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Abstract

We study the Collins mechanism for the single transverse spin asymmetry in the collinear fac-

torization approach. The correspondent twist-three fragmentation function is identified. We show

that the Collins function calculated in this approach is universal. We further examine its contribu-

tion to the single transverse spin asymmetry of semi-inclusive hadron production in deep inelastic

scattering and demonstrate that the transverse momentum dependent and twist-three collinear

approaches are consistent in the intermediate transverse momentum region where both apply.
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1. Introduction. Single-transverse spin asymmetries (SSA) in hadronic processes have

attracted much attention from both experiment and theory sides, and great progress has

been made in the last few years. They are defined as the spin asymmetries when we flip

the transverse spin of one of the hadrons in the scattering processes: A = (dσ(S⊥) −

dσ(−S⊥))/(dσ(S⊥) + dσ(−S⊥)) where dσ is the differential cross section. These physics

involve nontrivial nucleon structure and strong interaction QCD dynamics. In recent years,

there has been great theoretical progress in exploring the underlying physics for the SSAs

observed in various hadronic processes [1, 2, 3, 4, 5, 6]. Especially, it has been found that the

final/initial state interactions play very important roles to leading to a nonzero SSA in the

Bjorken limit [1]. These effects are closely related to the gauge properties in the definition

of the associated transverse momentum dependent (TMD) parton distributions [2, 3, 4]

and the QCD factorizations for the relevant hadronic processes [5, 6]. Based on these

developments, it has been shown [7] that the two widely used approaches to study SSA

physics: the transverse momentum dependent (TMD) approach [8, 9] and the twist-three

quark-gluon correlation in the collinear factorization approach [10, 11, 12] are consistent

in the intermediate transverse momentum region where both apply. These progresses have

laid solid theoretical foundation to study QCD dynamics and the relevant nucleon structure

from the SSA phenomena.

However, this consistency has only been studied for the SSA contributions coming from

the polarized distributions of the incoming nucleon, where the so-called Sivers function [8] in

the TMD approach is equivalent to the Qiu-Sterman matrix element [11] in the twist-three

collinear factorization approach [4, 7]. It has been difficult to extend to the SSAs associ-

ated with the fragmentation functions, namely the Collins mechanism contribution to the

SSA [13]. The transverse momentum dependent Collins fragmentation function describes

the azimuthal hadron distribution correlated with the quark transverse polarization vec-

tor [13]. When combining with the quark transversity distribution, it will generate the SSAs

in the semi-inclusive hadron production in deep inelastic scattering (SIDIS) [13] and single

inclusive hadron production in pp collisions [14, 15]. It also contributes to the azimuthal

asymmetry in di-hadron production in e+e− annihilation process [16]. This contribution is

very important not only because it is a significant contribution to the SSA observables in

hadronic processes, but also because its contribution is crucial to extract the quark transver-

sity distribution of nucleon, one of three leading twist quark distributions [17] which is weakly
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constrained [18, 19]. The experimental investigations of these physics haven been recently

very active from both SIDIS [20] and e+e− processes [21].

Although they both belong to the naive-time-reversal-odd functions, the Collins frag-

mentation function and the Sivers distribution have different universality properties. For

example, the Sivers TMD quark distributions have opposite signs in the SIDIS and Drell-

Yan processes [1, 2]. However, the TMD fragmentation functions are found to be universal

between different processes mentioned above [6, 15, 22, 23, 24]. Especially, the final/initial

state interactions will not result into a sign change between different processes, although they

are important to retain the gauge invariance for the TMD fragmentation functions [15].

Therefore, the previous studies on the consistency between the two approaches for the

distribution contributions to the SSAs are not straightforward to extend to the fragmen-

tation part, because the underlying physics and the roles played by the initial/final state

interactions are totally different [15, 22]. In particular, the twist-three quark-gluon corre-

lation function in the twist-three approach associated with the Collins contribution to the

SSAs has not yet been identified. In this paper we will study this issue. There has been ear-

lier attempt to construct the twist-three fragmentation function [12, 25] contributing to the

SSA in hadronic processes. However, the function proposed there has been shown to vanish

because of the universality arguments [23, 24] (see also the discussions below). In this paper,

we will identify the twist-three fragmentation function corresponding to the Collins function.

We will further calculate the large transverse momentum behavior of the Collins function

from this twist-three fragmentation function, and will find that it is universal. These results

will be presented in Sec. 2. In Sec.3, we will study the Collins contribution to the SSA in

SIDIS, and demonstrate that the TMD and collinear factorization approaches are consistent

in the intermediate transverse momentum region. We conclude our paper in Sec. 4.

2. Collins Fragmentation at Large Transverse Momentum and Twist-three

Fragmentation Function. For the TMD quark fragmentation function, we define the

following matrix,

Mh(z, p⊥) =
n+

z

∫

dξ−

2π

d2ξ⊥
(2π)2

e−i(k+ξ−−~k⊥·~ξ⊥) (1)

×
∑

X

1

3

∑

a

〈0|L0ψβa(0)|PhX〉

×〈PhX|(ψαa(ξ
−, ~ξ⊥)L†

ξ|0〉 ,
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where a = 1, 2, 3 is a color index, and p⊥ is the transverse momentum of the final state

hadron with momentum Ph relative to the fragmenting quark k. The quark momentum

k is dominated by its plus component k+ = 1√
2
(k0 + kz), and we have P+

h = zk+ and

~k⊥ = −~p⊥/z. For convenience, we have chosen a vector n = (1+, 0−, 0⊥) which is along the

plus momentum direction. The gauge link Lξ is along the direction v conjugate to n. In the

case we need to regulate the light-cone singularity, we will choose an off-light-cone vector

v = (v+, v−, 0⊥) with v− ≫ v+ and further define ζ̂2 = (v · Ph)
2/v2 [5]. The leading order

expansion of the above matrix leads to two fragmentation functions for a scalar meson,

Mh =
1

2

[

D(z, p⊥) 6n+
1

M
H⊥

1 (z, p⊥)σµνpµ⊥nν

]

, (2)

where M is a mass scale chosen for convenience, and the second term defines the Collins

function H⊥
1 . From the above equation, we can further define the transverse-momentum

moment of the Collins function [9]: Ĥ(z) =
∫

d2p⊥
p2
⊥

2M
H⊥

1 (z, p⊥). By integrating out the

transverse momentum, the fragmentation function will only depend on the longitudinal

momentum fraction z of the quark carried by the final state hadron. It is straightforward to

show that this function can be written as a twist-three matrix element of the fragmentation

function,

Ĥ(z) = n+z2

∫

dξ−

2π
eik+ξ− 1

2

{

Trσα+〈0|

[

iDα
⊥ +

∫ +∞

ξ−
dζ−gF α+(ζ−)

]

ψ(ξ)|PhX〉

× 〈PhX|ψ̄(0)|0〉 + h.c.
}

, (3)

where we have chosen the gauge link in Eq. (1) goes to +∞, and F µν is the gluon field

strength tensor and we have suppressed the gauge links between different fields and other

indices for simplicity. Since the Collins function is the same under different gauge links [15,

22, 23, 24], we shall obtain the same result if we replace +∞ by −∞ in the above equation.

This will immediately show that the matrix element used in [25] vanishes because of the

universality property of the Collins fragmentation function [24]. From the above definition,

we can see that Ĥ(z) involves derivative on the quark field and the filed strength tensor

explicitly. Therefore, it belongs to more general twist-three fragmentation functions [26].

For example, extending the above definition, we can define a two-variable dependent twist-

three fragmentation function as,

ĤD(z1, z2) = n+z1z2

∫

dξ−dζ−

(2π)2
eik+

2
ξ−eik+

g ζ− 1

2

{

Trσα+〈0|iDα
⊥(ζ−)ψ(ξ−)|PhX〉

× 〈PhX|ψ̄(0)|0〉 + h.c.
}

, (4)
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FIG. 1: Typical Feynman diagrams for the transverse momentum dependent Collins fragmentation

function calculated in the collinear factorization approach: contributions from (a) ∂⊥ and (b) A⊥

associated operators in the twist-three quark-gluon correlation functions.

where k+
i = P+/zi and k+

g = k+
1 − k+

2 . Similarly, we can define a F -type fragmentation

function by replacing Dα
⊥ with F+α. However, the F and D types are related to each other

by using the equation of motion [27]. For our case, it is easy to show that [12],

ĤD(z1, z2) = PV

(

1
1
z1
− 1

z2

)

ĤF (z1, z2) + δ

(

1

z1
−

1

z2

)

Ĥ(z1) , (5)

where PV stands for the principal value. Therefore, they are not independent. In the

following calculations we will only keep ĤF and Ĥ in the final results.

The above ĤD function is different from the twist-three fragmentation function Ê(z1, z2)

introduced in [26]. In particular, ĤD is the imaginary part whereas Ê is the real part of

the same matrix element involving twist-three quark fragmentation functions. Explicitly, if

we replace iD⊥ with D⊥ in Eq. (5) we will obtain the definition of Ê. If the time-reversal-

invariance argument applies to the fragmentation functions the above ĤD function would

vanish. However, this argument does not apply here [13], such that the ĤD function exists

and contributes to the SSA in hadronic process. We emphasize that it is actually this

function which corresponds to the Collins mechanism.

Therefore, the above defined ĤD (ĤF ) and Ĥ Eqs. (4,5) will be our starting point to

formulate the Collins mechanism in the collinear factorization approach. First, we can

calculate the transverse momentum dependence of the Collins function in the perturbative

region from the twist-three fragmentation functions ĤD and Ĥ. To do this, we will have to

not only calculate the perturbative diagrams with gluon radiation, but also to perform the

twist expansion and take into account full contributions from the ∂⊥ and A⊥ operators in the
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definitions of ĤD and Ĥ at this order [27]. We plot the typical Feynman diagrams in Fig. 1

for the Collins function calculation from these contributions, where a transversely polarized

quark (with momentum k = Ph/zh +k⊥) fragments into a final state hadron Ph by radiating

a gluon with momentum k1. For the contribution from Fig. 1(a), we do collinear expansion

of the partonic scattering amplitude in terms of k′⊥, the transverse momentum of the quark

which couples to the final state hadron as shown in Fig. 1(a). Combining this collinear

expansion with the hadron fragmentation matrix will form the ∂⊥ψ associated correlation

function in Eqs. (4,5) [26]. Similarly, the contributions from Fig. 1(b) with transverse gluon

field A⊥ connecting the partonic part and the hadron fragmentation part will result into

the A⊥ associated correlation function. These contributions have to be sorted into gauge

invariant functions such as ĤF (ĤD) and Ĥ, respectively. While the detailed derivations

will be presented in a forthcoming publication, here we summarize the final result,

H⊥
1 (zh, p⊥) =

αs

2π2

2M

(p2
⊥)2

∫

dz

z

[

A+ δ(ξ̂ − 1)Ĥ(z)CF ln
ζ̂2

p2
⊥

]

, (6)

where ξ̂ = zh/z and the function A is defined as

A = CF

[(

z3 ∂

∂z

Ĥ(z)

z2

)

(−2ξ̂) + Ĥ(z)
2ξ̂2

(1 − ξ̂)+

]

+

∫

dz1
z2
1

PV

(

1
1
z
− 1

z1

)

ĤF (z, z1)

×

[

−CF

2zh

z

(

1 +
zh

z1
−
zh

z

)

−
CA

2

2zh

z

zz1(z + z1) − zh(z
2 + z2

1)

z(z − z1)(z1 − zh)

]

. (7)

In the above calculations, we have adopted an off-light-cone gauge link in Eq. (1) to regulate

the light-cone singularity and ζ̂2 has been defined above.

An important check of the above result is its universality property. Indeed, we find that

our calculations are free of the gauge link direction used in Eq. (1), i.e., the Collins function

in Eq. (6) is universal. In particular, in the calculations we find that the gauge link does not

contribute to a pole in the Feynman diagrams of Fig. 1. Therefore, the gauge links going to

+∞ and −∞ lead to the same results. This is consistent with the universality argument for

the Collins fragmentation function [6, 15]. We have checked that the contribution from the

twist-three function ÊF introduced in [25] is also consistent with the universality property

as those calculated above.

3. Collins Effect in Semi-inclusive DIS. In this section, we extend to calculate the

the Collins contribution to the SSA in semi-inclusive DIS, ep↑ → e′πX, and show that the

TMD and collinear factorization approaches are consistent in the intermediate transverse

6
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FIG. 2: Typical Feynman diagrams for the Collins mechanism contributions to the single spin

asymmetry in semi-inclusive deep inelastic scattering. Again, we will have contributions from (a)

∂⊥ and (b) A⊥ associated operators in the twist-three quark-gluon correlation functions.

momentum region ΛQCD ≪ Ph⊥ ≪ Q, where ΛQCD is the typical nonperturbative scale and

Ph⊥ is the transverse momentum of the final state hadron. Again, the above defined ĤD

and Ĥ will be our starting basis to calculate this contribution in the collinear factorization

approach.

In the SIDIS process ep↑ → e′πX where the incoming nucleon is transversely polarized,

the transverse spin dependent differential cross section can be formulated as

dσ(S⊥)

dxBdydzhd2 ~Ph⊥
=

2πα2
em

Q2
Lµν(ℓ, q)Wµν(PA, S⊥, q, Ph) , (8)

where αem is the electromagnetic coupling, ℓ and PA are incoming momenta for the lepton

and nucleon, S⊥ the polarization vector for nucleon, q the momentum for the exchanged

virtual photon with Q2 = −q.q, Ph is the momentum for the final state hadron. The

kinematic variables are defined as xB = Q2

2PA·q , zh = PA·Ph

PA·q , y = PA·q
PA·ℓ . Lµν and W µν are

leptonic and hadronic tensors, respectively. To calculate the above differential cross section,

it is convenient to decompose the hadronic tensor into several terms: W µν =
∑

iWiV
µν
i ,

where Vi follow the definitions of [28].

As mentioned above, we will calculate the transverse spin dependent differential cross

section from the Collins mechanism, in particular the contributions from the twist-three

fragmentation functions ĤD and Ĥ defined in Sec.2. We follow the same procedure as that

for the large transverse momentum Collins fragmentation function calculated in the last

section, and we will take into account the contributions from both ∂⊥ and A⊥ associated

fragmentation matrix elements in Eqs. (4,5). The relevant Feynman diagrams can be drawn

accordingly, and we show two examples in Fig. 2. Similarly, their contributions can be
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summarized into the terms associated with the gauge invariant functions ĤF (ĤD) and Ĥ.

Furthermore, we are interested in the differential cross section in the intermediate transverse

momentum region ΛQCD ≪ Ph⊥ ≪ Q. In the limit of Ph⊥ ≪ Q, we find that only V4 and

V9 in the hadronic tensor decomposition contribute in the leading power of Ph⊥/Q. These

two terms contribute the same to the differential cross sections except the azimuthal angular

dependence: the contribution from V4 is proportional to cos(2φh) sin(φs − φh) whereas that

from V9 is proportional to sin(2φh) cos(φs − φh), where φh and φs are the azimuthal angles

of the transverse momentum Ph⊥ and the polarization vector S⊥ relative to the lepton

scattering plane. The total contributions from these two terms will be proportional to

sin(φh + φs),

dσ(S⊥)

dxBdydzhd2 ~Ph⊥

∣

∣

∣

V4+V9

Ph⊥≪Q
=

4πα2
ems

Q4
xB(1 − y) sin(φh + φs)

1

z2
h

αs

2π2

1

|~q⊥|3
∫

dxdz

xz
h1(x)

{

Aδ(ξ − 1) +Bδ(ξ̂ − 1)
}

, (9)

in the limit of Ph⊥ ≪ Q, where ξ = xB/x and ξ̂ = zh/z and A function has been given in

Eq. (7) and B is defined as

B = CF Ĥ(zh)

[

2ξ

(1 − ξ)+

+ 2δ(ξ − 1) ln
Q2

~q 2
⊥

]

. (10)

Following the same procedure as that in [7] for the Sivers effects, we will find that the above

single transverse spin dependent differential cross section calculated from the twist-three

fragmentation functions ĤD and Ĥ in the collinear factorization approach can be repro-

duced by the TMD factorization for the same observable [5] by using the large transverse

momentum Collins fragmentation function calculated in Sec.2, and the known results for the

quark transversity distribution and the soft factor [7]. This clearly demonstrates that in the

intermediate transverse momentum region, the twist-three collinear factorization approach

and the TMD factorization approach provide a unique picture for the Collins contribution

to the SSA in the semi-inclusive DIS.

4. Conclusion. In this paper, we have studied the Collins mechanism contribution to

the single spin asymmetry in semi-inclusive hadron production in DIS process. We have iden-

tified the corresponding twist-three fragmentation function, and shown that the transverse

momentum dependent and collinear factorization approaches are consistent in the interme-

diate transverse momentum region. Especially, we have also demonstrated that the Collins
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fragmentation function calculated is universal, and free of the gauge link direction. It will

be important to extend our calculations to the Collins contributions to the SSAs in other

processes, such as in hadron production in polarized pp scattering and di-hadron correlation

in e+e− annihilation. We will address these issues in a future publication, together with a

detailed derivation of this paper.
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