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TOP-OFF SAFETY ANALYSIS FOR NSLS-II* 
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bstract 
Top-off injection will be adopted in NSLS-II. To 

ensure no injected beam can pass into experimental 
beamlines with open photon shutters during top-off 
injection, simulation studies for possible machine fault 
scenarios are required. We compare two available 
simulation methods, backward (H. Nishimura-LBL) and 
forward tracking (A. Terebilo-SLAC). We also discuss 
the tracking settings, fault scenario

idered in our analysis. 

TOP-OFF SAFETY 
Like other modern synchrotron radiation light 

sources, NSLS-II will operate in top-off mode [1]. The 
top-off injection refers to injecting with photon 
beamline safety shutters open to maintain a near-
constant stored beam current in the ring. In traditional 
non-top-off mode, photon shutters are closed during 
injection process to block any injected beam particles 
from escaping the storage ring enclosure and entering 
the experiment hall, where they would constitute a 
radiation hazard. Current plans call for injecting a 
charge of about 8nC once per minute for NSLS-II. Not 
even one pulse of injected electron beam can be 
allowed to escape through the shield wall, because the 
radiation dose would be unacceptably high. In order to 
allow top-off injection, it is necessary to carry out 
comprehensive tracking analysis to show that electrons 
cannot escape the ring enclosure e

net faults or injection errors.  

GY OF TOP-
ANALYSIS 

At machine design stage, particle tracking 
simulations are used to guide us in specifying the 
location and size of beam collimators, magnet power 
supply interlock requirements, and other controls 
needed to avoid unsafe conditions. The simulations 
required for the top-off safety analysis are quite 
different from other particle tracking simulations 
performed for storage rings, which usually concentrate 
on the stability of long-term motion (dynamical 
aperture simulations). In top-off safety simulation, we 
need to track many particles within a specific phase 
space area for a short distance (fraction of the ring) and 
change the lattice magnet settings over wide ranges in 
order to include all possible machine fault scenarios, 
and consider particle trajectories far a

center, and beyond good-field range. 
We simplify the analysis and shorten computation 

time by constraining the tracking simulation to the 
magnet’s mid-plane. Particles that have an offset in the 
vertical plane may experience a stronger vertical field 
in the vicinity of poles, which is simulated by variation 
of the magnet field. The variation range depends on 
magnetic field 
al

erse size. 
 

 
Fig. 1: Forward (a) and backward (b) tracking 

 
There are two options available to do such 

simulation, backward tracking adopted by APS [2, 3] 
and ALS [4], and forward tracking by SPEAR 3 [5]. 
The forward tracking starts from an upstream source, 
and then tracks particles within a defined phase space 
area, which is determined by at least two physical 
apertures in magnet-free section, and checks if any 
particles can go through the physical apertures at 
beamline frontends (see Fig. 1 (a)). The backward 
tracking starts from a physical aperture within the 
shield wall at which it is safe to have electron scatter, 
and then tracks particles back into storage ring to check 
if there are any trajectories that can originate within the 
storage ring geometric acceptance (see Fig. 1 (b)). In 
principle these two methods are equivalent.  We have 
checked this by using these two methods to analyze the 
same NSLS-II beamline and compared results. In the 
case of safe situation, forward tracking shows no 
trajectory originating from the ring acceptance can pass 
through safety shutter; and backward tracking shows no 
trajectory within frontend acceptance can track back 
into the ring acceptance. In the case of unsafe 
conditions, the phase spac

safe particles given by the two methods overlap at the 
same longitudinal position. 

(a) 

(b) 
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We chose forward tracking in our simulation for two 

reasons. First, since our machine is still under design, 
we have an opportunity to
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 close to the ring. Forwarding t
ct the most effective positio

llimators. Second, most of our collimators in the ring 
and frontends are copper with a thickness of only 
several centimetres. In order to design the lead shield, 
we wish to kno
vacuum chamber or collimators. Forward tracking can 
provide such informa

NSLS-
The NSLS-II has several types of beamlines. Each 

e line has different physical apertures. Wam e catalogue 
all beamlines into several classes according their source 
point location: 

mline with the source point in IDs at long 
traight section; 

Beamline with the source point in IDs at short 
straight section; 

• Beamline with the source point in Three Pole 
Wigglers (TPW) and bending magnets. 

The required apertures and controls to assure safety 
for each class of beamline is analyzed. 

MACHINE FAU
In normal opera

beam are separated by bending electrons in dipoles, so 
that no e-beam can enter photon beamline frontends. In 
defining the tracking scenarios, we referred to other 
laboratories experience [4] and combined with our 
practical machine status. The goal of our work is to 
assure that we design the system such that no faults can 
lead to unsafe condition. 

Magnets faults 
The possible magnet faults were classified by their 

p ility of occurrence. Two very low probab
ts, such as simultaneous shorts in th ils of two
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ely low probability and not included in
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Fig. 2: Quadrupoles (a) and sextupoles (b) vertical field 
component profiles on the mid-plane 

Since particle trajectories may be beyond magnet’s 
good field range and some coils can be shorted, we 
can’t use ordinary multipole m

agnets’ fields are scaled to their settings from the 
profiles obtained by numerical calculations for each 
magnet fault. Profiles for quadrupole, sextupole and 
corrector are represented by a 1-D numerical table (see 
Fig. 2). Dipole profile is a 2-D table so that it can 
include the fringe field. 

Magnets variation range 
In each scenario, one magnet fault is combined with 

all other magnets’ possible variation. The variation 
range depends on th

rresponding hardware configuration, such as power 
supply stability, adjustment range of trim coils, magnet 
monitoring and interlocks etc. 

For example, in order to maintain the existence of the 
closed orbit, none of dipoles can be partially shorted-off 
by more than 5%, which can be fulfilled by specifying 
interlock requirement. At the same time, their trim coils 
can provide an extra maximum ±3% adjustable range. 
So dipoles can vary between -92~103%. By keep
anot for other unpredictable errors, t

nge is 90%~105%. In fact, stron
s good 
 strength
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Table 1: Summary of Magnets Variation 

Magnet 
Type 

Variation 
Range 

Consideration Criterion 

Dipoles 90% ~ 100% Power supply, trim coils, and closed 
orbit interlock 0.04

Quadrpoles 100% ~ 105% Power supply, of
plan

fset in vertical 
e 

Sextupoles 100% ~ 105% Power supply, offset in vertical 
plane 

Correctors -100% ~ 
100% 

Maximum deflect angles  
-0.2 -0.1 0
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Aperture misalignment 

All physical apertures, like synchrotron radiation 
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 multipole and the dipole ante-
chambers can effectively collimate the particles with 
large horiz ipole (see 
Fi

ing parameters. The 
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N ge, but we 
et field 
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For each scenario included in our scan, the magnet 
status and the final position where beam is stopped are 
recorded for further radiation safety analysis. If there 
are any scenarios which have trajectories travelling 
through the photon shutter in frontend, we must identify 
and specify controls to prevent them. Even when the 
electron beam is stopped by hitting the collimators, as 
we mentioned before, the 3GeV electron beam can 
create radiation shower, and we still need to design lead 
collimators to shield them. Therefore the location where 
beam is stopped is important information for the design 
of the lead shielding. 
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ers, can be deviated from design position be
any reasons, such as installation misali
 distortion due to synchrotron radiation heat

we increase all apertures by the maximum allo
nment error, specified to be 2mm. 

gy deviation of Injected beam 
jected beam could have an energy deviation f

minal value because of injector faults. Prev
jected beam with certain amount of en

deviation to escape from safety shutter must be ensured. 
In the simulation, controls
assure the maximum energy deviation is ±5%. 

SAFETY ANALYSIS AND PARAMETERS 
SCAN 

Here we use the long straight ID beamline as an 
example to describe how we implement analysis on its 
top-off safety. Two stick absorbers within the long 
straight section are chosen to determine the initial phase 
space area for tracking by four extreme rays (see Fig. 
3).  

F
 four extreme rays  

 
Fig. 4: Beam trajectories (in black) in the normal condition. 
The central orbit of electron beam (blue dash line) is chosen 
as the reference, red solid line is the photon beamline centre, 
and blue solid lines are collimators. 

 
 

          
Fig. 5: Two ante-chambers are separated by a billow 

 

We use element-by-element tracking method, the 
motion through each element is determined by 
integrating the differential equations of motion driven 
by the Lorentz force in the mid-plane. Particle’s 
horizontal offsets are compared with the physical 
apertures to determine if they can pass through these 
apertures. The possible machine fault scenarios are 
simulated by varying magnet’s setting. Fig. 4 shows 
beam trajectories in normal operation condition, and no 
beam can go through the crotch absorber. Some detailed 
study shows the bellow with ±38mm horizontal 
aperture between the

ontal offset at the upstream of d
g. 4), its geometric design is shown in Fig. 5. As a 

result no beam can pass the crotch absorber. 
In order to detect the possible dangerous scenarios as 

described in previous section, we need to scan the 
combination of the possible magnet faults, which is 
established by setting a list of vary

 include injected p
t faults types (com

partially short), magnet variation range. 
ormally the number of scenarios is hu

can decrease it by constraining the magn
variation range, which can be realized by 
some monitoring and interlock requirements on magne
power supply. 
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