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We are carrying out coordinated theoretical and experimental studies of toward photochemical 
water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron 
molecular water oxidation and hydrogen production catalysts. We focus on the coupling between 
the materials properties and the H2O redox chemistry, with an emphasis on attaining a 
fundamental understanding of the individual elementary steps in the following four processes: 
(1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for 

solar-driven water splitting, including the discovery and characterization of the behavior of 
such materials at the aqueous interface; 

(2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal 
complexes with quinonoid ligands, and the rational search for improved catalysts; 

(3) Transfer of the design principles learned from the elucidation of the DuBois-type 
hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen 
production catalysts for aqueous solution; 

(4) Combining these three elements to examine the function of oxidation catalysts on BGNSC 
photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous 
interface to understand the challenges to the efficient coupling of the materials functions. 

1. Elucidation and Characterization of the Structure, Band Gap and Interfacial Properties 
of the GaN/ZnO Solid-Solution Photocatalyst. Domen et 
al. reported encouraging photocatalytic performance for the 
solid-sollution photocatalyst (Ga1-xZnx)(N1-xOx) loaded with 
mixed oxides of rhodium and chromium in overall water 
splitting. Perhaps most impressive was that if silver nitrate 
was used as a sacrificial electron acceptor, the quantum 
efficiency for oxygen evolution rose to 51% at 420–440 nm, 
which is 20 times higher than that for overall water 
splitting. We have carried out a systematic study of the 
structural and electronic properties of the (Ga1-xZnx) 
(N1-xOx) solid solution as a function of zinc (oxygen) 
concentration, x, using density-functional theory (DFT). 
The DFT+U approach has been adopted, and two different 
periodic supercells, the 16-atom (Ga8-nZnn)(N8-nOn) and 32-
atom (Ga16-nZnn)(N16-nOn), have been used to model this 
solid solution. 

The calculated band gap as a function of ZnO content, x, is 
shown in the figure above as red points along with the red 

Variation of band gap as a function of Zn 
(O) concentration, x. Red: calculated 
BGs and smoothed Eg(x) curve using the 
estimated bowing parameter b. Blue: 
experimental data for (Ga1-xZnx)(N1-xOx) 
solid solution and predicted experimental 
Eg(x) behavior using the estimated b and 
the limiting GaN and ZnO band gaps. 



curve showing the best fit a quadratic equation with a bowing parameter b indicating the leading 
term from ideal behavior. The blue curve shows the interpolation of the experimental band gaps 
for GaN and ZnO with the calculated value of b, and the blue points indicate experimental band 
gap measurements from Domen’s group. Our prediction is that a minimum band gap of ca. 2.4 
eV should occur at roughly x = 0.5. More recent theoretical work has shown that an H2O 
monolayer on the GaN(1010) surface dissociates completely, and that additional overlayers or 
MD simulations of the bulk H2O interface cause the structure of the surface monolayer to change. 
Future work will pursue H2O oxidation pathways at surfaces of GaN/ZnO with different 
compositon and exposed faces using DFT, first-principles MD and kinetic Monte Carlo 
techniques. Recent experimental work has elucidated the mechanism of GaN/ZnO synthesis from 
Ga2O3/ZnO mixtures and NH3 using time-dependent powder XRD, and current work is exploring 
synthesis routes for producing GaN/ZnO solid solutions of arbitrary composition. 

2. Characterization of the electrochemistry of RuII(OH2)(Q)(tpy), the Tanaka catalyst and 
its monomer through construction of experimental and theoretical Pourbaix diagrams. We 
have investigated the redox states of Ru(OH2)(Q)(tpy)2+ (Q = 3,5-di-tert-butyl-1,2-benzoquinone, 

tpy = 2,2´:6´,2˝-terpyridine), the monomer of the 
Tanaka catalyst, [Ru2(OH)2(Q)2(btpyan)]2+ (Q = 
3,6-di-tert-butyl-1,2-benzoquinone, btpyan = 1,8-
bis(2,2´:6´,2˝-terpyrid-4´-yl)-anthracene), containing 
non-innocent quinone ligands, through experimental 
and theoretical UV-vis spectra and Pourbaix 
diagrams. The electrochemical properties were 
determined for the species resulting from 
deprotonation and redox processes in aqueous 
solution. The formal oxidation states of the redox 
couples in the various intermediate complexes were 
systematically assigned using electronic structure 
theory. The various pKa values and reduction 
potentials, including the consideration of proton-
coupled electron-transfer (PCET) processes, were 
calculated, and the theoretical version of the 
Pourbaix diagram was constructed in order to 
elucidate and assign several previously ambiguous 
regions in the experimental diagram (see figure 

above). Guided by the redox behavior of the 
monomer, we are constructing the Pourbaix of 
the dimer catalyst to aid the design of improved 
catalysts, and have tentatively proposed its 
water oxidation mechanism to be that shown in 
the figure at the right in which the oxidation 
state of the metal centers remains 
predominantly 2+ throughout the catalytic 
cycle. The O−O bond is formed by the reaction 
of two oxyl radicals to form a superoxide 
species. 

An experimental and theoretical Pourbaix 
diagram of Ru(OH2)(Q)(tpy)2+. E1/2 is relative 
to the SCE. The red dashed and solid blue lines 
correspond to the experimental pKa and redox 
potentials. The black lines are the theoretical 
predictions. 
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