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Problem: Define

P (x) :=

∞
∑

k=1

arctan

(

x − 1

(k + x + 1)
√

k + 1 + (k + 2)
√

k + x

)

. (1)

(a) Find explicit, finite-expression evaluations of P (n) for all integers n ≥ 0.

(b) Show τ := limx→−1+ P (x) exists, and find an explicit evaluation for τ .

(c) Are there a more general closed forms for P , say at half-integers?

Solution. With the abbreviations

r :=
√

k + 1, s :=
√

k + x

the argument of arctan in (1) becomes

s2 − r2

(s2 + 1) r + (r2 + 1) s
=

s − r

r s + 1
=

1

r
−

1

s

1 +
1

r

1

s

.

Therefore, by using the addition theorem ot the tangent function, the definition
(1) may be written in the more convenient form

P (x) =

∞
∑

k=1

(

arctan
1

√
k + 1

− arctan
1

√
k + x

)

(2)
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Figure 1: Plot of P (x)

Now define

A(x) = arctan
1

√
x + 1

and note that a telescoping sum argument gives

P (x) + A(x) = P (x + 1). (3)

It is easy to see that the series defining P (x) is absolutely convergent by the
Weierstrass M-test, and to verify that P (x) is increasing for x > −1, as shown
in Figure 1. Thus, τ exists.

(a). First observe that since P (1) = 0, the identity (3) establishes that P (0) =
−A(0) = −π/4, which we had computationally observed. By iteratively apply-
ing (3) and applying induction, we establish that

P (2) = arctan
1
√

2

P (3) = arctan
1
√

2
+ arctan

1
√

3

P (4) = arctan
1
√

2
+ arctan

1
√

3
+ arctan

1

2
,

and indeed by induction we have, for all n ≥ 2,

P (n) =

n
∑

k=2

arctan
1
√

k
.

(b). We computationally discovered that to 13-digit accuracy τ = limx→−1+ P (x) =
−3π/4. This can be rigorously established by noting that

lim
x→−1+

P (x) +
π

2
= lim

x→−1+
P (x) + lim

x→−1+
A(x) = lim

x→−1+
P (x + 1) = P (0) =

−π

4
.
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