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UNCLASSIFIED 

Abstract 

The conventional contour method detennines one component of stress over the cross 

section of a part. The part is cut into two, the contour of the exposed surface is measured, and 

Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the 

contour method is extended to the measurement of multiple stress components by making 

multiple cuts with subsequent applications of superposition. The theory and limitations are 

described. The theory is experimentally tested on a 316L stainless steel disk with residual 

stresses induced by plastically indenting the central portion of the disk. The stress results are 

validated against independent measurements using neutron diffraction. The theory has 

implications beyond just multiple cuts. The contour method measurements and calculations for 

the first cut reveal how the residual stresses have changed throughout the part. Subsequent 

measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole 

drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of 

the body. 
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Abstract 

The conventional contour method determines one component of stress over the cross 

section of a part. The part is cut into two, the contour of the exposed surface is measured, and 

Bueckner' s superposition principle is analytically applied to calculate stresses. In this paper, the 

contour method is extended to the measurement of multiple stress components by making 

multiple cuts with subsequent applications of superposition. The theory and limitations are 

described. The theory is experimentally tested on a 316L stainless steel disk with residual 

stresses induced by plastically indenting the central portion of the disk. The stress results are 

validated against independent measurements using neutron diffraction. The theory has 

implications beyond just mUltiple cuts. The contour method measurements and calculations for 

the first cut reveal how the residual stresses have changed throughout the part. Subsequent 

measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole 

drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of 

the body. 
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Introduction 

The recently introduced contour method provides uncommon capabilities for residual 

stress measurement [1] , most notably the ability to make a two-dimensional (2D) cross-sectional 

map of residual stresses. In the contour method, the part is cut into two and the measured contour 

of the exposed surface is used to calculate stresses. The contour method is useful for studying 

various manufacturing processes such as laser peening [2-5], friction stir welding [3 ,4,6] and 

fusion welding [1 ,7-10]. Some of the applications are quite unique such as mapping stresses in a 

railroad rail [11], in the region of a individual laser peening pulse [12], and under an impact 

crater [13]. 

Advantages of the contour method are accompanied by the limitation that the 

conventional contour method can only measure the stress component normal to the cut plane. 

However, it is difficult to measure a 20 map ofrnultiple residual-stress components with other 

techniques. Sectioning techniques, which require multiple cuts and strain gauges, can in principle 

reconstruct a three-dimensional (3~) stress map [14,15] . These techniques are time consuming 

and rarely applied. Spatially refined 20 or 3D neutron diffraction stress maps [16] have practical 

limits because the required beam time grows exponentially with the dimensionality of mapping. 

The deep hole method can measure multiple stress components through the thickness of a part 

but only provides aID stress profile [17]. An alternate approach (or full-field residual stress 

determination is to use analytical techniques with physically based assumptions, such as 

eigenstrain, to expand limited measurements to a more complete stress state [5 ,15,18-23]. 

There are several approaches, each with unique capabilities, for augmenting the 

conventional contour method to measure multiple stress components. The method presented in 

this paper uses multiple cuts and reconstructs the original residual stress component normal to 

each cut. Original residual stresses are those before the first cut rather than after the first cut has 
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caused some relaxation. Multiple cuts are already used to measure mUltiple stress components 

with the contour method. However, instead of reconstructing the original stresses the results are 

compared to finite-element models that simulate the manufacturing process and also the cuts 

[24). The "multi axial" contour method gives all the stress components on a single plane by 

making additional cuts at 45 degrees from the first cut and limiting the application to a 

continually processed part [25,26). The surface superposition contour method reconstructs 

multiple stress components on a single-cut plane without additional cuts or processing 

assumptions, but it requires a surface stress measurement technique in addition to the contour 

method [27,28). 

This study presents the superposition-based theory for the multiple cuts contour method 

and the theoretical limitations. It shows experimental application on an indented disk with 

validation against neutron diffraction measurements and a finite-element model of the specimen. 

Theory 

First cut 

Before introducing the new theory for multiple cuts, the principal for a single cut is 

reviewed [29] . The contour method is based on a variation of Bueckner's superposition principle 

[30). Figure 1 shows the traditional contour method in steps A through C. A shows the 

undisturbed part containing the residual stresses that are to be determined. The part is cut in two 

and deforms as residual stresses are released by the cut. B shows half of the part in the post cut 

state with new, partially-relaxed stresses. The surface contour is measured at this point. C is an 

analytical step in which the surface created by the cut is forced back to its original flat shape. 

Assuming elasticity, superimposing the partially relaxed stress state in B with the change in 

stress from C gives the original residual stress throughout the part: 
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o-(A) =o-(B) + o-(C) (1) 

where cr without subscripts refers to the entire stress tensor. 

Original residual 
stress distribution 

zh A 

+ 
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ox(y) 
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Part cut in half, 
stresses relieved 
on face of cut 

=8 

+C 

Part cut in half, 
stresses relieved 

c::::::> ( on face of cut 

=D 

Force cut surface back to original state 

Figure 1. Contour method superposition principle for traditional contour method (A- C) and mUltiple cuts (D­
E). 

Because the partially relaxed stresses in B are still unknown, one cannot obtain the 

original stress throughout the body. However, the normal (cr) and shear (t) stresses acting on the 

free surface in B, OX, tXy and tXz, must be zero. Therefore, C by itself gives those stresses along 

the plane of the cut: 

o-(A) =o-(C) 
x x 

1'(A) =1'(C) (2).xy .xy 

1'(A) = 1'(C) 
XZ X'Z 

In practice, only the normal stress component OX, can be experimentally determined. The 

measurement of the contour only provides information about the displacements in the normal 

direction, not those in the transverse directions. Therefore, the surface is displaced back to the 

flat configuration in the x-direction only. The shear stresses r:,y and 1'xz are constrained to zero in 
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the solution for C. This stress-free constraint on the surface is automatically enforced in most 

structural finite-element analyses if the transverse displacements are left unconstrained. 

Multiple cuts 

Once the part has been cut in two, the original OJ or Oi residual stresses on a different 

plane can be determined by making additional cuts and applying superposition twice. A 

conventional analysis of data from the second cut provides a map of the stress state after the first 

cut. Because the first cut causes local relaxation, those are not the original stresses. Fortunately, 

the same calculation that provides o-x from the first cut also provides all the necessary 

information to reconstruct the original stresses on the plane of the second cut. 

For the example of determining Oi, Figure 1 illustrates the theory for reconstructing the 

original residual stresses on the plane of the second cut. The part in B, which is half of the 

original part, is cut perpendicular to the z-direction. D shows the quarter-part deformed by the 

residual stresses relaxation. E is an analytical step in which the surface created by the second cut 

is forced back to its flat shape before the second cut (B). The stress state in B is given by 

superimposing the stress state in D with the change in stress from E. The original residual stress 

throughout the part in A is therefore given by the sum of the stress states in D, E and C: 

o-(A) =0-(8) + a (C) = a (D) + 0-(£) + o-(C) . (3) 

Because the partially relaxed stresses in D are unknown, one cannot obtain the original 

stress throughout the body. However, the normal and shear stresses on the surface in D, Oi, ~z 

and 'lj.z, must be zero. Therefore, the sum ofE, (equal to B on the cut surface) and C will give the 

original stresses along the plane of the second cut: 

o-(A) =a (£) + o-(C) 
z z z 

r (A) = r (£) + r(C) (4)
IX z.x zx 

r	 (A) = r (£) + r (C) 
zy zy zy 
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As before, only the normal stress component oz can be experimentally determined. The same 

procedure can be applied to obtain the OJ component ifthe cut is made along a plane normal to 

the y-direction instead of the z-direction. 

Additional Assumption 

An additional assumption, compared to the traditional contour method, is required for 

accurate results for stresses on the plane of the second or later cuts. One must assume that the 

shear stresses released by the first cut, 'lXy and 'lXz, are small. Numerical simulations [27,31] 

reveal that the limitation is insignificant for most practical applications. The reason for this 

assumption and an explanation for its minimal effect are given. 

Averaging measured contours removes the effect of shear stresses for the traditional 

single-cut contour method [29]. Normal stresses have a symmetric effect on the two opposing 

surfaces created by the cut. For example, a tensile stress causes a low spot on both surfaces. 

Shear stresses, by contrast, have an antisymmetric effect. In the case of symmetric parts, this 

effect can be averaged away when both contours are measured. 

A shear stress effect on the second cut does not average away unless one makes a third 

cut. If shear stresses (T".ry and 'lXz) are originally present on the plane of the first cut, the normal 

stresses in B will be affected. The perturbation relative to the effect of normal stresses alone is 

antisymmetric. So if one makes a third cut symmetric to the second on the opposite half, the 

error can be averaged away. 

The error is generally small for two reasons: (1) the shear stress magnitudes are usually 

relatively small, and (2) shear stresses have a reduced effect on the surface contour. Free­

boundary conditions require the shear stress components of interest to be zero on much ofthe 

boundary of the cut plane. Further, one of the local equilibrium conditions, Eq. 5, limits the rate 
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at which the shear stresses can increase away from the boundary (at'XY lay and at'XI /az )unless 

the stress gradient normal to the plane ( a(jXYlax) is significant: 

a(jx+ at'XY + at'XI = 0 (5)ax ay az 

The stresses normal to the cut plane have no such boundary restriction, which usually results in 

higher magnitudes. In addition, the coupling between shear stress relaxation and the measured 

contour is weak relative to normal stresses, on the order ofthe Poisson's ratio. 

Experimental Validation 

The theory was experimentally validated on a test specimen with an independently 

measured residual stress distribution. A 60-mm-diameter, 10-mm-thick disk of 316L stainless 

steel was plastically compressed on center with opposing I5-mm-diameter hardened steel 

indenters. The stresses were mapped using neutron diffraction and the single-cut contour method. 

The indention process was modeled using finite elements (FE) and a quasi-static analysis with a 

calibrated cyclic stress-strain model. The two measurement methods agreed with each other and 

the FE model within 20-30 MPa [32]. 

Standard contour method procedure was used to map stresses on two cut planes in the 

disk. The first cut was a diametrical cut, and a second cut made two quarter sections (refer to 

Figure 2). The cuts were made using wire electric discharge machining (EDM) with a 100-f..l1l1­

diameter brass wire. Skim-cut settings were used to minimize introduced stresses. The specimen 

was securely fixtured during cutting to minimize defonnation as the stresses relaxed. After 

cutting, the specimen was removed from the fixture and the contours of the cut surfaces were 

measured using a laser scanner [33] on an O.1-mm x O.04-mm grid. 
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Figure 2. The two cuts used to measure multiple stress components in the steel disk. 

The raw data was processed to calculate residual stresses using a standard procedure 

[33,34]. The point clouds (contour data) from the two opposing surfaces for a given cut were 

carefully aligned to one another after one cloud was flipped to coincide. The clouds were 

interpolated onto a common grid and pointwise averaged to minimize certain errors [29]. Figure 

3 shows the averaged contour for the first cut in the disk. Because the discrete data points did not 

extend all the way to the edges, missing data was filled in by linear extrapolation of interior data 

[27]. The resulting contour was fit to a surface using bivariate splines with the amount of 

smoothing chosen to minimize uncertainty in the calculated stresses. Figure 4 shows both the 

measured contour for the second cut and the smoothed spline fit. 
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Figure 3. The measured surface contour after the first cut in the disk. 
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Figure 4. The (a) measured surface contour for the second cut and (b) corresponding smoothed spline fit. 

Before the final superposition, the stresses immediately prior to each cut were calculated. 

Each surface was elastically defonned into the opposite shape of its measured contour (see 

Figure 5) using a 3D FE model with the Abaqus code [35]. The mesh consisted of linear 

hexahedral 8-node elements with reduced integration (C3D8R). The material behavior was 

elastically isotropic with an elastic modulus of 193 OPa and a Poisson's ratio of 0.3. The 
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smoothed surface was evaluated at node locations to write displacement boundary conditions. A 

static equilibrium step gave the stresses. 

Zx)Zx) 
(a) (b) 

Figure 5. The 3D finite-element model of the disk used displaced into the opposite of the measured contour for 
the (a) first and (b) second cuts. 

Finally, the original residual stresses on the plane of the second cut were calculated using 

superposition from the first line of Eq. 4. 

Results 

Figure 6 shows the superposition-based reconstruction of the original residual stresses on 

the plane of the second cut. Figure 6a shows that significant stresses are relaxed by the first cut. 

Figure 6b shows that the remaining stresses, measured by the second cut, are lower magnitude 

but still very significant. Figure 6c shows the summed reconstruction. The corresponding stresses 

measured by neutron diffraction [32], but over the whole cross section instead of half, are 

presented in Figure 7 for comparison. The root-mean-square difference between the contour and 

neutron results is 34 MPa for the reconstructed stresses on the second cut, which is only slightly 

higher than the difference of 28 MPa reported for the first cut stresses [32]. 
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Figure 6. Reconstruction of residual stresses on the second-cut plane. (a) (}z relaxed by the first cut (C in 
Figure 1), (b) remaining (}z measured by the second cut (B=E), and (c) reconstructed original (}z residual stresses 

(A=B+C). 
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Figure 7. The neutron diffraction map agrees with the reconstructed contour method stresses (Figure 6c 
corresponds to either half of this map) to a root-mean-square difference of about 34 MPa 

Line profiles of stresses are extracted for additional comparison. Figure 8 shows the 

stresses along the mid-thickness ofthe disk. Figure 8a shows the reconstruction steps from 

Figure 6, and Figure 8b shows the comparisons. Considering both experimental and modeling 

limitations, the reconstructed stresses are in very good agreement with the FE model and the 
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neutron diffraction measurements. Because of the axisymmetric specimen, the reconstructed 

stresses are also compared with the stresses measured on the first contour method cut. The close 

agreement between the two contour results indicates both good repeatability of the contour 

method and also minimal error accumulation from superimposing two contour method 

measurements for the reconstruction. 
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Figure 8. Residual stress profile along disk mid thickness: (a) reconstruction superposition, (b) comparison with FE 
model, neutron diffraction, and contour method results on the first cut (not reconstructed) . . 

Discussion and Conclusions 

The ability to measure multiple stress components on multiple cross sections is validated 

using a specimen with independently measured residual stresses_ The results of contour method 

and neutron diffraction measurements agree with each other and a finite-element model within 

20-35 MPa. Compared to other approaches for multiple components, this new method provides 

the advantage of requiring neither additional measurement techniques nor assumptions about the 

nature of the spatial variation of stress. The disadvantage is that the different stress components 

are determined on different cross sections of the part. 

The validated superposition principle has much wider application than just contour 

measurements. Because of experimental limitations, it is common to slice or otherwise reduce 
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the dimensions of a specimen before neutron diffraction [36-41] or synchrotron diffraction 

[42-45] strain mapping. On occasion, surface stresses are measured using laboratory x-rays on 

the face of a cut to probe internal stresses [46]. In all these cases, a contour method measurement 

in conjunction with the cutting steps could address the relaxation issue because the contour 

method reveals how all stress components have changed throughout the body. Using the contour 

method and superposition opens up possibilities to combine the advantages of different 

techniques and obtain unprecedented measurements and understanding. 
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