history=history;

43

else
out.history='Created with matlab writeSgfdModel.m’;

end

%$Set the dimensions.
130 out ('numCoord’)=4;

out ('NX’)=NX;

out ('NY’)=NY;

out ('NZ’)=NZ;

out ('NT’)=NT;

$Define and fill the increment variables.

out{’'minima’}=ncfloat(’'numCoord’);
out{'minima’}(:)=[x(1) y(1) z(1) t(1)]1;
out{’increments’}=ncfloat(’'numCoord’);

140 out{’increments’}(:)=[x(2)-x(1) y(2)-y(1) z(2)-z(1) t(2)-t(1)];

%$Define and fill the position variables.

out{’x’"}=ncfloat(’'NX");
out{’'x"}(:)=x;
out{’y’}=ncfloat('NY’");
out{’'y"}(:)=y;
out{’z’}=ncfloat(’'NZ2");
out{’z"}(:)=z;
out{’time’}=ncfloat(’'NT’);
150 out{’time’}(:)=t;
end

$Write the defined variables.

if exist('vp’)==1
out{’vp’}=ncfloat(’'Nz’,'NY’,'NX");
out{’vp'}(:)=vp;

end

if exist(’'rho’)==1
out{’rho’}=ncfloat(’Nz’,’'NY’,'NX");

160 8ut{’rho’}(:)=rho;
en

Write extra defined stuff.

o\Po\Co\e

%Slices.
if exist(’slices’)==
out(’numSlices’)=numSlices;
170
out
out
out
out

"sliceTime’}=ncfloat(’'numSlices’);
"sliceComp’}=ncint(’numSlices’);
"slicePlane’ }=ncint(’'numSlices’);
"sliceCoord’ }=ncfloat(’numSlices’);

s

startSlice=0;
for i=l:length(slices)
currSlice=slices{i};
sliceName=currSlice{l};
180 sliceTimes=currSlice{2};
sliceCoord=currSlice{3};

out{’sliceTime’}(startSlice+l:startSlice+length(sliceTimes))=sliceTimes;
for i=1:length(sliceTimes)
out{’sliceCoord’}(i+startSlice)=sliceCoord;
switch lower(sliceName(1l:2))
case 'yz'
out{’slicePlane’}(i+startSlice)=1;
if x(1l)>sliceCoord | sliceCoord>x(end)
190 error(’Slice %s: out of bounds $f<$f<%f’,...
4 sliceName,x(1),sliceCoord,x(end));
en
case ’'xz’
out{’slicePlane’}(i+startSlice)=2;
if y(l)>sliceCoord | sliceCoord>y(end)
error(’Slice %s: out of bounds %f<%f<%f’,...
sliceName,y(1l),sliceCoord,y(end));

44

200

210

220

230

240

250

260

end
case 'xy’
out{’slicePlane’}(i+startSlice)=3;
if z(1l)>sliceCoord | sliceCoord>z(end)
error(’Slice %s: out of bounds %$f<%f<%f’,...
4 sliceName,z(1l),sliceCoord,z(end));
en
otherwise | . ,
error(sprintf(’Unknown slice plane %s’,sliceName(l:2)));
end

switch lower(sliceName(3:end))

case 'vx! . i
outj’sllceComp’}(1+startSllce):l;

case 'vy’
outi’sliceComp’}(i+startSlice)=2;

case 'vz! . i
out{’sliceComp’}(i+startSlice)=3;

case 'pressure’
out{’sliceComp’}(i+startSlice)=4;
otherwise
error(sprintf(’Unknown slice component %s’,sliceName(3:end)));
end

end
startSlice=startSlice+length(sliceTimes);

end
end

%$Receivers. ,
if exist(’'receiverType’)==1

out (

{
out {
out {
out{
out {
out {
out {
out {

{

out
end

"numReceivers’)=length(receiverType);

7
"receiverAmp’ }=ncfloat(’numReceivers’);

"receiverY’}=ncfloat(’'numReceivers’);
"receiver?Z’}=ncfloat(’'numReceivers’);
"receiverBx’}=ncfloat(’'numReceivers’);
"receiverBy’}=ncfloat(’numReceivers’);
"receiverBz’ }=ncfloat(’'numReceivers’);
"receiverIntegrate’}=ncint(’numReceivers’);

"receiverType’
"receiverAmp’}

}(:)=receiverType;
(
"receiverX'} (:)
)
)

1)=receiverAmp;
=receiverX;
=receiveryY;
=receiveriZ;
)=receiverBx;
)=receiverBy;
)=receiverBz;

"receiverY’}(
"receiverZ’}(
"receiverBx’}(:
14 2 14 .

receiverBy'}(:
"receiverBz’} (:

"receiverIntegrate’} (:)=receiverlntegrate;

%$Sources.
1f exist(’pressureSource’)==

out (

out {
out
out

out

out
out

{
{
{
out {
out {

{

{

out
out

"numMSources’)=1;

"mSourcesXs’ }=ncfloat(’'numMSources’);
"mSourcesYs’ }=ncfloat(’'numMSources’);
"mSourcesZs’ }=ncfloat(’numMSources’);

'mSourcesSamp’ }=ncfloat(’'numMSources’);

"numMSources’
"numMSources’
"numMSources’

=ncfloat
=ncfloat
=ncfloat

mSourcesXxS’ ;
mSourcesYyS’ ;
mSourceszzS’ ;
"numMSources’) ;
"numMSources’
"numMSources’

=ncfloat
=ncfloat
=ncfloat

mSourcesXyS’
mSourcesXzS’

14
14
14
14

14
14 .

14
"mSourcesYzS’

B et el e

(
(
(
(
(
(

4

45

270

280

290

10

20

30

out{’'mSourcesXyA’}=ncfloat(’'numMSources’);
out {'mSourcesXzA’ }=ncfloat(’numMSources’);
out =ncfloat(’'numMSources’);

)=pressureSource(l);
)=pressureSource(2);
) pressureSource(3),
(

1)=

out{’'mSources¥s’}

1
"mSourcesYzA'}
(
(
out{’'mSourcesZs’}(

{

{

{
out{’'mSourcesXs’} (1

{ 1

{ 1
out{’'mSourcesSamp’}

"mSourcesXxS’
'mSourcesYyS’
"mSourceszzS’

out
out
out

~e Ne~e

OO O OO i

out {'mSourcesYzS’

~e~e ~e

{ }
{ !
{ }
out{’'mSourcesXyS’}
out%’mSourcestS %
| i

out{’mSourcesXyA’

out{’'mSourcesXzA’
out {'mSourcesYzA’

e e e i

Ne~e e

cfloat(’numMSources’,’NT’);
, ¢)=sourcelaveform;

e~~~ o~~~ ——
—s —_——— ——— ———

out{’'mSourcesData’
out{’'mSourcesData’
end

%Close the file.
close(out);

The following function illustrates a methodology whereby sources, receivers, and time-
slices can be defined with the Matlab™ model generation methods. The writeSgfdModel

function is used to generate the model for the transmission loss over a hill part of the Alpha

test. The Matlab™ code to create this model is:

function [mName]=build_hill model(dx,varargin)
%% Define the parameters of the model build
if nargin<l

dx=0.50;

end
dt le-4*dx;
maxT=2.0;
standoff 8;

offset=25*dx;
soffset=50*dx;

minUX=100;
minX=-minUX-soffset;
maxX=minUX+offset;
yrange=40+offset;

minZ=-soffset;
maxz= 60+offset

%% Define the parameters of the cylindrical hill.
center=[0 -200];
radius=sqrt(center(2) " 2+minUX"2);

Build vectors for the axes.
minX:dx:maxX];
yrange:dx: yrange];

111l oe

minZ:dx:maxZ7];
0:dt:maxT];

X=length(x);
NY=length(y);

[
(-
[
[

X
v
Z
t
N

46

NZ=length(z);
NT=length(t);

%% Build vectors for the receiver array and source.
re=5;
rx=5iminUX+lO:5:minUX];
ry=0*rx;
40 rz=sqrt((radius+re)”2-rx."2)+center(2);

sl=[-minUX 0 sqrt((radius+re)” 2-minUX." 2)+center(2)];
sw=monofreq(100,dt,length(t));

$clear offset soffset minUX minX maxX yrange minZ maxi;

%% Write the basic model.
mName='BetaHilll.cdf’;
writeSgfdModel (mName,x,y,z,t,...

50 "comment’ ,sprintf(’Version 1.0: dx=%.1f; dt—05g ,dx,dt),
’history’,textFromFile(’build_hlll_model m’),
"pressurereceivers’,rx,ry,rz,...
"pressuresource’,sl,sw);

out=netcdf (mName, 'write’);
out.title='TDAPS Beta Test Hill Model Input File’;

%% And fill in the variables.
[Y,Z2,X]=meshgrid(y,z,x);
60 D=sqrt(X."2+(Z-center(2))."2);

%% Define a variable for vp and fill it in. Make sure the rock does
% not intersect with the edge of the model.

out{’vp’}=ncfloat(’'Nz’,'NY’,'NX");
vp=342*ones(NZ,NY,NX) ;
vp(D<=radius &...
X>(minX+standoff*dx) & X<(maxX-standoff*dx) & .
Y>(-yrange+standoff*dx) & Y<(yrange- standoff*dx) &...
70 Z>(minZ+standoff*dx))=3500;
out{’vp"}(:,:,:)=vp;

Define a variable for rho and fill it in.

Be careful that all nodes on a transition from rock to air are
filled with intermediate properties. This includes diagional
contacts.

ut{’rho’}=ncfloat(’Nz’,'NY’,'NX");

o 1.2*ones(NZ,NY,NX) ;
rho(vp>1000) 2000;"
80 for i=1:NX
for jzl:NY
for k=1:NZ-1
if rho(k,j,1)>10
modify=0;
for ii=max(1l,i-1):min(NX,i+1)
for jj=max(1l,j-1):min(NY,j+1)
for kk=max(1l,k-1):min(NZ,k+1)
if vp(kk,3jj,11)<1000

oe

O o\° o\ o\ o\°

modify=1;
90 end
end
end
end
if modify
rho(k,j,1)=100;
end
end
end
end
100 end
out{’rho’}(:,:,:)=rho;
%% Close the file.
close(out);

47

The model that results from the execution of this script is shown in Figure 3.1. This models

uses the material contrast pseudo-boundary-condition described in Section 2.5.2.

3.3 Model Building with buildSgfdModel

In the source distribution of TDAAPS there is an additional program called buildSgfdModel.
This program resides in the directory src/sgfd which contains a variety of code for generic
staggered-grid finite-difference modeling. Like TDAAPS, buildSgfdModel is primarily
written in C++. buildSgfdModel should be compiled with the same platform dependent
flags that are used for the compilation of TDAAPS. The calling conventions for buildSgfdModel
are identical to TDAAPS (the codes actually share many of the same modules). See Sec-

tion 4.3 for an example of model building with buildSgfdModel.

3.3.1 Usage and Definition of Flags

Following is a BNF (Backus, 1959) definition of a call of buildSgfdModel. This is followed
by a brief description of each possible flag. Certain experimental options are not listed here.
Flags are show in boldface and arguments are shown in regular face. Note that the options
to buildSgfdModel may change in the future. An up to date list of options and arguments

can be obtained by running:

> buildSgfdModel -help

Depending on the details of the operating system being used this command may have to be

run in a parallel environment and the output captured.

Also note that buildSgfdModel has been designed to build a generic staggered-grid
finite-difference model (for programs other than TDAAPS). Options relating to other model
types (i.e. elastic, etc.) are not described here. At the present time buildSgfdModel can

only build layered models. In the future many of the options available in the older program

48

XZ rho; (106, 0.0)

-100 -50 0 50 100
1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

YZ rho; (11, -120.0) YZ tho: (10, ~120.5)

-20

-50 0 50
L
500 1000 1500 2000 20 40 60 80 100

Figure 3.1. Cross sections through the Alpha test hill model.
The white circle is the source and the inverted triangles are the
receivers. The upper panel is an XZ cross section and the two

lower panels are YZ cross sections with different X values.

49

generateModel (not described here) may also be implemented. However, the author has

found that the vast majority of complex models are now constructed directly in Matlab™.

3.3.2 BNF Definition of buildSgfdModel call

vecspec: (start:[inc:]end)|(start inc N)

buildSgfdModel acoustic filename { ARGUMENT FILE:filename} [-xvecspec] [-yvecspec]
[-zvecspec] [-tvecspec] [-1] [-mlthickness ¢ rho] [-R[1] type x y z amplitude [0 §]]
[-R(v|d|a)][-Ru] [-Rg type x-vecspec y-vecspec z-vecspec] [-RE[3] type filename] |-
Sw filename] [-Sr[0] frequency] [-Su] [-Sf x y z amplitude 0 ¢] [-Se x y z amplitude]
[-Sm x y z amplitude xx xy xz yx yy yz zx zy zz] [-Es time component plane coordinate]

[-En number component plane coordinate]

3.3.3 Description of buildSgfdModel flags

filename: Name of the atmospheric model (NetCDF) file.

ARGUMENT _FILE:filename: Read additional arguments from filename. This can be
any combination of additional ARGUMENT FILE: arguments and flags. Avoid
circular references or undefined results will occur. This is useful to avoid extremely

long command lines.
-I: Create an indexed model. At preset this is always a 1D model (see Section 2.3).
-x|y|z|t vecspec: Define the given axis. See Section 2.7.1 for a definition of the vecspec.
-ml thickness c rho: Define a new layer with the given thickness and properties.
-R*: Flags that deal with defining receivers: see section 2.7.2 for details.
-S*: Flags that deal with defining sources: see section 2.7.2 for details.

-E*: Flags that deal extra output:see section 2.7.2 for details.

50

Chapter 4

Examples

This chapter contains several examples of using TDAAPS to run a variety of simulations.
These simulations are of varying complexity and are drawn primarily from the suite of tests
required for the Alpha and Beta tests. These examples have been modified to simplify and

shorten the scripts. Complete “as run” examples may be found in Appendices B and C.

4.1 Transmission Loss with Vertical Wind Gradient

An Alpha test goal was that the transmission loss modeled by TDAAPS over a perfectly
hard flat ground in a moving refractive atmosphere would be within 1 dB of a benchmarked
wavenumber integration scheme at a range of 200m and 100Hz frequency. The atmospheric
model for this test was a constant acoustic velocity half-space (¢ 342m/s and p 1.2Kg/ m3)
over a zero w, hard surface. The refractive atmosphere was provided with a linear wind
speed gradient from Om /s at the surface increasing by 0.1(m/s)/m in the vertical direction.
The model was 901 x 201 x 203(~ 36M) nodes with a 0.5m grid spacing for a total
dimension of —225m to 225m in x, —50m to 50m in y, and —1m to 100m in z. The time-
step is 0.25ms and the total model-time was 2s, therefore implying 8001 time-steps. The

source is a monopole of 100Hz with a four cycle taper (Figure 4.1) at the beginning and

51

10

20

10

end to limit the high frequencies introduced into the model.

For this case the model is so simple that it can easily be created with a single call to the

buildSgfdModel program, the call looks like:

> buildSgfdModel acoustic model.tranloss.cdf -1 \
-X -225:0.5:225 -y -50:0.5:50 -z -1:0.5:100 -t 0:0.00025:2 \
-ml 1 342 1.2

The header for the simple model created by this call (generated with > ncdump -h acoustic

model.tranloss.cdf) follows:

netcdf model.tranloss {
dimensions:
numCoord = 4 ;
numSpatialCoord = 3 ;

NX = 901 i
NY = 201 i
NZ = 203 ;
NT = 8001 ;
variables:

float minima(numCoord) ;
float increments(numCoord) ;
float x(;

float y(NY) ;

float z(NZ) ;

float tlme(NT) ;

float oneDModele(NZ) ;
float oneDModelRho(NZ) ;

// global attributes:
:title = "parallel_elasti generic NETcdf file" ;
thistory = "buildSgfdModel acoustic model.tranloss.cdf -I
-x =225:0.5:225 -y -50:0.5:50 -z -1:0.5:100
-t 0:0.00025:2 -ml1 1 342 1.2 " ;

This model was run on powell (an ARL HPC Linux cluster using the GRD queueing

system) with the following script:

#!/bin/tcsh

#S -cwd

#$ -0 powell_grad_01l.run.out

#S -Jy

#S -pe mpi_glinux 17

#$ -1 4hr

sge_mpirun /home/others/npsymon/bin/2_4_21-27_0_2_FLsmp_1686/tdaps -p 4 2

2
/home/others/npsymon/models/Alpha/TransmissionLoss/model.tranloss.cdf \
-Rg Pressure -200:401 0:0 5:5 -Ro trace.tranloss.cdf
-Sw monol00.out -Se 0 0 2 1 \
-Mg 0 0.1 0 -bv -bS 40 90

52

\

Complete Wavelet

i —=

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-

Zoom of Start of Wavelet

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Amplitude spectrum

10 T T T T T T T T T

10° f -

10*5 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200
Amplitude spectrum x s
10

10 T T T T T T T T T
o -MWWWM%
1040 1 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

Figure 4.1. 100Hz mono-frequency source wavelet with 4 cycle
taper at beginning and end and 1.5s duration. Upper panel: com-
plete wavelet, Second panel: blow-up of the start of the wavelet,
Third panel: frequency spectrum, Bottom panel: frequency spec-
trum after multiplication by f? (this is the far-field spectrum in the

model).

53

10

The comments in the first 7 lines of the script set the queue parameters for a 4 x
2 x 2(16) processors run and send the output to the file “powell_grad O1l.run.out”. Line
9 is the call to the executable and sets the decomposition. Line 10 sets the model to
“/home/others/npsymon/models/Alpha/TransmissionLoss/model.tranloss.cdf”. Line 10 de-
fines a line of receivers along the x-axis from -200 to 200m at 1m increments and sets the
trace output filename to “trace.tranloss.cdf”. Line 11 reads the source waveform from
“mono100.out” and sets the monopole source at (0,0,2)m with a scalar amplitude of unity.
Line 12 sets the wind gradient, the zero w, boundary condition, and then sets a 40 node
wide absorbing boundary around the model with a value that tapers to 90%. More details

about the available flags to modify the behavior of TDAAPS is in Section 3.3.3.

The output from this example is shown in a record section in Figure 4.2. Note the asym-
metry in the magnitude of the pressure between the receivers at —200 and 200m because

of the refractive atmosphere.

4.2 Extinction and Coherence

This section describes the modeling for the Alpha test extinction and coherence test (the
complete unmodified Beta test results can be seen in Section B.2). The model for this test
was a whole space with ¢ 342m/s and p 1.2Kg/m?>. This model is 651 x 651 x 651(~
275M) nodes with a 0.5m grid spacing. The x, y, and z grids all range from -80m to 245m.
The random receiver locations are read into the model from a file generated in Matlab™

with the following simple script:

%Create the random distribution.
rL0=rand(500,3);

$Create a vector that can be used to normalize the distance of each
$receiver from the origin.

rLOL=sqrt(rLO(:,1). " 2+rL0(:,2). 2+4rL0(:,3).72);

$Divide by the length from the origin and multiply to 200 to put each
$receiver on a 200m radius sphere.

for i=1:500;
rL(i,:)=200*rL0O(1i,:)/rLOL(1);
end

These locations are then written out to a file in a 3 column format. The source and a

54

Time (ms)

200

600}

1000

12001

1400H

1600}

1800

2000

-200

~150 ~100 50 0 50 100 1
X (x5e+02)

Figure 4.2. Record section or receiver waveforms showing the

results of the transmission loss example.

55

200

set of time-slices are also incorporated directly into the model to simplify the final call to

TDAAPS. The call to create the model is shown here:

> buildSgfdModel hemisphereRDist.cdf \
-x -80:0.5:245 -y -80:0.5:245 -z -80:0.5:245 \
-t 0:0.00025:2 -I -ml 1 340 0 1.2 \
-Rf3 Pressure hemisphereR11_11.txt \
-Sw m100_15.txt -Se 0 0 0 1 \
-En 101 Pressure XZ 0 -En 101 Pressure YZ 0

The resultant model header looks like:

netcdf hemisphereRDist ({
dimensions:
numCoord = 4 ;
numSpatialCoord = 3 ;

=
N
I nn
ooy
a1
=
<

8001 ;
numMSources =
receiverDecima
nSamples = 800
numReceivers =1
numSlices = 202

variables:
float minima(numCoord) ;
float increments(numCoord) ;
float x(NX) ;
float y(NY) ;
float z(NZ) ;
float time(NT) ;
float mSourcesXs(numMSources) ;
float mSourcesYs(numMSources) ;
float mSourcesZs(numMSources) ;
float mSourcesSamp(numMSources)
float mSourcesXxS(numMSources)
float mSourcesYyS(numMSources)
float mSourcesZzS(numMSources)
float mSourcesXyS(numMSources)
float mSourcesXzS(numMSources)

()
()
()

4

1

te =1 ;
1

11 ;

4

float mSourcesYzS(numMSources
float mSourcesXyA(numMSources
float mSourcesXzA(numMSources
float mSourcesYzA(numMSources)
float mSourcesData(numMSources, NT) ;
float receiverType(numReceivers) ;
float receiverAmp(numReceivers) ;
float receiverX(numReceivers) ;

float receiverY(numReceivers) ;

float receiverZ(numReceivers) ;

float receiverBx(numReceivers) ;
float receiverBy(numReceivers) ;
float receiverBz(numReceivers) ;

int receiverIntegrate(numReceivers) ;
float sliceTime(numSlices) ;

int sliceComp(numSlices) ;

int slicePlane(numSlices) ;

float sliceCoord(numSlices) ;

float oneDModelVp(NZ) ;

float oneDModelVs(NZ) ;

float oneDModelRho(Nz) ;

// global attributes:
:title = "parallel_elasti generic NETcdf file" ;

NeNe NeNe Ne NeNe oo

56

60

)i
10 plot(inQ{’time’}
(:)

15

:history = "generateModel
-x -80 0.5 651 -y -80 0.5 651 -z -80 0.5 651
-t 0 0.00025 8001 -I -ml 340 0 1.2 1
-Rf3 Pressure hemisphereR11_11.txt

-Sw ../ml100_15.txt -Se 0 0 Q0 1
-En 101 Pressure XZ 0 -En 101 Pressure YZ 0
-0 hemisphereRDist.cdf " ;

Because the source-receiver geometry and the time-slice output is defined directly in
the model, the call to TDAAPS needs only to specify: (1) the executable and parallel de-
composition, (2) the model, (3) the quasi-wavelet distribution desired for this run, (4) the
boundary condition, and (5) the output files. This model was run on brainerd (an ARL
HPC IBM SP3) with the following call:

> /home/others/npsymon/bin/brainerd/TDAAPS -p 6 6 6
/home/others/npsymon/models/Alpha/Extinction/randomRDist.cdf
-Mc 0 0 -Mg 4000000 4 0.5 10 -bS 40 90
-Ro trace.brainerd.randomRDist.qw.cdf -Eo slice.brainerd.randomRDist.qw.cdf

This run took approximately 64r to complete witha 6 x 6 x 6(216) processors decom-
position. A quick look at the first three receivers can be generated with the following short

Matlab™ script:

inQ=netcdf(’trace.brainerd.randomRDist.qw.cdf’);

subplot(2,1,1);

plot(inQ{’time’}(:),inQ{'receiverData’}(1,:),'r’,...
inQ{’time’}(:),inQ{'receiverData’}(2,:),'qg’,...
inQ{'time’}(:),inQ{ 'receiverData’}(3,:),'b’, 'LineWidth’,1.5);

set(gca,’FontSize’,15,'LineWidth’,2);

title('First Three Receivers'’,'FontWeight’,’Bold’);

subplot(2,1,2

(:),inQ{’'receiverData’} (1, :)

inQ{’'time’} ,inQ{’'receiverData’}(2,:),'qg
inQ{’'time’}(:),inQ{ 'receiverData’}(3,:),'b

a=axis;axis([0.6 0.7 a(3:4)]);

set(gca,’FontSize’,15,'LinewWidth’,2);

title('Zoom’,'FontWeight’,’Bold’);

xlabel(’'T (s)');

! 4
', ...

7o
4

'LineWidth’,1.5);

The result of this Matlab™ script is shown in Figure 4.3.

57

-3 First Three Receivers

o X 10 . . .
1 s
0
1}
_2 1 1 1
0 0.5 1 1.5 2
1 L -
Of i
1}
0.6 0.62 0.64 0.66 0.68 0.7
T(s)

Figure 4.3. First three traces of the output from the extinction and
coherence example. The upper panel shows the complete traces

and the lower panel is a blow up to illustrate the differences.

58

10

15

20

25

30

35

4.3 Alpha Test Scalability

This section describes the building and running of models for the Alpha test scalability
demonstration. Because many runs are needed for this demonstration, a high degree of
automation is required. Since this is a scaled speedup test. we create a different model
for each decomposition tested. There are 17 decompositions: 1 x 1 x 1(1) processors,
2 x1x1(2) processors, 2 x 2 x 1(4) processors, 2 x 2 x2(8) processors, 3 x2x2(12)
processors, 3 x 3 x2(18) processors, 3 x 3 x3(27) processors, 4 x 3 x 3(36) processors,
4 x 4 x 3(48) processors, 4 x4 x 4(64) processors, 4 x 4 x5(80) processors, 4 x5 x
5(100) processors, 4 x5 x 6(120) processors, 4 x 6 x 6(144) processors, 4 x 6 x7(168)
processors, 4 x 7 x 7(196) processors, 4 x 7 x 8(224) processors, and 4 x 8 x 8(256)
processors. All of the models for these decompositions are built very quickly with a pair to
tesh scripts that use the buildSgfdModel program (Section 3.3). The first script builds and

then calls a second script to build a single model for a specified decomposition:

#!/bin/tcsh

if ($# < 3) then
echo "USAGE: $0 xProc yProc zProc [no_model][stat]"
exit

se
set XPROC=$1
set YPROC=$2
set ZPROC=$3
shift

shift

shift

endif

set MOD_EXE=/home/npsymon/bin/buildSgfdModel

#Set I0 charachteristics of run
set REC="-Rg Pressure 0 10 ‘expr 1 + 4 * \(${XPROC} - 1 \)* 001 201"

set MOD="models/model.${XPROC}_S${YPROC}_ ${ZPROC}.cdf"

el

#Determine the model size.

set NX=‘expr 50 * ${XPROC} + 1°*
set NY=‘expr 50 * ${YPROC} + 1
set NZ=‘expr 50 * ${zZPROC} + 1

set SX="-25"
set SY=‘expr -25 * ${YPROC}’
set Sz="-2"

#Create the run script.

set MOD_SCRIPT_FILE=scripts/${XPROC}_S${YPROC}_S${ZPROC}.model.script
cat > ${MOD_SCRIPT_FILE} <<EOF

#!/bin/tcsh

S{MOD_EXE} -I acoustic)\

-x ${SX} 1 ${NX} -y ${SY} 1 ${NY} -z ${Sz} 1 ${Nz} \
-t 0:0.0005:0.500 -I -ml 1 342 1.2 \
-Sw models/m40_00005.txt -Se 0 0 5 1

${REC} \

40 ${MOD}
EOF

source S${MOD_SCRIPT FILE}

The second script just calls the first for each decomposition:

1 #!/bin/tcsh
build_scalability_model
build_scalability_model
build_scalability_model

5 build_scalability_model
build_scalability_model
build_scalability_model
build_scalability_model
build_scalability_model

10 build_scalability_model
build_scalability_model

build_scalability_model
build_scalability_model
15 build_scalability_model
build_scalability_model
build_scalability_model
build_scalability_model
build_scalability_model
20 build_scalability_model

SRS BN
O JJOOOUTUITd Bl wWwwWwNDND N
OO0 -J-JOOOUITUT BLWWWMNDNDN

The header from the NetCDF file for one the models is shown here:

1 netcdf model.4 8 8 {
dimensions:
numCoord = 4 ;
numSpatialCoord = 3 ;

201 ;

401

401

1001 ;
numMSources =

10 receiverDecim
nSamples = 10
numReceivers

variables:
float minima(numCoord) ;

15 float increments(numCoord) ;
float x(NX) ;
float y(NY) ;
float z(NZ) ;
float time(NT) ;

20 float mSourcesXs(numMSources) ;
float mSourcesYs(numMSources) ;
float mSourcesZs(numMSources) ;
float mSourcesSamp(numMSources)
float mSourcesXxS(numMSources)

25 float mSourcesYyS(numMSources)
float mSourcesZzS(numMSources)
float mSourcesXyS (numMSources)

)
)
)
)
)

1
te =1,
1

a
0
=13 ;

4

float mSourcesXzS(numMSources
float mSourcesYzS(numMSources

30 float mSourcesXyA(numMSources

float mSourcesXzA(numMSources
float mSourcesYzA(numMSources

NeNe Ne NeNe Newe ~e ~e

60

float mSourcesData(numMSources, NT) ;
float receiverType(numReceivers) ;
35 float receiverAmp(numReceivers) ;
float receiverX(numReceivers) ;
float receiverY(numReceivers) ;
float receiverZ(numReceivers) ;
float receiverBx(numReceivers) ;
40 float receiverBy(numReceivers) ;
float receiverBz(numReceivers) ;
int receiverIntegrate(numReceivers) ;
float oneDModelVp(NZ) ;
45 float oneDModelRho(Nz) ;
// global attributes:
:title = "parallel_elasti generic NETcdf file" ;
:history = "/home/npsymon/bin/buildSgfdModel -I acoustic
-x -25 1 201 -y -200 1 401 -z -2 1 401

50 -t 0:0.0005:0.500 - -ml1 1 342 1.2
-Sw models/m40_00005.txt -Se 0 0 5 1
-Rg Pressure 0 10 13 0 01 2 0 1
models/model.4 8 8.cdf " ;

A similar methodology of using a script to generate a script is used on the various HPC
platforms to actually run the jobs. The script for an SGI Origin 3900 using an LSF queueing

system looks like:

1 #!/bin/tcsh

#Check for the minimum number of arguments, write a usage string and exit
not present.
5 if ($# < 3) then
echo "USAGE: $0 xProc yProc zProc [no_model][stat]"
exit

se
set XPROC=$1
10 set YPROC=$2
set ZPROC=$3
shift
shift
shift
15 endif

set MACHINETAG=hpcll

#Set variables for the executables and the parallel characteristics of

20 # this run. _
set RUN_EXE=/hafs4/npsymon/bin/${0BJDIR}/tdaps

set NPROC=‘expr ${XPROC} * ${YPROC} * ${ZPROC} + 1°*
set PARALLEL="-p ${XPROC} ${YPROC} ${ZPROC}"

el

25
mkdir -p ${MACHINETAG}

echo "Running ${XPROC}x${YPROC}x${ZPROC} decompostion on ${MACHINETAG}"
30 #Set I0 charachteristics of run
set REC="-Rg Pressure 0 10 ‘expr 1 + 4 * \(${XPROC} - 1 \)‘ 0 1"
}

0120
set I0="-Ro ${MACHINETAG}/trace.S${MACHINETAG}.S${XPROC}_S{YPROC}_S{ZPROC}.cdf"
set MOD="models/model.${XPROC}_S${YPROC}_S${ZPROC}.cdf"

35 set SURF="-Mc 0 0 -bv"

#Create the run scrigt.
set RUN_SCRIPT FILE=

61

40

45

50

55

60

1

scripts_hpcll/${MACHINETAG}_${XPROC}_${YPROC}_${ZPROC}.run.script

if (${NPROC} <= 32) then
set QUEUE="debug"
else
set QUEUE="regular"
endif

cat > ${RUN_SCRIPT_FILE} <<EOF
#BSUB -n ${NPROC}
#BSUB -q ${QUEUE}

#BSUB -W 1:
#BSUB -0 ${MACHINETAG ${MACHINETAG}_S${XPROC}_S${YPROC}_S${ZPROC}.stdout
#BSUB -e ${MACHINETAG}/S${MACHINETAG}_S${XPROC}_S${YPROC}_S${ZPROC}.out
#BSUB -J ${MACHINETAG}_${XPROC}_S${YPROC}_S${ZPROC}

1

mpirun -np ${NPROC} $
‘pwd’/${MOD} -bS 20
${I0} S${SURF}

EOF

Y/
%/

#BSUB -P WPBHPCM09972011C
{RUN_EXE} S${PARALLEL} \
95 \

echo "Run script in ${RUN_SCRIPT_FILE}; Not building model"
bsub < ${RUN_SCRIPT FILE}

Note that this run uses the Ov, boundary condition at the bottom of the model. This
script is called for each decomposition and that completes a full cycle of scalability testing.
The trace output from the largest run is also used to validate code portability between the

various platforms.

4.4 Long Range Ultra-Low Frequency

The final and most complicated example in this chapter shows the methodology that was
used to to build a fully 3D atmospheric model using data from the Ground to Space (G2S)

program (Drob and Picone, 2003). This example was presented by Symons et al. (2004).

The interface to G2S is through Matlab™ using the mex function g2sclient provided by
Douglas Drob of the Naval Research Laboratory. The following Matlab™ script repeatedly
calls g2sclient to build up a 3D grid of atmospheric conditions on a spherical coordinate
system. Note that TDAAPS requires a Cartesian grid. The function buildLatLonCartesion-
Grid uses the Matlab™ mapping toolbox to generate the latitude and longitude correspond-

ing to a flat earth Cartesian approximation.

function [lat,lon,z,u,v,c,t,zgrnd]=buildG2SGrid(slat,slon,x,y)

62

10

15

20

25

30

35

40

45

50

55

60

65

70

SFUNC
Ret
wes

Neil
Bas

o\ o\°0\° o\° o\°

TION: [lat,lon]=buildG2SGrid(slat,slon,dx,nx,dy,ny,varargin)
urn a lat a longitude grid from the given start. Make the
tern/northern hemisphere assumption.

1 Symons; Sandia National Laboratories.
ed on code provided by Douglas Drob of Naval Research Laboratory

%Set default values for optional arguments.

fonts

ize=15;

theLineWeight=1;

$Firs
% 3D
[lat,

t build the cartesion grid of lat and lon that we will build the
grid on.
lon]=buildLatLonCartesionGrid(slat,slon,x,y,extraArgs{:});

%$Load the data file into the G2S client.

filename = ’'G2SGCS_020103_14.bin’;

nalts = 401; % High resolution, High altitude version
z = zeros([size(lat),nalts]); % altitude (km above MSL)

u = zeros([size(lat),nalts]); % zonal wind (m/s)

v = zeros([size(lat),nalts]); % merdional wind (m/s)

c = zeros([size(lat),nalts]); % sound speed (m/s)

t = zeros([size(lat),nalts]); % temperature (K)

zgrnd = zeros([size(lat)]); % APPROXIMATE altitude of the ground
% above mean sea level (km)

% set the spectral truncation level

ntrunc = 120;

gamma = 1.4;

scale = .1;

Load the desired file into the G2S virtual server space

25GC

o\° Do\ oo

g2scl

S_info; % print out the information for this file
(filename must be defined)
ient(’load’,filename);

$Begin looping through the lat and lon to build up the grid.

for j
for

o\° —10\° o\° o\®

=l:size(lat,2)
i=l:size(lat,1)
See notes in profile_example.m for fields, tp may actually
be sound speed !
in some cases.
zp,up,vp,tp,dp,ppl = g2sclient(’extract’, lat(i,j), lon(i,j), ntrunc);
extract the profile

Want NRLMSISE-00/HWM-93 estimates as sanity check? Then use...
(note diff. syntax)

(i,3,1:nalts) zp(l:nalts);

(i,3j,1:nalts) up(l:nalts);

(i,j,1:nalts) vp(l:nalts);

depending on what type of G2S coeffiecent file you have (some
coeffiecents sets include sound speed and no temperature).
f (g2sinfo.desc(1l) == "t’ & dp(l) "= 0.)
t(ilat,l:nalts) = tp(l:nalts);
for k = l:nalts
c(i,j,k) = sqrt(gamma*pp(k)*scale/dp(k));

lse % or for GCS (old near-real time format) use,
c(i,j,1:nalts) = tp(l:nalts);
nd

G2S can also provide a ROUGH (spectral) estimate of the ground
level above MSL

63

% Note: you may get numbers less than zero due to spectral ringing
75 % effects. ,
zgrnd(i,j) = g2sclient(’zgrnd’);
end
end

The next script then takes as input the atmospheric and wind properties read with

buildG2SGrid.m and writes out 3D model and wind NetCDF files.

1 function [c,d,u,v,X,Y,Z]=buildModel (filenameroot,x,y,z,t,varargin)

$Set default values for optional arguments.
writeModel=1;
5 splitFiles=0;

%Check varargin for modifiers to the default arguments.

i=1;
whiie i<=length(varargin)
10 currArg=varargin{i};
i=i+1;

argType=whos('currArg’);
if "strcmp(argType.class,’char’)
error(sprintf(’Optional argument %i, type %s must be char’,...
15 i,argType.class));
end

switch lower(currArg)
case 'datafile’
20 datafilename=varargin{i+0};
i=i+1;
case 'data’
c=varargin
25 d=varargin
u=varargin
v=varargin
i=i+4;

i+0}
i+1}
i+2};
i+3}

4
4

e e e

4

30 case {'properties’ ’prop’}
c=varargin{i+0};
d=varargin{i+l};
i=1i+2;

35 case 'wind’
u=varargin{i+0};
v=varargin{i+l};
1=1+42;

40 otherwise '
error(sprintf(’Unknown option %s’,currArgqg));
end
end

45 %Load or create required variables.
if %xist(’c’)~=1 & exist(’'d’) =1 & exist('u’) =1 & exist('v’) =1
zl=z;
if existé’datafilename’)*:l
load 101x121v6.mat;
50 else
eval (sprintf(’load %s’,datafilename));
end
z=z1;
end

[X,Y,Z]=meshgrid([0:10:1200],[0:10:1000],[0:0.5:2001);

xmin=min(flatten(X));xmax=max(flatten(X));

55

64

ymin=min(flatten(Y));ymax=max(flatten(Y));
60 zmin=min(flatten(Z));zmax=max(flatten(Z));

%Get the model sizes.
params.NX=length(
params.NY=length(
65 params.NZ=length(
params.NT=1length (
fprintf(’Building %$ix%ix%i (%.2fM) node model; $%$i time steps\n’,...
params.NX,params.NY,params .NZ,params.NX*params.NY*params.NzZ/1le6,params.NT) ;

4
4
/
r

zZe
X)
V)i
z)
t)

70 %0pen a file for the wind and a file for the sound speed/density.

if exist(’u’)==1 & exist('v’)==1
windOut=openNetCDF (sprintf(’%s.wind.cdf’,filenameroot),x,y,z,t,{'Windvx’ ’'WindVy’});
end
if exist(’c’)==1 & exist(’d’)==
75 propOut=openNetCDF (sprintf(’%s.prop.cdf’,filenameroot),x,y,z,t,{'vp’ 'rho’});
end

$Now fill in the values 1 layer at a time.
wh=waitbar (0, 'null’,
80 "Name’ ,sprintf(’%1 Layer Waitbar’,length(z)));
for k=1:length(z)
waitbar(k/length(z),wh,sprintf(’Layer %i’,k));

[XI,YI,Z2I]=meshgrid(x,y,z(k));
85 XI=XI/1000;

YI=YI/1000;

72I=71/1000;

if exist(’windOut’)==1 | (exist(’windOutVx’)==1 & exist(’'windOutVy’)==1)
90 %$Now make the interpolation for the wind.

windVx=interp3(X,Y,Z,u,XI,YI,zI,’'linear’);
windVx(isnan(windvx))=0;

windVy=interp3(X,Y,Z,v,XI,YI,zI,’linear’);

95 w1ndVy(lsnan(w1ndVy)) O,
windOut{'WindVx'} (k 1) =windVx;
windOut{'WindVy"’} (k 1)=windVy;
end
100
if exist(’propOut’)==1 | (exist(’propOutVp’)==1 & exist(’propOutRho’)==1)

$Now make the interpolation for the material properties.
vp=interp3(X,Y,%2,c,XI,YI,Z2I, 'linear’);
vp(isnan(vp))=342;

105
rho=interp3(X,Y,Z,d,XI,YI,2I,’linear’);
rho=rho*100*100*100/1 OOO; $Convert from g/cm”3 to Kg/m"3.
rho(isnan(rho))=1.2;
110 propout{’vp’}(k,:) =Vp;
propOut{’ rho’}(,t, v)=rho;
end
end
close(wh);
115
close(windOut);
close(propOut) ;
120 $$SLOCAL FUNCTIONS
$$FUNCTION [out]=openNetCDFFile(filename,params)
function [out]=openNetCDF(filename,x,y,z,t,vars)
125

$0pen the file.
if exist(’params’)==2 & isfield(params,’noclobber’)==1 & params.noclobber

out=netcdf(filename,'write’);
else

65

130

135

140

145

150

155

160

165

out=netcdf(filename, 'clobber’);

%Set some global attribute describing how this file was created.

out.title='Staggered Grid Finite-Difference Model Input File’;

out.history='Created with matlab writeSgfdModel.m’;

if exist(’params’)==1 & isfield(params,’comment’)
out.comment=params.comment;

end

%$Set the dimensions.

out (' numCoord)=4;

out (’'NX’)=length(x);
out(’'NY’)=length(y);
out(’NzZ’)=length(z);
out(’'NT’)=length(t);

%Define and fill the increment variables.
out{’'minima’}=ncfloat(’'numCoord’)

out{’minima’}(:)=[x(1) y(1) z(1) £(1)];
out{’increments’}=ncfloat(’numCoord’);
out{’increments’}(:)=[x(2)-x(1) y(2)-y(1) z(2)-2(1) t(2)-t(1l)];

%Define and fill the position variables.

4

out{’x’}=ncfloat(’'NX");
out{’'x"}(:)=x;
out{’y’}:ncfloat(NY'");
out{'y’"}(:)=y
out{’z’}=ncfloat(NZ'");
out{’z"}(:)=z;
out{’time’}= ncfloat(NT'");
out{’time’} (:)=t;

end

for i=l:length(vars)
out{vars{i}}=ncfloat(’NzZ’,'NY’,'NX");
end

The model resulting from this sequence of scripts is quite heterogeneous (Figure 4.4).

A close examination of the results (Figure 4.5) shows the effects of this heterogeneity.

This model is interesting for a number of reasons. First, the finest grid spacing at-
tempted was 500m; with this spacing and the desired range the model was 1001 x 801 x
403(~ 323M) nodes. For this fairly large run, the model and wind variables where stored
in four (G2S does not give v, so it was assumed to be 0) individual files each of which was
~ 1.2Gb in size. Second, this model was successfully run on an older supercomputer (SNL
ASCI Red) witha 20 x 16 x 8(2560) processors decomposition. Although no scalability
testing was done with this number of processors, it is significant that such a decomposition

can be successfully run.

66

Hipight [l s ML)

AL
- - i
T F e
K
120
g ®
100 i-
80 i i
E:_
&0 AL
a0 L

Q
o

Figure 4.4. 3D image of the wind model for the ultra-low fre-
quency run. The color indicates the magnitude of the wind veloc-
ity and the arrows show direction. Ranges are in km but velocities

are in m/s.

67

Z (km)

T 495.00s

150
100,
50,
0.
100

200

300
Y (km)

Figure 4.5. One of the time-slices that resulted from the ultra-
low frequency run. Matlab™ was used to composite an XZ and a
YZ slice with data from the dense receiver grid to show 3 planes
of model results simultaneously. Note that the dense receive grid
does not sample every model node, this results in a coarser slice at

the bottom of the image.

68

References

Aldridge, D. F. (2005). Staggered grid finite difference acoustic wave modeling. SAND

Report, in preparation.

Backus, J. W. (1959). The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM conference. In Proceedings of the International

Conference on Information Processing, pages 125-132.

Bartel, L. C., Symons, N. P., and Aldridge, D. F. (2000). Graded boundary simulation of
air/earth interfaces in finite-difference elastic wave modeling, page 71. Soc. Of Expl.

Geophys., 70th Ann. Internat. Mtg.

Bayliss, A., Jordan, K. E., LeMesurier, B. J., and Turkel, E. (1986). A fourth-order accu-
rate finite-difference scheme for the computation of elastic waves. Bull. Seis. Soc. Am.,

76:1115-1132.

Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic
waves. J. Comp. Phys., 114:185-200.

Berengier, M. and Daigle, G. A. (1988). Diffraction of sound above a curved surface having
an impedance discontinuity. J. Acoust. Soc. Am., 84:1055-1060.

Berliner, B. (1990). CVSII: Parallelizing software development. In Winter 1990 USENIX
Conference, Washington D.C.

Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M. (1985). A nonreflecting boundary-

condition for discrete acoustic and elastic wave-equations. Geophysics, 50:705-708.

69

Collier, S. L., Ostashev, V. E., Wilson, D. K., and Marlin, D. H. (2002). Implementa-
tion of ground boundary conditions in a finite-difference time-domain model of acoustic
wave propagation. In Proceedings of the 2003 Meeting of the MSS Specialty Group on

Battlefield Acoustic and Seismic Sensing, Magnetic and Electric Field Sensors, Laurel,

MD.

Denham, C. R. (2000). MexCDF and NetCDF toolbox for Matlab-5/6.
http://crusty.er.usgs.gov/ cdenham/MexCDF/nc4mlS5.html.

Drob, D. . and Picone, J. M. (2003). Global morphology of infrasound propagation. J.
Geophys. Res., 108(D21).

Geist, G. A., Kohl, J. A., and Papadopoulos, P. A. (1996). PVM and MPI: A comparison
of features. Calculateurs Paralleles Vol. 8 No. 2 (1996), 8(2).

Goedecke, G., Ostashev, V. E., Wilson, D. K., and Auvermann, H. J. (2004). Quasi-wavelet
model of von karman spectrum of turbulent velocity flucuations. Bound.-Lay. Meteorol,

112:33-56.

Goedecke, G. H. and Auvermann, H. J. (1997). Acoustic scattering by atmospheric tur-
bules. J. Acoust. Soc. Am., 102(759-771).

Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using

staggered-grid finite differences. Bull. Seis. Soc. Am., 86:1091-1106.

Levander, A. R. (1988). Fourth-order finite-difference P-SV seismograms. Geophysics,
53:1425-1436.

Ostashev, V. E. (1997). Acoustics in Moving Inhomogeneous Media. E&FN SPON, Lon-

don.

Ostashev, V. E., Wilson, D. K., Liu, L., Aldridge, D. F., Symons, N. P., and Marlin, D.
(2005). Equations for finite-difference, time-domain simulation of sound propagation

in moving inhomogeneous media and numerical implementation. J. Acoust. Soc. Am.,

117(2).

70

Rew, R., Davis, G., Emmerson, S., and Davies, H. (1997). NetCDF User’s Guide for C;

Version 3. Unidata Program Center.

Sullivan, P. P,, McWilliams, J. C., and Moeng, C.-H. (1996). A grid nesting method for
large-eddy simulation of planetary boundary flows. Bound.-Lay. Meteorol., 80:167—
2002.

Symons, N. and Aldridge, D. (2000). 3-D elastic modeling of salt flank reflections at Bayou
Choctaw Salt Dome, Louisiana. In 70th Annual Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, page Session: ST P1.6. Soc. Expl. Geophys.

Symons, N. P., Aldridge, D. F., Marlin, D. H., Wilson, D. K., Patton, E. G., Sullivan, P. P,
Collier, S. L., Ostashev, V. E., and Drob, D. P. (2004). 3d staggered-grid finite-difference
simulation of sound refraction and scattering in moving-media. In Proceedings, 11th

Long Range Sound Propagation Symposium, June 1-3.

Symons, N. P., Aldridge, D. F., Wilson, D. K., Marlin, D., and Ostashev, V. (2003). 3d
finite-difference simulation of acoustic waves in turbulent moving media. J. Acoust.

Soc. Am., 114(4):2440.

Virieux, J. (1986). P-SV wave propagation in heterogeneous media: velocity-stress finite-

difference method. Geophysics, 51:889-901.

Wilson, D. K. (1993). Relaxation-matched modeling of propagation throught porous me-

dia, including fractal pore structure. J. Acoust. Soc. Am., 94:1136-1145.

Wilson, D. K. (1997). Simple, relaxational models for the acoustical properties of porous

media. Appl. Acoust., 50:171-188.

Zwikker, C. and Kosten, C. W. (1949). Sound Absorbing Materials. Elsevier, New York.

71

This page intentionally blank

72

Appendix A

TDAAPS Calling Flags Quick Reference

Boundary Conditions

Run Parameters

-bV|F Velocity/Pressure free surface
-bS n v modify sponge zone
-bK z flow tort por Zwikker-Costin BC

Sources

-p nx ny nz Parallel Decomposition
-T tvec change the time vector
-C 1ivec write checkpoints

Moving Media

-Sr f Ricker wavelet

-Sw filename source-time from file
-Se x y z a monopole source

-Sf x y z a theta phi force source

Slices

-Eo file output filename
-En n type plane loc n slices
-Es t type plane loc 1 slice

Receivers

-Mc vx vy constant horizontal

-Mg z0 dvx dvy vx0 vy0 linear gradient
-Mp dir u* z0 logrithmic gradient

-Mf file wind from 3D NetCDF

-M1 file wind from 1D text file

Quasi-wavelets

-Ro file output filename

-Rg type xvec yvec zvec grid of receivers

-R1 type x y z amp [theta][phi] I receiver

-Mg n rl rn dr add QW’s
-Mgh make QW distribution height dependent

-Mgv n update QW locations

-Mgf file write/read QW distribution from file

Note that -En and -E1 can take types WindVzx,
WindVy, WindVz to capture snapshots of the
OW wind field.

73

This page intentionally blank

74

Appendix B

Examples from the Beta Test

This appendix consists entirely of a set of examples. TDAAPS was required to meet a set
of specifications for DOD acceptance of the final product. These are the runs that where
performed for the successful Beta Test. The scripts for model generation and running in
the previous examples in this document have been “cleaned up” to remove complications
that result from the use of large models and long run times. The examples in this section
are largely “as run”; as such, they are longer and include details such as building models

that are too large to fit into memory one layer at a time.

B.1 Hill Test

The original Beta Test plan called for a hill to be implemented as a transition over a single
layer of nodes from the atmospheric conditions (C 342m/s and p 1.2Kg/m?) to a hard,
dense, rock-like material (C 3500m/s and p 1500K g/m>). We planned to use only a single
transitional layer of density nodes to maintain stability (Bartel et al., 2000). However, once
the test was underway we determined that “stair-step” diffractions from the surface of the
hill were scattering far too much energy into the shadow zone behind the hill. We were
able to fix this effect and obtain an acceptable match to the analytic solution (Berengier

and Daigle, 1988) by smoothing the interface. The smoothing was performed by assigning

75

10

20

30

40

50

nodes that were within a distance of 2 grid interval or less of the cylinder surface a value
that was the weighted harmonic average of the air and ground properties. The final grid
spacing for this model was 0.25m and the total model was 951 x 701 x 551(~ 367M)
nodes. The large size of the model meant that the complete 3D velocity and/or density field
could not be stored in memory at one time in Matlab™. For this reason the following script
(build_hill model2.m contains two functions for building the velocity and density. If the
model size is small the simple function to build the fields in one step is used; however, if

the model is large, then the fields are built up one layer a time.

function [mName]=build_hill model(dx,varargin)
%% Define the parameters of the model build
if nargin<1l

dx=0.50;

end
dt=2.5e-5*dx;
maxT=2.0;
standoff=8;

offset=50*dx;
soffset=100*dx;

minUX=100;
minX=-minUX-soffset;
maxX=minUX+offset;
yrange=75+offset;
minZ=-soffset;
maxZ=100+offset;

%% Define the parameters of the cylindrical hill.
center=[0 -200];
radius=sqrt(center(2) " 2+minUX"2);

%% Build vectors for the axes.
x=[minX:dx:maxX];
y=[-yrange:dx:yrange];

z

=[minZ:dx:maxz];
t=[0:dt:maxT];

NX=length(
NY=length(
NZ=length(
NT=length(

F N X

%% Build vectors for the receiver array and source.
re=5;

rx=5iminUX+lO:5:minUX];

ry=0*rx;

rz=sqrt((radius+re) 2-rx."2)+center(2);

sl=[-minUX 0 sqrt((radius+re)” 2-minUX." 2)+center(2)];
sw=monofreq(100,dt,length(t),’dur’,maxT, plot’);

sclear offset soffset minUX minX maxX yrange minZ maxZ;

%% Write the basic model.
mName=sprintf(’BetaHill2.dx%031.dt%0qg.ft%03i.cdf’,100*dx,dt,100*maxT);

fprintf(’Model is %ix%ix%1 (%.1fM) nodes; %i time-steps=>\n\t%s\n’,...
NX,NY,NZ,NX*NY*NZ/1e6,NT,mName) ;

writeSgfdModel (mName,x,y,z,t,...
"comment’,sprintf(’Version 1.0: dx=%.1f; dt=%5g’,dx,dt),...
"history’,textFromFile(’build_hill_model.m’),...
"pressurereceivers’,rx,ry,rz,...

76

"pressuresource’,sl,sw);
clear re rx ry rz sl sw;

out=netcdf (mName, 'write’);
out.title='TDAPS Beta Test Hill Model Input File’;
60
%% And fill in the variables.
if NXTNY*NZ<1e6§25. .
fprintf(’\tBuilding complete model in 3D\n’);

build_model_3D;

else
fprintf(’\tBuilding model 1 layer at a time\n’);
build_model_layer_at_a_time;

end

70 %% Close the file.
close(out);
clear out;

clear offset soffset minUX minX maxX yrange minZ maxZ;

% Now make a plot of the variable(s).
plot_model (mName, 'vp’,’'yflip’,'colorbar’, "horz’,’subplot’,2,1, 1),
plot_model(mName,’rho’,’yflip’,’colorbar’,’horz’,’subplot’ 1,2);
if exist(’mNameRho’)==1
80 plot_model (mNameRho,'rho’,’yflip’,’colorbar’, "horz’,’subplot’,2,1,1
plot_model (mNameRho, 'rho’,’yflip’,’colorbar’,"horz’,’subplot’,2,2,3
14 ror 3 14
yz',’index’,11);
plot_model (mNameRho, 'rho’,’yflip’,'colorbar’, "horz’,'subplot’,2,2,4,...
"yz',’index’,10);
else
plot_model (mName, 'rho’,'yflip’,’colorbar’, "horz’,’subplot’,2,1,1);
plot_model (mName, 'rho’,’yflip’,’colorbar’,"horz’,’subplot’,2,2,3,...
14 14 I3 14
yz',’index’,11);
plot_model (mName, 'rho’,’yflip’,’colorbar’, horz’,’subplot’,2,2,4,...
90 "yz','index’,10);
end

o\° o\© o\°

)i

oe

LOCAL FUNCTIONS

o\Po\e o\

oe

function build_model_3D

Build the complete 3D model in one step. This is the easiest way to do it
if the model is not too large to fit into memory all at once.

100 function build_model 3D

[Y,Z,X]=meshgrid(y,z,x);

%clear Y;

D=sqrt(X. 2+(Z-center(2))."2);

$clear X Z;

o\°© o\ o\°

%% Define a variable for vp and fill it in.
ut{’vp’}=ncfloat(’'Nz’",’'NY’",’'NX");
vp=342*ones(NZ,NY,NX) ;
vp(D<=radius &...
110 X>(minX+standoff*dx) & X<(maxX-standoff*dx) & .
Y>(-yrange+standoff*dx) & Y<(yrange- standoff*dx) &...
Z>(minZ+standoff*dx))=3500;

dx2=sqrt(2)*dx*2;
for i=standoff+2:NX-standoff-2
for j=standoff+2:NY-standoff-2
for k=standoff+2:NZ-standoff-2
if abs(radius-D(k,j,1))<dx2
% This is within one node of the surface.
120 if D(k,j,')>radius
%$This 1is the air sid
dA=(D(k,j,i)-radius) /dx2/2
$vp(k,j,1)=1/((1-dA) /342+(dA)/3500);
vp(k,j,1)=1/((0.5+dA)/342+(0.5-dA)/3500);
else

77

$This is the rock side or the exact middle.
dR=(radius-D(k,73,1))/dx2/2;
$vp(k,j,i)=1/((dR)/342+(1-dR)/3500);
vp(k,j,1)=1/((0.5-dR)/342+(0.5+dR)/3500);
130 end
end
end
end
end

imagesc(x,z,squeeze(vp(:,1,:)));
axis image;

colorbar(’'horz’);
set(gca,’YDir’, 'normal’);

140 out{’'vp’}(:,:,:)=vp;

o\° o\° o\° o\©

[

%% Determine a 1st order polynomial to fit the vp vs. rho.
p=polyfit([342 3500],[1.2 2000],1);
rho=polyval(p,vp);

%% Define a variable for rho and fill it in.
out{’rho’}=ncfloat(’'Nz’,'NY’,'NX");
rho=1.2*%ones(Nz,NY,NX) ;
rho (vp>1000)=2000;

150 for i=1:NX

for j=1:NY
for k=1:NZ-1
if rho(k,3,1)>1000
modify=0;
for ii=max(1l,i-1):min(NX,i+1)
for jj=max(1l,j-1):min(NY,j+1)
for kk=max(1l,k-1):min(NZ,k+1)
if vp(kk,3jj,11)<500

modify=1;
160 end
end
end
end
if modify
rho(k,j,1)=100;
end
end
end
end
170 end

out{’rho’}(:,:,:)=rho;
clear rho vp;
clear X Y Z;

end % function build_model_3D

% function build_model_layer_at_a_time

Build the 3D model one layer at a time. This is more complicated but is
required if the model is too large to fit into memory at one time.

180 function build_model_layer_at_a_time

if NX*NY*Nz/1e6>0.250

fprintf(’Creating seperate files for Vp and Rho\n’);

mNameVp=sprintf(’BetaHill2.dx%031.dt%0g.ft%03i_vp.cdf’, ...
100*dx,dt,100*maxT) ;

mNameRho=sprintf(’BetaHill12.dx%031.dt%0g.ft%03i_rho.cdf’,...
100*dx,dt,100*maxT) ;

writeSgfdModel (mNameVp,x,v,z,t);

outVp=netcdf (mNameVp, 'write’);

writeSgfdModel (mNameRho,x,y,z,t);

14

o\° o\ o\°

190 loutRho:netcdf(mNameRho,’write’)
else
outVp=out;
outRho=out;
end
%% Make the grid for one layer only.
[X,Y]=meshgrid(x,y);

78

200

210

220

230

240

250

260

270

%% Deflne and fill both variables at the same time.
outVp{'’vp’}=ncfloat(’'NzZ’,'NY’,'NX");

vp= 342*ones(3 NY ,NX);
outVp{’'vp’}(1)=vp
outh{’vp’}(end,: D)=

outRhoé’rho’}=ncfloat
rho=1.2*ones(3,NY,NX) ;
outRho{’rho’ }(1,:,:)=
outRho{’rho’}(end,:,:

dx2=sqrt(2)*dx*2;
p=polyfit([342 3500],[1.2 2000],1);

wh=waitbar(0,’Layer 1’,’Name’,sprintf(’%i Layers’,hNZ));
for k=2:length(z)-1

waltbar(k/NZ wh,sprintf(’Layer %i’,k));

% Generate the current distances.

Nz','NY','NX");

D(t)=sqgrt(X. 2+(z(k-1) center(2)).A2);
D(2 :)=sqrt(X.A2+(z(k)—center(2)).AZ);
D(3,:,:)=sqrt(X."2+(z(k+1l)-center(2))."2);
$Shift the layers down by one.
vp(l,:,0)=vp(2,:,:);vp(2,:,:)=vp(3,:,:);
vp(3,:,:)= 342*oneS(NY NX),

rho(l, :)=rho(2 2 r o(2,:,:)=rho(3,:,:);
rho(3,: ,:) 1. 2*ones(N ,NX) ;

if k>standoff
vp(3,
squeeze(D(3,:,:)<=radius) &..
X>(minX+standoff*dx) & X<(maxX standoff*dx) &
Y>(-yrange+standoff*dx) & Y<(yrange- standoff*dx)) 3500;
for i=standoff+2:NX-standoff-2
for j=standoff+2:NY-standoff-2
if abs(radius-D(3,7,1))<dx2
% This is within one node of the surface.
if D(3,j,1)>radius
dA=(D(3,],1)-radius)/dx2/2;
vp(3,7,1)=1/((0.5+dA)/342+(0.5-dA)/3500);
else
dR=(radius-D(3, j 1))/dx2/2;
vp(3,3,1)=1/((0.5-dR)/342+(0.5+dR)/3500);
end
end
end
end
end
outVp{'vp’'}(k,:,:)=vp(2,:,:);

rho(3,:,:)=polyval(p,vp(3,:,:));
for i=1:NX
for j=1:NY
if rho(2,7,1)>100
modify=0;
for ii=max(1l,i-1):min(NX,1i+1)
for jj=max(1l,j-1):min(NY, j+1)
for kk=1:3
if vp(kk,jj,11)<1000
modify=1;
end
end
end
end
if modify
rho(2,73,1)=100;
end
end
end

end
outRho{’rho’}(k,:,:)=rho(2,:,:);

79

end

close(wh);

clear D k vp rho;
clear X Y;

if exist(’'mNameVp’)==1
close(outVp);

close(outRho);
end

Q

280 end % function build_model_layer_at_a_time

10

%% END of file
end

A cross section of the acoustic sound speed and density through the model that results
from a call to build_hill model2(0.25) is shown in Figure B.1. Since this model con-
tains a large range of sound speeds (342m/s in the air and 3500m/s in the ground) the
boundary conditions were somewhat problematic. After some experimentation we deter-
mined that the attenuative layer (Section 2.5) needed to taper to a value that was very close
to unity (0.998). This is because the time-step was small (determined by the CFL ratio
using the high sound speed in the ground) and the waves in the air moved only a very small
distance in a single time-step. If “normal” values of the attenuation were used the energy
was attenuated too quickly and the result was a reflection from the start of the zone. The job
was run with a 7 x 4 x 3(84) processors decomposition on the ARL John Von-Neumann
(JVN) cluster. This is a Linux Networx Evolocity II using 3.6GHz Intel Xeon EM64T
processors. The total run time on the 85 processors was 32hr. Note that TDAAPS has
updating schemes for both fixed and moving-media acoustic propagation. When no wind
is specified (as is the case here) the much faster fixed media updating is used. The fixed
media updates require 45 floating point operations (FPO)/grid-point/time-step, while the
moving media updates require 300 FPO/grid-point/time-step. The run was performed with

the following script (BH2M100.script):

#!/bin/tcsh

#BSUB -n 85

#BSUB -m jvn

#BSUB -a mpich_gm

#BSUB -g standard

#BSUB -P HPCM09972011C
#BSUB -W 60:00

#BSUB -0 BH2M100.stdout
#BSUB —e BH2M100.stderr
#BSUB -J BH2M100

module load 1sf compiler/intel8.1 mpi/mpich-gm-1.2.6..14a
mpirun.lsf -np 85 \

/home/others/npsymon/curr/bin/2_4_21-286-login_lnxi_0_1i686/TDAAPS -p 7 4 3 \

-Ro trace.BH2M100.cdf -Eo slice.BH2M100.cdf \

80

XZ Cross Section of Acoustic Velocity

-100 -B0 £0 -40 -20] 20 40 &0 aa 100

XZ Cross Section of Density

-100 -B0 -60 -4 -0 o 20 40 &0]]

Figure B.1. Cross sections of the acoustic sound speed and den-

sity through the middle of the beta test hill model.

/home/others/stymon/models/Beta/Hill/BetaHillZ.dx025.dt6.25e—06.ft200.cdf \
-bS 75 0.998
-En 201 Pressure XZ 0 -En 201 Pressure YZ 0 -En 201 Pressure XY 5 -t 5000

The results were then processed and compared to the analytic residual series solution
Berengier and Daigle (1988) using the following Matlab™ script written by David Marlin
of ARL (pressure.m):

function [x,dBAnalytic,dBtdaaps] = pressure(fileName)

% Open the file and extract the time vector, use that to get the indicies
we want to use for the comparision.

in=netcdf (fileName);

t=in{’time’}(:);

o° o

81

10

20

30

40

50

60

iA=[1l:length(t)];
iC=1iA(t>=0.800 & t<1.000);
clear 1A t;

n=length(iC);

%% Determine the arc distance to the receivers.

Rc = sqrt(20572+10072); %223.6068; % radius of curvature

Dc = 2*pi*Rc; % Circle circumference.
a=asin((100+in{’receiverX’}(l:end-1))/Rc); % Angle of the circle

o)

x = a/(2*pi)*Dc; % Distance along the path.

%% Get the analytic solution.
%dBAnalytic=CurvedSurfResSoln(x);
dBAnalytic=CurvedSurfResSoln(100+in{'receiverX’}(l:end-1));

o\ o

we want to use for the comparision.
in=netcdf (fileName);

t=in{'time’}(:);

iA=[1:length(t)];

iC=1iA(t>=0.800 & t<1.800);

clear iA t;

n=length(iC);

%% Define some useful variables.
dx=0.30; % FDID grid spacing
dt=2e-5*dx; % FDTD time step
DX = 5; % microphone spacing

recData = in{’'receiverData’};

%% Build a taper to apply to the segments.
taper=cosineTaper(n,ceil(n/20));

%% Get the RMS pressure over the window.
for ndx = l:length(in{’receiverX’}(l:end-1))

data = recData(ndx,iC).*taper;

ms(ndx) = 2*data*data’/n; % *2 to convert sinusoidal rms to peak
end

loss.
Btdaaps

dBtdaaps

[N

%% Generate a set of plots.

subplot(2,1,1);
plot(x,dBAnalytic,’k-’,x,dBtdaaps,'r-*','LineWidth’,1.5);
set(gca,’LineWidth’, 2, 'FontSize’,15);

legend(’Residual Series’,’TDAAPS');

title(’Transmission Loss Comparison’,’FontWeight’,’Bold’);

subplot(2,1,2);
plot(x,dBtdaaps—-dBAnalytic,’k-",’LineWidth’,1.5);
axis([0 250 -10 101);

Q. 0P o

10*1ogl0(ms); % 10* because ms rather than rms

hold on

plot([56 2501,[(-3 -31,"k-—-",[50 250],[3 3],'k--",[200 20071,[-10 107],...
"k—--','LineWidth’,1.5);

hold off;

set(gca,’LineWidth’,2,'FontSize’,15);
title('Difference’,'FontWeight’,’Bold’);

The script pressure.muses CurvedSurfResSoln.m which is shown here:

function [pdb,raxis,rx] = CurvedSurfResSoln(raxis)
%$CurvedSurfResSoln Calculates the residue-series solution for

82

% Open the file and extract the time vector, use that to get the indicies

% Convert to dB, add a Kludge factor to make this look like a transmission

dBtdaaps+13; %Kludge factor to make this into transmission loss.

10

20

30

40

% propagation over a curved surface.

freq = 100; % frequency
cO = 342; % sound speed in air
rho0 = 1.2; % density in air
k0 = 2*pi*freq/c0; $ wavenumber
phi = asin(100/223.6068);
c = sqrt(20072+10072); %223.6068; % radius of curvature
$raxis = linspace(0, 2*phi*Rc); % ranges of interest
% should be rs along hill, not horizontal rx
rx from model is wrong (see comment in build_hill model, but that’s what
I used, so I’11l use it here. The errors are less than le-4.
if exist(’raxis’) =1
rx=Rc*asin(5/Rc)*[-18:1:201;
éaxis:Rc*asin((rx+100) ./Rc);
en

o\ o

o]

%Rc = 1000; % reduced gradient test case

% Set the zeros of the derivative of the Airy function
% (from A&S Table 10.13)
b

n_axis = [-1.01879297 -3.24819758 -4.82009921 -6.16330736 -7.37217726 ..
-8. 48848673 29.53544905 ~10.52766040 -11.47505663 -12.38478837];

ell = (Rc/(2*k072)).7(1/3);

kn = 1;

hs = 5; % source height

hr = 5; % receiver height

[r, bn] = meshgrid(raxis, bn_axis);

% Determine the horizontal wavenumbers.

kn = sqrt(k0°2 + bn/ell”2*exp(-1i*2*pi/3));

% Modal solutio
p = (pi*exp(i* p1/6))/ell * besselh(0,1,kn.*r).* ...
airy(0,bn-(hs/ell)*exp(i*2*pi/3)). *alry(O bn (hr/ell)*
exp(1*2*pi/3))./(-bn.*airy(0,bn)."2);
pdb = 20*1ogl0(abs(sum(p)));

And the results are shown in Figure B.2. Note that the TDAAPS solution shows a near-

source dip in the amplitude which corresponds to interference between the direct and near

normal-incidence reflection. The residual series is not expected to reproduce this detail.

B.2 Extinction and Coherence

The theoretical coherence for a signal propagating in an inhomogeneous atmosphere has
been calculated by Ostashev (1997). For this test we compare this prediction to runs using
TDAAPS with quasi-wavelet turbulence (Goedecke and Auvermann, 1997; Goedecke et al.,
2004).

The sound speed/density model used for the extinction and coherence test is a whole-

83

Transmission Loss Comparison
50 T T T

— Residual Serias.

ol : ——TDAAPS

'ED i & -_.-"-"l"l"l--— 2 9
-100 : . 5 5
0 50 100 150 200 250
Difference
1 D L T L]

= B e

i
1
1
i
1
1
1
i
1
i
1
i
1
i
1
i
1
i
1
i
1
1
i
1
1
1
i
1
i
1
i
1
i
1
i
1
i
1
i
wh
1
i
1
i
1
i
1
i
1
i
1
i
1

0 50 100 150 200 250

Figure B.2. Comparison of the analytic residual series solution
(Berengier and Daigle, 1988) and the finite-difference solution.

Vertical axes for both plots are in dB.

84

space, so construction is fairly simple. The only complication in the script (build model ExtCoh.m)

is the code to generate the two wheels of receivers at 200 and 400m:

function [mName]=build_model(varargin)

%% Check varargin for modifiers to the default arguments.
dx=0.5;
tend=4;

i=1;
while i<=length(varargin)
currArg varargin{i};
i=i+1;
argType =whos('currArg’);
if "strcmp(argType.class,’char’)
error(sprintf(’Optional argument %i, type %s must be char’,...
i,argType.class));
end

switch lower(currArg)
case 'dx’" =
dx=varargin{i};
i=1+1;
case ’'tend’
tend=varargin{i};

i=1+1;
case 'dt’
dt=varargin{i};
i=1+1;
otherwise
error(sprintf(’Unknown option %s’,currArg));
end
end
% set remaining parmeters.
sf=50/dx;
if exist(’dt’) =1
dt=dx/2000;
end
%% Build the model for the Extinction-Coherence test.
%% Build the model definition vectors.
x=[-450:dx:4507];
y=[-150:dx:150];
z=[-T75:dx:4507;
t=[0:dt:tend];
%% Build the receiver location vectors.
if exist('rx’) =1
theta=[0: 1991/199*p1,
ry=[-20:2:20];

r200=sqrt (200" 2-ry."2)
r400=sqrt (400" 2-ry."2)
for i=1: length(theta)

~e =~

rx200(1i,:)=r200*cos(theta(i));
rz200(i,:)=r200*sin(theta(i));
ry200(i,:)=[-20:2:20];
rx400(i,:)=r400*cos(theta(i));
rz400(1i, :)=r400*sin(theta(i));
ry400(i,:)=[-20:2:20];

end

clear 1 theta ry r200 r400;

rx=flatten({rx200 rx400);

ry=flatten([ry200 ry400]);

rz=flattené[rz200 rz4007]);

clear rx200 rx400 ry200 ry400 rz200 rz400;
end

%% Build the source waveform

85

sWF=monofreq(sf,dt,length(t),’dur’,t(end),’ts’,0.1,"te’,0.1,'plot’);
drawnow;

70
%% Create the model.
mName=sprintf(’extinctionModel.dx%02.0f.£ft%.0f.cdf’,10*dx,10*t(end));
sliceT=[1:101]/101*(t(end)-t(1))+t(1);
writeSgfdModel (mName,x,y,z,t,...

"comment’, ...

'Built with: "~ /models/CHSSI/Beta/ExtinctionCoherence/build_model.m’,...
"history’,textFromFile(’build_model.m’),...
"1D’,342,0,1.2,...
"PressureReceivers’,rx,ry,rz,...
80 "explosion’, [0 0 0],sWF,...
"slice’,’xzPressure’,sliceT,0);

The model built by this scriptis 1801 x 601 x 1051(~ 1137M) nodes.

For this test we performed two separate runs of TDAAPS. The runs used a 8 x 3 x
5(120) processors decomposition. The runs took 65kr on the ARL JVN machine. Both of
these runs used the AF:arg_file syntax to reduce the length of the actual calls to TDAAPS

within the scripts. The first script and argument file are for no turbulence:

1 #!/bin/tcsh

#BSUB -n 121
#BSUB -m jvn
5 #BSUB -a mpich_gm
#BSUB —-q standard
#BSUB -P HPCM09972011C
#BSUB -W 75:00
#BSUB -0 ExtCoh_fixed.stdout

10 #BSUB -e ExtCoh_fixed.stderr
#BSUB -J ExtCoh_fixed

module load 1sf compiler/intel8.1 mpi/mpich-gm-1.2.6..14a
mpirun.lsf -np 121
15 /home/others/npsymon/curr/bin/2_4_21-286-1login_lnxi_0_1686/TDAAPS -p 8 3 5 \
AF:args.run_05_fixed

with the argument file:

1 /home/others/npsymon/models/Beta/ExtinctionCoherence/extinctionModel.cdf

-Mc 0 0 -bs 50 90
-t 1000

-Ro
5 /home/others/npsymon/models/Beta/ExtinctionCoherence/trace.dx05.fixed.cdf

-FEo
/home/others/npsymon/models/Beta/ExtinctionCoherence/slice.dx05.fixed.cdf

And the second with quasi-wavelet turbulence:

1 #!/bin/tcsh

86

10

15

10

15

20

25

30

#BSUB -n 121

#BSUB -m jvn

#BSUB -a mpich_gm

#BSUB -q standard

#BSUB -P HPCM09972011C
#BSUB -W 75:00

#BSUB -0 ExtCoh_QW.stdout

#BSUB -e ExtCoh_QW.stderr
#BSUB -J ExtCoh_ QW

module load lsf compiler/intel8.1 mpi/mpich-gm-1.2.6..14a

mpirun.lsf -np 121 \
/home/others/npsymon/curr/bin/2_4_21-286-1login_lnxi_0_1686/TDAAPS -p 8 3 5 \
AF:args.run_05_QW

with the argument file:

/home/others/npsymon/models/Beta/ExtinctionCoherence/extinctionModel.cdf

-Mc 0 0 -bS 50 90
-Mg auto 32 2 1

-t 1000

-Ro
/home/others/npsymon/models/Beta/ExtinctionCoherence/trace.dx05.QW01l.cdf
-Eo
/home/others/npsymon/models/Beta/ExtinctionCoherence/slice.dx05.QW01.cdf

The data resulting from the two runs of TDAAPS was processed using the following

script CoherTestBetaNPS.m modified from an initial version provided by D. Keith Wilson:

%% Set some basic parameters.
LoadFile = 0; % Set to 1 to load previously calculated data from file; 0

3. to calculate then save to file. .
FileName = 'QWScatData’; % filename for loading or saving

% Graphics parameters.
linewidth = 2;
fontsize = 14;

[J

% Set number of receivers.

Ndist = 2; % number of distances

Nelem = 21; % number of elements in each array
Narray = 200; % number of arrays

Nrcv = Narray*Nelem*Ndist;

% Open the file without turbulence (QWs).
inF = netcdf(’../trace.dx05.fixed.cdf’, ’'nowrite’);

% Open the file with turbulence (QWs).

inQ = netcdf(’../trace.dx05.QW0l.cdf’, ’'nowrite’);
disp(’Loaded NetCDF files.’)
% Load the sample times.
t = inF{'time’}(:);
dt = t(2) - t(1); % time step
Nt = length(t); % number of time steps
*Nt):Nt]; % indices to process (loads last 6/10 of

Iproc = [round(0.4*N
% signals)
clear Iall;

[

nSamplesAdj = length(Iproc); % number of samples retained in Hilbert
% xfrm

87

35

40

45

50

55

60

65

70

75

80

85

90

95

100

[J

nEdgeRem = 800; % number of samples to remove at edges
tWin = t(Iproc);

tWin = tWin(nEdgeRem+l:end-nEdgeRem);

finalLen = 27 (nextpow2(length(tWin))-1)

tWin(l:finallen) - tWin(1l); % time axis for processed data

tWin =
freq = 100; % acoustic frequency

[J

% Loop through files, finding phase and amplitude for each sample.
WavePhasor = zeros(Nrcv, 1); % wave phasor for propagation thru turb,
% adjusted by reference phasor (wo/turb)
wh=waitbar(0,’Processing 00001’,'Name’,sprintf(’%i Receivers’, Nrcv));
for m = 1:Nrcv;

%disp([’Processing receiver ' int2str(m) ’ of ' int2str(Nrcv) '.’])
waitbar (m/Nrcv,wh,sprintf(’/Processing %05i’,m));

DataF inF{’receiverData’}(m,Iproc);

DataQ inQ{’receiverData’} (m,Iproc);

Window the data with a Tukey window to mitigate end effects. The

first and last 0.1 s are windowed. '
0.2 = duration of windowed region (s), 2.4 = total duration of

processed signal (s). Then calculate Hilbert transform.
XfrmDataF = hilbert(tukeywin(nSamplesAdj,0.2/2.4).*DataF’);
XfrmDataQ hilbert (tukeywin(nSamplesAdj,0.2/2.4).*DataQ’);

% Take the ratio to find complex phasor time series.
WavePhasorTime = XfrmDataQ./XfrmDataF;

Remove first and last 0.2 s (= 800 samples) to avoid edge effects,
take mean.
WavePhasor(m) = mean(WavePhasorTime(nEdgeRem+[1l:finallen]));

end

try
close wh;

catch

end

o\° o\®

save(FileName, 'WavePhasor'’);
%% Reformat the data.)
WavePhasor = reshape(WavePhasor, Narray, Nelem, Ndist);

)
°0

Plot sample phasor data at 200 m.

figure(1)

h = plot(reshape(WavePhasor(:,:,1),Narray*Nelem,1), '.k’");
set(h, ’markersize’, 5)

hold on

azi = linspace(0, 2*pi);

= plot(cos(azi), sin(azi),
set(h, ’llnewid’, linewidth)
axis(’ equal)
xlim([-4 4])
ylim([-4 47])
hold off
xlabel(’Real signal (norm)’, ’'fontsize’, fontsize)
ylabel(’Imag. signal (norm)’, ’'fontsize’, fontsize)
set(gca, ’'fontsize’, fontsize, ’'linewid’, linewidth)

k=)

%% Plot sample phasor data at 400 m.

figure(2)

h = plot(reshape(WavePhasor(:,:,2),Narray*Nelem,1), ".k’);
set(h, ’markersize’, 5)

hold on

azi = linspace(0, 2*pi);

h = plot(cos(azi), sin(azi),
set(h, ’linewid’, linewidth)
axis('equal’)

k")

xlim([-4 47])

ylim([-4 4])

hold off

xlabel(’Real signal (norm)’, ’'fontsize’, fontsize)

88

ylabel(’Imag. signal (norm)’, ’'fontsize’, fontsize)
set(gca, ’'fontsize’, fontsize, ’'linewid’, linewidth)

105
%% Calculate the mean data. R
MeankEnergy200 = mean(abs(reshape(WavePhasor(:,:,1),Narray*Nelem,1))."2);
MeanEnergy400 = mean(abs(reshape(WavePhasor(:,:,2),Narray*Nelem,1))."2);
Mean200 = mean(reshape(WavePhasor(:,:,1),Narray*Nelem,1))/...

110 sqgrt (MeanEnergy200) ;
Mean400 = mean(reshape(WavePhasor(:,:,2),Narray*Nelem,1))/...

sqrt (MeanEnergy400) ;

gammaSim200 = -log(abs(Mean200))/200;
115 gammaSim400 = -log(abs(Mean400))/400;

% gammaSim200 -log(real (Mean200))/200;

% gammaSim400 -log(real(Mean400))/400;

% Calcualte the coherence data.

120 SecondMom200 = zeros(Nelem, Nelem);
SecondMom400 = zeros(Nelem, Nelem);
for m = 1:Nelem,

for n = 1:Nelem,
SecondMom200 (m,n)
125 SecondMom400 (m,n)
end
end

ry = [-20:2:20];
130 ry_diff = ry’*ones(
rsep = [0:2:40]; %

(WavePhasor(:,m,1)’*WavePhasor(:,n,1))/Narray;
(WavePhasor(:,m,2)’*WavePhasor(:,n,2))/Narray;

1,Nelem) - ones(Nelem,1)*ry;
[0:2:20];

%% Find common spacings between elements.
Coher200 = zeros(length(rsep),1l
1

)
135 Coher400 = zeros(length(rsep),1);
)
),

alphaSim200 = zeros(length(rsep),1);
alphaSim400 = zeros(length(rsep),1l);
for m = 1l:length(rsep),

I = find(ry_diff == rsep(m));

140 Coher200(m) = mean(SecondMom200(1I))/MeanEnergy200;
alphaSim200(m) = -log(abs(Coher200(m)))/200;
Coher400(m) = mean(SecondMom400(1I))/MeanEnergy400;
alphaSim400(m) = -log(abs(Coher400(m)))/400;

end

145
%% Do calculations at 200m
load CoherPred200Corr
gammaTheory200 = gammac;
alphaTheory200 = alphac;

150

fh=figure(3);

set(fh,’'Name’,’'Errors at 200m’);

plot(raxis, exp(-alphaTheory200*200), rsep, real(Coher200), ’'go’,
rsep, imag(Coher200), 'co’)

155 hold on

\° o\

5 plot(rsep, exp(-2*gammaTheory200*200)*ones(size(I)), 'b--")
% hold off
xlabel(’Sensor separation (m)’)
ylabel(’Coherence’)

160 ylim([-0.2 1.027])

disp([’Error in gamma (%) at 200 m: ', ...
num2str ((gammaSim200-gammaTheory200)/gammaTheory200*100) 1)
disp([’Error in alpha (%) for 10-m sep at 200 m: ',
165 num2str((alphaSim200(6)-alphaTheory200(11))/...
alphaTheory200(11)*100)1])
This was giving a divide by zero error as originally written. The zero
was the first element of the theory.
%alphaErr200 = (alphaSim200-alphaTheory200(1l:2:end))./...
170 alphaTheory200(1:2:end)*100;
alphakErr200 = (alphaSim200(2:end)-alphaTheory200(3:2:end))./...
alphaTheory200(3:2:end)*100;

o\ o

89

175

180

185

190

195

200

205

210

figure(4)
splot(raxis(l:2:end), alphaErr200)
plot(raxis(3:2:end), alphaErr200); %This change follows from dropping
% the first element.
xlabel(’Sensor separation (m)’)

")

Q

ylabel(’Error in alpha (%)

%% Do calculations at 400m
load CoherPred4(00Corr
gammaTheory400 gammac;
alphaTheory400 alphac;

fh=figure(5);

set(fh,’'Name’,'Errors at 400m’);

plot(raxis, exp(-alphaTheory400*400), rsep, real(Coher400), ’'go’,
rsep, imag(Coher400), ’'co’)

% hold on

% plot(rsep, exp(-2*gammaTheory400*400)*ones(size(I)), ’'b--")

% hold off

xlabel(’Sensor separation (m)’)

ylabel(’Coherence’)

ylim([-0.2 1.02])

disp(['Error in gamma (%) at 400 m: ', ...
num2str ((gammaSim4 00-gammaTheory400)/gammaTheory400*100) 1)

disp(['Error in alpha (%) for 10-m sep at 400 m: 7, ...
num2str((alphaSim400(6)-alphaTheory400(11))/alphaTheory400(11)*100)])
This was giving a divide by zero error as originally written. The zero
was the first element of the theory.

alphaErr400 = (alphaSim400-alphaTheory400(1:2:end))./...
alphaTheory400(1:2:end)*100;

alphakrr400 = (alphaSim400(2:end)-alphaTheory400(3:2:end))./...
alphaTheory400(3:2:end)*100;

figure(6)

$plot(raxis(l:2:end), alphaErr400)

plot(raxis(3:2:end), alphaErr400); %This change follows from dropping
% the first element.

o\° o\© o\°

§label(’Sensor separation (m)’)
ylabel(’Error in alpha (%)')

The result of the comparison is shown in Figure B.3.

B.3 Zwikker-Kosten Partially Absorbing Boundary Con-

dition

The goal of this test was to show that TDAAPS could produce a result in a moving refractive-
atmosphere that matched a benchmarked fast-field program (FFP) result. In comparison
to the large and complex models for the hill and extinction-coherence tests this model
was fairly simple and small. The model for the propagation is a pair of welded half-

spaces with homogeneous air with a wind gradient above the boundary and absorbing

90

Cohaiencs

=

1%

B |

B2r

g

-] 10 1% i Fel 30 L] 40
Sersar peparation |m)

Figure B.3. Comparison of theoretical (solid line) and TDAAPS
(open green circles) coherence at 400m. The open blue circles
show the phase of the TDAAPS coherence (for which there is no

theoretical solution).

91

ground (Zwikker and Kosten, 1949) below the boundary. The input model for TDAAPS
isa 551 x401 x 281(~ 62M) nodes whole space. The model was easily created on the
UNIX command line with buildSgfdModel:

1 buildSgfdModel acoustic -I \
-x -50:0.5:225 -y -100:0.5:100 -z -40:0.5:100 -t 0:0.00025:1.000 \
-ml 1 342 1.2 —En 101 Pressure XZ 0 \
-Rg Pressure 0:1:200 0:0 1:1 \

5 -Sw mf100_1.txt -Se 0 0 5 1 model.benchmark?2.cdf

The run was performed with a 5 x 4 x 2(40) processors decomposition on JVN with

the following script:

1 #!/bin/tcsh

$BSUB -n 41
#BSUB -m jvn

5 #BSUB -a mpich_gm
#BSUB —-q standard

#BSUB -P HPCM09972011C
#BSUB -W 10:00

#BSUB -0 zkSnowMM.stdout
10 #BSUB -e zkSnowMM.stderr
#BSUB -J zkSnowMM

module load lsf compiler/intel8.1 mpi/mpich-gm-1.2.6..14a

mpirun.lsf -np 41

15 /home/others/npsymon/curr/bin/2_4_21-286-1login_lnxi_0_1686/TDAAPS -p 5 4 2 \
/home/others/npsymon/models/Beta/zK/model .benchmarkzK2.cdf \

-Mg 0 0.1 0 -bK 0 3000 1.8 0.8 -bS 40 95 \

-Eo slice.ZkSnowMM2.cdf -Ro trace.ZkSnowMM2.cdf

This run took less than 1hr. The ZK parameters are: Om for the interface location, 3000
flow resistivity, 0.8 for the porosity, and 1.3 for the tortuosity. The results of the FFP and
TDAAPS solutions are shown in Figure B.4. The match is excellent except in the near-field.

The FFP is a far-field solution that does not include near-field terms.

92

Transmission loss (dB)

th
=]

-60

‘?U i § 'l
0 S0 100 150 200
Fange {m)

Figure B.4. Comparison of FFP and TDAAPS transmission-loss
using the Zwikker-Kosten boundary condition with properties ap-

propriate for snow.

93

This page intentionally blank

94

Appendix C

Large Eddy Simulation (LES) Example

This appendix is an example of using TDAAPS to propagate sound through a realization of
the large-eddy Simulation (LES) atmospheric model code (Sullivan et al., 1996). This result
was presented in Symons et al. (2004). This example uses an unstable atmospheric case
(mixture of shear and buoyancy influence on the flow), generated by the NCAR LES model.
This LES simulation was run for u, = 5m/s, z;/Lyo = —6, and Qg = 0.025mK /s, where
ug is the geostrophic wind, z; is the boundary layer depth, Lyo is the Monin-Obukhov
length, and Q; is the surface heat flux. The computational domain considered is 2400m in

X, 2400m in y, and 1000m in z, with respective grid spacings of 4 m, 4m, and 2.5 m.

The LES results are output in a single binary file containing 3D arrays with the wind
and atmospheric property fields. For this particular example the LES was run on a Compaq
ES45 with a big-endian binary format. The following Matlab™ script translateLES.m
was used to read in the LES results, interpolate to a finer grid required for propagation of
the desired high frequency sound energy, and write two NetCDF files in the correct format

for TDAAPS (one containing the material properties and the other containing the winds):

function [properties,wind,coordinates,interpProp]l=translateLES(filename,varargin)
$FUNCTION translateLES

% Translate a Sullivan LES file into a set of symons netCDF format wind/material
% property file.

$REQUIRED ARGUMENTS: filename

$0OPTIONAL ARGUMENTS:

$Neill Symons; Sandia National Laboratories.

©

95

10

20

30

40

50

60

70

%% Default values for optional arguments.
doPlot=1;
fontSize=15;

origin=[{0 0 0];
coordinates.dx=4;
coordinates.dy=4;
coordinates.dz=2.5;

coordinates.nx=250;
coordinates.ny=250;
coordinates.nz=160;
fileInputFormat='1ieee-be’;

readEntireGrid=0;

%% Check varargin for modifiers to the default arguments.

i=1;
while i<=length(varargin)
currArg=varargin{i};
i=i+1;
argType=whos('currArg’);
if "strcmp(argType.class,’char’)

error(sprintf(’Optional argument %i, type %s must be char’,...

i,argType.class));
end

switch lower(currArg)
case {’interpolate’ ’interp’
interpProp.x=varargin{i+0}
interpProp.y=varargin{i+l}
interpProp.z=varargin{i+2}
interpProp.t=varargin{i+3};
i=1+4;

}
;
;
;

case 'data’
properties=varargin{i+0};
wind=varargin{i+l};
1=1+2;

case {’time’ 't’}
coordinates.t=varargin{i};
i=i+1;

case {'materialout’ ’'material’ ’'model’
materialOut=varargin{i};
i=i+1;

case {’splitwind’}
splitWindFiles=1;

case {'windout’ ’'winds’ ’'wind’}
windOut=varargin{i+0};
i=i+1;

case 'origin’
origin=varargin{i};
i=i+1;

case {'tref’}
tref=varargin{i+0};
i=1+1;

case {'geostropic’ 'ugal’}
ugal=varargin{i+0};
i=i+1;

case {’coordinates’ ’‘coord’ ’'c’}
coordinates=varargin{i}
i=i+1;

case {’increment’ ’dx’ ’'h’}
coordinates.dx=varargin{i+0};

96

"properties’ ’props’

’prop’ }

80 coordinates.dy=varargin{i+l};
coordinates.dz=varargin{i+2};
1=1+3;

case 'n’
coordinates.nx=varargin{i+0};
coordinates.ny=varargin{i+l};
coordinates.nz=varargin{i+2};
1=1+3;

90 case 'font’
fontSize=varargin{i};
i=i+1;

case 'title’
theTitle=varargin{i};
i=1i+1;

case 'axis’
theAxis=varargin{i};
i=i+1;

100 case 'extra’
curr=varargin{i};
i=i+1;
extraCommands={extraCommands{:} curr};
case {'plot’ ’print’ ’'save’ 'image’ ’out’}
imageDir=varargin{i};

i=i+1;
otherwise _
error(sprintf (’Unknown option %s’,currArqg));
110 end
end

if "isfield(coordinates,’x’)
%Defaults to be set after varargs are processed.
coordinates.x=coordinates.dx*[0:coordinates.nx-1]
coordinates.y=coordinates.dy*[0:coordinates.ny-1]

goordinates.z:coordinates.dz*[O:coordinates.nz—l];
en

r
4

120 %% Make local simple variables for the coordinate features.
nx=coordinates.nx;
ny=coordinates.ny;
nz=coordinates.nz;

dx=coordinates.dx;

x=coordinates.x;
y=coordinates.y;
z=coordinates.z;

130
%% Determine the number (and type) of variables to read from the file
% based on the name. This uses what I assume is the convention of always
% using the first part of the file name to indicate what is inside.
tok=strtok(filename,’.");
%% Read the z-levels.
if exist(’wind’) =1 | exist(’properties’) =1
%0pen the file.
in=fopen(filename,’'rb’,filelnputFormat);
140
if readEntireGrid
A=reshape(fread(in, [length(tok)*nx*ny*nz],’'float32’),[length(tok) nx ny nz]);
for i=1l:length(tok)
switch(tok(1i))
case 'u’
wind.U(:,:,:)=squeeze(A(i,:,:,:));
case 'v’)
w1ng ,(:,:,:)=squeeze(A(1,:,:,:));
case 'w
150 wind.W(:,:,:)=squeeze(A(i,:,:,:));
case 't’

97

160

170

180

190

200

210

220

progertles T(:
case

propertles P(:
otherwise

error(sprintf(’Unknown component
,i,filename));

tok(1i)
end
end
clear A;
else
if strfind(tok,
if strfind(tok,

;i)=squeeze(A(i,:,:,:
,)=squeeze(A(5,:,:,:));

%s at position

;wind.U=zeros([nx ny nz]);end
wind.V=zeros([nx ny nz]);end
wind.W=zeros([nx ny nz]);end
properties.T=zeros([nx ny nz]);end

%1 in file

o) 4
%S

("u

("y

if strfind(tok,’'w

if strfind(tok,’t

if strfind(tok,’'p

wh=waitbar (0, 'nul

"Name’ ,sprlntf(
for k=l:nz

")
")
")
")
")
ll

propertles P=zeros([nx ny nz]);end

1 Layer Waitbar’,nz));

waitbar(k/nz,wh,sprintf(’Layer $1i’7,k));

A=reshape(fread(in,[length(tok)*nx*ny],

for i=1: length(tok)
sw1tch(tok())
case 'u’
wind.U(:
case 'v’
wind.V(:
case 'w’
wind.W(:
case 't’
propertles LT(:
case
propertles P(:
otherwise

k)=squeeze(A(i
k)=squeeze(A(i

k)=squeeze(A(1i

k)=squeeze(A(1

"float32’),[length(tok) nx ny]l);

2))i

k)=squeeze(A(1

error(sprintf(’Unknown component %s at position %i in file %s’,

tok(i),i,filename));
end
end

end

close(wh);

clear A;
end
if exist(’ugal’)==1 & exist(’wind’)==1 & isfield(wind,’U’);

wind.U=wind.U+ugal;
end
if exist(’vgal’)==1 & exist(’'wind’)==1 & isfield(wind,’V’);

wind.V=wind.V+vgal;
end . . L. .
if exist(’tref’)==1 & exist(’properties’)==1 & isfield(properties,’T’)

properties.T=properties.T+tref;

end
%Close the file.
fclose(in);

end

%Check to see if an output file is to be generated.
[X,Y,Z]=meshgrid(coordinates.x,coordinates.y,coordinates.z);

if exist(’materialOut’)==1
if "isfield(properties,’vp’)

properties.vp=soundspeed(properties.T-273.15);

end _
if "isfield(properties,’rho’)

properties.rho=density(properties.T-273.15);

end)
rmfield(properties,’'T’);

propOut=openNetCDF (materialOut,...
interpProp.x,interpProp.y,interpProp.z,interpProp.t, ...

‘rho’});

'null’,

{’Vp’
wh=waitbar (0,

98

230

240

250

260

270

280

290

e

"Name’,sprintf(’%$1i Layer Property Waitbar’,length(interpProp.z)));
for k=l:length(interpProp.z)
waitbar(k/length(interpProp.z),wh,sprintf(’Layer %i’,k));

[XI,YI,Z2I]=meshgrid(interpProp.x,interpProp.y,interpProp.z(k));
vp=interp3(X,Y, Z,properties.vp,XI,YI,ZI,’linear’);

vp(isnan(vp))= 3

rho= 1nterp3(X,Y,Z,propert1es rho,XI,YI,ZI,’'linear’);
rho(isnan(rho))=1.2;

propOut{’vp’} (k, .) =Vp;

propOut{’ rho’}(,+,v)=rho;

end

close(wh);
close(propOut) ;
nd

$And check to see if a wind output file is to be generated.

i

e

i

e

o\Po\C o\
o\Po\° o\
o\Po\C o\

o\° o\® o\° o\® o\° o\° Hh oo\

%
i

f exist(’windOut’)==1

windOut=openNetCDF (windOut, ...
interpProp.x,interpProp.y,interpProp.z,interpProp.t,
{'Windvx’ 'WindVy’ 'Windvz'});

wh=waitbar (0, ’null’
’Name’,sprlntf(%1 Layer Wind Waitbar’,length(interpProp.z)));
for k=l:length(interpProp.z)
waitbar(k/length(interpProp.z),wh,sprintf(’Layer %i’,k));

[XI,YI,Z2I]=meshgrid(interpProp.x,interpProp.y,interpProp.z(k));

vx=interp3(X,Y,Z,wind.U,XI,YI,ZI,’'linear’);
vx(isnan(vx))=0;

vy=interp3(X,Y,Z,wind.V,XI,YI,ZI,’linear’);
vy (isnan(vy))=0;

vz=interp3(X,Y,Z,wind.W,XI,YI,ZI,’linear’);
vz (isnan(vz))=0;

windOut{'Windvx’} (k,:,:)=vx;
windOut{'WindVvy’}(k,:,:)=vy;
windOut{'Windvz'}(k,:,:)=vz;
end
close(wh);

close(windOut);
nd

f isfield(coordinates,’t’)==1 && exist(’properties’) &&
isfield(properties,’vp’) &&...
exist('wind’)==
wind=calculateDispersion(coordinates,properties,wind);
nd

LOCAL FUNCTIONS

o\°o\°

BEGIN density

unction rho = density(T, q, P)

DENSITY Density of air, including water vapor.
rho=density(T,q,P) returns the density of air, where T is the
temperature (C), g is the water vapor mixing ratio or specific
humidity, and P is the pressure (Pa). By default T is 20 C,
q 1s zero, and P is sea-level pressure.

D. Keith Wilson

Set default constants.

f nargln <1,
20;

99

300

310

320

330

340

350

360

end
if nargin < 2,

q=20;
end .
if nargin < 3,
P = 101325;

end
R = 287.09; % gas constant for dry air
ep = 0.6222; % ratio of molecular masses for water vapor and dry air

Find the virtual temperature.
= T.*(1+((1-ep)/ep)*q);

H o\

v

% Use the ideal gas law.
rho = P ./ (R*(Tv+273.15));
$%END density

o\°o\°

BEGIN soundspeed

unction ¢ = soundspeed(T, q)

SOUNDSPEED Adiabatic sound speed in air.

c=soundspeed(T,q) returns the adiabatic sound speed in air,
where T is the temperature (C) and g is the water vapor mixing
ratio or specific humidity. By default T is set to 20 C and g

is zero.
%D. Keith Wilson

o\° o\° o\° o\© o\° Hh o\Po\e

% Set default values.
if nargin < 1,

T = 20;

end

if nargin < 2,
q=0;

end
R = 287.09; % gas constant for dry air
gamma = 1.4; % ratio of specific heats for dry air

oe

Use the ideal gas law to find sound speed.
= (gamma*R* (T+273.15).*%(1+0.515*%q))."0.5;
END soundspeed

o\ o
o\° o\°

oo\

BEGIN interpW

unction Wi=interpW(wind,coord)

Interpolate Wi from Peter’s staggered grid onto the unit nodes.
I

o\° Hh o\Co\e

nitial attempt looked like:
[Xi,Yi,Zi]=meshgrid(coord.x,coord.y,coord.z);
Wi=interp3(coord.x,coord.y,coord.z+coord.dx/2,wind.W,Xi,Yi,zi);
$This would work but Matlab crashes because it runs out of memory.

o\° o\° o\

%Try doing 1 2D plane at a time.

[Yi,Z1i]=meshgrid(coord.y,coord.z);

y=coord.y;

z=coord.z+coord.dx/2;

for i=l:coord.nx

$for i=1:5
curr=squeeze(wind.W(i,:,:))’;
Wi(i,:,:)=interp2(y,z,curr,Yi,Zi);

end ,
Wi=permute(Wi,[1l 3 2]);
$%END interpW

BEGIN calculateDispersion
function wind=calculateDispersion(coord,properties,wind)

dx=coord.dx;
dt=coord.t(2)-coord.t(1);

100

370

380

390

400

410

420

430

if "isfield(wind,’total’)
wind.total=sqrt(wind.U. 2+wind.V. 2+wind.Wi." 2);

end
maxApparentVel=max(flatten(properties.vp+wind.total));

minApparentVel=min(flatten(properties.vp-wind.total));

fprintf (...
"Calculating dispersion/stability criteria with Vmin %.2f and Vmax
minApparentVel ,maxApparentVel);

fprintf(’ Recommended maximum source frequency is %$.1fHz (%1f/(5*%
minApparentVel/(5*dx),minApparentVel,dx);

fprintf(’ CFL "%.3f ({%.5f*%.2f}/%.1f\n’,...
(dt*maxApparentVel)/(dx) ,dt maxApparentVel,dx);

END calculateDispersion

BEGIN addBottom .
function [vpB,z]=addBottom(addbottomnodes,vp,coordinates)
for i=l:addbottomnodes)

z(1):—coordlnates dx*(addbottomnodes+l—1);

vpB(:,:,1)=vp(:,:,1);

e
z (addbottomnodes+1:addbottomnodes+coordinates.nz)=coordinates.z(:);
B(:,:,addbottomnodes+1:addbottomnodes+coordinates.nz)=vp(:,:,:);

END addBottom

o —~3
o.

o

function vpI=doInterpolation(x,y,z,vp,interp,out,var)
h=waitbar(0,sprintf(’Interplolating %s’,var));
out{var}t=ncfloat(’'Nz’,'NY’,'NX");
for i=1:length(interp.z)
cz=interp.z(1i);
$[v,index]=max(x(l:end-1)<cx(i) & cx(i)<=x(2:end));
[Yi,Xi,Zi]=meshgrid(interp.x,interp.y,cz);
vpl=interp3(x,y,z,vp,Xi,Yi,Z21i);
out{var}(i,:,:)=vpI;
waitbar(i/length(interp.z),h);
end
close(h);
$%END doInterpolation

o\
oe

$$FUNCTION [out]=openNetCDFFile(filename,params)
function [out]=openNetCDF(filename,x,y,z,t,vars)

%0pen the file.

$.2f\n’, ...
£))\n’,

if exist(’params’)==1 & isfield(params,’noclobber’)==1 & params.noclobber

out=netcdf(filename, 'write’);
else
out=netcdf(filename, 'clobber’);

%Set some global attribute describing how this file was created.
out.title='Staggered Grid Finite-Difference Model Input File’;
out.history ’Created with matlab writengdModel m’;

if exist(’params’)==1 & isfield(params,’comment’)
out.comment=params.comment;

end

$Set the dlmen31ons.
out (' numCoord)=

out (’NX’)= length(x),
out(’'NY’)=length(y);
out(’'Nz’)=length(z);
out (’'NT’)=length(t);

%Define and fill the increment variables.
out{’'minima’}=ncfloat(’'numCoord’);

101

out{'minima’}(:)=[x(1) y(1) z(1) t(1)];
440 out{’increments’}=n cfloat(’ numCoord’) ;
out{’increments’}(:)=[x(2)-x(1) y(2)—y(l) z(2)-z(1) t(2)-t(1)];

%$Define and fill the position variables.

out{’x’"}= ncfloat(NX'");
out} x’{(
out{’y’ =ncfloat(NY'");
out{’'y"}(:)=y
out{’z’}=n cfloat(NZ'");
out{’z"}(:

450 out{’time’}= ncfloat(NT');
out{’time’} (:)=t;

end

for i=1:length(vars)
8ut{vars{i}}:ncfloat(’NZ’,’NY’,’NX’);
en

Note that the LES output provides temperature and pressure. These are converted to
acoustic sound speed and density using internal functions provided by D. Keith Wilson.

The model was actually produced with a 2m grid spacing and is shown in Figure C.1.

For the run TDAAPS was called with two advanced features which were used to refine

the model grid by a factor of 2 and change the time vector. The call is shown here:

1 /hafs4/npsymon/src/acoustic_sgfd/TDAAPS -p 6 6 3 \

/workspace/npsymon/models/LRSPS/LES_unstable/bb2.0001.2m.prop.cdf \

-T 0:0.00025:2 -D 2 \

-Mf ~/workspace/npsymon/models/LRSPS/LES_unstable/bb2.0001.2m.wind.cdf \
5 -bV -bS 40 95 \

-Sr 20 -Se 300 500 2 1 \

-En 101 Pressure XZ 500 -En 101 Pressure YZ 300 \

-Rg Pressure 100:2:900 100:2:900 1:1:1 -Rs 4 \

-Eo /workspace/npsymon/models/LRSPS/LES_unstable/slice.0001.1m.cdf \
10 -Ro /workspace/npsymon/models/LRSPS/LES_unstable/trace.0001.1lm.cdf

This call specifies:

1. a 6x6x3(108) processors decomposition,

2. the model filename,

3. the new time vector and the grid multiplication factor,

4. the moving-media wind filename,

5. avelocity-free (hard surface), a 40 node to 95% attenuation zone,

6. a 20Hz Ricker wavelet source waveform and a monopole source at (300, 500, 2)m,
7. two sets of time-slices on the XZ and Y Z planes,

8. a grid of pressure receivers (microphones),

102

349
3489
24848
3487

13486

{348.5

I
1348.4

3a8.3

3482

2481

348

Figure C.1. The model used for sound propagation through the
LES results. The color of the slices shows the acoustic velocity

and the stream lines show the wind direction.

103

9. the slice output filename,

10. and the trace output filename.

This run took 10Ar on 100 processors of a Compaq ES45 on the Aeronautical Systems

High Performance Computing machine.

Some results of this simulation are shown in Figure C.2 for slices in the three planes.
For times greater than 0.4 s, we can see a subtle effect of the atmosphere on the acoustic
wave. Here low-amplitude pressure events trail the main diverging wavefronts. This effect
is due to scattering from atmospheric heterogeneities in sound speed, density, and ambient
velocity. It is most prevalent at 1.7s, where there is a small filling in of the field in the right

side of the domain.

104

Tty Téba

Tt T 133

Eimg nim
Téida T 178

Kim Kim
Toim ThbS

Figure C.2. Several snapshots of the acoustic wave-field being

propagated through the LES model.

105

This page intentionally blank

106

DISTRIBUTION:

1 David Marlin 1 MS 0750
AMSRD-ARL-CI-ES Neill P. Symons, 06116
White Sands Missle Range, NM
88002-5501 I MS 0750

David F. Aldrige, 06116
1 Keith Wilson

ERDC-CRREL 1 MS 0750
72 Lyme Rd. Lewis C. Bartel, 06116
Hanover, NH 03755-1290 1 MS 0750

) Gregory J. Elbring, 06116
1 Rodney W. Whitaker

EES-2 MS J577 1 MS 1161
Los Alamos, NM 87545 Terry K. Stalker, 05432

1 Sandra L. Collier 1 MS 0380
AMSRD-ARL-CI-ES Timothy F. Walsh, 01542
2800 Powder Mill Road

Adelphi, MD 20783-1197 1 MS 1243

Christoper J. Young, 05533

1 Michael J. White 2 MS 9960
US Army ERDC/CERL Central Technical Files, 8945-1
PO Box 9005
2 MS 0899

Champaign, IL 61822-1072
Technical Library, 4536

107

