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Abstract. The turbulent angular momentum flux carried by ions resonant with

toroidal ion temperature gradient(ITG) instability is calculated via quasilinear

calculation using the phase-space conserving gyrokinetic equation in the laboratory

frame. The results near ITG marginality indicate that the inward turbulent

equipartition (TEP) momentum pinch [Hahm T.S. et al 2007 Phys. Plasmas 14

072302] remains as the most robust part of pinch. In addition, ion temperature gradient

driven momentum flux is inward for typical parameters, while density gradient driven

momentum flux is outward as in the previous kinetic result in slab geometry [Diamond

P.H. et al 2008 Phys. Plasmas 15 012303].

PACS numbers: 52.30.Gz, 52.35.Qz
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1. Introduction

The need for understanding momentum transport, which governs plasma rotation profile

is now widely recognized. A highly anomalous level of toroidal momentum transport has

persistently been observed in tokamak experiments since the early 90’s [1]. Therefore, it

is believed to be caused by microturbulence such as ion temperature gradient (ITG)

turbulence. For instance, a comparable level of the toroidal momentum diffusivity

�� and the ion thermal diffusivity �i observed in Tokamak Fusion Test Reactor

(TFTR) [1] experiments is in rough agreement with theoretical predictions based on

ITG turbulence [2]. There is accumulating experimental evidence that momentum

transport cannot be properly described by a diffusion coefficient only. This includes the

identification of a nondiffusive component of the momentum flux [3], and the observation

of spontaneous toroidal rotation of plasmas in the absence of apparent external torque

input [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In particular, recent perturbation experiments

on JT60-U [14, 15], NSTX [16, 17], DIII-D [18] and JET [19] neutral beam heated

plasmas showed the need for non-diffusive, off-diagonal momentum flux modelled as a

momentum pinch to match the measured centrally peaked rotation profiles.

In this paper, we concentrate our studies on the pinch contribution to the

momentum flux which is proportional to the flow velocity and affects the radial profile of

the flow. While most theoretical studies on a momentum pinch driven by ITG turbulence

were performed in the fluid regime where ∇Ti exceeds the critical value considerably,

∇Ti at the core of many experiments does not deviate much from the threshold value

[1]. Therefore, momentum pinch derived from ITG turbulence near marginality can be

more relevant to experiments than those derived from fluid description. We also note

that theoretical progress has been made in a simple slab geometry [20]. Needless to

say, an extension to toroidal geometry is needed. In particular, it is of great physical

interest to find out how the ∇B-driven turbulent equipartition (TEP) pinch [21, 22, 23]

is modified for the relevant regime of ITG turbulence near marginality where kinetic

effects including wave-particle resonant interaction play a crucial role.

In general, the nondiffusive flux of momentum should include the residual stress in

addition to pinch. The residual stress does not depend on the flow velocity or the flow

velocity shear. The residual stress can generate rotation of plasmas from the stationary

state, and can come from various physics mechanisms including ⟨k∥⟩ asymmetry induced

by a directional imbalance in the wave population in ITG turbulence [24] caused by E×B

shear [25], for instance, by nonresonant wave-particle momentum exchange [20, 26], and

from high order polarization effect [27, 28].

From our investigation, we find that the inward turbulent equipartition (TEP)

momentum pinch remains as the most robust part of the pinch. In addition, the ion

temperature gradient driven momentum flux is inward for typical parameters, while the

density gradient driven momentum flux is outward as in the previous kinetic result in

slab geometry [20].

The rest of this paper is organized as follows. In section 2, we derive a linear
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dispersion relation for the toroidal ITG mode in the presence of a drift resonance to

get the linear threshold condition and eigenfrequency. With these results, in section 3,

a quasilinear expression for parallel momentum transport is calculated, and further

classified into a diffusive part and a pinch part. Finally, conclusions for this paper are

drawn in section 4.

2. Linear Dispersion Relation of Toroidal ITG Modes in the presence of

Drift Resonance

In general, transport driven by wave-particle interaction depends on the eigenfrequency

of the wave. Therefore, in this section, a local dispersion relation is derived for the

toroidal ITG instability near marginality in the presence of finite parallel flow. We start

from the nonlinear electrostatic gyrokinetic equation in general geometry [29] for ions,

∂F

∂t
+

dR

dt
⋅ ∇F +

dv∥
dt

∂F

∂v∥
= 0 (1)

with

dR

dt
= v∥

B∗

B∗
+

cb

eiB∗
× (ei∇⟨⟨��⟩⟩+mi�∇B) (2)

and

dv∥
dt

= − B∗

miB∗
⋅ (ei∇⟨⟨��⟩⟩+mi�∇B) . (3)

where v∥ = v ⋅ b is the parallel velocity of ions, B∗ = B + mic
e
∇ × v∥b, B

∗ ≡ b ⋅ B∗,

� = v2⊥/2B is the magnetic moment, �� is the fluctuating electrostatic potential,

b = B/B is the unit vector along the magnetic field, and the double bracket ⟨⟨⋅⟩⟩
means the gyro-averaged value of the inserted quantity. The v∥B

∗ term in equation (2)

includes not only the parallel motion of the particle but also the curvature drift. Both

the curvature and the ∇B drift terms are pertinent to the aim of this paper.

Linearization of the gyrokinetic equation yields the following perturbed distribution

function for ions in Fourier space,

�fi,k = −
c
B∗J0��kk#∂rF0 +

(

e
m
k∥J0��k + v∥!d∥k

eJ0��k

Ti∥

)

∂F0

∂v∥

!k − k∥v∥ − !curvk − !∇Bk + i�+
, (4)

where �f = F − F0 is the fluctuating distribution function, k# ≡ b × r̂ ⋅ k, ∂r = r̂ ⋅ ∇,

J0 = J0(k⊥�i) is the Bessel function, !curvk ≡ cmv2
∥

eB
b × (b ⋅ ∇)b ⋅ k ≡ �curvkv

2
∥ is the

curvature drift frequency of ions, !d∥k = !curvk(vT∥i) =
cT∥

eB
b × (b ⋅ ∇)b ⋅ k is the

curvature drift frequency of thermal ions, !∇Bk ≡ cm�
eB

b × ∇B ⋅ k ≡ �B�∇Bk is the

∇B drift frequency of ions, �i ≡ vT i/Ωci is the ion Larmor radius, vT i ≡
√

Ti/mi is

the ion thermal velocity and �+ is due to causality. In this paper, we use a set of

variables (r, �, �) to denote the radial, poloidal, and toroidal coordinates, respectively.

Note that in a low-�, high aspect ratio torus, the relation b × (b ⋅ ∇)b ≃ b × ∇ lnB

yields �curvk ≃ �∇Bk ≡ �Dk in the lowest order. ∇F0 contains the free energy source
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in configuration space in terms of gradients of macroscopic quantities such as ∇Ti and

∇n0. Assuming that equilibrium distribution function is a shifted-Maxwellian,

F0(R, v∥, �, t) = n0(R)(2�vT∥i)
−1/2(2�vT⊥i)

−1 exp

(

−mi(v∥ − U∥)
2/2

Ti∥

− mi�B

Ti⊥

)

,

∂rF0 and ∂F0

∂v∥
can be written as

∂rF0 =

{[

1 +

( 1
2
mi(v∥ − U∥)

2

Ti∥

− 1

2

)

�i∥ +

(

�miB

Ti⊥
− 1

)

�i⊥

]

∂r lnn0 −
�mi

Ti⊥
∂rB

+
mi(v∥ − U∥)

Ti∥

∂rU∥

}

F0,

and

∂F0

∂v∥
= −mi(v∥ − U∥)

Ti∥

F0,

where n0(R) is the equilibrium density in the guiding center coordinate, �i =

∂r lnT0/∂r lnn0 and its additional subscript differentiates temperature in parallel

direction from that in perpendicular direction. For the perturbed distribution function

of electrons, we assume adiabatic response to focus primarily on the ion drift resonance

effect on ITG instability :

�fe(x) =
e��(x)

Te∥
Fe0.

Note that x represents particle position, whileR = x−� denotes guiding center position.

Taking into account of the polarization density [30], npol
i (x) = −n0(1−Γ0)e��/Ti⊥ [31],

the quasi-neutrality condition gives the following dispersion relation,

n0e��

Ti∥

[

1

�∥
+

Ti∥

Ti⊥
+ Γ0

(

1− Ti∥

Ti⊥

)]

− 2�

∫

B∗�ℎJ0d�dv∥ = 0, (5)

where �∥ = Te∥/Ti∥ is the ratio of electron to ion parallel temperature, Γ0 = Γ0(b) =

I0(b)e
−b, b = k2

⊥�
2
i , and �ℎ = �fi+(eJ0��/Ti∥)F0 is a nonadiabatic part of guiding center

perturbed distribution function which can be written explicitly as

�ℎ =

[

!k − k∥U∥ − !∗T i −
(

1− Ti∥

Ti⊥

)

!∇Bk −M∥

(

v∥
vT i∥

−M∥

)

!∇U

−M∥

v∥
vT i∥

!d∥k

][

!k − k∥v∥ − !curvk − !∇Bk + i�+
]−1

eJ0��

Ti∥

F0, (6)

where !∗T i =
v2
Ti∥

Ω
b×∇ lnn0 ⋅ k

[

1 +
(

1

2
m(v∥−U0)2

Ti∥
− 1

2

)

�i∥ +
(

�mB
Ti⊥

− 1
)

�i⊥

]

and M∥ =

U∥/vT i∥ is the Mach number defined with parallel temperature.

Several authors have studied the details of drift resonance in the kinetic regime

[32, 33, 34, 35]. In this paper, we adopt the constant energy resonance approximation

(CERA) [35] to facilitate the integral in equation (5) analytically. Following the

CERA, replacement of v2⊥ + 2v2∥ by 4
3
(v2⊥ + v2∥) leads to !curv + !∇B = 2

3
�Dk(v

2
∥ + v2⊥)

with an assumption of low-� and high aspect ratio toroidal geometry. In addition,

k∥v∥ < !curv, !∇B is assumed to concentrate on studying the effect of drift resonance,
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which limits the valid region of the dispersion relation in the k-space roughly to

∣k∥/k�∣ < �i/R, where R is major radius. In this sense, we are only considering a

simplified version of toroidal ITG mode, since k∥ ∼ 1/R for the typical ballooning

mode structure. The opposite limit keeping the transit resonance !k ∼ k∥v∥ has been

studied in [36]. We also assume isotropic temperature Ti ≡ Ti∥ = Ti⊥, low Mach number

M2 ≪ 1, and negligible finite Larmor radius effect k⊥�i ≪ 1. After normalizing the

velocity with respect to vT i, i.e, v/vT i → v , the equation (5), reduces to
√

2

�

∫ ∞

0

dv
v2

v2 − 3!k

2�Dkv
2

Ti

e−
v
2

2

{

3!k

2�Dkv2T i

− 3

2

∂r lnn0

∂r lnB

[

1 +

(

1

2
v2 − 3

2

)

�i

]}

+
1

�
+ 1 = 0. (7)

Note that Re(!) must have a negative sign to allow drift resonance, taking into account

of the fact that �Dk < 0 at the outside midplane where the fluctuation is believed to

be stronger. With Plemelj formula, a condition Im{equation (7)} = 0 determines the

resonance frequency at marginality,

�c =
3
2
�i − 1

�i − 4
3
Ln

R

, (8)

where the normalized frequency �c is defined as �c ≡ 3!k

4�Dkv
2

Ti

, Ln = (−∂r lnn0)
−1 is the

density scale length and ∂r lnB ≃ −1/R. We can observe that the negative frequency

condition sets the minimum bound of �i value at marginality. For instance, �i > 2
3

is a necessary condition for a nonrotating plasma. Substituting this eigenfrequency at

marginality into Re{Equation (7)} = 0, the following ITG threshold can be obtained

with consideration of the negative frequency condition,

R

LT i

∣

∣

∣

∣

Tℎres

= Max

[

4

3

(

1 +
1

�

)

,
2

3

R

Ln

]

(9)

where LT i = (−∂r lnTi)
−1 is scale length of the temperature gradient. This agrees with

the result by Romanelli [34] as it should. We note that lower temperature ratio has

stabilizing effect on instability threshold in agreement with results of several theoretical

studies [34, 36, 37].

Now we compare the threshold values from theoretical models with experimental

data from TFTR [1] in Figure 1. Here, we’ve used the electron density profile in the

definition of �i to obtain the threshold in the absence of available data on impurity ion

and beam ion density values, while the main ion density was used in [1] (for instance, for

figure 1 ). In addition, the threshold value for ∇ B model [34] is considered as another

approximation in the same regime of CERA in k-space where the drift resonance is

dominant over the transit resonance. In this approximation, we replace v2⊥+2v2∥ by 2v2⊥
in the wave-particle resonant integral. The following formula is the threshold value for

∇B model [34],

R

LT i

∣

∣

∣

∣

Tℎres

= Max

[

2

(

1 +
1

�

)

,
R

Ln

]

. (10)
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2.7 2.8 2.9 3.0 3.1 3.2
R

2

4

6

8
ΗHcritL

Figure 1. Comparison of �i from TFTR experiment with theoretical predictions for

�crit. The solid line (——) corresponds to results from a TFTR experiment, the dotted

line (⋅ ⋅ ⋅ ⋅ ⋅ ⋅) corresponds to results from the ∇B model, and the dashed line (- - - -)

corresponds to results from the Constant Energy Resonance Approximation(CERA).

The theoretically estimated lines are plotted only in the domain satisfying the drift

resonance condition ! < 0 on the bad curvature side.

Even with these caveats, Figure 1 illustrates that in reality the experimental �i value

does not deviate significantly from the threshold of instability confirming the conclusion

of [1]. Since the wave-particle resonant interaction is important near marginality, a

kinetic approach is necessary to evaluate transport accurately for realistic parameters

including the stiff ion temperature profile. We note that some gyrokinetic simulations

[38] indicate strong wave-particle resonant interaction even away from marginality.

3. Momentum Pinch and Diffusion

The turbulent parallel momentum density flux driven by electrostatic fluctuations in

the quasilinear regime can be written as

Γ∥ = ⟨�(nmU∥)�vr⟩ ≈ mU∥⟨�n�vr⟩+ nm⟨�U∥�vr⟩ (11)

≡ mU∥Γn +Πr,∥

where Γn is the turbulent particle flux and Πr,∥ is the Reynolds stress corresponding to

parallel flow fluctuations carried by radial velocity fluctuations. Here, we assume that

the E×B drift caused by electric potential fluctuations is the radial velocity fluctuation

responsible for transport. The first term on the RHS of equation (11) is a contribution

of the turbulent particle flux to the turbulent parallel momentum density flux. This

contribution vanishes for the adiabatic electron response considered in this paper. The

second term is due to the parallel momentum flux contribution of the Reynolds stress

in the radial direction.

The Reynolds stress component which is the parallel fluctuating flow carried by

radial velocity fluctuations is traditionally divided into three components [20],

⟨�U∥�vr⟩ = −�∥

dU∥

dr
+ VpincℎU∥ +ΠRes

r,∥ (12)
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where the first term on the RHS is the momentum diffusion driven by the gradient

of the flow, the second term is a pinch term proportional to the flow velocity, and

the last term is the residual stress which depends on other macroscopic quantities

such as ∇n0,∇Ti,∇Te, etc. The diffusion, pinch and residual stress are generally

classified according to their proportionality to the gradient of the transported quantity,

the transported quantity itself, and the rest which cannot be characterized by the

aforementioned two categories, respectively. Therefore, this semi-phenomenological

classification is quasi-local in nature. From this equation we can deduce that the only

term able to generate rotation of plasma from the stationary state is the residual stress.

In other words, the residual stress is a key ingredient of intrinsic rotation. This residual

stress can be obtained from ⟨k∥⟩ asymmetry induced by a directional imbalance in the

wave population in ITG turbulence [24] caused by E × B shear [25], for instance, by

nonresonant wave-particle momentum exchange [20], or by curvature effects in the stress

tensor [39], and from high order polarization effects [27, 28]. A strong correlation among

⟨k∥⟩ asymmetry, zonal flow shear, and inward momentum flux has been observed in GTS

simulations [40], suggesting the existence of residual stress. A similar conclusion has

been drawn from a different simulation [41]. Then, equation (11) reduces to

Γ∥ = nm⟨�U∥�vr⟩ = nm

(

−�∥

dU∥

dr
+ VpincℎU∥ +ΠRes

r,∥

)

, (13)

where �u is the diffusion coefficient for parallel flow, Vpincℎ is the pinch velocity, and

finally ΠRes
r,∥ is the residual stress.

With this background, this section is devoted to explicitly evaluating the diffusion

coefficient and the pinch velocity for the turbulent angular momentum density flux

within the quasilinear approximation, thus elucidating the dependency of these terms

on plasma parameters. We’ll address the residual stress, which can be crucial in more

general context [42, 43], in the future.

The turbulent angular momentum density flux is written in terms of the perturbed

distribution function of ions, �fi, as

Γ∥ ≡ 2�

∫

d�dv∥⟨B∗miRv∥�fi�vr⟩. (14)

Here, ⟨⋅ ⋅ ⋅⟩ is an ensemble average approximated by the flux surface average. By

substituting the gyrokinetic perturbed distribution function in equation (4) into

equation (14) with the CERA, we can obtain an analytic formula for the angular

momentum density flux in the quasilinear regime,

Γ∥ =
∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c

{

− ∂r(n0miRU∥)

+

[(

5

2
− �c

)

∂r lnTi +

(

−2 +
8

5
�c

)

∂r lnB

]

n0miRU∥

}

(15)

=
∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c

{

− n0miR
2∂r!∥ +

[

− ∂r lnn0
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1 2 3 4 5 6
R�Ln

2
4
6
8
Ηi,crit

1 2 3 4 5 6
R�Ln

1

2

3

4

Αcrit

Figure 2. Parametric dependence of (a) threshold �i,crit for the electron temperature

to ion temperature ratio � ≡ Te

Ti
= 0.5 (- - - -), 1 (——), and 2 (⋅ ⋅ ⋅ ⋅ ⋅ ⋅), and (b) the

corresponding normalized eigenfrequency �crit.

+

(

5

2
− �c

)

∂r lnTi +
8

5
�c∂r lnB

]

n0miR
2!∥

}

. (16)

The following diffusion coefficients and pinch velocities can be identified as,

�L
Ang =

∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c , (17a)

V L
r,Ang =

∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c

[(

5

2
− �c

)

∂r lnTi +

(

−2 +
8

5
�c

)

∂r lnB

]

, (17b)

V L
r,Ang

�L
Ang

≃
(

5

2
− �c

)

∂r lnTi +

(

−2 +
8

5
�c

)

∂r lnB, (17c)

using equation (15) with angular momentum density as a main independent variable in

the flux-gradient relation. A common factor �
3/2
c e−�c is proportional to the number of

ions resonant with toroidal ITG.

On the other hand, if we use the angular rotation frequency, !∥, as a main

independent variable, we obtain

�!
Ang =

∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c , (18a)

V !
r,Ang =

∑

k

∣�vrk∣2
1

∣!Dk∣
√
��

3

2

c e
−�c

[

−∂r lnn0 +

(

5

2
− �c

)

∂r lnTi +
8

5
�c∂r lnB

]

, (18b)

V !
r,Ang

�!
Ang

≃ −∂r lnn0 +

(

5

2
− �c

)

∂r lnTi +
8

5
�c∂r lnB. (18c)

The gradients of these two quantities are related via ∂r(n0miR
2!∥) ≃

n0miR
2!∥

(

∂r lnn0 + ∂r ln!∥ − 2∂r lnB
)

on the assumption that magnetic field strength

is proportional to inverse of major radius. Here, �vrk ≡ −i ck#��
B

is the E × B radial

fluctuation velocity, !Dk ≡ v2T i�Dk is the thermal drift frequency. Note that the drift

resonance at the low field side can occur for �c > 0.

It is clear from equation (18b) that the density gradient driven flux is outward

while the magnetic field gradient pinch is inward. However, direction of the temperature
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1 2 3 4 5 6
R�Ln

0.1

0.2

0.3

0.4
ΧAng
Ω

1 2 3 4 5 6
R�Ln

-1.5

-1.0

-0.5

RVAng
Ω

1 2 3 4 5 6
R�Ln

-4

-3

-2

-1

RVAng
Ω

ΧAng
Ω

Figure 3. Parametric dependence of (a) angular momentum diffusivity �Ang, (b)

pinch velocity RV !
Ang, and (c) their corresponding pinch velocity to angular momentum

diffusivity ratio
RV !

Ang

�Ang
for � ≡ Te

Ti
= 0.5 (- - - -), 1 (——), and 2 (⋅ ⋅ ⋅ ⋅ ⋅ ⋅). The units

for both �Ang and RV !
Ang are

√
�∣�vrk∣2
∣!D∣ .

gradient driven pinch depends on the eigenfrequency which needs to be determined from

the dispersion relation. In Figure 2, the dependence of the threshold value of �i on R/Ln

is presented as a function of ion to electron temperature ratio by use of equation (9).

Based on these threshold values, we can obtain the normalized eigenfrequency �crit at the

threshold value �i,crit from equation (8). Note that within our model, �i,crit is predicted

only for the parameter regime where the drift resonance condition, �crit > 0 is satisfied.

In addition, a degeneracy point for any value of � exists at (R/Ln, �crit) = (2, 1.5), which

can easily be recognized from equation (8). Since the critical value of �c for determining

the direction of the temperature gradient driven pinch is 5/2, in the region where R/Ln

is above the degenerate point value, i.e. for R/Ln > 2, the pinch direction due to the

temperature gradient is inward regardless of the temperature ratio.

On the other hand, for R/Ln < 2, the direction of the pinch depends not only on

R/Ln but also on the temperature ratio which changes the slope of the �crit line. Note

that the increment of the temperature ratio raises the slope. For example, substituting

the threshold condition, equation (9), into the eigenfrequency equation (8), we can find

a critical temperature ratio �crit = 2/3. For � above the critical value, the temperature

gradient driven pinch must change its direction for R/Ln ≤ 2, i.e., near the flat density

region. This outward pinch driven by the temperature gradient can occur if �c > 2.5.

However, we should note that, for that parameter regime, the number of resonant ions

becomes exponentially small, and so as the flux (both diffusion and pinch). Hence,

practically speaking, the temperature gradient driven pinch carried by resonant particles

is inward when it’s significant enough to be relevant. This feature is qualitatively similar,

but not identical, to the kinetic result in slab geometry where the temperature gradient

driven pinch direction is always inward when ITG is linearly unstable [20].

In summary, we’ve investigated the direction of each pinch contribution driven by

various gradients and carried by ions resonant with ITG near marginality. The density

gradient driven pinch is always outward while the magnetic field gradient driven pinch,

which can be regarded as a kinetic extension of the TEP pinch, is always inward and

relatively robust under a change of parameters. Note that the physics of the TEP pinch

coming from the compressibility of the perturbed E × B velocity associated with the
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Table 1. Analytic Predictions on Momentum Pinch. �criti = 2[1 + 2b(1 − I1/I0)]
−1,

Ω = (!k − k�⟨vE×B⟩ − k∥⟨v∥⟩)/
√
2k∥vTi, and �c = −3!k/4!Dk > 0

For ITG : Vpincℎ/�� ∇n driven ∇Ti driven ∇B driven

Fluid Regime

in Torus [47] −1/Ln 0 −4/R [21], for � = 1

Inward Inward

Kinetic Regime

near Marginality in Slab [20] 1/Ln −
(

1
�crit
i

+ Ω2
)

/LT i Ignored

Outward Inward

Kinetic Regime

near Marginality in Torus 1/Ln −
(

5
2
− �c(!k)

)

/LT i −8
5
�c(!k)/R

(This work) Outward Inward Inward

magnetic field strength inhomogeneity is most clearly illustrated in the fluid regime

[21, 22, 23, 44, 45, 46]. Finally, the temperature gradient driven pinch is generally

inward except near the flat density regime where the direction strongly depends on the

temperature ratio between ions and electrons.

Analytic progress has been made in calculating the pinch in a torus [21, 47].

Based on the moment approach from the gyrokinetic equation conserving phase space

volume [29], it was shown that the pinch can be generally classified into two categories,

the Turbulent Equipartition Pinch(TEP) and the Curvature driven THermoelectric

pinch(CTH) [21]. Even though this classification is most transparent in the fluid regime,

it can be applied in the kinetic regime based on the gradients which drive that part

of the pinch. In the case of the TEP pinch, ∇B is the relevant quantity in a sense

that the compressibility of E × B flows plays an essential role in the TEP mechanism

[27, 22, 23]. On the other hand, pinch driven by ∇n0 or ∇Ti should be classified as

the CTH pinch. With this classification, the first and second terms in equation (18b)

proportional to density and temperature gradient respectively can be identified as CTH

pinch, and the last term proportional to the magnetic field gradient as TEP pinch. Note

that �c, which appears in the coefficients has a weak parametric dependence on R, as

�c ≃
3

2
�i−1

�i(1−
4

3

LTi

R
)
≃ 3

2
+O(LTi

R
, �−1

i ).

Some remarks are in order for the diffusion coefficient and pinch velocity of angular

momentum density flux in the presence of drift resonance. First of all, both the diffusion

coefficient and the pinch velocity are proportional to �
3/2
c e−�c (i.e, number of resonant

ions) which has a maximum at �c = 3/2. This reflects drift resonance yields maximum

transport at the certain frequency while its effect vanishes as �c → 0 or �c → ∞. In

addition, as !(or �c) → 0, the pinch velocity vanishes in this simple toroidal limit, while

it persists to have a finite value in the slab case [20]. The pinch to diffusion coefficient
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Figure 4. Parametric dependence of (a) normalized eigenfrequency �c, (b) angular

momentum diffusivity �!
Ang and (c) pinch velocity RV !

Ang for flat density profile. The

units for both quantities are
√
�∣�vrk∣2
∣!D∣ . In (c), contributions of CTH and TEP pinch

for total pinch are presented. The dotted line (⋅ ⋅ ⋅ ⋅ ⋅ ⋅) corresponds to TEP pinch

(RV TEP
Ang ), the dashed line (- - - -) corresponds to CTH pinch (RV CTH

Ang ) and the solid

line (——) corresponds to total pinch (RVAng = RV TEP
Ang +RV CTH

Ang ).

ratio in this case is,

V !
r,Ang

�!
Ang

≃ 1

Ln
−

(

5

2
− �c

)

1

LT i
− 8

5
�c

1

R
.

The direction of density gradient driven pinch in kinetic regime is outward in both slab

[20] and torus, in contrast to an inward pinch obtained in the fluid regime [47], for pure

ITG instability.

Even though the lower temperature ratio has stabilizing effect on �crit threshold

values, they increase the absolute values of pinch velocity and diffusion coefficient.

Figure 3 shows parametric dependence of diffusivity, pinch velocity, and their ratio

with respect to the electron to ion temperature ratio. The pinch to diffusivity ratio

increases as the temperature ratio decreases. Various analytic predictions on the pinch

to diffusion ratio from ITG turbulence are summarized in table 1.

In the flat density regime, the equation (8) reduces to �c = 3/2

1− 4

3

LTi

R

, and

corresponding pinch velocity and diffusion coefficient are calculated as a function of 1/� ,

presented in Figure 4. It is clear that below certain value of 1/� , the large eigenfrequency

makes both pinch and diffusion, which are proportional to �
3/2
c e−�c , negligible. We would

like to remark that the direction of total pinch consisting of TEP pinch and CTH pinch

is always inward for the flat density profile because the inward TEP pinch is robust

enough that it dominates the outward CTH pinch which can occur in a certain regime.

As mentioned before, the CTH pinch can change its direction depending on parameters,

whereas TEP pinch is always inward.

4. Conclusion

In this paper, an analytic dispersion relation for the ion temperature gradient instability

in a simple toroidal limit (!k, !Dk ≫ k∥v∥) has been obtained from a kinetic calculation

with the CERA. Based on the dispersion relation, the parallel momentum flux, and its

corresponding diffusion coefficient and pinch velocity have been estimated analytically
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from a quasilinear calculation based on the gyrokinetic equation. In addition, the

pinch velocities are classified into the TEP pinch and the CTH pinch according to

their dependence on the gradients of the macroscopic quantities. Our results show that

the inward turbulent equipartition (TEP) momentum pinch remains as the most robust

part of pinch. Ion temperature gradient driven momentum flux is inward for typical

parameters, while density gradient driven momentum flux is outward as in the previous

kinetic result in slab geometry.
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[43] Gürcan Ö.D., Diamond P.H., McDevitt C.J. and Hahm T.S. 2009 Phys. Plasmas “A simple model

of intrinsic rotation in high confinement regime tokamak plasmas” submitted

[44] Isichenko M.B., Gruzinov A.V. and Diamond P.H. 1995 Phys. Rev. Lett. 74 4436

[45] Naulin V., Nycander J. and Juul Rasmussen J. 1998 Phys. Rev. Lett. 81 4148

[46] Garbet X., Dubuit N., Asp E., Sarazin Y., Bourdelle C., Ghendrih P. and Hoang G.T. 2005 Phys.

Plasmas 12 082511

[47] Peeters A.G., Angioni C. and Strintzi D. 2007 Phys. Rev. Lett. 98 265003



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template

	esy_pppl_report.pdf
	Introduction
	Linear Dispersion Relation of Toroidal ITG Modes in the presence of Drift Resonance 
	Momentum Pinch and Diffusion 
	Conclusion 


	report number: 4467
	Title: Transport of Parallel Momentum by Toroidal IonTemperature Gradient Instability near Marginality
	Date: October, 2009
	authors: E. S. Yoon and T. S. Hahm


