Problem Proposed for the American Mathematical Monthly

David H. Bailey, Jonathan M. Borwein! Jörg Waldvogel ${ }^{\ddagger}$

November 14, 2008

Problem: Define

$$
\begin{equation*}
P(x):=\sum_{k=1}^{\infty} \arctan \left(\frac{x-1}{(k+x+1) \sqrt{k+1}+(k+2) \sqrt{k+x}}\right) \tag{1}
\end{equation*}
$$

(a) Find explicit, finite-expression evaluations of $P(n)$ for all integers $n \geq 0$.
(b) Show $\tau:=\lim _{x \rightarrow-1^{+}} P(x)$ exists, and find an explicit evaluation for τ.
(c) Are there a more general closed forms for P, say at half-integers?

Solution. With the abbreviations

$$
r:=\sqrt{k+1}, \quad s:=\sqrt{k+x}
$$

the argument of arctan in (1) becomes

$$
\frac{s^{2}-r^{2}}{\left(s^{2}+1\right) r+\left(r^{2}+1\right) s}=\frac{s-r}{r s+1}=\frac{\frac{1}{r}-\frac{1}{s}}{1+\frac{1}{r} \frac{1}{s}}
$$

Therefore, by using the addition theorem ot the tangent function, the definition (1) may be written in the more convenient form

$$
\begin{equation*}
P(x)=\sum_{k=1}^{\infty}\left(\arctan \frac{1}{\sqrt{k+1}}-\arctan \frac{1}{\sqrt{k+x}}\right) \tag{2}
\end{equation*}
$$

[^0]

Figure 1: Plot of $P(x)$

Now define

$$
A(x)=\arctan \frac{1}{\sqrt{x+1}}
$$

and note that a telescoping sum argument gives

$$
\begin{equation*}
P(x)+A(x)=P(x+1) \tag{3}
\end{equation*}
$$

It is easy to see that the series defining $P(x)$ is absolutely convergent by the Weierstrass M-test, and to verify that $P(x)$ is increasing for $x>-1$, as shown in Figure 1. Thus, τ exists.
(a). First observe that since $P(1)=0$, the identity (3) establishes that $P(0)=$ $-A(0)=-\pi / 4$, which we had computationally observed. By iteratively applying (3) and applying induction, we establish that

$$
\begin{aligned}
& P(2)=\arctan \frac{1}{\sqrt{2}} \\
& P(3)=\arctan \frac{1}{\sqrt{2}}+\arctan \frac{1}{\sqrt{3}} \\
& P(4)=\arctan \frac{1}{\sqrt{2}}+\arctan \frac{1}{\sqrt{3}}+\arctan \frac{1}{2}
\end{aligned}
$$

and indeed by induction we have, for all $n \geq 2$,

$$
P(n)=\sum_{k=2}^{n} \arctan \frac{1}{\sqrt{k}} .
$$

(b). We computationally discovered that to 13-digit accuracy $\tau=\lim _{x \rightarrow-1^{+}} P(x)=$ $-3 \pi / 4$. This can be rigorously established by noting that
$\lim _{x \rightarrow-1^{+}} P(x)+\frac{\pi}{2}=\lim _{x \rightarrow-1^{+}} P(x)+\lim _{x \rightarrow-1^{+}} A(x)=\lim _{x \rightarrow-1^{+}} P(x+1)=P(0)=\frac{-\pi}{4}$.

[^0]: *Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, dhbailey@lbl.gov. Supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information and Computational Sciences, U.S. Department of Energy, under contract number DE-AC02-05CH11231.
 ${ }^{\dagger}$ School of Mathematical And Physical Sciences, University of Newcastle, NSW 2308 Australia, and Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada, jonathan.borwein@newcastle.edu.au, jborwein@cs.dal.ca. Supported in part by NSERC and the Canada Research Chair Programme.
 \ddagger Seminar for Applied Mathematics, Department of Mathematics, ETH Zurich, 8092 Zürich, Switzerland, waldvogel@math.ethz.ch.

