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ABSTRACT 

 
This report presents computational analyses that simulate the structural response of caverns at 
the Strategic Petroleum Reserve (SPR) West Hackberry site.  The cavern field comprises 22 
caverns.  Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a 
history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR 
standards in the mid-1980s and have tall cylindrical shapes.  The history of the caverns and their 
shapes are simulated in a three-dimensional geomechanics model of the site that predicts 
deformations, strains, and stresses.  Future leaching scenarios corresponding to oil drawdowns 
using fresh water are also simulated by increasing the volume of the caverns.  Cavern pressures 
are varied in the model to capture operational practices in the field.  The results of the finite 
element model are interpreted to provide information on the current and future status of 
subsidence, well integrity, and cavern stability.    
 
The most significant results in this report are relevant to Cavern 6.  The cavern is shaped like a 
bowl with a large ceiling span and is in close proximity to Cavern 9.  The analyses predict tensile 
stresses at the edge of the ceiling during repressuization of Cavern 6 following workover 
conditions.  During a workover the cavern is at low pressure to service a well.  The wellhead 
pressures are atmospheric.  When the workover is complete, the cavern is repressurized.  The 
resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span.  
With time, these stresses relax to a compressive state because of salt creep.  However, the 
potential for salt fracture and propagation exists, particularly towards Cavern 9.  With only 200 ft 
of salt between the caverns, the operational consequences must be examined if the two caverns 
become connected.   A critical time may be during a workover of Cavern 9 in part because of the 
operational vulnerabilities, but also because dilatant damage is predicted under the ledge that 
forms the lower lobe in the cavern. 
 
The remaining caverns have no significant issues regarding cavern stability and may be safely 
enlarged during subsequent oil drawdowns.  Predicted well strains and subsidence are significant 
and consequently future remedial actions may be necessary.  These predicted well strains 
certainly suggest appropriate monitoring through a well-logging program.  Subsidence is 
currently being monitored. 
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1. INTRODUCTION 

1.1 OBJECTIVE 

 
The U.S. Strategic Petroleum Reserve (SPR) stores crude oil in solution-mined caverns in the 
salt dome formations of the Gulf Coast.  There are a total of  62 caverns located at four different 
sites in Texas (Bryan Mound and Big Hill) and Louisiana (Bayou Choctaw and West 
Hackberry), as shown in Figure 1. Each cavern is constructed and then operated using casings 
inserted through a well bore or well bores that are lined with steel casings cemented in place 
from the surface to near the top of the cavern.  
 
The SPR sites, as well as most other oil and natural gas storage sites in salt domes along the Gulf 
Coast, are varied in terms of cavern structure and layout. At West Hackberry, the SPR purchased 
five existing caverns in the early 1980s.  These five caverns, Caverns 6, 7, 8, 9, and 11,  known 
as Phase 1 Caverns, were created as early as 1946 and were used for brine storage before the 
SPR took ownership of them in 1981. After purchase of the site, additional caverns were leached 
using standards that resulted in tall cylindrical shaped caverns; these caverns, numbered 101 
through 117, are referred to in this report as Phase 2 or post-1981 caverns.   This analysis 
evaluates the stress and deformation history of the Phase 1 and SPR leached caverns to the 
present day, and predicts the effects on cavern stability and well strain of subsequently enlarging 
the caverns.  
 
When the SPR took ownership of the Phase 1 caverns in 1981, finite element analyses were 
performed to assess the long-term performance and stability of the caverns (Preece and Foley, 
1984). The analyses were two-dimensional axisymmetric idealizations and each cavern was 
simulated independently of the others.  The failure function was based on accumulated strain as a 
function of pressure.  While the analyses at that time predicted stability, cavern workover 
conditions were not simulated.  Today’s capabilities extend far beyond those original analyses.  
The current analyses simulate the entire cavern field in three dimensions and thus capture cavern 
interactions.  The model presented herein also includes the drop in cavern pressures during 
workovers, an obvious adverse condition for the caverns from a closure and stability point of 
view.  In addition, the rock mechanics community has migrated away from accumulated strain 
based failure criteria for salt in favor of a stress criterion, and a large data base now exists to 
support the merits of that criterion.  The technology has dramatically improved since the 1980’s 
and since that time, SPR has collected cavern and subsidence data that enable comparison of 
model predictions to actual cavern and surface deformations.  This information enables a 
calibration of the model to field data and results in a much more accurate assessment of the stress 
state.  The necessity to update the analyses of West Hackberry is undeniable.  The following 
analyses will provide the best prediction to date of the current and future state of the SPR 
caverns at West Hackberry.     
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Figure 1: Location of SPR sites. 

 
The analysis of the West Hackberry site differs significantly from previous analyses.  The 
computational domain for this analysis includes specific caverns – the Phase 1 caverns plus 
Caverns 101, 103, 105, 108, 109, 110, and 117 – and half of the salt dome, as opposed to the 
previous two-dimensional calculations, or three-dimensional calculations that used a 30-degree 
wedge to a simulate symmetric 19-cavern field geometry of West Hackberry (Ehgartner and 
Sobolik, 2002). Many of the caverns in this analysis are meshed with geometries based on sonar 
data measurements. The entire lives of the caverns (construction, brine or oil storage, operating 
and workover pressures) are modeled individually for each cavern.  Finally, the sandstone that 
surrounds the salt dome is included in this analysis, providing a realistic far-field stress boundary 
condition. 
 
For these analyses, each of the caverns (except 103) experiences five leaching operations to grow 
the cavern, with a volume growth of approximately 15% for each leach. The leaching operations 
are simulated to begin in September 2008.  Caverns 6, 8, and 9 have significant potential 
interference issues which must be addressed in operational planning; this analysis has made 
assumptions about how those caverns will be enlarged.   
 
Four measures of cavern performance are evaluated in this study. The first measure uses dilatant 
damage factors as identified by a damage criterion, a linear function of the hydrostatic pressure 
(Van Sambeek et al., 1993). An additional damage criterion developed in recent literature 
(DeVries et al, 2002) will also be used to evaluate potential dilatant damage to the salt. The 
second performance measure looks at cavern volume closure for each cavern. The third measure 
evaluates the axial well strain in the caprock above the cavern, and the fourth measure looks at 
the maximum subsidence at the surface for each cavern. First, the long-term stability of the 
Phase 1 caverns, particularly for possible cavern volume expansion by leaching during oil 
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drawdowns, will be evaluated using these criteria. Then, the other caverns in the analysis 
simulation (except for 103) are also evaluated for volume closure potential. Cavern 103 is kept at 
its current shape to allow for a detailed examination of the effects of its non-conic section shape 
on salt stability. 
 

1.2 REPORT ORGANIZATION 

 
This report is organized in the following fashion: Section 2 gives a brief description of the West 
Hackberry cavern site to show the diversity of cavern geometries. Section 3 describes the 
analytis model, including the cavern designs, stratigraphy, material models, material properties, 
and damage criteria used for the analyses. Section 4 shows the results of the calculations, and 
identifies failure modes for the salt and the casings. Section 5 discusses the relationship between 
Caverns 6 and 9, and provides recommendations for site operations activities regarding them.  
Section 6 summarizes the results, and provides concluding remarks.  The report concludes with a 
list of cited reference in Section 7. 
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2. SITE DESCRIPTION 

West Hackberry is located in the extreme southwestern corner of Louisiana, some 15 miles from 
the Louisiana/Texas border to the west and the Gulf of Mexico to the south (Munson, 2006). The 
geological characteristics related to the West Hackberry site were first described by Whiting 
(1980). Magorian et al. (1991) utilized the earlier work, together with additional information on 
dome geology, surrounding stratigraphy, and relevant environmental information, to update the 
dome characterization. Conversion of the two-dimensional databases from these earlier 
characterization reports formed the basis for the most recent reexamination by Rautman et al. 
(2004) using modern three-dimensional methods for representation of the dome and its 
surroundings. While major aspects of the dome, caprock and surrounding strata defined by the 
earlier characterizations remain unchanged, the updated three-dimensional models of Rautman et 
al. (2004) used more refined analysis of the data and produced models of the dome that differed 
slightly from the earlier models. The three-dimensional models also achieve a level of 
visualization clarity and graphical manipulation previously impossible.  

The West Hackberry dome consists of the more-or-less typical geologic sequence of rocks. With 
increasing depth below the ground surface, initially there is roughly 1500 ft of soil and 
unconsolidated gravel, sand, and mud, followed by approximately 400 ft of caprock, consisting 
of anhydrite and carbonate (a conversion product of anhydrite). Generally, the upper portions of 
the caprock consist of the anhydrite conversion products of gypsum and dolomite, while the 
lower portion of the caprock is the initial anhydrite residue from the solution of the original 
domal material. The caprock is generally lens shaped with the thickest part of the lens over the 
central portion of the dome, tapering to thin edges toward the periphery of the dome; however, 
some portions of the caprock, even at the dome edge, are quite thick. In the updated model, the 
caprock even laps over the dome edge in several locations. The caprock is in contact with the top 
of the domal salt body. Beneath the caprock, the domal salt body extends to considerable depth, 
potentially to the original Louann bedded salt source.  

Figure 2 shows a plan view of the West Hackberry site (Magorian et al., 1991) with contour lines 
defining the approximate location of the salt dome’s interface with the caprock and surrounding 
sandstone. The approximate cavern locations are shown in the plan view. An updated geologic 
perspective of the salt dome and caprock is provided in Figure 3 (Rautman et al., 2004).  
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Figure 2: Plan view of the West Hackberry SPR site (Magorian et al., 1991). 

 

 

Figure 3: Perspective views of salt dome and caprock (Rautman et al., 2004) 

 
Figure 4 shows the cavern layout at the West Hackberry site (Munson, 2006). Two major shear 
sections have been identified near the caverns; these extend along the entire distance of the 
caprock, and for an unknown distance into the salt. These shear zones are not included in the 
computational model presented in this report.  Figure 5 shows cavern geometries based on sonar 
measurements obtained through 2007 (Rautman and Snider, 2007). Note the enlarged tops and 
asymmetries of the cavern shapes.  In general, caverns in the SPR are intentionally shaped with 
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larger tops to accommodate future oil drawdowns where the bottom portions of the caverns are 
preferentially leached, and hence the overall cavern shape becomes more cylindrical, because of 
raw water injections to remove the oil. Salt properties also result in unpredictable cavern shapes 
as the insoluble content or dissolution rates of salt can vary spatially.  This explains some of the 
asymmetries found in the cavern shapes. The Phase 1 caverns were acquired through purchase; 
these caverns have unusual shapes as they were not intentionally leached for product storage, but 
were used to produce brine.  Clearly a variety of shapes are currently found in the SPR and this 
variety of cavern shapes will continue through future drawdowns.   
 

 
Figure 4.  Schematic of the Location of the SPR Caverns at West Hackberry (Munson, 2006) 
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Figure 5. Visualization of the 22 oil-storage caverns at West Hackberry SPR site viewed from 

the south (Rautman and Snider, 2007).  
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3. ANALYSIS MODEL  

3.1 MODEL DESCRIPTION 

 
In several previous analyses, SPR sites have been modeled using a 30-degree wedge section cut 
out of a 19-cavern field (Ehgartner and Sobolik, 2002). Such a mesh has been used to apply 
three-dimensional geometric and geomechanical effects to an SPR cavern field with a minimum 
of mesh elements (usually under 100,000 elements). Several recent advances now permit a more 
comprehensive analysis of a salt dome cavern field. First, the computational code JAS3D has 
been parallelized, allowing for the use of up to 64 CPU nodes for calculations. Second, recent 
advances in cavern and salt dome geometric visualization based on sonar data allow a realistic 
representation of cavern geometry. Third, recent advances in meshing capabilities such as mesh 
cutting allow for converting cavern visualization geometries to computational meshes. Because 
of these advances, a new computational domain has been developed for the West Hackberry 
cavern field which encompasses half of the salt dome, with a vertical symmetry plane through 
six WH caverns (110, 109, 103, 101, 105, and 117).   
 
At the West Hackberry site, the five caverns known as Phase 1 – Caverns 6, 7, 8, 9, and 11 – 
were created as early as 1946 and were used for brining and brine storage before the SPR took 
ownership of them in 1981. After that time, seventeen other storage caverns were created over an 
eight-year period. Six of these post-1981 caverns (110, 109, 103, 101, 105, and 117) are arranged 
in a nearly linear fashion, allowing for the use of a vertical symmetry plane through them. A 
seventh cavern, 108, is also included in the computational field, for a total of five Phase 1 and 
seven post-1981 caverns. The analysis simulates the Phase 1 caverns that were leached to full 
size over some period of time and filled with brine until 1981 and then filled with oil.  The 
analysis also simulates the leaching of the post-1981 caverns and subsequent filling with oil.  In 
general, these caverns have been maintained at constant operating pressures except during 
workovers. The standard pressure condition applied to the cavern is based on an average 
wellhead pressure ranging between 900 and 975 psi. Beginning in 1984, a series of five-year 
cycles of cavern workovers was initiated.  During the five year cycle, every cavern is scheduled 
for a workover.  During the workover, the affected cavern is held at 0 psi wellhead pressure for 
three months.  The pressures for all caverns are then at normal operating pressure for the fourth 
month (so that the workover rig can be moved to a new well) and then the workover of the next 
scheduled well begins.  Previous analyses have shown that the abrupt pressure drop during the 
workover will induce the greatest potential for damage. The duration of the simulated workover 
may be slightly longer than is typically encountered in the field, but is chosen to provide an 
adverse condition and closely simulate actual subsidence measurements, which reflect periods of 
low to intermediate operating pressures associated with fluid transfers. After 2008, the 
simulation incorporates an additional feature.  Each of the caverns (except 103) are expected to 
experience five leaching operations to grow the cavern, with a volume growth of approximately 
15% for each leach. The leaching operations are simulated to begin in September 2008, which is 
the final four-month window in that particular five-year workover cycle.  This is repeated in 
2013, 2018, 2023, and 2028, and the calculation then performs one more workover for each 
cavern through 2033. Caverns 6, 8, and 9 have significant potential interference issues which 
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must be addressed in operational  planning; this analysis has made assumptions about how those 
caverns will be enlarged.   
 
In order to perform a cavern stability analysis that investigates damage in salt, the analytical 
tools ideally need to be able to perform the following functions: 1) calculate the changes in the 
in situ stress field and deformations surrounding the well and cavern over a long period of time 
resulting from the creep deformation of the salt; 2) include criteria by which tensile failure or 
shear damage of the salt can be determined and located; 3) have the ability to reduce the time 
step of the analysis to discretize short-time events such as changes in cavern pressure because of 
workovers; and 4) allow post-processing to be able to identify high strain and failure regions and 
compute cavern volume changes. The computational models utilized the finite element code 
JAS3D (ideal for simulations of processes occurring over many years), the power law creep 
model for salt, and the half-dome computational mesh.  
 

3.2 STRATIGRAPHY AND COMPUTATIONAL MESH 

 
The mesh for the computational model is illustrated in Figures 6 and 7. Figure 6 shows the entire 
mesh used for these calculations, and Figure 7 shows the same view with the overburden and 
caprock removed to expose the salt formation. Four material blocks are used in the model to 
describe the stratigraphic layers: the overburden, caprock, salt dome and sandstone surrounding 
the salt dome. The overburden is made of sand, and the caprock layer is made of gypsum or 
limestone. This stratigraphic material closely matches that used for Big Hill (Park et al., 2005), 
and it is thought to be reasonably accurate for the other SPR sites. The overburden layer is 1600 
feet thick, and the caprock is 400 feet thick. The post-1981 caverns were typically constructed on 
750-feet center-to-center spacings. Table 1 lists the cavern coordinates, top-of-cavern depths, and 
initial heights and volumes used in the analysis. The coordinates are based on Louisiana field 
coordinates, and converted to mesh coordinates with Cavern 103 at the origin, and coordinate 
axes aligned with compass directions (X-axis for W-E, Y-axis for N-S). 
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Figure 6.  Computational mesh used for the West Hackberry calculations. 

 
Figure 7.   Computational mesh showing the salt formation and surrounding sandstone. 
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Table 1: Cavern coordinates, depths, heights, and construction dates. 

 Coordinates* 
Depth to 
Ceiling, 

Init. 
Height,

Init. 
Volume, Begin End Begin Oil 

Cavern X, feet Y, feet feet feet MMB Construct Construct Storage 
Post-1981 caverns along the vertical plane of symmetry 

110 23.11 1499.328 2600 2000 11.0 2/1/1982 3/1/1985 3/1/1985
109 8.878 750.074 2600 2000 11.9 3/1/1984 11/1/1985 11/1/1985
103 0 0 2674 1676 12.0 5/1/1981 1/1/1984 1/1/1984
101 -12.665 -748.739 2600 1800 11.5 5/1/1981 12/1/1983 12/1/1983
105 -22.083 -1499.731 2600 2000 11.8 1/1/1981 1/1/1984 1/1/1984
117 257.024 -2314.750 2600 2000 13.1 6/1/1985 9/1/1988 9/1/1988

Other post-1981 cavern in analysis 
108 756.382 -2890.575 2600 1800 11.5 2/1/1982 12/1/1984 12/1/1984

Phase 1 caverns 
6 1021.734 1401.375 3240 160 8.7 1/1/1946 1/1/1947 1/1/1981
7 2140.457 1054.855 2520 1000 12.9 1/1/1946 1/1/1947 1/1/1981
8 1330.002 275.576 2420 1020 11.1 1/1/1946 1/1/1947 1/1/1981
9 877.573 697.521 3180 440 9.0 1/1/1947 1/1/1948 1/1/1981

11 1113.49 -2110.067 2940 820 9.1 1/1/1962 1/1/1963 1/1/1981
* Based on Louisiana field coordinates and converted to mesh coordinates with Cavern 103 at 

the origin (X-axis aligned along W-E, Y-axis aligned along N-S) 
 

Figure 8 shows three views of the layout of the meshed caverns used for these calculations, 
which includes the six half caverns listed above, plus full cavern representations for 108 and the 
Phase 1 caverns (6, 7, 8, 9, and 11).  The figures show the caverns at their current volumes plus 
five additional extraction layers. The salt extraction layers, or onion skins, represent the proposed 
additional salt leaching operations to grow the existing West Hackberry caverns.  For this 
analysis, the first leaching operation was scheduled for September 2008, with each subsequent 
leaching at five-year intervals afterward. Three types of cavern realizations are included in this 
computational domain. Five of the caverns on the vertical plane of symmetry (110, 109, 101, 
105, and 117) are represented as frustums with approximate dimensions to the actual caverns, 
with five surrounding layers representing the five additional leaches to grow the caverns in the 
future. Current meshing technology does not allow for the building of “onion skin” layers around 
irregular geometry, so frustum shapes are used for these caverns to allow them to be grown and 
produce the 3-D volumetric creep effects on the entire salt dome. Cavern 103 is created from 
rounded, off-center cylinders and frustums to simulate the irregular shape of the cavern. This 
allows for a more realistic analysis of the salt fall potential in that cavern. (The original intent 
was to use mesh cutting with the sonar geometry; however, a double cut was required for the 
half-cavern on the vertical plane of symmetry, which is not yet functional in the meshing 
program. For future analyses, the entire salt dome will be modeled, allowing for very precise 
modeling of the cavern geometry.) Cavern 108 and the Phase 1 caverns were created by 
developing an average cavern radius as a function of elevation, and rotating the curve to create 
the irregularly-shaped caverns and the additional onion skin layers.  Each onion skin, when 
deleted, adds about 15% to the volume of the cavern (Caverns 6 and 9 being the exceptions).  
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Figure 8.  West Hackberry caverns included in the computational mesh (3 views). 

 
Caverns 6 and 9 represent a significant challenge, both from a modeling standpoint and perhaps 
from an actual operational aspect in the future as the cavern sizes increase along with the 
potential for adverse interactions.  The meshes for these caverns are shown in Figure 9; the 
dimensions and relative locations of the caverns are shown to scale. If one were to take cylinders 
surrounding the outmost diameter of each cavern, the pillar thickness between those cylinders is 
only about 15 ft.  Because of the location of these two caverns to each other, and their unusual 
shapes, the pillar between these caverns was thought to be a prime location for potential dilatant 
or salt tensile damage.  Furthermore, in both actual solution mining and computational meshing 
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of these caverns, it is important to avoid possible interference between the “arms” of Cavern 9 
with the long dish-like Cavern 6.  When the onion skin layers were designed for these caverns, it 
was decided to maintain Cavern 6 at the same maximum radius, and to gradually remove 
material until it looked like a short, wide cylinder. The final shape is consistent with that 
predicted by Sansmic (Preece and Foley, 1984) and does not increase the large ceiling span of 
the cavern (in some SPR literature, the cavern ceiling is also called the roof).  Also, the onion 
skins on Cavern 9 were designed to gradually remove the large mid-cavern ledge, resulting in a 
final bell shape. While this can be accomplished numerically and would be desired from an 
operational perspective, the actual shape achieved in the field may be significantly different than 
simulated.  Therefore, all conclusions in this report regarding Caverns 6 and 9, must be 
understood within the context of the idealizations and modeling procedures used here.  In 
practice, these geomechanics simulations should be updated following any large scale drawdown 
of the site utilizing sonar data of actual post-drawdown shapes and changes in cavern closure and 
subsidence rates to verify that our models are capturing the mechanics and assure continued use 
and integrity of the caverns. 
 
Because of the close proximity of Cavern 8 to Caverns 9 and 6, there exists the potential for 
pillar interference with five leachings of salt.  Therefore, Cavern 8 is provided with only four 
onion skin layers, maintaining a pillar between it and Cavern 6.  Operating the caverns as a 
gallery would likely be considered at that time. 
 
Cavern 6 poses an additional technical challenge.  The sonar data used to create the dish-like 
shape of Cavern 6 in the original mesh as illustrated in Figure 8 was based on a set of 
measurements performed in 1982.  It was later learned that additional data sets existed for 
Cavern 6. Three wells enter into West Hackberry Cavern 6, and these wells were deviated.   
Deviations in the three wells in Cavern 6, in addition to strapping data not originally included in 
the original sonar data sets, provide a more accurate picture of the true geometry of Cavern 6 in 
1982.  Unfortunately, no sonar or strapping data have been obtained for Cavern 6 since 1982.  
The original results of the calculations using the mesh illustrated in Figure 8 are described in 
Section 4 of this report.  The results of those calculations indicated the need to more closely 
examine the relationship between Caverns 6 and 9, and the full complement of 1982 cavern 
geometry data were used for Cavern 6.  These updated calculations are described in Section 5 of 
this report. 
 
The other stratigraphic layers represented in the computational mesh include a 1600’-thick layer 
of overburden modeled as a loose sandstone and a 400’-thick layer of caprock.  The caprock and 
salt dome are surrounded by sandstone.  These units are modeled with an elastic model much 
like previous SPR analyses.  The addition of the surrounding sandstone allows for a better 
representation of the evolution of stress in the salt dome than had been performed in Ehgartner 
and Sobolik (2002), for which the 30-degree wedge included an infinite salt dome. The salt dome 
geometry was modeled after the results presented in Rautman et al., (2004), and is to date the 
most realistic representation of an actual salt dome geometry used in a finite element analysis for 
SPR. 
 



 

 24

 
Figure 9.  Evolution of Caverns 6 and 9 through five leaching operations. 

 
 3.3 NUMERICAL AND MATERIAL MODELS 
 
This analysis utilized JAS3D, Version 2.0.F (Blanford et al., 2001); a three-dimensional finite 
element program developed by Sandia National Laboratories, and designed to solve large quasi-
static nonlinear mechanics problems. Several constitutive material models are incorporated into 
the program, including models that account for elasticity, viscoelasticity, several types of 
hardening plasticity, strain rate dependent behavior, damage, internal state variables, deviatoric 
creep, and incompressibility. The continuum mechanics modeled by JAS3D are based on two 
fundamental governing equations. The kinematics are based on the conservation of momentum 
equation, which can be solved either for quasi-static or dynamic conditions (a quasi-static 
procedure was used for these analyses). The stress-strain relationships are posed in terms of the 
conventional Cauchy stress. 
 
The power law creep model has been used for Waste Isolation Pilot Plan (WIPP) and Strategic 
Petroleum Reserve (SPR) simulations for many years.  This creep constitutive model considered 
only secondary or steady-state creep. The creep steady state strain rate is determined from the 
effective stress as follows: 

   ,exp 







RT
QA n

s   (1) 

where, s  creep strain rate, 
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  effective or von Mises stress, 

 T = absolute temperature, 

A, n = constants determined from fitting the model to creep data, 

Q = effective activation energy, determined from fitting the model to creep data, and 

R = universal gas constant. 

 
The salt creep properties assume a homogeneous material, and are generally obtained from 
laboratory measurements.  Values for the creep constant, the stress exponent, and the thermal 
activation energy constant for the power law creep model have been obtained for hard and soft 
salts through mechanical property testing of salt cores collected from boreholes (Munson, 1998).  
The West Hackberry and Big Hill salts are identified in Munson (1998) as “soft” salts, as 
opposed to “hard” salts at Bayou Choctaw and Bryan Mound.  For the West Hackberry site, 
these properties were further calibrated by numerical analysis to match the measured cavern 
closure and surface subsidence rates at the site (Ehgartner and Sobolik, 2002).  Those 
calculations used a three-dimensional, 30° wedge slice computational domain, which used 
symmetry conditions to simulate a 19-cavern field.  The resulting properties from the 2002 
analysis indicated that the in situ creep rates of the West Hackberry salt were up to eight times 
greater than were predicted using the Munson soft salt properties.  Because this current analysis 
models half of the West Hackberry salt dome and specific caverns, a more comprehensive 
comparison between measured cavern closure and surface subsidence data can be performed. 
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3.4 MATERIAL PROPERTIES 

 
Three sets of salt creep properties were used in calculations to compare with West Hackberry 
historical data: the Munson (1998) soft salt properties, the Ehgartner and Sobolik (2002) 
properties, and a set identical to Munson’s except that the creep constant A has been increased 
by a factor of 4 (the reasons for this set will soon become apparent).  These properties are listed 
in Table 2.  A comparison of the calculated creep rates for expected in situ stress levels at West 
Hackberry is shown in Figure 10. 
 
Additionally, an elastic modulus reduction factor (RF) was used to simulate the immediate 
primary creep response that is not captured in the power law creep (i.e. secondary creep) model.  
In order to obtain agreement with the measured closure of underground drifts at the WIPP, a 
reduced modulus was used to simulate the transient response of salt (Morgan and Krieg, 1990).  
The RF is known to vary for salts (Munson, 1998).  Limited creep testing of SPR salts 
(Wawersik and Zeuch, 1984) showed considerable variability in creep rates (up to an order of 
magnitude difference).  For the West Hackberry site (Ehgartner and Sobolik, 2002), a value for 
RF of 12.5 was determined by calibrating to match the measured closure and subsidence rates at 
those sites through back-fitting analysis.  For these analyses, the modulus values in Table 2 are 
obtained from the standard modulus values in Munson (1998) divided by a reduction factor of 
12.5. 
 

Table 2. Power Law Creep Mechanical Properties Used for West Hackberry Salt 
 

 
 

Property 

 
Ehgartner and Sobolik 

(2002) 

 
 

Munson (1998) 

Modified Munson, 
where A is multiplied 

by factor of 4 
Density, lb/ft3 143.6 143.6 143.6 
Elastic modulus, lb/ft2 51.8 × 106 51.8 × 106 51.8 × 106 
Bulk modulus, lb/ft2 34.5 × 106 34.5 × 106 34.5 × 106 
Poisson’s ratio 0.25 0.25 0.25 
Creep Constant A, 1/(psf n-sec) 7.42 ×10-27 9.72 ×10-30 3.89 ×10-29 
Exponent n 4.9 5.0 5.0 
Q, cal/mol 12000 10000 10000 
Thermal constant Q/R, °R 10871 9059 9059 
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Creep Rates
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Figure 10. Creep Rates Calculated Using Different Property Sets 
 
Measured surface elevation data over West Hackberry Caverns 6 through 11 and 101 through 
117 were obtained from January 1983 through September 2006. These data are easily converted 
to surface subsidence distances over the same period. Figures 11 through 13 show the measured 
subsidence data in comparison with the Ehgartner/Sobolik 2002, Munson 1998, and modified 
Munson (4*A) data, respectively.  The Ehgartner/Sobolik properties match the data fairly well 
until around 1991, when the mean daily wellhead pressures were increased at the West 
Hackberry site (Woodrum, 2001).  Other factors aside from pressure dependent cavern closure 
have historically contributed to subsidence at West Hackberry including oil extraction at Black 
Lake and regional subsidence (Magorian et al., 1991), thus making exact comparisons with the 
data unlikely.   
 
The calculations use constant operating head pressures for the entire period of analysis, after 
which they overpredict the subsidence. The original Munson properties significantly 
underpredict the subsidence; this result agrees with the earlier Ehgartner and Sobolik (2002) 
analysis that the in situ West Hackberry salt is more conducive to creep than the laboratory data 
indicate. The modified Munson properties moderately underpredict the total subsidence, but the 
subsidence rates over the period after 1991 are remarkably similar. Table 3 compares the average 
subsidence rates for the period after 1991, and the rates obtained with the modified Munson 
properties match the measured rates very well for Caverns 101-117, and reasonably well for 
Caverns 6-11. Figure 14 shows a modified prediction for subsidence for Caverns 101-117, for 
which the predicted subsidence rates are added to the measured subsidence on 5/1/1991, for 



 

 28

which a more correct pressure history is applied to each cavern.  This modified prediction 
compares extremely well to the data. The measured and predicted values for subsidence for 
Caverns 6-11, using the predicted subsidence rates from the modified Munson properties and 
indexed to the measured subsidence on 5/1/1991, are shown in Figure 15. While the match 
between predicted and measured subsidence for the Phase 1 caverns is not as good as for 
Caverns 101-117, it is still reasonably good given the standard range of variability of the salt 
properties throughout the salt dome. 
 
 

WH Caverns 101-117  Subsidence, Data vs. Analysis

0
1

2
3

4
5

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000 9600

Time, days since 12/2/1982

S
u

b
si

d
en

ce
 (

ft
.)

101

103

105

108

109

110

117

101, analysis

103, analysis

105, analysis

108, analysis

109, analysis

110, analysis

117, analysis

Analysis using Sobolik WH properties

 
Figure 11. WH Surface Subsidence Data, Caverns 101-117, Compared to Predictions Using 

Ehgartner/Sobolik (2002) WH Salt Properties 
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WH Caverns 101-117  Subsidence, Data vs. Analysis
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Figure 12. WH Surface Subsidence Data, Caverns 101-117, Compared to Predictions Using 

Munson (1998) WH Salt Properties 
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Figure 13. WH Surface Subsidence Data, Caverns 101-117, Compared to Predictions Using 

Modified Munson (4*A) WH Salt Properties 
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Table 3. Average Subsidence Rate, 1991-2006, Data and Property Sets 
 West Hackberry Caverns Subsidence rates (ft/yr) 
 101 103 105 108 109 110 117 6 7 8 9 11 
Data 0.084 0.098 0.078 0.048 0.093 0.074 0.061 0.074 0.060 0.123 0.093 0.086
Modified 
Munson 0.088 0.095 0.073 0.039 0.090 0.070 0.054 0.063 0.043 0.074 0.081 0.050
Munson 
(1998) 0.023 0.026 0.019 0.011 0.026 0.022 0.014 0.020 0.014 0.022 0.024 0.014
Ehgartner/ 
Sobolik 0.194 0.204 0.167 0.087 0.187 0.143 0.125 0.130 0.090 0.159 0.171 0.114
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Figure 14. WH Surface Subsidence Data, Caverns 101-117, Compared to Modified Predictions 

Beginning 5/1/1991 
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WH Phase 1 Cavern Subsidence, Data vs. Analysis
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Figure 15. WH Surface Subsidence Data, Caverns 6-11, Compared to Modified Predictions 

Beginning 5/1/1991 
 
Cavern volume closure information was obtained between 1990 and 1995 for WH Caverns 101-
117.  The cavern closures as calculated from pressure data (Ehgartner, 2006) are compared to 
analyses in Figures 16 through 18 using the three property sets.  For the Ehgartner/Sobolik 
(2002) properties in Figure 16, the cumulative closure was overpredicted by a factor between 2 
and 3. The Munson (1998) property predictions shown in Figure 17 are underpredicted by a 
factor of about 3. The modified Munson properties in Figure 18 result in predicted behavior in 
the same range as the data, with predictions for specific caverns ranging from a great match for 
Cavern 108 to a 50% overprediction for Cavern 103. The properties of salt are believed to vary 
spatially in this and other domes.  While more effort could be placed into formulating a property 
set that perhaps better matches the measured surface subsidence and cavern closure data 
(including the use of a variable operation pressure history for each cavern), of the three sets of 
properties presented here, the modified Munson clearly provide a reasonable comparison to 
measured phenomena. The remainder of the report will present results using the modified 
Munson properties. 
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WH Volumetric Closure since 1/1/1990
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Figure 16. Cavern Volume Closure Data, Caverns 101-117, Compared to Predictions Using 

Ehgartner/Sobolik (2002) WH Salt Properties 
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Figure 17. Cavern Volume Closure Data, Caverns 101-117, Compared to Predictions Using 

Munson (1998) WH Salt Properties 
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WH Volumetric Closure since 1/1/1990

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

Time at Normal Operating Pressure (yr)

C
u

m
u

la
ti

ve
 C

lo
su

re
 (

%
)

101

103

105

108

109

110

117

101 calcs

103 calcs

105 calcs

108 calcs

109 calcs

110 calcs

117 calcs

Analysis using 4*A Munson WH properties

 
Figure 18. Cavern Volume Closure Data, Caverns 101-117, Compared to Predictions Using 

Modified Munson WH Salt Properties 
 
The surface overburden layer, which is mostly comprised of sand and sandstone, is considered 
isotropic and elastic, and has no assumed failure criteria. The caprock layer, consisting of 
gypsum and limestone, is also assumed to be elastic. Its properties are assumed to be the same as 
those used for the West Hackberry analyses (Ehgartner and Sobolik, 2002). The sandstone 
surrounding the salt dome is assumed to be elastic (Lama and Vutukuri, 1978). Mechanical 
properties of each of these geologic materials used in the present analysis are listed in Table 4.  
 

Table 4: Material properties of other geologic materials. 
Parameters Units Overburden Caprock Sandstone 

Density lbm/ft3 117. 156. 133.6 

Young’s Modulus lb/ft2 2.09×106 146×106 153×106 

Poisson’s Ratio  0.33 0.29 0.33 
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3.5 SALT DAMAGE CRITERIA 

 
The salt damage factor (analogous to a safety factor) has been developed from a dilatant damage 
criterion based on a linear function of the hydrostatic pressure (Van Sambeek et al., 1993).  
Dilatancy is considered as the onset of damage to rock resulting in significant increases in 
permeability. Dilatant damage in salt typically occurs at a stress state where a rock reaches its 
minimum volume, or dilation limit, at which point microfracturing increases the volume. 
Dilatant criteria typically relate two stress invariants: the mean stress invariant I1 (equal to three 

times the average normal stress) and the square root of the stress deviator invariant J2, or 2J (a 

measure of the overall deviatoric or dilatant shear stress). (By convention, tensile normal stresses 
are positive, and compressive normal stresses are negative, hence the sign nomenclature in the 
following equations.) The dilatant criterion chosen here is the equation typically used from Van 
Sambeek et al. (1993), 
 12 27.0 IJ  .  (2) 

 

The Van Sambeek damage criterion defines a linear relationship between I1 and 2J , and such 

linear relationships have been established from many suites of laboratory tests on WIPP, SPR, 
and other salt samples. This criterion was applied during post-processing of the analyses. A 
damage factor (safety factor) index was created (SFVS) by normalizing I1 by the given criterion:  
 

 
2

127.0

J
I

SFVS


  (3) 

 
Several earlier publications define that the Van Sambeek damage factor SFVS indicates damage 
when SFVS<1, and failure when SFVS<0.6. In previous studies, values of SFVS<1.5 have been 
categorized as cautionary because of unknown localized heterogeneities in the salt that cannot be 
captured in these finite element calculations.  This report will use these damage thresholds.  
 
Recent developments in laboratory testing of salt from several underground storage sites indicate 
that the Van Sambeek linear dilatant damage criterion may not adequately define the damage 
envelope for all salt formations. Triaxial compression (TXC) tests performed on samples of salt 
from the Big Hill SPR site at several values of confining pressure (Lee et al., 2004) indicate a 

nonlinear relationship between I1 and 2J . The Big Hill salt is characterized in Munson (1998) 

as a soft salt comparable to the salt at West Hackberry. A dilatant criterion equation based on 
laboratory tests performed on samples of salt from the Big Hill site is given in Lee et al. (2004) 
as: 
 

 )(04931.0
2

1104.904.12)( MPaIeMPaJ   (4) 

 
RESPEC of Rapid City, South Dakota recently performed laboratory testing of Cayuta salt 
recovered from the Bale No. 1 Well, located approximately 1 mile southwest of Cayuta in 
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Schuyler County, New York (DeVries et al., 2005). These laboratory tests were used to 
characterize the strength and deformation behavior of bedded salt formations. Both constant 
mean stress triaxial compression (CMC) and constant mean stress triaxial extension (CMX) test 
suites were performed. The data indicated that the dilation limit in extension was around 30% 
less than in compression. This dependence on compression or extension correlates to a 
dependence on the Lode angle ψ, which is defined using the principal stresses σ1, σ2, and σ3 by: 
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From these tests, DeVries et al. developed a new dilation criterion based on the Mohr-Coulomb 
criterion written in its invariant form. This RESPEC Dilation criterion, or RD, was developed to 
address the shortcomings of the Van Sambeek linear criterion when compared to laboratory data: 

namely, a nonzero intercept, a nonlinear relationship between I1 and 2J , and the effects of the 

Lode angle. This RD criterion is defined by: 
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where σ0is a dimensional constant equal to –1 MPa; T0 is the unconfined tensile strength; ψ is 
the Lode angle; and n, D1, and D2 are parameter estimates that must be determined for each salt 
formation. DeVries et al. developed values for the fitting parameters for Cayuta salt; the 
parameters are listed in Table 5, both in their original SI and converted to English units. Figure 
19 compares the laboratory data to the RD criterion curves obtained with Equation 6 and the 
values in Table 5. These are also compared to the Van Sambeek criterion, and to the in situ 
values of I1 at the top and bottom of the Phase 2 caverns (Caverns 101-117). Note that the RD 
damage envelope in the region of in situ stress is significantly smaller than that using the Van 
Sambeek criterion.  
 

Table 5. RD Criterion Parameter Values for Cayuta Salt (DeVries et al., 2005) 
Criterion Parameters Fitted Value (SI) Fitted Value (English) 

σ0 -1 MPa -20885 psf 
n 0.693 0.693 

D1 0.773 MPa 16100 psf 
D2 0.524 0.524 
T0 1.95 MPa 40700 psf 
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Figure 19. Comparison between test data and RD criterion, Cayuta salt (DeVries et al., 2005). 

 
A similar Lode angle-based criterion would be desired for the Big Hill data, but no data exists for 
triaxial extension tests for that salt. Using the triaxial compression data from Lee et al. (2004), 
and estimated behavior of similar triaxial extension tests based on those observed in the Cayuta 
tests, an estimated set of parameters for Equation 6 was developed for the Big Hill salt. These 
parameters have been developed only for the sake of exploration, and should not be considered 
as a laboratory-based set. The estimated Big Hill parameters are listed in Table 6, both in SI and 
English units. Figure 20 compares the laboratory and estimated data to the RD criterion curves 
obtained with Equation 6 and the values in Table 6. These are also compared to the Van 
Sambeek criterion, to the in situ values of I1 at the top and bottom of the Phase 2 caverns 
(Caverns 101-117), and to the curve from Lee et al. defined by Equation 4. Finally, Figure 21 
compares the three criteria to the in situ stress values at the top and bottom of the caverns. The 
two Lode angle-based criteria will predict damage at significantly lower deviatoric stresses than 
the Van Sambeek criterion. 
 

Table 6. Estimated RD Criterion Parameter Values for Big Hill Salt 
Criterion Parameters Fitted Value (SI) Fitted Value (English) 

σ0 -1 MPa -20885 psf 
n 0.3668 0.3668 

D1 2.164 MPa 45200 psf 
D2 0.5632 0.5632 
T0 4.0 MPa 83540 psf 
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Figure 20. Comparison between data and RD criterion, Big Hill salt (based on Lee et al., 2004). 
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Figure 21. Comparison between the three dilatant damage criteria. 
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These three criteria were applied during post-processing of the analyses. A damage factor index 

was created for the RD criterion (SFRD) by normalizing or 2J by the given criterion; as for the 

Van Sambeek damage factor, values less than 1 indicate damage: 
 

 

 




































sincos3 2

0
0

1
1

2

D

TID

J
SF

nRD  (7) 

 
The damage factor using the Cayuta salt properties is designated SFC, and for the Big Hill salt 
properties SFBH.  Because there are no laboratory data sets available containing both triaxial 
compression and extension test using West Hackberry salt, the use of the Cayuta and Big Hill 
criteria here is for illustrative purposes to show where problems of dilatant damage may be 
occurring. As will be explained, one of the conclusions of this report is that these laboratory data 
should be developed for all the SPR sites to ascertain the linearity of the damage curve and its 
dependence on Lode angle. 
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4. RESULTS 
 
The historical performance of the West Hackberry caverns, and their predicted future 
performance, will be evaluated on the basis of several design factors: dilatant and tensile stress 
damage to the salt surrounding the caverns, cavern volume closure, axial well strain in the 
caprock, and surface subsidence.  These performance factors will provide metrics to determine 
the feasibility of expanding the storage capacity of the caverns. The performance of the Phase 1 
caverns will be emphasized in Sections 4.1 through 4.4 (particularly relating to expansion); the 
performance of the Phase 1 caverns and Caverns 101 and 103 will be further evaluated in Section 
4.5 using the RESPEC Lode angle-based damage criteria. 

4.1 DILATANT AND TENSILE STRESS DAMAGE NEAR THE PHASE 1 CAVERNS 

There are two ways in which the salt surrounding the caverns can be damaged: by dilatant 
damage resulting from microfracturing that increases permeability and the potential for crack 
propagation, and by tensile stresses which cause salt fracture and crack propagation. A quick 
way to evaluate the potential for damage is by the use of history plots of the extreme values of 
damage factor and maximum principal stress in the salt surrounding the cavern through each of 
the five leaching operations. Figure 22 shows the minimum value of the Van Sambeek damage 
factor (Equation 3) surrounding each of the five Phase 1 caverns as a function of time.  Note that 
the lowest values of damage factor occur during workover operation periods. The first leaching 
operation occurs at 9395 days on the plot (see arrow on plot); the first workover operation for 
Cavern 6 after this leaching (days 9660-9730) results in a damage factor well below 1 and nearly 
to the value of 0.6 used as a failure threshold.  This damage occurs around the perimeter of 
Cavern 6. Figure 23 shows a vertical cross-section of Caverns 6 and 9 on day 9730; note how the 
top layer of Cavern 6 is red, indicating a damage factor less than 1. Figure 24 is a close-up of the 
edge of Cavern 6, showing the location of the high deviatoric stress region around the perimeter.  
Note also in Figure 22 that for Caverns 6 and 9, there are usually two areas of low values in 
safety factor bounding the 90-day workover period. Because of the unusual shapes of these two 
caverns, the pressure changes during the drawdown to zero wellhead pressure, and the re-
pressurization back to normal operating pressure causes transient deviatoric stresses in specific 
regions around the caverns. For Cavern 6, this region is always the perimeter of the dish-shaped 
cavern. At the start of the workover, the lower pressure in the cavern causes a temporarily larger 
compressive stress around the perimeter, creating the first low spike in the damage factor.  The 
stresses improve with time during the workover, until the cavern pressure in Cavern 6 is 
increased again.  Upon repressurization of the cavern to normal pressures, the same perimeter 
locations experience a temporary tensile loading, creating the potential for both tensile and 
dilatant fracturing.  These damaging conditions are decreased as Cavern 6 is further enlarged 
during subsequent leaches to a more cylindrical shape, but it is not until the fourth leaching that 
the damage factor is once again above the damage threshold during workovers.  Cavern 9 
displays a similar “double-minimum” during workovers. Figures 25 and 26 show contour plots 
of the damage factor around Cavern 9 for the beginning and end of its workover cycle prior to 
the first leaching.  The primary location of deviatoric stress on the cavern walls directly beneath 
the circular shelf within Cavern 9, about two/thirds of the height from the bottom of the cavern. 
There is also some high deviatoric stress on the top surface of the shelf during the drawdown 
phase.  Note from Figure 22 how the conditions in Cavern 9 improve if solution mining is 
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designed to remove the shelf in Cavern 9, resulting in a bell-shaped final cavern.  For a final 
observation from Figure 22, note how the minimum damage factor for Cavern 6 decreases during 
a workover for Cavern 9, and vice versa. The influence of these two caverns on each other is an 
important design criterion for future operations.   
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Figure 22.  Minimum value of the Van Sambeek damage factor surrounding each Phase 1 

cavern. 
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Figure 23. Contour plot of Van Sambeek damage factor, cross-section of Caverns 6 and 9, 1st 

workover period after 1st leaching. 

 
Figure 24.  Close-up of Cavern 6 from Figure 23. 



 

 42

 
Figure 25. Contour plot of Van Sambeek damage factor, cross-section of Caverns 6 and 9, 

beginning of workover period prior to 1st leaching. 

 
Figure 26. Contour plot of Van Sambeek damage factor, cross-section of Caverns 6 and 9, end of 

workover period prior to 1st leaching. 
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Figure 27 shows the maximum value of the maximum principal stress around the Phase 1 
caverns as a function of time.  The perimeter of Cavern 6 experiences spikes in tensile stress 
during the repressurization at the end of workovers after the cavern has been leached because of 
drawdown.  Cavern 9 is the only other cavern that experiences stresses that approach tension, but 
remain compressive, and its conditions improve as leaching removes the circular shelf in the 
cavern. Note the length of time required for the maximum principal stress at the wall to recover 
from the workover operation and return to a near-hydrostatic value.  
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Figure 27.  Maximum value of the maximum principal stress surrounding each Phase 1 cavern. 

 
Because the perimeter of Cavern 6 is predicted to have both dilatant damage and tensile fracture 
conditions after repressurization at the end of a workover period, it is important to know whether 
that condition is affected by the rate of repressurization. The primary calculations in this report 
model the close of the workover with an instantaneous wellhead pressure increase from 0 to 975 
psi. A portion of the calculations were re-run with linear repressurization periods of 12, 16, and 
36 hours, and with small time increments during repressurization. A comparison of the minimum 
damage factors for the different rates is shown in Figure 28; in general, there is no significant 
difference.  Figure 29 expands the time scale around the repressurization period, and the 
indication is that the rate of repressurization has no effect on this phenomenon. Figure 30 
presents a similar plot of the maximum principal stress; again, the repressurization rate has no 
effect on the results. The primary conclusion is that the times of highest potential of salt 
damage/salt falls are during large cavern pressure changes, such as depressurization or 
repressurization in workovers. Even at low cavern pressures, over time the stresses in the cavern 
walls will adjust to near isotropic conditions; there will be increased creep and cavern closure, 
but the potential for damage will dissipate as the cavern pressure remains constant. 
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Minimum Damage Factor at Cavern Wall, Cavern 6
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Figure 28. Minimum damage factor in Cavern 6 as a function of repressurization rate 

Minimum Damage Factor at Cavern Wall, Cavern 6
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Figure 29. Minimum damage factor near Cavern 6 for different repressurization rates at the end 

of a workover period. 
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Maximum Value of Maximum Principal Stress at Cavern Wall, Cavern 6
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Figure 30. Maximum principal stress near Cavern 6 for different repressurization rates at the end 

of a workover period. 
 

 
The preceding calculations indicate that West Hackberry Cavern 6 is predicted to experience 
tensile cracking during repressurization of the cavern following workover conditions.  The 
cracking is predicted around the edge of the cavern ceiling and was insensitive to the range of 
cavern repressurization durations (12 to 36 hrs) studied.  The cracking was not predicted for the 
current cavern geometry, but occurred after the first leaching resulting from oil drawdown and 
was present following workovers for the first three subsequent cavern geometries changed by 
leaching.  To determine if the predicted cracking was mesh dependent, the finite element mesh 
was refined in the cracked area to further delineate and verify the predictions.  The results 
indicated that the middle of the cavern walls around the perimeter of Cavern 6 would experience 
tensile stresses, even somewhat higher than the original predictions.  Because the situation is 
geometry dependent and the exact geometry of Cavern 6 near the edge of the ceiling is not well 
known (sonar limitations), it is possible that the fracturing could be occurring with the current 
cavern geometry.  The close proximity of Cavern 9 poses a risk of cavern communications.  The 
caverns are located 120 feet at their closest point in the model.  A more refined estimate using 
detailed sonar data of the caverns calculates a minimum separation of only 100 ft (Rautman and 
Snider, 2007). The risk is further increased by a zone of potentially anomalous salt that connects 
the two caverns (the potential shear zone in Figure 4), as the salt may well be weaker than 
normal.  The tensile stresses are only predicted during and immediately following 
repressurization of the cavern and last for several months.  Pressure applied to the large ceiling 
span apparently induces an elastic, tensile response at the edges of the ceiling.  The tensile 
stresses are relaxed with time resulting from creep into a normal compressive state.  If a crack 
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were to propagate and intersect Cavern 9, cavern pressures would equilibrate.  The maximum 
equilibrated pressures are not problematic to the wellhead or production casings in either 
caverns, but an operational scenario of having Cavern 9 in workover mode during the breach 
would pose a serious risk to operational safety and containment of oil.  A breach when Cavern 6 
is fully repressurized (the most likely condition) would result in approximately 55,000 bbl of oil 
entering into Cavern 9.  With the wellhead removed during workover mode, the oil would eject 
onto the surface.  This would pose a serious safety risk to the workover crew and potential 
environmental damage.  More details of this type of scenario are discussed by Ehgartner (2004).  
The obvious reaction would be to operationally prohibit sequential workovers of Caverns 6 then 
9, allowing for an adequate time between repressurization of Cavern 6 and the workover of 
Cavern 9.  These analyses suggest a three-month period, but a reasonable safety factor must be 
applied given the analysis uncertainties and severe consequences.  Additional analysis of the 
interactions between Caverns 6 and 9 are discussed in Section 5. 
 
Caverns 7, 8, and 11 are not predicted to experience any stress conditions indicative of dilatant or 
tensile damage, either through their current history or through the planned cavern expansions. 
Cavern 8 does experience some instances where the minimum safety factor is less than 1.5, with 
one instance with a value of 1.17 after the third leaching.  The highest dilatant and maximum 
principal stresses tend to be at three locations: along the top surface of the cavern, along the 
bottom surface near the outer edge, and near the large change in diameter near the bottom of the 
cavern. The influence of nearby Caverns 6 and 9 also affects the stress history around Cavern 8. 
Figures 31-36 are contour plots of damage factor for cross sections of Caverns 9 and 8, 6 and 8, 
6 and 7, and 11.  These are at the times of highest deviatoric stress (lowest damage factor) for 
Caverns 8, 7, and 11. As these are the most severe conditions predicted in the calculations, it can 
be seen that Caverns 7 and 11 have no major stability concerns, and Cavern 8 has minimal 
concerns. 
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Figure 31. Contour plot of Van Sambeek damage factor, cross-section of Caverns 6 (left) and 8 

(right), beginning of workover period after 3rd leaching. 

 
Figure 32. Contour plot of Van Sambeek damage factor, cross-section of Caverns 6 (left) and 8 

(right), beginning of workover period after 5th leaching. 
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Figure 33. Contour plot of Van Sambeek damage factor, cross-section of Caverns 9 (left) and 8 

(right), beginning of workover period after 3rd leaching. 

 
Figure 34. Contour plot of Van Sambeek damage factor, cross-section of Caverns 9 (left) and 8 

(right), beginning of workover period after 5th leaching. 
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Figure 35. Contour plot of Van Sambeek damage factor, cross-section of Caverns 9 (left) and 7 

(right), beginning of workover period after 1st leaching. 

 
Figure 36. Contour plot of Van Sambeek damage factor, cross-section of Cavern 11, beginning 

of workover period after 5th leaching. 
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4.2 CAVERN VOLUME CLOSURE 

The volume of the caverns decreases as the salts creeps. Figure 18 showed a good agreement 
between the predicted cavern closure and that measured for a five-year period starting in 1990. 
Predicted cavern closure up to the present, and into the future, depends upon the timing of 
workover operations, during which the caverns undergo their greatest deformation, and of future 
cavern expansion (leaching) operations. Figure 37 shows the predicted cumulative cavern closure 
for the Phase 1 caverns based on a normalized volume. The normalized volume is the volume at 
a given time divided by the initial volume of each cavern for its given leaching cycle. For 
example, cavern expansion activities are forecast to begin in late 2008; when each cavern is 
expanded, a new initial volume is defined equal to the initial volume after leaching. Cavern 6 
experiences the greatest cavern closure, because of its dish-like shape. Cavern 6 also experiences 
the largest volume change during workovers, and the largest recovery upon repressurization. 
These results correlate with the large swings in deviatoric and maximum principal stresses 
described in Section 4.1. Figure 38 shows the same values for cumulative cavern closure for the 
post-1981 caverns. The predicted closure for these caverns is nearly the same as that for Cavern 
6, and significantly greater than the other Phase 1 caverns. The post-1981 caverns extend much 
deeper than the other caverns, and at these depths the differential between in situ stress and oil 
pressure is much greater. Because of the greater stress differential, the majority of the volume 
loss occurs near the bottom of these caverns.  
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Figure 37. Cumulative cavern closure for the Phase 1 caverns. 
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Figure 38. Cumulative cavern closure for the post-1981 caverns. 

 
Another interesting phenomenon can be observed in Figure 37, in the cavern closure histories for 
Caverns 6 and 9. The simulated workovers for these caverns were placed 2.5 years apart, making 
the workover for one cavern happen at the middle of the period between workovers for the other 
cavern. Note the slight jump in cavern closure for Caverns 6 and 9 when the other cavern is in 
workover mode. These slight jumps in closure rate represent an increase in that rate by factors 
ranging from 2 to 3. Cavern closure can also be measured by the change in wellhead pressure 
over a period of time. The wellhead pressure naturally increases as a result of the decrease of 
volume by salt creep into the cavern; the wellhead pressure is then adjusted periodically at the 
surface facilities to maintain a reasonably uniform pressure over time. Wellhead pressure data 
are collected daily for all SPR wells.  Pressure data from Caverns 6 and 9, plotted at times before 
and after the onset of workovers at the other cavern, show an increase in the pressure change 
rate; these pressure change rates correspond to changes in the cavern closure rate by factors of 2 
to 4. Examples of pressure data for Cavern 6 at the onset of a workover in Cavern 9, and for 
Cavern 6 at the onset of a workover in Cavern 9, are shown in Figure 39. This measured change 
in closure rates verifies the predictions that significant cavern interactions occur between 
Caverns 6 and 9 during workovers. This verification further strengthens the position that 
workover activities in Caverns 6 and 9 must be planned very carefully to prevent undesired 
communication between them. 
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Figure 39. Evidence of Cavern interaction Between Caverns 6 and 9 Based on Pressure Data 

4.3 AXIAL WELL STRAIN 

The physical presence of wells and surface structures are not included in the finite element 
model, but the potential for ground deformation to damage these structures can be conservatively 
estimated by assuming that they will deform according to the predicted ground strains. At well 
locations, subsidence will primarily induce elongation of the axis of the well. Under these 
conditions, the cemented annulus of the wells may crack forming a horizontal tensile fracture 
that may extend around the wellbore. This fracture may not result in vertical fluid migration 
along the casing, but could permit horizontal infiltration into ground waters. This condition may 
be a well vulnerability, especially in the caprock, where acidic ground waters may gain access to 
the steel casing and corrode it. More extensive damage could heavily fracture the cement which 
could result in a loss of well integrity in that leakage could occur from the cavern along the 
outside of the casing. Such leakage could result in flow to the surrounding environment, resulting 
in loss of product. The allowable axial strain for purposes of this report is assumed to be 0.2 
millistrains in tension.  This would be typical of cement with a compressive strength in the range 
from 2500 to 5000 psi (Thorton and Lew, 1983).  It should also be noted that vertical well strain 
reduces the collapse resistance of the steel casings.  For a typical SPR well located in the 
caprock, negligible resistance to casing collapse is predicted at 1.6 millistrains. 
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The Phase 1 caverns were built in 1946-1947, except for Cavern 11, which was built in 1962. 
The original wells used to mine these caverns are still in place and accessible (except for the 
original well for Cavern 7, which has no well head and has been abandoned). The original wells 
are designated with the number of its cavern. No well or cavern pressure history for the Phase 1 
caverns during the period before 1981 was available, so a cavern pressure equal to hydrostatic 
brine with zero wellhead pressure was assumed.  When the Phase 1 caverns were transferred to 
SPR control, liners were emplaced in some of the old wells and new wells were drilled into the 
caverns.  These wells are designated 6A, 6B, etc.  The dates of the construction of these newer 
wells were not immediately available, so for this report the vertical strain in these well locations 
will be evaluated for the period after 1/1/1981.  
 
Figure 40 shows a history of the total vertical strain from the surface to the ceiling of the cavern 
for the original well holes used to create the Phase 1.  The cement liner and steel casing 
thresholds are also shown on the plot. All of the original cavern wells are predicted to have 
exceeded the 0.2-millistrain threshold for the cement liners within a few years after their 
construction. The 1.6-millistrain steel casing threshold is predicted to be exceeded in Well 6 in 
the mid-1960s, and in Well 9 around 1987. Figure 41 shows the total vertical strain from surface 
to ceiling for all the Phase 1 well head locations. Note that nearly all the cavern wells exceeded 
the 0.2-millistrain threshold for the cement liners by the year 2000, and that the wells for Cavern 
6 are predicted to be currently approaching the 1.6-millistrain steel casing threshold. Caverns 9 
and 11 might experience the 1.6-millistrain threshold before completion of the fifth leaching. 
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Figure 40. Total vertical strain, surface to cavern ceiling, for original Phase 1 wells since 1946 
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Well Strain, Surface to Top of Cavern, Including Wells Added in 1981
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Figure 41. Total vertical strain, surface to cavern ceiling, for all Phase 1 wells since 1981 

 
The numbers presented in Figures 40 and 41 represent the entire length of the wells; a more 
detailed analysis requires examining the total strain from the top of the caprock to the cavern 
ceilings.  Figures 42 and 43 show the total vertical strain for the original wells and for all wells 
since 1981, respectively, from the top of the caprock to the cavern ceilings. The strains here are 
calculated for a shorter segment of well casing, so much higher strains would be expected.  
These figures present a more severe prediction of the potential for well casing damage over the 
Phase 1 caverns. Wells 6, 9, and 11 have already exceeded the steel casing strain threshold, and 
wells 7 and 8 are predicted to be nearing that threshold now. Even the newer wells in Cavern 6 
exceeded the steel casing threshold sometime between 2000 and 2002, and the wells in Caverns 
9 and 11 are currently approaching that limit.  Indeed, in 2001 the cavern integrity test failed for 
Well 6B, requiring a liner that was added in 2002 to a depth of 2547 ft.  The casing leaked at two 
locations in the salt.  Well casing concerns can also be expected as the caverns are enlarged. 
These calculations would indicate that the potential for cement liner and steel casing failure in 
the Phase 1 cavern wells is significant, and cement bond and casing inspection logs should be 
performed as part of operations and potential mitigating measures should be considered 
especially as the caverns are leached. The vertical strain predictions presented here should be 
correlated with known well casing problems to determine field-appropriate strain threshold 
values.  Events that would indicate a possible casing/liner failure include loss of pressure during 
cavern integrity testing, measurable loss of oil during normal operating procedures, obstruction 
of the borehole resulting from the displacement of fractured casing and liner material.  Also, 
fiber optic cameras and other types of logs sent down the boreholes might identify failure or 
corrosion areas. To date, there have been no indications that a steel casing or cement liner has 
failed in any West Hackberry cavern, but the wells are not being logged.  It is also possible that 
casing failures or yielding has occurred, but have yet to be detected. Because of the high strain 
values predicted for the current borehole liners, it is important to ascertain the current status of 
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the liners and determine field-appropriate strain threshold values and possible mitigation 
procedures (Sattler, 2004). 
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Figure 42. Total vertical strain, top of caprock to cavern ceiling, for original Phase 1 wells since 

1946 
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Figure 43. Total vertical strain, top of caprock to cavern ceiling, for all Phase 1 wells since 1981 
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4.4 SURFACE SUBSIDENCE 

The issue of surface subsidence is an important design and operations factor for surface facilities, 
especially for those located in flood prone areas, but subsidence also results in horizontal ground 
strains that can damage buildings, pipelines, and other infrastrusture. The SPR is currently over 
25 years old and the life of the SPR may extend well into this century depending upon a number 
of factors, including oil consumption, import dependency, and geopolitical instability. Expected 
subsidence during a 100-year life of an SPR site on the order of up to ten feet is possible. 
Therefore, a reliable prediction of surface subsidence can be very valuable for site management. 
The plots in Figures 14 and 15 that compared surface subsidences measured since 5/1/1991 to 
predicted values showed very good agreement, particularly for the post-1981 caverns.  Figures 
44 and 45 show the predicted surface displacement with the assumed workover and cavern 
expansion cycles out to the year 2034 (when the facility is approximately 50 years old). The 
predictions indicate surface subsidence of an additional four feet between 2006 and 2034, to a 
total of 7 feet since 1991. If extended over a potential 100-year life of the facility, the potential 
displacement could reach a total of approximately 12 feet between 2006 and 2084 (15 feet since 
1991). Because the surface structures at the wellhead are at elevations between 4 and 18 feet 
above sea level, the predicted subsidence may cause some of the wellheads to sink below sea 
level by the 2030’s.   
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Figure 44. Predicted WH Surface Subsidence Data, Caverns 6-11, to the year 2034. 
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WH Caverns 101-117, Predicted Subsidence
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Figure 45. Predicted WH Surface Subsidence Data, Caverns 101-117, to the year 2034. 

 
Structural damage on the surface is typically caused by large accumulated surface strains caused 
by surface subsidence.  These strains can cause distortion, damage, and failure of buildings, 
pipelines, roads, bridges, and other infrastructure.  Surface strains will accumulate in structures 
over time, which increases the possibility of damage in older facilities.  Typically, subsidence 
strains tend to be compressive in the central portion of the subsided area and become tensile in 
nature for areas farther removed.  Some guidance and solutions are available to evaluate the 
predicted surface strains.  These criteria vary from country to country, possibly because of 
different building codes and structural materials.  Some examples of allowable strains are 
presented by Peng (1985).  The criteria vary in some countries depending on application.  For 
purposes of this report,  the allowable strain is taken to be 1 millistrain for both compression and 
tension.  Criteria for shear strains have not been found, perhaps because they are less important.  
In practice, allowable strain limits for a structure are design specific and should be examined on 
a case-by-case basis. 
 
The horizontal surface strains are related to the subsidence above the caverns. Typically, the 
region above the caverns undergo compressive horizontal stresses at the surface as the geologic 
units sag, but at some distance away from the cavern field the horizontal strains become tensile 
as the surface rises up to its original elevation. Figure 46 shows the maximum compressive and 
tensile strains at the surface as a function of time. This figure shows that the 1-millistrain 
threshold for compressive strains could be exceeded by the year 2023. The tensile strains do not 
exceed the threshold, but are also significant. A better understanding of the effects of these 
strains can be gained by looking at contour plots of strain at the surface over the salt dome. 
Figure 47 shows the predicted minimum horizontal principal strains at the surface at four times: 
October 1980 (just prior to SPR ownership), September 2007 (approximately the current time), 
September 2012, and December 2034. By convention, negative strains are compressive, and 
positive strains are tensile. The minimum principal strains (i.e., maximum compressive strains) 
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are centered above Cavern 103, and become steadily less compressive radially from that point. A 
similar plot of the west-east directional strain, shown in Figure 48, indicates that the maximum 
compressive strains tend to be in the east-west direction. Similarly, Figure 49 shows the 
predicted maximum horizontal strains at the surface, and Figure 50 shows the north-south 
directional strains. Several important observations can be made from these figures. First, the 
largest tensile strains, aligned primarily in the north-south direction, are generated on the surface 
above the edge of the dome, north and south of the group of caverns along the vertical symmetry 
plane.  Second, the maximum principal strains in the center of the cavern field, above Cavern 
103, also exceed the compressive strain threshold, meaning the surface facilities/infrastructure in 
the vicinity of Cavern 103 are experiencing highly compressive strains from all directions.  
Third, significant tensile strains are generated east of Caverns 6, 8, and 9 on the surface even 
though east-west and north-south strains there are close to zero. This indicates the principal 
strains are aligned along NE-SW and NW-SE directions in that location.  
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Figure 46. Maximum horizontal compressive and tensile strains as a function of time. 
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Figure 47. Minimum horizontal principal strains at the surface (negative strains in compression). 

 
Figure 48. West-east directional strains at the surface (negative strains in compression). 
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Figure 49. Maximum horizontal principal strains at the surface (positive strains in tension). 

 
Figure 50. North-south direction strains (positive strains in tension). 
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4.5 EVALUATION OF LODE ANGLE-BASED DILATANT DAMAGE 

 
An extensive discussion of the potential for dilatant damage of salt around the Phase 1 caverns 
was desribed in Section 4.1. That discussion relied on a damage criterion (Equation 3) based on 

the Van Sambeek (1993) linear relationship between stress invariants I1 and 2J . The discussion 

concluded that only Caverns 6 and 9 had significant potential for salt damage or failure, 
primarily at the beginning and end of the workover cycles. The other Phase 1 caverns (and the 
post-1981 caverns as well) were predicted to experience acceptable values of the damage 
criterion and thus no dilatant damage. However, documentation of hanging string failure in 
several of the West Hackberry caverns (Munson, 2006) would seem to indicate that salt falls of 
significant magnitude to damage hanging strings are occurring in the caverns. In addition, recent 
laboratory data from SPR (Lee et al. 2004) and non-SPR (DeVries et al., 2005) salts indicate that 

the onset of dilatant damage in salt is nonlinear between I1 and 2J , and that there may be an 

additional dependence on the Lode angle ψ, which relates to the relative compression or 
extension among the principal stresses. RESPEC (DeVries et al., 2002) has developed a new 
dilatant damage criterion that includes dependence on the Lode angle. Additionally, a damage 
factor (Equation 7) and set of damage constants from the Cayuta and Big Hill salts (Tables 5 and 
6) have been developed from these works. This section will evaluate potential dilatant damage 
scenarios for Caverns 6, 9, 101, and 103, using the RESPEC damage criterion, hanging string 
damage histories, and sonar measurements of Cavern 101.  
 
Figure 51 compares the values for the three damage factors (Van Sambeek, SFVS; RESPEC 
criterion using the Cayuta salt properties, SFC; and the RESPEC criterion using the Big Hill salt 
properties, SFBH.) immediately after Cavern 6 has been depressurized at the beginning of a 
workover cycle. Whereas the Van Sambeek criterion does not predict salt damage at this time 
(damage was predicted after repressurization at the end of the workover; see Section 4.1), the 
RESPEC criteria indicate a significant potential for dilatant damage at the perimeter of the 
cavern. Figure 52 shows the same comparison for Cavern 9; in this case, salt damage is predicted 
for significant portions of the cavern wall beneath the circular ledge. Results like these would 
indicate that salt falls should have occurred in these caverns during workovers. Both caverns 
have had multiple, documented workover periods; however, no hanging string failures have been 
reported in these caverns, and the log data indicating floor elevation do not correlate with cavern 
pressure change events. Therefore, no conclusions can be drawn about the condition of Caverns 
6 and 9 from this information.  
 
Cavern 103, however, has had seven instances of hanging string failures between July 1982 and 
November 2006. Figure 53 shows the same comparison between the three damage factors. Note 
how the Big Hill salt properties indicate salt damage for nearly the entire bottom half of the 
cavern. This damage results in part from the larger differential between cavern pressure and in 
situ stress at the deeper elevations of the Phase 2 caverns.  Sufficient log data exist to possibly 
identify events and conditions which might lead to salt falls in the caverns. Figure 54 presents 
much of that data for Cavern 103.  Log data of the rise of the cavern floor, wellhead pressures, 
and cavern and oil volume are plotted along with predicted floor rise from the calculations and 
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the hanging string failure events. The hanging string failures nearly always occurred after a large 
change in pressure, either from a workover cycle (wellhead pressure drops to zero) or a cavern 
integrity test (maximum cavern pressure). Also, the actual rise in the cavern floor is significantly 
higher than that predicted by the analysis suggesting salt fall debris has accumulated on the floor.  
  

 
Figure 51. Dilatant damage criteria in salt surrounding Cavern 6 immediately after 

depressurization during workover (red values < 1.0, onset of dilatant damage). 
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Figure 52. Dilatant damage criteria in salt surrounding Cavern 9 immediately after 
depressurization during workover (red values < 1.0, onset of dilatant damage). 
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Figure 53. Dilatant damage criteria in salt surrounding Cavern 103 immediately after 
depressurization during workover (red values < 1.0, onset of dilatant damage). 
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Figure 54. Floor rise, pressure, and volume data for Cavern 103 compared to predicted floor rise 

and documented hanging string failures. 
 
Cavern 101 has no documented hanging string failure to date, but it has undergone two complete 
sonar scans in recent times, dated 1/16/2001 and 9/26/2006.  Figure 55 shows the same 
comparison between the three damage factors, and again the bottom half of Cavern 101 is 
predicted to be in dilatant damage conditions using the RESPEC criterion based on Big Hill data. 
Figure 56 plots the predicted and measured elevation rise of the cavern floor, along with the 
wellhead pressure and cavern and oil volumes. Note again that large changes in the floor 
elevation often occur in conjunction with large pressure-changing activities.  These changes are 
significantly larger than the rise in elevation predicted solely by creep. In particular, notice the 
period between November 2000 and August 2004, when the oil-brine interface was raised nearly 
660 feet by the introduction of fresh water. Because of the presence of the fresh water, some salt 
is expected to be removed from the surrounding walls by dissolution. Figures 57 and 58 shows 
superimposed images of Cavern 101 from the two sets of sonar measurements. Figure 57 shows 
the entire cavern, and Figure 58 zooms in on the bottom 700 feet.  The Caveman program 
(Ballard and Ehgartner, 2000) calculates the amount of salt dissolved between the sonar dates as 
480,000 bbl.  Assuming a 4.8 % insoluble content for the salt (Munson, 2006), results in 23,000 
bbl of insoluble that could settle to the cavern floor.  In addition to this insouble volume, creep is 
predicted to raise the floor level during this time by 37,000 bbl.  Thus the floor volume is 
expected to decrease by 60,000 bbl.  The difference in the sonar measurements shows a decrease 
of 430,000 bbl.  This suggests that additional debris was accumulated on the floor of the cavern, 
perhaps from salt falls. 



 

 66

 
If the estimates here are reasonably correct, it is an indication that additional salt and/or sediment 
has been added to the bottom of the cavern by some process other than leaching. Whether this is 
a direct indication of salt falls occurring in Cavern 101 is not clear. However, this uncertainty in 
the actual condition of the cavern walls, particularly at the bottom of the deep caverns, leads to 
several conclusions: 

 Additional series of laboratory tests of salt from West Hackberry and other SPR sites 
would be beneficial. In particular, a combination of triaxial compression and triaxial 
extension tests, where the salt samples are tested to dilatant failure, would greatly 
enhance the existing knowledge of the failure envelope of the salt at each site, and 
determine whether that failure is dependent on Lode angle. 

 Log data, hanging string failure events, and sonar measurements can be used to monitor 
the status of the cavern at several points in time. However, these data points are sparse, so 
it is difficult to detect salt fall events unless an obvious failure (i.e., hanging string) 
occurs. Particularly because the caverns are between 20 and 60 years old, additional 
monitoring of the conditions of the cavern walls and well casings would be beneficial. 

 If the new salt dilatancy criteria bears out through testing, the predicted dilatancy (and 
hence increased salt permeability) may explain the methane gas release mechanisms 
associated with gas intrusion into the caverns. 

 
The other Phase 1 caverns (7, 8, and 11) did not experience the same drastic increase in damage 
potential as Caverns 101 and 103, primarily because they are not as deep as the newer caverns. 
The earlier conclusions that these three caverns should be eligible for enlargement (as produced 
during oil drawdowns) remain unchanged by this investigation. 
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Figure 55. Dilatant damage criteria in salt surrounding Cavern 101 immediately after 
depressurization during workover (red values < 1.0, onset of dilatant damage). 
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Figure 56. Floor rise, pressure, and volume data for Cavern 101 compared to predicted floor rise. 
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Figure 57. Superimposed sonar measurements of Cavern 101, from 1/16/2001 (green) and 

9/26/2006 (yellow). 
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Figure 58. Superimposed sonar measurements of the bottom of Cavern 101, from 1/16/2001 

(green) and 9/26/2006 (yellow). 
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5. ADDITIONAL DISCUSSION OF CAVERNS 6 AND 9 
 
The results of the calculations presented in Section 4 illustrated some potential stability problems 
with the West Hackberry Cavern 6. Because of the dish-like shape of Cavern 6, the perimeter of 
the cavern is at risk of dilatant and tensile damage, particularly at the end of a workover 
operation. Because of this potential tensile cracking potential near Cavern 6, the close proximity 
of Cavern 9 (originally estimated to be 100 feet at their closest point) poses a risk of inter-cavern 
communications. Also an anomalous zone of salt may exist in the pillar between the two caverns.  
This may enhance the potential for a crack to propagate from Cavern 6 and intersect Cavern 9, 
causing cavern pressures to equilibrate.  An operational scenario of having Cavern 9 in workover 
mode during the breach would pose a serious risk to operational safety and containment of oil.  A 
breach when Cavern 6 is fully repressurized (the most likely condition) would result in 
approximately 55,000 bbl of oil entering into Cavern 9.  With the wellhead removed during 
workover mode, the oil would eject onto the surface.  This would pose a serious safety risk to the 
workover crew and potential environmental damage.  The obvious reaction would be to 
operationally prohibit sequential workovers of Caverns 6 then 9, allowing for an adequate time 
between workovers to allow the tensile stress to relax to a compressive state (al least 3 months).  
However any induced fracture may not heal and Cavern 6 is predicted to damage during its 
workover, which increases the potential to connect the caverns during that time.  To better 
evaluate the potential for damage to Caverns 6 and 9, some additional calculations have been 
performed.  
 
The sonar data used to create the dish-like shape of Cavern 6 in the original calculations was 
based on some incomplete data sets.  Deviations in the three wells in Cavern 6 and strapping data 
not originally included in the original sonar data sets provide a more accurate picture of the true 
geometry of Cavern 6 in 1982.  Three wells enter into West Hackberry Cavern 6, and these wells 
were deviated.  The coordinates at the surface and cavern ceiling are listed in Table 7, including 
nearby Cavern 9 wells which were also deviated.   At cavern ceiling elevations, Well 6 deviates 
105 ft to the NNE and Well 9 deviates 120 ft to the SW.  This places the caverns a greater 
distance apart (220 ft) than surface coordinates would suggest.  These ceiling coordinates were 
used in positioning cavern sonars relative to each other, other caverns, and the edge of dome.  
 

Table 7.  Deviations in the wells in Caverns 6 and 9 
Well Surface Coordinate Ceiling Coordinate 
 East ft North ft  East ft  North ft 
WH6 4959 22434 4980 22537 
WH6A 4959 22298 Does not enter cavern 
WH6B 5109 22343 5100 22666 
WH6C 4806 22343 4793 22619 
WH9 4820 21727 4756 21626 
WH9A 4761 21583 4761 21584 
WH9B 4695 21716 4765 21578 

 
The most recent sonar of Cavern 6 (August 12, 1982) does not show any span larger than 850 
feet.  A note found on the front page of the sonar report by Dowell states that any radii larger 
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than 500 feet will not appear.  Therefore the large 1200-ft ceiling spans noted in previous sonars 
are not represented in the 1982 sonar data. 
 
Prior high resolution sonars performed on Cavern 6 are listed in Table 8 along with the average 
and maximum ceiling spans. Cavern 9 is also included as its location relative to Cavern 6 and is 
plotted in Figure 59.  The sonars of Cavern 6, taken from the 3 different Cavern 6 wells, are in 
close agreement and show that the ceiling of Cavern 9 is located 230 feet from its edge.  The 
closest point of approach is with the lower lobe of Cavern 9, at approximately 205 feet. Figure 
60 shows Cavern 6 and 9 in their full volume and proximity. 
 

Table 8. Measured spans of WH Cavern 6. 
 Well Avg. Ceiling Span, ft Maximum Ceiling Span, ft 
5/21/1980 6 1158 1243 
5/21/1981 6 1145 1231 
3/21/1980 6c 1124 1212 
3/21/1980 6b 1129 1187 
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Figure 59. Proximity of Caverns 6 and 9. 
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Figure 60.  Caverns 6 and 9, from the most recent (1982) sonar and strapping data. 

 
While the four 1980-1981 sonars of Cavern 6 agree with each other, they can also be checked 
with the available strapping data, particularly in the ceiling area where sonar may have some 
difficulty because of the range and wingtip geometry (Figure 61).  Strapping data collected in 
Cavern 6 reflect the average cavern radius which is compared to the average of the sonar data 
(May 21, 1981) in Figure 62.  The strapping data were collected during Cavern 6 drawdown to 
recertify it in 1980.  Additional information is available following refill of Cavern 6 to 7,965,500 
bbl.  At that time (1984), the interface was measured at a depth of 3345 ft.  The corresponding 
1981 sonar volume at that depth is 7,934,875 bbl, or less than 1 percent difference.  In contrast, 
the 1982 sonar data would place the interface below 3390 ft, the bottom of the cavern – an 
obvious error.  The close agreements with the strapping data suggest that the 1980-1981 sonar 
data are correct, and Cavern 6 has a large 1200 ft ceiling span. 
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Figure 61. Profile of Cavern 6 based on 1980-1982 sonars. 
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Figure 62.  Radius of Cavern 6 measured from sonar and strapping data. 

 
The sonar data indicate that the approximately 200-feet wide “rim” encircling Cavern 6 has been 
present since at least 1980, and was about 10 feet thick at the edge of the dish or bowl portion of 
the cavern.  Unfortunately, the 1982 sonar measurements are the last data taken of the cavern 
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profile.  The current condition of the rim of Cavern 6 is not known.  This may be important for 
two reasons.  One, the extension of the flat wide volume of the cavern may increase the already-
high fracture potential around the perimeter, and consequently cause the cavern ceiling to 
subside more. Two, because of the geometry of the cavern, it is possible that the rim has been 
pinched off from the rest of the cavern, potentially trapping oil in the pinched section or in 
pockets near the rim that are at higher elevations than the access holes in the cavern ceiling.  
These possibilities were evaluated in the new calculations.  Because of the uncertainty in the 
current shape of Cavern 6, results using the original estimated shape of Cavern 6 (no “rim”) are 
still useful in evaluating the potential impacts of cavern operations to its stability. 
 
The following is a summary of some of the results of the original calculations using the original 
estimated shape for Cavern 6 (no “rim”) that are in Section 4.  There are two ways in which the 
salt surrounding the caverns can be damaged: by stress-induced microfracturing causing dilatant 
damage and an increasing in permeability and the potential for crack propagation, and by tensile 
stresses which causes salt fracture and crack propagation. Figure 23 plots the Van Sambeek 
damage factor for a vertical cross-section of Caverns 6 and 9 on day 9730 from the original 
calculations; note how the top layer of Cavern 6 is red, indicating a damage factor less than 1 
(means the onset of dilatant damage). Figure 24 is a close-up of the edge of Cavern 6, showing 
the location of the high deviatoric stress region around the perimeter.  Because of the unusual 
shapes of these two caverns, the pressure changes during the drawdown to zero wellhead 
pressure, and the re-pressurization back to normal operating pressure causes transient deviatoric 
stresses in specific regions around the caverns. For Cavern 6, this region is always the perimeter 
of the dish-shaped cavern. At the start of the workover, the lower pressure in the cavern causes a 
temporarily larger compressive stress around the perimeter, creating the first low spike in the 
damage factor.  The stresses improve with time during the workover, until the cavern pressure in 
Cavern 6 is increased again.  Upon repressurization of the cavern to normal pressures, the same 
perimeter locations experience a temporary tensile loading, creating the potential for both tensile 
and dilatant fracturing.   
 
Furthermore, there is evidence from the history plots of the minimum dilatant damage factor that 
significant pressure changes in Cavern 6 are reflected in smaller changes in Cavern 9 and vice 
versa. The influence of these two caverns on each other is an important design criterion for 
future operations. Cavern closure can be measured by the change in wellhead pressure over a 
period of time. The wellhead pressure naturally increases as a response to the decrease of volume 
from salt creep into the cavern; the wellhead pressure is then adjusted periodically at the surface 
facilities to maintain a reasonably uniform pressure over time. Wellhead pressure data are 
collected daily for all SPR wells.  Pressure data from Caverns 6 and 9, plotted at times before 
and after the onset of workovers at the other cavern, show an increase in the pressure change 
rate; these pressure change rates correspond to changes in the cavern closure rate by factors of 2 
to 4. Examples of pressure data for Cavern 6 at the onset of a workover in Cavern 9, and for 
Cavern 6 at the onset of a workover in Cavern 9, are shown in Figure 39. This measured change 
in closure rates verifies the analytical predictions that significant cavern interactions occur 
between Caverns 6 and 9 during workovers. This verification further strengthens the position that 
workover activities in Caverns 6 and 9 must be planned very carefully to prevent undesired 
communication between them.    
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The computational mesh for Cavern 6 was regenerated based on the more complete sonar 
information, and the calculations were originally resubmitted with no changes to the excavation 
and oil storage scenarios.  This was found to be impractical; if the rim was created in 1946 along 
with the remainder of the original cavern, it was found to close well before the oil emplacement 
timeframe of 1979-1980.   This result could indicate that the rim around Cavern 6 might have 
been created during the transition from brine to oil storage, when the pressures were increased 
substantially and the perimeter of the cavern experienced a high potential for fracturing.  (There 
are no site data to either support or contradict this conjecture.)  Therefore, the scenario was 
modified to create the rim of the cavern in 1980, when the cavern began its oil storage function.  
Figure 63 shows the plot of damage factor around Caverns 6 and 9 that is analogous to Figure 
23.  The region of high damage potential is concentrated at the edge of the rim of Cavern 6.  
Figure 64 shows a closer view of the rim when the cavern begins storage operations in about 
1980 until when the rim is predicted to pinch closed sometime around 1989.  Figure 65 continues 
these views, looking to the years 1994 and 2004.  These plots indicate not only that the rim of 
Cavern 6 may have entrapped oil in it, but that the ceiling of the cavern may have sunk beneath 
the level of oil around the perimeter.  The volume of this “lost” oil may be significant, as high as 
1 MMB.  Figure 66 compares the predicted drop in the ceiling elevation for both the original 
calculation and the calculations with the corrected Cavern 6 geometry.  Note that the existence of 
the rim produces a significantly greater elevation drop in Cavern 6, which if true would 
substantiate the scenario shown in Figures 64 and 65. 

 
Figure 63.  Damage near the rim of Cavern 6. 
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Figure 64. Closure of the rim of Cavern 6 around 1989. 

 
Figure 65. Continued subsidence of Cavern 6 after rim closure. 
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Figure 66. Predicted rim closure and ceiling drop for Cavern 6. 

 
Data logs of Cavern 6 taken in the years 1983 to 1992 were used to determine if there is any site 
information which might confirm the scenario of “lost oil” described in Figures 64 and 65. 
Figure 67 shows the measured changes in oil volume and interface depth beginning in 1983. 
From Cavern 6 data logs, oil volume starts out constant then it reduces by 1MMB.  During this 
volume reduction, caused by the inward deformation of the cavern by the creeping salt, one 
would expect the depth to the oil brine interface to start out constant and then move upward.  In 
fact, the interface drops this entire time period between 10 and 20 feet.  This phenomenon can be 
explained by the rim of cavern 6 which is predicted to close during this time period – on the 
order of 10 ft in agreement with the data.  After 1992, the cavern exhibits expected or typical 
behavior – a continued decrease in oil volume (0.5 MMB) accompanied by a rising interface. 
Figure 68 shows the measured oil volume and the measured wellhead pressure for Cavern 6.  
Note that the operating wellhead pressure applied for Cavern 6 was about 600-700 psi in 1989, 
substantially less than the 900 psi pressures used in later years and in the calculations.  Figure 69 
overlays the predicted volume changes for Cavern 6 for the calculations with and without the 
rim.  Note that the measure volume change lies between the two predicted values, adding to the 
likelihood of the scenario that the rim of Cavern 6 has closed, resulting in the period of the drop 
in elevation of the interface depth and the possible entrapment of oil in the pinched rim or in the 
cavern regions above the ceiling access points.  
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Figure 67. Measured oil volume and interface depth in Cavern 6. 
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Figure 68. Measured oil volume and wellhead oil pressure in Cavern 6. 
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Figure 69.  Measured vs. predicted volume changes in Cavern 6. 

 
An additional simulation was run to determine the possibility of cavern stability issues resulting 
from near-coincidental workovers on both Caverns 6 and 9. In all previous calculations, the 
workovers in Caverns 6 and 9 had been equally spaced at every 2.5 years. In the new simulation, 
the wellhead pressures in Caverns 6 and 9 are dropped to zero simultaneously.  When this 
happens, the 5-ft gap in the rim at that time immediately closes.  In addition, the damage factor 
around the edge of the rim surpasses the failure threshold of 1.   
 
The new calculations utilizing the 1982 version of Cavern 6 verify many of the conclusions 
drawn with the original calculations.  Tensile stresses are predicted around the perimeter of 
Cavern 6 during and immediately following repressurization of the cavern and last for several 
months.  Pressure applied to the large ceiling span apparently induces an elastic, tensile response 
at the edges of the ceiling.   If a crack were to propagate and intersect Cavern 9, cavern pressures 
would equilibrate.  The maximum equilibrated pressures are not problematic to the wellhead or 
production casings in either caverns, but an operational scenario of having Cavern 9 in workover 
mode during the breach would pose a serious risk to operational safety and containment of oil.  A 
breach when Cavern 6 is fully repressurized could result in major safety and environmental 
problems in the operation of Cavern 9.  It is imperative to allow for an adequate time between 
repressurization of Cavern 6 and the workover of Cavern 9.  These analyses suggest a three-
month period, but a reasonable safety factor must be applied given the analysis uncertainties and 
severe consequences. As such, the following conclusions have been determind regarding 
operation of Caverns 6 and 9: 

 Repressurization in Cavern 6 after a workover will likely cause tensile stresses around the 
perimeter of the cavern. 

 Pressure changes in Cavern 6 during a workover cause resulting pressure changes in 
Cavern 9, and vice versa.  These coincident pressure changes indicate that there is already 
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some sort of communication between the caverns, most likely in the form of deviatoric 
stress changes, but there exists the possibility of the existence or future formation of salt 
fractures directly linking the two caverns. 

 The rim around Cavern 6, as observed in the 1982 sonar and strapping data, has probably 
closed to an extent such that it is not available to store retrievable oil; however, the status 
of the rim is not certain.  The status of the rim has implications on the coincident 
behavior of Caverns 6 and 9. 

 
The following are recommended actions regarding caverns 6 and 9: 

 New sonar and/or strapping data should be taken to learn the current geometry of Cavern 
6.  Such measurements would aid in determining if the rim is stil connected to the bowl 
of Cavern 6 and if there is retrievable oil there, as well as determining if there is oil in the 
upper corners of the bowl of Cavern 6 that cannot be removed using the standard water 
displacement techniques. 

 Workovers performed on Caverns 9 should be performed no sooner than one year after 
the completion of a workover in Cavern 6.  This period will allow the stressed salt around 
Cavern 6 enough time to heal and attain near-hydrostatic stress values, so to minimize the 
possibility of cracking the salt between Caverns 6 and 9.  Performing the workovers in 
the opposite order (Cavern 9, then Cavern 6) does not appear to need such a stringent 
requirement, although it would probably be wise to keep the same delay. 

 When performing a workover, CIT, or other pressure-changing procedure in Cavern 6 or 
9, it is recommended that the pressure in both caverns be monitored and evaluated for 
evidence of unusual changes that might indicate a loss of product through a salt fracture. 

 
 
 



 

 82

6. CONCLUSIONS 
These analyses evaluated the Phase 1 caverns at the West Hackberry SPR site for their current 
condition and for potential enlargement. The analyses also examined the overall performance of 
the West Hackberry site by evaluating surface subsidence, horizontal surface strains, and axial 
well strains.  Finally, the analyses evaluated the possibility of nonlinear dilatancy behavior of the 
West Hackberry salt, and its possible ramifications on cavern performance. The following 
conclusions were obtained from the results of the analyses: 
 Because of the dish-like shape of Cavern 6, the perimeter of the cavern is at risk of dilatant 

and tensile damage, particularly at the end of a workover operation. This potential will 
increase with the first and second leaching operations, but may be abated with the later 
expansions as the cavern takes on a more cylindrical shape. 

 The times of highest potential of salt damage/salt falls are during large cavern pressure 
changes, such as depressurization or repressurization in workovers. Even at low cavern 
pressures, over time the stresses in the cavern walls will adjust to near isotropic conditions; 
there will be increased creep and cavern closure, but the potential for damage will dissipate 
as the cavern pressure remains constant. 

 Because of expected tensile cracking potential near Cavern 6, the close proximity of Cavern 
9 (200 feet at their closest point) poses a risk of inter-cavern communications. The potential 
exists for a crack to propagate from Cavern 6 and intersect Cavern 9, causing cavern 
pressures to equilibrate.  An operational scenario of having Cavern 9 in workover mode 
during the breach would pose a serious risk to operational safety and containment of oil.  A 
breach when Cavern 6 is fully repressurized (the most likely condition) could abruptly 
pressurize Cavern 9 and result in approximately 55,000 bbl of oil ejecting onto the surface in 
the absence of a wellhead or if the blowout prevent faulted. This would pose a serious safety 
risk to the workover crew and potential environmental damage.   

 New sonar and/or strapping data should be taken to learn the current geometry of Cavern 6.  
Such measurements would aid in determining if the rim is in contact with the the bowl of 
Cavern 6.  Should the ceiling contact the edge of the bowl, there may be oil isolated in the 
extremities of the rim or in the upper corners of the bowl that may not be removed using 
standard water displacement techniques. 

 Workovers performed on Caverns 9 should be performed no sooner than one year after the 
completion of a workover in Cavern 6.  This period will allow the stressed salt around 
Cavern 6 enough time to heal and attain near-hydrostatic stress values, so to minimize the 
possibility of cracking the salt between Caverns 6 and 9.  Performing the workovers in the 
opposite order (Cavern 9, then Cavern 6) does not appear to need such a stringent 
requirement, although it may be prudent to keep the same delay. 

 When performing a workover, CIT, or other pressure-changing procedure in Cavern 6 or 9, it 
is recommended that the pressure in both caverns be monitored and evaluated for evidence of 
unusual changes that might indicate a loss of product through a salt fracture. 

 This report provides examples of cavern interactions observed between the caverns through 
historic pressure measurements.  Additional and continuing work could be done to assess 
changes throughout time as more data are accumulated on the caverns. 

 Cavern 9 has a middle section with a smaller radius, giving a cross-section of the cavern the 
look of a bell with a mid-cavern ledge. This ledge and the cavern wall underneath supporting 
the ledge are also locations with a significant potential for dilatant damage during workover 
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operations. This analysis designs a cavern enlargement process that gradually eliminates the 
ledge, resulting in a final bell shape with no enlargement in the radius over the majority of 
the cavern. This cavern enlargement procedure favorably eliminates the ledge, but in reality 
the leached shaped of the cavern may differ, and other leaching scenarios may result in 
interference with Cavern 6 or a heightened potential for dilatant damage. 

 Additional analyses should be performed on the interactions of Caverns 6 and 9 that examine 
the influence of operating the caverns as a gallery, where pressures in both caverns are kept 
equal.  If the results reduced the likelihood of a crack forming between the caverns, the 
modeled scenario could be implemented into practice. 

 Caverns 7, 8, and 11 have no significant issues regarding dilatant damage in the surrounding 
salt, and may be enlarged with no adverse effect on cavern stability. 

 The predictions indicate surface subsidence of an additional four feet between 2006 and 
2034, to a total of 7 feet since 1991. If extended over a potential 100-year life of the facility, 
the potential displacement could reach a total of approximately 12 feet between 2006 and 
2084 (15 feet since 1991). Because the surface structures at the wellhead are at elevations 
between 4 and 18 feet above sea level, the predicted subsidence may cause some of the 
wellheads to sink below sea level by the 2030’s.   

 Vertical strains in the locations of the original (c. 1946) and newer (c. 1981) wells providing 
access to the Phase 1 caverns in some cases have already exceeded established thresholds for 
cement failure (0.2 millistrains) and steel casing collapse (1.6 millistrains). In particular the 
greatest strain was predicted above Cavern 6 with yielding predicted in the 2000-2002 time-
frame.  This prediction was validated with the failure of Well 6B in 2001, requiring a liner in 
2002.  The vertical strain predictions presented here should be correlated with other known 
well casing problems or logging results to determine field-appropriate strain threshold values. 

 Recent laboratory data from SPR (Lee et al. 2004) and non-SPR (DeVries et al., 2003) salts 

indicate that the onset of dilatant damage in salt is nonlinear between I1 and 2J , and that 

there may be an additional dependence on the Lode angle ψ, which relates to the relative 
compression or extension among the principal stresses. The utilization of dilatant damage 
criteria based on these studies indicate that significant portions of some caverns, including 
the walls beneath the ledge of Cavern 9, and the sections of Caverns 101 and 103 (and most 
of the post-1981 caverns) below 3600 feet of depth, may experience dilatant damage 
conditions during large pressure change events. Possible indications of salt fall (whether by 
large chunks or by “snowfall”) may be induced from log data of cavern floor elevations and 
sonar measurements of the volume of the cavern. 

 Additional series of laboratory tests of salt from West Hackberry and other SPR sites would 
be beneficial. In particular, a combination of triaxial compression and triaxial extension tests, 
where the salt samples are loaded to dilatant failure, would greatly enhance the existing 
knowledge of the failure envelope of the salt at each site, and determine whether that failure 
is dependent on Lode angle. 

 Log data, hanging string failure events, and sonar measurements can be used to monitor the 
status of the cavern at several points in time. However, these data points are sparse, so it is 
difficult to detect salt fall events unless an obvious failure (i.e., hanging string) occurs. 
Particularly because the caverns are between 20 and 60 years old, additional monitoring of 
the conditions of the cavern walls and well casings would be beneficial, specifically cement 
bond and casing inspections logs. 
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