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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
Unites States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government

or any agency thereof.



Abstract

One of the most promising methods of capturing CO, emitted by coal-fired power plants
for subsequent sequestration is chemical looping combustion (CLC). A powdered metal
oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high
temperatures with no air present. Heat, water, and CO, are released, and after H,O
condensation the CO, (undiluted by N,) is ready for sequestration, whereas the nickel
metal is ready for reoxidation in the air reactor. In principle, these processes can be
repeated endlessly with the original nickel metal/nickel oxide participating in a loop that
admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at
high temperatures and elevated pressures for the metal oxide reduction step and for the
metal reoxidation step. These data will be used in computational modeling of CLC on
the laboratory scale and presumably later on the plant scale. The oxygen carrier on which
the research at Utah is focused is CuO/Cu,0O rather than nickel oxide because the copper
system lends itself to use with solid fuels in an alternative to CLC called “chemical
looping with oxygen uncoupling” (CLOU).
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Executive Summary

Chemical looping combustion (CLC) combined with CO, sequestration techniques is a
promising method of producing adequate electric power from fossil fuels to meet the
world’s growing needs without contributing significantly to global warming. In CLC,
oxygen is transferred chemically from combustion air to fuel (to produce heat, water, and
captured CO;) by means of an oxygen carrier catalyst (metal oxide). In classic CLC,
metal oxide particles enter a fuel reactor in which a gaseous fuel such as syngas (CO +
H,) contacts the metal oxide and flameless combustion takes place at ~850°C. Thus
combustion occurs in the absence of air with consequently no heating of nitrogen and no
formation of nitrogen oxides. The term “looping” arises from the passage of the resulting
metal particles into the air reactor in which the metal is reoxidized (at high temperature).
The regenerated metal oxide then cycles back into the fuel reactor where it oxidizes more

fuel and so on.

W.K. Lewis and E.R. Gilliland (1954)" and H.J. Richter and K.F. Knoche (1983)® were
essential forerunners to Masaru Ishida and Hongguag Jin, who are the widely credited
“inventors” of CLC. The present literature survey begins with the 1994 Ishida-Jin paper.?
Conspicuous by its absence from this list of CLC papers in this literature review (with
one exception) are titles with the CLOU acronym that stands for “chemical looping with
oxygen uncoupling.” This is a new concept introduced by Tobias Mattisson and
coworkers at Chalmers University of Technology in Sweden for which refereed papers
are beginning to appear in print.* CLOU permits combustion of solid fuels in gas-phase
oxygen without resorting to an energy-intensive air separation unit. Three steps in two
reactors are required: the first step occurs in an air reactor wherein a partially oxidized
metal oxide such as copper(l) oxide captures oxygen from combustion air to form
copper(Il) oxide. In step two taking place in a fuel reactor, the copper(ll) oxide releases
molecular oxygen into the gas phase that in the third step (also in the fuel reactor) reacts
with the fuel. So far, three metal oxide systems (Mn,O3/Mn30,; CuO/Cu,0; and

C0304/Co0) appear suitable for the CLOU version of CLC. Rates of fuel conversion are



much higher in CLOU compared to CLC, and the rate increases with increasing

temperature®.

The “immediate” goal of our Utah CLC research is the production of meaningful
experimental rate data for small-particle copper oxide reduction and small-particle copper
metal and copper (1) oxide reoxidation at temperatures on the order of 850°C that can be
used in computer modeling of CLC applications. It is somewhat encouraging to note that
few of the titles found in this literature survey mention rate studies of metal oxide
reductions and metal particle oxidations carried out at high temperatures. None of these

papers appears to report CLC experiments carried out at high pressures.

The original CLC experimental plan recognized that conversion of fuels to heat, water,
and CO, would have attendant changes in gas volume that could be facilitated or at the
very least elucidated by changing gas pressure. The premier laboratory tool for exploring
mechanistic aspects of CLC would be a thermogravimetric analyzer (TGA). A high
pressure TGA (TherMax 500) was ordered from Thermo Fisher Scientific, the only
vendor of an adjustable pressure TGA at the time. Unfortunately, the TherMax 500 has
never performed consistently up to specifications, and essentially all of the experimental
CLC work reported from Utah so far has been carried out using generously gifted time on
an atmospheric pressure TA Q500 TGA in the Department of Chemistry.

While the TA Q500 TGA lacks the capability of adjustable gas pressure, it has the
enormous advantage of a smaller sample compartment (than the TherMax 500) that
permits rapid heating and —especially — rapid cooling, and hence requires shorter time
periods for completion of the experiments. Thus the TA Q500 TGA has been used to
collect data under ambient pressure at several temperatures for the determination of the

parameters of the reaction kinetics.

Nickel and copper metal powders were oxidized with compressed air from gas cylinders
(TherMax) or delivered on the “house” line (TA Q500) under both isothermal and non-



isothermal conditions. The oxidation process completed with good yields. A large

number of experiments was executed and the numerical data analysis is in progress.

The investigation of the reduction of the metal oxides with H, as fuel is not complete, due
to the problems with the TherMax 500 instrument. The limited data indicate the complete
reduction of NiO, with good yield.

A spontaneous decomposition of CuO can be induced by switching the ambient
atmosphere from air to N at elevated temperatures. The TA Q500 was also used to
simulate this “limited” CLC over times as long as thirty hours with a single charge of
copper/copper oxide. An optimum temperature near 850°C was found for this prolonged

CLC simulation. There was no support used for the copper/copper oxide oxygen carrier.

The Cu/CuO system was subjected to repeated sequences of temperature programmed
oxidations and temperature programmed reductions with O, and H; in inert gas carriers.
The reductions were very similar, but the oxidations varied during the sequence. This
behavior is consistent with the observed changes of the oxidation and spontaneous

decomposition cycles.



Literature Survey

Subtask 16.1

The work of W.K. Lewis and E.R. Gilliland (1954)* and H.J. Richter and K.F. Knoche
(1983)% was the forerunner to that of Masaru Ishida and Hongguag Jin, who are the
widely credited inventors of CLC3. Our literature survey began with the 1994 Ishida-Jin
paper (see the Appendix for a list of the surveyed literature). The survey identified only
one title that included CLOU (chemical looping with oxygen uncoupling), a new concept
introduced by Tobias Mattisson and coworkers at Chalmers University of Technology in
Sweden for which refereed papers are beginning to appear in print.* CLOU permits
combustion of solid fuels in gas-phase oxygen without resorting to an energy-intensive
air separation unit. Furthermore, few of the titles found in this literature survey mention
rate studies of metal oxide reductions and metal particle oxidations carried out at high
temperatures. More recently the CLC research community has been considering long-
term experiments of 30 hours or more carried out with lab-scale fluidized bed CLC
reactors rather than with simple TGAs®”. Another growing dimension of CLC research is
the computer modeling of the fuel and air reactors®. None of these papers appears to
report CLC experiments carried out at high pressures.



Experimental Methods

We performed thermogravimetric analysis using the TherMax 500 and a TA Q500 and
temperature-programmed oxidations and reductions using the Micromeritics ChemiSorb
2720. Thermogravimetric analysis is based on the observation of the weight of a solid
sample suspended on a balance, enclosed in a temperature-controlled environment. To
obtain the data necessary to describe the reaction-kinetics, the experiments can be
executed under isothermal (constant temperature) and non-isothermal (programmed
temperature changes) conditions. The experiment is always the observation of the weight

(mass) and temperature of the sample as a function of time.

For isothermal experiments the sample is prepared under ambient conditions
(temperature, pressure), and it is heated to the target temperature in an inert (N, He)
atmosphere. When the target temperature is stabilized, the flow of the inert gas is
replaced with flow of a reacting gas (air, H), and the change of the sample weight is
recorded. The rate constant at the target temperature (kr) is determined, according to an
assumed reaction mechanism. The experiment is repeated at several temperatures, so that

an Arrhenius plot (In(kr) vs 1/T) can be constructed.

For non-isothermal experiments the sample is prepared under ambient conditions
(temperature, pressure). The inert gas flow is terminated, and the system is switched to
the reacting gas. The sample is heated to the target temperature according to a (linear)
heating program (°C/min). The experiment is repeated several times, using different
heating rates. The kinetic information is extracted by using the IsoKin program. This

approach has no initial assumptions of the reaction mechanism.

The high pressure TGA apparatus purchased by the University of Utah from Thermo-
Fisher (TherMax 500) was delivered and installed in January, 2008. However, the
TherMax 500 has never operated satisfactorily, and fundamental problems remain
unidentified. The hypothesis of the Thermo-Fisher support personnel had been “dirty”
electrical power in the Merrill Engineering Building where the instrument is located. To



remedy the situation, a new isolated electrical circuit was built for the instrument. The
TGA continues to experience random failures although it is connected to the new circuit.
During January — March 2009, the instrument was back at the manufacturer undergoing
testing and investigations. When the instrument was reinstalled in mid-April 2009, the
pressure control system was found to be inoperable. This has delayed experiments
performed at pressures exceeding one atmosphere as well as all experiments involving
“fuels” (syngas, hydrogen, etc.) that pose safety problems when the TGA sample is not in
a fully enclosed environment. In spite of these handicaps, we have made significant
progress in completing our experimental matrix using generously “loaned” time on an

atmospheric pressure TGA in the Department of Chemistry.

The temperature programmed oxidations (TPO) and reductions (TPR) are experiments
conducted by monitoring the composition of the gas before and after the reaction zone
using a thermal conductivity detector (TCD). The TCD is used in gas chromatography to
monitor the changes of the thermal conductivity of the gas exposed to the sample by
splitting the incoming flow of the gas into the sample and reference cells. In the
Micromeritics ChemiSorb 2720 the full gas flow is monitored, in a time-delayed manner
by comparing the gas composition before and after the sample, respectively. To optimize
the TCD signal the gas mixtures were chosen as ultra high purity (UHP) helium as the
(neutral) carrier gas; 10% H; in UHP argon for the reduction experiments; and 5% O, in
UHP helium for the oxidation experiments. During the experiment, the sample
temperature is raised according to a linear heating program, and the consumption of the
component of interest was measured by the TCD detector.

These techniques complement each other. The TGA data provide information about the

changes in the solid, and the TPR/TPO experiments reveal the participation of the gases.



Results and Discussion
Subtask 16.3

Ni/NiO Experiments. The non-isothermal oxidation of Ni with air is shown in Figure 1.
The observed 27.7% weight gain at the end of the reaction indicates the complete
oxidation of the Ni to NiO (27.3% calculated weight gain). The oxidation occurred in a

single process.

2Ni(s) + 05(g) = 2NiO(s)
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Figure 1. Non-isothermal oxidation of Ni with air

Figure 2 presents the isothermal oxidation of Ni with air at 950 °C. The reaction is
complete. Similar isothermal data sets were collected for evaluation at several
temperatures in the 600 — 950 °C range. After the completion of the experiment the
sample was cooled under N, without any loss of weight. The minor change shown in the
figure is due to the effect of the buoyancy on the mass, arising from the changing density

of the air.
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Figure 2. Isothermal oxidation of Ni with air at 950 °C

Figure 3 shows the reduction of NiO with 50% H, in N, as simulated fuel. The 19.3%

weight loss is close to the 21.4% change expected for the complete reduction
NiO(s) + Hz(g) = Ni(s) + H20(g)

Interestingly, this reaction takes place at a comparatively low temperature.

The NiO/Ni system was subjected to a sequence of TPR/TPO/TPR. The raw data are
presented in Figure 4. The signals of the repeated TPR experiments show remarkable
differences. The signal strength between the first and second TPR experiments was
reduced by about a factor of two. On the same scale of arbitrary units, the signal of the

TPO was weak.

The reduction of NiO can be done at relatively “low” temperatures (<500 °C), repeatedly,
but the oxidation of Ni is not immediately accomplished, even at “higher” temperatures

(>900 °C). The variation of the consecutive TPR steps needs to be investigated to
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understand the process. Is it a consequence of the incomplete oxidation, or is there
something to learn about the behavior of the NiO/Ni system exposed to repeated

reduction/oxidation cycles?

Cu/CuO Experiments. Figure 5 shows that the non-isothermal oxidation of Cu is not
simple. The observed 24.3% weight gain is close to the expected 25.2%, but it does not
occur in a single reaction. The difference is clearly indicated by the derivative curves.

The three oxidation reactions of the copper
2Cu(s) + O2(g) = 2Cu0(s)
4Cu(s) + Oz(g) = 2Cu0(s)
2Cu0(s) + O,(g) = 4CuO(s)

do not satisfactorily explain the observed trace, characterized by more than three steps.
These steps are clearly revealed by considering the derivative of the weight change.
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Figure 5. Non-isothermal oxidation of Cu with air

The changes expressed by the derivative weight in the 200 - 500°C temperature range
show small, not well developed, but noticeable features. The features in the

11



corresponding non-isothermal oxidation of Ni, depicted in Figure 1, shall be

reconsidered, as well.

The isothermal oxidation of Cu with air at 950 °C as shown in Figure 6 was not yet
complete after a 45-minute isothermal holding period. The weight gain was 22.5%. After
the 45 minutes, the air was replaced with Ny, and the sample was allowed to cool. The
change of gas immediately initiated a weight loss. In the absence of oxygen, the CuO
decomposed. The decomposition is not complete because the temperature dropped

quickly, and the reaction stopped.

Figure 7 shows the spontaneous decomposition of CuO under nitrogen. The CuO sample
was heated at a rate of 5°C/min. When the sample temperature exceeded 770°C,
decomposition occurred. The weight loss was approximately 10%. For the conversion of
CuO to Cu metal the expected weight loss is 20.1%. The observed value is in good
agreement with the 10.1% weight loss expected for the conversion of CuO into Cu,0.

Under the same experimental conditions NiO did not decompose.

Our systematic studies reveal that the best CuO/Cu,0 system yields are achieved in the
825 — 875 °C temperature range.

The oxygen carrying capability of the CuO/Cu,0 system was further investigated in
simulated looping experiments with both Cu and CuO as starting materials. After 6 or 7
cycles the systems exhibited a consistently repeatable behavior, as shown in Figure 8.
The weight changes indicate a swing between CuO and Cu,0 (129.2% and 115.8%,
relative to 100% Cu, respectively). The oxidation segments with air were faster and more
complete, as indicated by the constant weights, than the decomposition segments under
N,.

12
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This behavior can be tuned, by selecting the reaction temperature and the times of
exposure to the different gases. Figure 8 shows an experiment with 20 minutes under air
exposure and 20 minutes under N,. The oxidation cycles went to completion (for
practical purposes), while the decomposition cycles did not. The looping was

successfully extended up to 200 cycles.

The CuO/Cu system was studied using two CuO samples as starting material. Results of
repeated sequences of TPR and TPO experiments are shown in Figure 9 and Figure 10.
The plots labeled 1998, 1999, 2002, 2003 were observed using a technical grade CuO.
The plots numbered 2011-2014 were observed using a high purity, “standard grade” CuO
material. Due to the very different amplitudes the TPR and the TPO data are presented

separately.

The traces in Figure 9 indicate several processes taking place. The reduction is complete
below 500 °C as shown by the curves 1998, 2002, 2011, and 2013 in Figure 9.

14



Consequently, there is no need to carry out the looping at high temperatures. Possible
reduction reactions are:

CuO(s) + Hz(g) = Cu(s) + H20(g)
2CUO(s) + Ha(g) = Cu,0(s) + H,0(g)

Cu0(s) + Ha(g) = 2Cu(s) + H20(g)
The sharp character of the peaks suggests that the process is dominated by the first

reaction.

14
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Figure 9. TPR sequences of CuO/Cu, using two materials

Figure 10 shows the TPO of the previously reduced samples (curves 1999, 2003, 2012,
and 2014), and these produced at least four components in the traces. The events begin
low temperature (about 160°C) and last to above 900°C, indicated on the temperature
ramp. The possible chemical reactions already described for the oxidation of the copper

metal do not satisfactorily explain the observed traces.

at
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Figure 10. TPO sequences of CuO/Cu using two materials

Considering the extended “looping” using Cu/CuQ with air and N, the TPR/TPO
sequence was extended up to seven cycles. The TPO and TPR results of the Cu/CuO
system are presented in Figure 11 and Figure 12, respectively. The observed TPO signal
indicates a change in composition between the cycles until the results of the 6™ and 7"
TPO experiments became similar (Figure 11). The results of the TPR experiments did not
show a similar trend. The first and the last TPR experiments presented in Figure 12 are

almost identical. The reduction takes place at a relatively low temperature.

As we noted above, the NiO does not decompose in an inert atmosphere (in contrast to

CuO), so a TGA experiment on the TherMax 500 using H, is required to complete a

“Ioop.”

A small number of experiments was completed under elevated pressures. The

decomposition of calcium oxalate is shown in Figure 13.
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Figure 13. Calcium oxalate decomposition under N, at 100 psi
Ca(C00); is an interesting model material because it decomposes in two steps. The
gaseous products are CO and CO,, respectively:

Ca(C0O0), —» CaCO, + CO — CaO + CO,
Repeated experiments under different elevated pressures indicate the expected shift of t

reaction temperatures toward higher temperatures with higher applied pressures.

A preliminary experiment with sodium chabazite, a potential support material, revealed

no mass change after the initial loss of water.

he

18



During the course of the experiments, improvements were made to the instruments. An
external gas mixing system, consisting of four mass-flow controllers to deliver gases
under high pressure was developed to provide the reaction gas for the TherMax 500
apparatus. In the same instrument, the original sample holders are suspended by a metal
wire as shown in Figure 14. This piece of wire is not durable, and it makes the cleaning
of the quartz tedious. An all-quartz substitute sample holder, shown in Figure 15, was
designed and fabricated in the Glass Shop of the Department of Chemistry, for a fraction

of the commercial replacement cost.

Similarly, quartz replicas of the Pt sample holding pans were used in the TA Q500
instrument. The Pt pans were not suitable for the experiments, due to sintering of the

metal samples.

Due to the problems with the high-pressure TGA, the original experimental plan for
Subtask 16.3 required revision, as shown below. During the time period covered in this
report the project objectives have also evolved. Based on our preliminary results and
development of the CLC reported in the literature, we focused on the Cu/Cu,O/CuO
system and performed a great number of not originally proposed experiments, studying
Cu as a potential oxygen carrier for CLC and the emerging technology of CLOU.

Variable Number of Experiments
Planned Executed
Char composition 2 0
Composition of syngas 3 0
Reaction temperature 4 Many
NiO/Ni particle size 2 1 with NiO, 1 with Ni
Composition of particle support 2 0
Pressure (1 atm total pressure) 1 Several

Since we have not yet executed the gaseous fuel experiments, the issue of char
composition is premature. We now have the mass flow controllers in place to
continuously vary the composition of a syngas. However, as noted above we cannot

safely perform any experiment using syngas until the TGA apparatus is airtight.

19




We have recently discovered that a metal-metal oxide couple can effectively be used in

repeated looping without any support.

Figure 14. Ni produced from NiO by reduction with H,
in the original sample holder

20



Figure 15. The all-quartz sample holder (bucket)
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Conclusions

Many recent papers advance our understanding of chemical looping combustion. Often
they report the use of TGA or small fixed-bed reactors in the search for an oxygen carrier
that can be used successfully with gaseous fuels such as H,, CO, or CH,4. Fewer
publications so far report work with oxygen carriers that are effective in CLC of solid
fuels. More recently the CLC research community has been considering long-term
experiments of 30 hours or more carried out with lab-scale fluidized bed CLC reactors
rather than with simple TGAs>®. Another growing dimension of CLC research is the

computer modeling of the fuel and air reactors®,

Further high-pressure TGA studies in CLC research will be useful for the measurement
of chemical rate constants over a wide range of temperatures (up to 1000°C) and gas
pressures up to 1000 psi, which could be of interest for reducing the size of the air
reactor, the fuel reactor, and the amount of oxygen carrier. When the temperature
readings are well calibrated and dependable confidence intervals for the activation
energies have been established® the TGA will provide essential rate data needed in

computer modeling of CLC.

Ni oxidation experiments in air revealed complete oxidation of Ni to NiO in a single
process. The limited data for the reduction of NiO with 50% H; in N, indicate the

complete reduction of NiO at a comparatively low temperature (below 500°C).

Cu oxidation experiments in air revealed a more complex oxidation process reflecting in
part the multiple oxidation states of Cu. CuO undergoes decomposition to yield oxygen
gas and Cu,O under nitrogen at elevated temperatures, in contrast to NiO which does not
decompose at temperatures of interest. In addition, the TA Q500 was used to simulate
limited cycling of the oxidation/decomposition of copper oxide over times as long as
thirty hours with a single charge of unsupported copper/copper oxide in order to

determine the stability of the oxygen carrier for use in CLC. An optimum temperature

22



near 850°C was found for this prolonged CLC simulation. Finally, the Cu/CuQ system
was subjected to repeated sequences of temperature-programmed oxidations and
temperature-programmed reductions with O, and H; in inert gas carriers. The reduction
cycles were reproducible, but the oxidations varied during the sequence. This behavior is
consistent with the observed changes of the oxidation and spontaneous decomposition

cycles.
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List of Abbreviations and Symbols

Abbreviations:

CLC: Chemical Looping Combustion

CLOU: Chemical Looping Combustion, with Oxygen Uncoupling

MFC: Mass Flow Controller

TCD: Thermal Conductivity Detector

TGA: Thermogravimetric Analysis (as an experimental method), or
Thermogravimetric Analyzer (as an instrument)

TPO: Temperature Programmed Oxidation

TPR: Temperature Programmed Reduction

UHP: Ultra High Purity (the best commercially available gas)

Symbols:
T: Temperature

kt: Rate constant of a reaction, at a given temperature (T)
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