
Pseudo-interactive monitoring in distributed computing

I Sfiligoi1, D Bradley2 and M Livny2

1Fermilab, Batavia, IL 60510, USA
2University of Wisconsin, Madison, WI 53707, USA

E-mail: sfiligoi@fnal.gov, dan@hep.wisc.edu, miron@cs.wisc.edu

Abstract. Distributed computing, and in particular Grid computing, enables physicists to use
thousands of CPU days worth of computing every day, by submitting thousands of compute
jobs. Unfortunately, a small fraction of such jobs regularly fail; the reasons vary from disk and
network problems to bugs in the user code. A subset of these failures result in jobs being stuck
for long periods of time. In order to debug such failures, interactive monitoring is highly
desirable; users need to browse through the job log files and check the status of the running
processes. Batch systems typically don't provide such services; at best, users get job logs at job
termination, and even this may not be possible if the job is stuck in an infinite loop. In this
paper we present a novel approach of using regular batch system capabilities of Condor to
enable users to access the logs and processes of any running job. This does not provide true
interactive access, so commands like vi are not viable, but it does allow operations like ls, cat,
top, ps, lsof, netstat and dumping the stack of any process owned by the user; we call this
pseudo-interactive monitoring. It is worth noting that the same method can be used to monitor
Grid jobs in a glidein-based environment. We further believe that the same mechanism could
be applied to many other batch systems.

1. Introduction
Many scientists require large amounts of compute power, well in excess of any workstation they can
afford. For this reason, most of them resort to distributed computing to satisfy their needs. And
handling tens, or hundreds, of compute resources by hand is usually not an option; so a workload
management system, such as a batch system, is usually needed.

Most of the time, scientists like the batch system paradigm. All they need to do is split the problem
into manageable pieces, define the dependencies, and submit the obtained workflow to the batch
system. They can then concentrate on other topics while waiting for the notification that the results are
ready; the batch system will transparently handle the users' workflows in the most efficient manner.

 However, sometimes things don't go as expected; the computation may take longer than expected
or the returned results may be corrupted or meaningless. In such cases, users need to be able to peek at
the status of the workflows, going into as much detail as needed to find and fix the problem; i.e. they
need interactive(-like) access to their running jobs to browse through the job log files and check the
status of the running processes. Unfortunately, most batch systems are based on the black-box
paradigm, making this exercise a very painful, if not completely impossible endeavor, as sketched in
Fig. 1.

FERMILAB-PUB-09-222-CD

2. Monitoring capabilities of popular batch systems
The monitoring capabilities of the currently popular batch systems vary a lot, but to our knowledge

none provides true interactive-like monitoring capabilities out of the box. As an example, let's look at
four use cases; PBS-like batch systems, dedicated Condor pools, direct Grid submissions, and Condor
glide-in based use of Grid resources:

● PBS-like batch systems[1] (like OpenPBS and Torque/Maui) provide very limited monitoring.
Users can know if and on what worker node a job is running, but no details about what the
running job is doing. Some system administrators work around this limitation by giving users
login access to the worker nodes, but this ability can easily lead to abuses; e.g. users running
their jobs in interactive mode.

● Dedicated Condor pools[2] have similar limitations; users can know if and on what worker
node the job is running, why is it not yet running, as well as what the system load is where the
job is running. But there is no detailed information about what the job is doing. Giving users
login privileges is again the most frequently deployed workaround, with the associated abuse
risks.

● Grids[3] have become quite ubiquitous, and many sciences are relying on them to handle the
needed compute resources. While the definitions of “Grid” are many, we will here consider a
Grid as just a set of independent batch system clusters, each managed within its own
administrative domain, but with a common outside batch interface and a common
authentication model. An inter-cluster workload management system, like Condor-G or the
gLite WMS, may be provided. The monitoring limitations of this environment are particularly
severe; the best a user can hope for is knowing if a job is running and on what cluster. If more
information is needed, the user needs to contact directly the managers of the remote batch
system cluster, as the common interfaces typically don't support such functionality in order to
abstract the many supported cluster batch systems.

● Condor glide-in mechanism gathers Grid resources by using the pilot paradigm[4] and
presents to the user a dynamic, virtual-private compute pool. As such, the monitoring
limitations are the same as with a dedicated Condor pool. However, obtaining login access to
the Grid resources will be significantly harder, if not impossible, as it requires direct
negotiation with many administrators.

3. Pseudo-interactive monitoring using dedicated batch slots
Since true, unlimited interactive access to the running jobs does not seem either the easiest or the most
acceptable option, our proposal is to use regular batch processing to solve the monitoring problem.
The only requirements are that the monitoring job runs on the same worker node and with the same
identity as the job that needs to be monitored, and that wait times are short, O(10) seconds at most. We
call this pseudo-interactive monitoring.

Figure 1: When jobs misbehave, users are often left wondering

Job slot

Job slot

?

3.1. Most monitoring needs are batch in nature
Before proposing a concrete solution, let's verify that most of the monitoring needs are indeed batch in
nature. We thus identify six categories of frequently needed tasks performed by scientists while
debugging a problem:

• Looking at log files – Most scientific applications log their progress in log files. Users are
interested in looking at both the existence of such files as well as at their content. Most of the
commands needed to achieve this can indeed be run in batch mode, e.g. ls, cat and grep.
When true interactive access is needed, like with less, this can be simulated by first
downloading the file via cat, or the batch system supported file transfer mechanism, and then
running the interactive command locally.

• Looking at data files – This is a very similar use case as the one above, but may require
specialized tools to digest the data. If the data file is small enough, downloading the file and
then running the dedicated tool will work as above. If the file is too big, the tool can be run as
a batch job, using the batch system file transfer mechanisms for delivery, if it does not require
interactive capabilities. To the best of our knowledge, most scientific tools support at least
limited functionality in batch mode.

• Creating or modifying data files – While debugging a problem, a user may want to change
the content of a configuration or data file to unblock a stuck process. While true interactive
editing, e.g. vi, is not possible, it may be simulated by using batch-friendly programs like awk
and sed. If the file is not being changed and is small enough, it can also be downloaded, edited
locally, and uploaded back, using the batch system file transfer mechanisms.

• Looking at the status of the running processes – Users are often also interested to see which
processes are running and how much resources (e.g. CPU, RAM) they are using. The
commands needed to achieve this, e.g. ps and top, can indeed be run in batch mode. More
advanced commands, like getting the current stack trace or tracing the activity of a process
over a limited period of time, are also possible with a limited amount of scripting. Only true
interactive debugging, like stepping through the process execution using gdb, is not possible;
however, the need for such activities is usually very rare as it can be approximated with other
tools.

• Sending signals to running processes – If a process gets stuck, it may be preferable to kill
just that process and let the job finish to get back partial results. Running a kill command is
obviously possible in batch mode.

• Looking at the status of the system – Information about system (CPU and IO) load, memory
usage, network traffic, etc. is often very valuable when trying to understand why jobs are
taking longer than expected. The commands needed to achieve this can easily be run in batch
mode.

As shown above, the vast majority of monitoring tools the users need can run as batch jobs. For the
few that cannot, workarounds are often available. So using batch processing for monitoring is indeed a
viable solution.

3.2. Implementing pseudo-interactive monitoring in Condor
Most Condor installations already run multiple batch slots per worker node, typically one job batch
slot per CPU core (or thread). To implement pseudo-interactive monitoring, we propose to add one or
more additional monitoring batch slots on each worker node, as shown in Fig. 2. Monitoring is light
on resource usage; it doesn't consume many CPU cycles nor is it IO intensive. As such, adding
additional batch slots to the worker nodes will not have any negative impact on the efficiency of real
jobs. The Condor central manager, however, has to deal with many more batch slots, but in our
experience this has not been a noticeable problem.

As we will monitor user jobs by submitting monitoring jobs, we need a way to distinguish between
them. The easiest way is to define a dedicated attribute that monitoring jobs set (while the user jobs
don't); the most obvious name for such an attribute is MonitoringJob.

In Condor, the number of batch slots is regulated by the NUM_CPUS setting[5]; by setting this to a
number slightly higher than the number of physical CPU cores (or threads) we get the number of slots
we need. On top of that, we need to split these batch slots into jobs slots and monitoring slots; we can
do that by using NUM_SLOTS_TYPE_X settings[5], paired with the appropriate START
expression[5]. Consider the following simple example startd configuration:

REAL_NUM_CPUS = 8
MONITORING_SLOTS = 2
REAL_START_CONDITION = True
Cannot use an expression for NUM_CPUS before Condor 7.3.1
NUM_CPUS = $(REAL_NUM_CPUS) + $(MONITORING_SLOTS)
NUM_CPUS = 10
NUM_SLOTS_TYPE_1 = $(REAL_NUM_CPUS)
NUM_SLOTS_TYPE_2 = $(MONITORING_SLOTS)
START = ((SlotID<=$(REAL_NUM_CPUS)) && \
 ($(REAL_START_CONDITION))) \
 || ((SlotID>$(REAL_NUM_CPUS)) && \
 (MonitoringJob=?=True))

If the fraction of monitoring slots is significant, one may also want to explicitly minimize the
amount of resources allocated to those slots, by tuning the SLOT_TYPE_X setting[5] like in the
example below:

Monitoring slots should use only 1% of resources (but get the full slot)
SLOT_TYPE_2 = cpus=1, 1%

Additional protections in the startd configuration may also be desirable. For example, an
administrator may want to limit the wallclock time of monitoring jobs to a few minutes. Or limit the
memory usage to a few hundred MBs. Such limits can be implemented using the KILL setting[5]; a
detailed description is however beyond the scope of this document.

On the submit side, regular user jobs don't need to be changed; by not defining the
MonitoringJob attribute they will be limited to the proper job slots by the START expression.

Monitoring commands will need to be converted into batch jobs. The worker node on which the
target user job is running also needs to be extracted; for example, by using condor_q. Such batch
jobs will need to set the MonitoringJob attribute and specify in the requirements on which worker
node they should run, as shown in the example fragment below:

Figure 2: A monitoring batch slot provides pseudo-interactive monitoring

Monitor slotJob slot

Monitor slotJob slot

This tells the system this is a monitoring job
+JobMonitoring=True
Assuming I discovered with condor_q that the job is running on node174.uni.edu
Requirements=(Machine=?=”node174.uni.edu”)

After submitting the monitoring job, it should start on the desired worker node following the next
negotiation cycle; typically in less than one minute. The whole process is obviously too cumbersome
to be performed by hand; to simplify basic pseudo-interactive monitoring, we are including a shell
script called condor_monitor, analogous to condor_run, but specialized to the submission of
monitoring jobs. The reader is welcome to expand it to accommodate the needs of his/her user
community.

Unfortunately some problems remain. On the worker node the monitoring job will be running
under the same UID as the target user job, assuming that the worker node is in the same
UID_DOMAIN or GLEXEC is used[5]. However, if more than one job from that user is running on
the worker node, it may be difficult to find the correct process ID. Similarly, the monitoring job will
start under a different working directory than the target job; finding the correct working directory is
non-trivial. We have no easy answers for the above problems in the generic case; additional
assumptions, a try-and-error approach or some help from the user jobs are currently the best
workarounds.

Finally, as mentioned already, the addition of monitoring slots increases the number of ClassAds
that the central manager must consider when matching jobs to slots, so its memory usage and
matchmaking time will increase. In addition to that performance cost, there is also an effect on the
fair-share scheduler behavior. The addition of extra slots will cause the fair-share scheduler to
calculate each user's fair share of the pool to be larger. Since the matchmaking algorithm sorts the
users by priority from best to worst and then tries to give them each their fair share, the result is that
users with better priority will tend to get a larger share of the normal job slots than they should.
However, this is self-correcting over time, because users who use more machines will have their
priority degrade and will therefore alternate between getting more than their fair share and then less
than their fair share.

If either the performance cost or the scheduling quirk are a concern, one solution is to create a
second central manager solely for the monitoring slots rather than having the normal and monitoring
slots all managed by a single central manager. This is achievable in a round-about way by advertising
all slots to both central managers and then using COLLECTOR_REQUIREMENTS to filter out the
unwanted ClassAds[5] from the respective central managers.

3.3. Pseudo-interactive monitoring of Grid resources using Condor glide-ins
As mentioned in section 2, one way to access Grid resources is to create a virtual-private Condor pool
by using glide-ins. As such, these resources look exactly like a regular Condor pool, so pseudo-
interactive monitoring will work as described in the previous subsection.

One Grid WMS based on glide-ins is glideinWMS[6]. This system comes pre-configured with
pseudo-interactive-friendly configuration, very similar to the one described above.

Moreover, since by default glidein-ins only use one job batch slot at a time, identifying the proper
process tree and working directory is much simpler. The process tree of the glidein-in is very
deterministic as shown in Fig. 3. By climbing the process tree up to the common Condor daemon, the
user job process tree can be easily found. As shown in Fig. 4, Condor always starts the jobs as
subdirectories of a predefined directory; by moving up to the parent directory, the user job working
directory is the other child.

It is also worth noting that glideinWMS provides user tools similar to the attached
condor_monitor that automate the most commonly used monitoring tasks; i.e. ls, cat, ps, top and
gdb stack dump. Users never need to know the details of the implementation.

3.4. Pseudo-interactive monitoring in other batch systems
We have not explored the feasibility of implementing a native monitoring-batch-slot solution for other
batch systems. However, we are confident that it should be possible for most of them, since the
underlying principles are very generic.

4. Conclusions
Distributed computing requires monitoring and debugging tools like any other kind of computing.
However, most current workload management systems don't provide adequate tools for this task. We
propose a simple solution based on dedicated monitoring batch slots and provide an actual
implementation for the Condor batch system.

5. Acknowledgements
Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy.

This paper was partially supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357, and by the U.S.
National Science Foundation grants PHY-0427113 (RACE) and PHY-0533280 (DISUN).

References
[1] B. Bode, D. M. Halstead, R. Kendall, and Z. Lei. “The Portable Batch Scheduler and the Maui
Scheduler on Linux Clusters”, In Proceedings of the 4th Annual Linux Showcase and Conference,
Atlanta, GA, October 2000.
[2] D. Thain, T. Tannenbaum, and M. Livny, "Distributed Computing in Practice: The Condor
Experience" Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-
356, February-April, 2005.
[3] I. Foster and C. Kesselman, “The Grid: Blueprint for a New Computing Infrastructure”, San
Francisco, CA: Morgan Kaufmann Publishers, 1998
[4] I. Sfiligoi, "Making science in the Grid world: using glideins to maximize scientific output,"
Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE , vol.2, no., pp.1107-1109,
Oct. 26 2007-Nov. 3 2007
[5] Condor Team, “Condor Version 7.2 Manual”, http://www.cs.wisc.edu/condor/manual/v7.2/,
Accessed May 2009
[6] I. Sfiligoi, “glideinWMS – A generic pilot-based Workload Management System”, Journal of
Physics: Conference Series 119 (2008) 062044

Figure 4: Glide-in work dir tree

EXECUTE_BASE_DIR

User job work dir

Monitoring job work dir

Figure 3: Glide-in process tree

condor_master

condor_startd

condor_starter

User job

condor_starter

Monitoring job

