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For a large class of dark energy models, for which the effective gravitational constant is indeed a 
constant, knowledge of the expansion history suffices to reconstruct the growth factor of linearized 
density perturbations in the non-relativistic matter component on scales much smaller than the Hub­
ble distance. In this paper we develop a non-parametric method for extracting information about 
the perturbative growth factor from data pertaining to the luminosity or angular size distances. A 
comparison of the reconstructed density contrast with observations of large scale structure and grav­
itationallensing can help distinguish DE models, such as a cosmological constant and quintessence, 
from modified gravity theories including Braneworlds, f(R) gravity, etc. We show that for current 
SNe data, the instantaneous linear growth factor at z = 0.3 can be constrained to 5%. With future 
SNe data, such as expected from the JDEM mission, we may be able to constrain the growth factor 
to 2 - 3% with this unbiased, model-independent reconstruction method. For future BAO data 
which would deliver measurements of both the angular diameter distance and Hubble paranleter, it 
should be possible to constrain the growth factor at z = 2.5 to 9%. These constraints grow tighter 
with the errors on the datasets. With a large quantity of data expected in the next few years, 
this method can emerge as a competitive tool for distinguishing between different models of dark 
energy. 

I. INTRODUCTION 

Over the last decade, observations of Type Ia supernovae have shown that the expansion of the universe is currently 
accelerating [1, 2J. This remarkable discovery has led cosmologists to hypothesize the presence of dark energy (DE), 
a negative pressure energy component which dominates the energy content of the universe at present. Many theories 
have been propounded to explain this phenomenon, the simplest of which is the cosmological constant A, with constant 
energy density and equation of state w = -1. Although A appears to explain all current observations satisfactorily, to 
do so its value must necessarily be very small A/87rG ~ 1O-47GeV4 . So, it represents a new small constant of nature 
in addition to those known from elementary particle physics. However, since it is not known at present how to derive 
A from these other small constants and it is also unclear if DE is in fact time independent, other phenomenological 
explanations for cosmic acceleration have been suggested. These are based either on the introduction of new physical 
fields (quintessence models, Chaplygin gas, etc.), or on modifying the laws of gravity and therefore the geometry of 
the universe (scalar-tensor gravity, f(R) gravity, higher dimensional 'Braneworld' models e.t.c. ) (see reviews [3, 4J. 
The plethora of competing dark energy models has led to the development of parametric and non-parametric methods 
as a means of obtaining model independent information' about the nature of dark energy directly from observations 
[5- 7J. 

The next decade will see the emergence of many new cosmological probes. A large number of these are likely to make 
important contributions to the field of dark energy. The Sloan Digital Sky Survey began its stage III observations in 
2008, and its Baryon Oscillation Spectroscopic Survey (BOSS) is expected to map the spatial distribution of luminous 
galaxies and quasars and to detect the characteristic scale imprinted by baryon acoustic oscillations in the early 
universe [8J. The Joint Dark Energy Mission (JDEM) is expected to discover a large number of supernovae, and also 
provide important data on weak-lensing and baryon acoustic oscillations [9J . The Square Kilometer Array (SKA) 
will map out over a billion galaxies to redshift of about 1.5, and is expected to determine the power spectrum of 
dark matter fluctuations as well as its growth as a function of cosmic epoch [10J . Important clues to the growth 
of structure will therefore come from future weak lensing surveys (JDEM, SKA, LSST) as well as redshift space 
distortions [11, 12J and galaxy peculiar velocities [13J . With the wealth of data expected to arrive over the next 
several years, it is important to explore different methods of analyzing these datasets in order to extract the optimum 
amount of information from them. In this paper we explore the possibility of reconstructing the linearized growth 
rate of density perturbations in the non-relativistic matter component, 8(z), from datasets which have traditionally 
been used to explore only the smooth background universe, e.g. supernova and baryon acoustic oscillations data. 

In the case of physical DE, (when the effective gravitational constant appearing in the equation for linear density 
perturbations in the matter component coincides with the Newton gravitational constant G measured in the laboratory 
and using Solar system tests), the density contrast reconstructed in this manner should match that determined 
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directly from observations of large scale structure. In this case the methods developed in this paper will provide an 
important consistency check on DE models such as A and Quintessence. On the other hand, geometrical models of 
DE (Braneworlds, scalar-tensor gravity, etc.) usually predict a different growth rate for 8(z) from that in general 
relativity. In this case, a reconstruction of the linearized density contrast from observations of standard candles/rulers 
will not match with 8 determined directly from large scale structure. Currently reconstructed values of the growth 
rate from galaxy redshift distortions [11, 14, 15] are not very constrictive, but future mission like Euclid [16] are 
expected to constrain the growth rate tightly. Therefore comparing the results from future supernova data, using the 
methods described in this paper, and those from future large scale structure data will help address important issues 
concerning the nature of gravity and dark energy. 

This paper is organized as follows. In section II , we describe the reconstruction technique and the data used to test 
this method. Section III shows the results and examines the dependence of the results on various factors such as the 
redshift distribution of the data and information on other cosmological parameters. The conclusions are presented in 
section IV. 

II. METHODOLOGY 

In the longitudinal (quasi-Newtonian) gauge, the perturbed, spatially fiat, Friedman-Robertson-Walker (FRW) 
metric is defined by the line element 

(1) 

where 1> = 'l/J in general relativity (GR) if matter is free of anisotropic stresses. The Newtonian potential 1> and the 
density contrast 

8 _ Pm(x, t) - p(t) (2)
m - p(t) , 

are linked via the linearized Poisson equation 

(3) 

It is easy to show that, on scales much smaller than the Hubble scale, the linearized growth factor for matter density 
perturbations in an FRW universe containing dark energy with an arbitrary effective equation of state but with the 
effective sound velocity Cs rv 1, satisfies the equation [5, 17] 

(4) 


where H( z ) = a/a is the Hubble parameter. (We ignore the subscript in 8m in the ensuing discussion .) The coordinate 
distance 

z 

lt~ dt l dz E= -= -- (5) 
t a(t) - 0 H( z) 

plays a key role in measurements of the background universe using standard rulers and candles, since 

dL(z)
E(z) = -- = (1 + Z) dA(Z) , (6)

l+z 

where dL and dA are, respectively, the luminosity distance and the angular size distance. Rewriting Eq (4) in terms 
of Eq (5), we obtain a set of integral equations for 8(E) and its first derivative [4]: 

8(E) 1 + 8~ lE [1 + z(EdldE I + ~nom lE [1 + z(Edl (lEI 8(E2)dE2) dEl (7) 

E 
8'(E) = 8~[1 + z(E)l + ~nom[l + z(E)] l 8(EddEJ , (8) 

where all derivatives are with respect to E(z) and 8 is normalized to 8(z = 0) = 1. Note the remarkable fact that, in 
constrast to formulas used in the reconstruction of H( z) from dL( z) [5,6] or 8(z) [5] which require taking a derivative 
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of observational data with respect to the redshift, this formula contains integrations of observational data only, which 
is a valid operation for noisy data. 

By solving the above equations we can calculate the linear growth factor 

g(z) == (1 +z)o(z), (9) 

which represents the ratio of o(z) in the presence of dark energy to that in SCDM without a cosmological constant. 
Another quantity of interest is the growth rate 

f( z) = dlno = _ 1 + z dlno. (10)
dina H(z) dz 

To solve Eq (7) we start with initial guess values for o(E) and o'(E) and iteratively solve for o(E), calculating o'(E) 
in the successive iterations as the difference between adjacent values of o(E), i.e. o~ = 6.0i/6.Ei . This method does 
not require prior knowledge of the parameter 00' is robust to changes in the initial guess values and gives exact results 
for g(E) and f(E) for noiseless data. For data with errors, naturally the result is noisier, however, as we will show in 
the succeeding sections, we will be able to put reasonable constraints on g and f using this method. 

Data noise can also be decreased using smoothing techniques. In what follows we shall use the lognormal smoothing 
scheme proposed in [18] which has been shown to be reasonably unbiased and efficient. It constructs a smooth quantity, 
ES , from a noisy one, E(Zi)' via the ansatz [18] 

(11) 

where 6. is the smoothing scale. We take 6. = liN where N is the total number of observations. Choosing this small 
value of 6. leaves the results unbiased. 

Note that the equations (4) and (7) are only valid for physical models of dark energy such as the cosmological constant 
and quintessence [4]. Geometrical models of DE, which include braneworld models, scalar-tensor theories and f(R) 
gravity, have more degrees of freedom than GR, with the result that the relation ¢ = 'l/J is usually not obeyed in such 
models, and the linearized perturbation equation also departs from its Newtonian form (4). For instance in extra 
dimensional scenario's [19], the presence of the fifth dimension (the bulk) can influence the behaviour of perturbations 
residing on the brane [20], whereas in scalar-tensor gravity the additional scalar degree of freedom must be taken 
into account when evaluating the growth of density perturbations [21]. Since, in such models, the linearized growth 
function oobs(Z) determined from observations of large scale structure would differ from its reconstructed value (7), a 
comparison of these two quantities could help address the important issue of whether dark energy is geometrical or 
physical in origin. While it is encouraging that future observations [10] of large scale structure may make possible the 
determination of Oobs(Z), in this paper we focus on reconstructing this quantity using observations of high redshift 
type Ia supernovae and baryon acoustic oscillations. 

A. Data used 

The method outlined in the previous section would be applicable to any observation which contains a measurement 
of E(z), e.g. measurements of luminosity distance or angular diameter distance. We shall use real data and mock data 
based on simulations of supernova type Ia data and the angular diameter distance from baryon acoustic oscillations, 
to test this method. 
Supernova Data : 

The lightcurves of Type Ia supernovae show them to be "calibrated candles", therefore they are of enormous 
significance in cosmology today. The luminosity distance of Type Ia SNe provide us with a direct measurement of 
the acceleration of the universe, thus leading to constraints on the dark energy parameters. SNe data is in the form 
{mB, z,amB, aZ }' where the magnitude mB is related to E(z) as 

mB = 510glO [(1 + z)E(z)] + M . (12) 

M is a noise parameter usually marginalized over. 
Currently there are around 300 published SNe with the furthest observed one at a redshift of z = 1.7 [2], and 

average error of amB ~ 0.15. Future space-based projects such as the Joint Dark Energy Mission (JDEM) [9] are 
expected to observe about 2000 SNe with errors of amB = 0.07. To date, SNe are the most direct evidence for dark 
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FIG. 1: Reconstructed linear growth factor g(z) for different datasets. The top panels show the results for Modell (ACDM) 
using Union-like (set A, left panel) and JDEM-like (set B, right panel) SNe datasets, while the bottom panels show results for 
Model 2 (variable w, eq (13)) using set A (left panel) and set B (right panel). In each figure , the black dotted line represents 
the true model, while the green dashed line represents the other model. The red solid lines show the 10" error bars for the 
integral reconstruction using eqs (7) . 

energy, and in this paper we shall primarily use SNe data to constrain the growth parameters for different dark energy 
models. 
BAO data 

At present, baryon acoustic oscillations are believed to be the method least plagued by systematic uncertainities, 
therefore the detection of the first baryon acoustic oscillation scale [22] has led to the speculation that BAO may 
in future become a potent discriminator for dark energy. Sound waves that propagate in the opaque early universe 
imprint a characteristic scale in the clustering of matter, providing a "standard ruler". Since the sound horizon is 
tightly constrained by cosmic microwave background (CMB) observations, measuring the angle subtended by this 
scale determines a distance to that redshift and constrains the expansion rate. The radial and transverse scales 
give measurements of [TsH(z)Jlc and Ts/[(l + Z)dA(Z)] respectively, where Ts is the sound horizon obtained from 
CMB. These quantities are correlated, and the present BAO data is not sensitive enough to measure both quantities 
independently, but future surveys are expected to give independent measurements of dA(Z) and H(z ) [23]. Future 
BAO surveys such as BOSS [8] are therefore expected to place tighter constraints on dark energy parameters. 

0.9 L-----'-_-'----''------'-_...I...-----'_-'-_.J.......J 
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 
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FIG. 2: Reconstructed growth rate J( z ) for different datasets. The top panels show the results for Model 1 (ACDM) using 
Union-like (set A, left panel) and JDEM-like (set B, right panel) SNe datasets, while the bottom panels show results for Model 
2 (variable w, eq (13» using set A (left panel) and set B (right panel). In each figure, the thick black dotted line represents the 
true model, while the green dashed line represents the other model. The red solid lines show the 10- error bars for the integral 
reconstruction using eqs (7) The blue vertical lines in the right panel show the expected observational constraints from Euclid 
[16]. 

III. RESULTS 

We first use Supernova data to reconstruct the growth parameters. We simulate data according to two theoretical 
models: 

• Modell: A cosmological constant model with W = -1, nOm = 0.27, Ho = 72 km/s/Mpc. 

• Model 2: A variable dark energy model with the equation of state given by 

Wa Z
w(z) = Wo + -- , Wo = -0.9, Wa = 0.3 , 	 (13)

l+ z 

and with the same values of nOm, Ho as ModelL (Note that Modell and 2 provide excellent agreement with 
the current CMB+BAO+SNe data [24].) 

Two different data distributions are used, set A resembles the quality of data available at present, and set B is 
modeled on expected future surveys. 

• Set A : rv 300 SNe, with the redshift distribution and errors of the Union dataset [2]. For this dataset, on 
average, O"rnB ~ 0.15, but a few SNe have very high errors of the order of unity. Since the method of integration 
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FIG . 3: Reconstructed growth parameters for different datasets using the smoothing scheme Eq (11) on the integral recon­
strunction method, eq (7). The top panels show the results for Modell (ACDM) for the growth factor g(z) (left panel) and the 
growth rate J(z) (right panel). The bottom panels show the results for Model 2 (variable w, eq (13)) for g(z) (left panel) and 
J(z) (right panel) . In each figure, the black dotted line represents the true model. The green dashed shaded area represents the 
10' errors for the integral reconstruction of set A (Union), while the green hatched shaded area represents the reconstruction 
for set B (JDEM). The blue vertical lines in the right panel show the expected observational constraints from Euclid [16]. 

would not work very well for very noisy data, and a single da.tapoint with large noise would affect the results 
of all datapoints after it, we restrict the analysis to SNe with ama < 0.7. By rejecting 10 datapoints with this 
criterion, we enhance the results by a significa.nt amount. 

• Set B : rv 2000 SNe, with the redshift distribution and errors (ama 0.07) expected from future surveys such rv 

as the JDEM [25]. 

For both cases, we marginalize over nOm = 0.27 ± 0.03. 
Fig 1 shows the results for the linear growth factor g(z) for both datasets and for the two different cosmological 

models. We see that for both models, set A results in rather noisy reconstruction (left panel), since the errors on the 
SNe are quite high. This is especially true at high redshifts (z > 0.7 where the sparse sampling affects the integral 
reconstruction scheme adversely. For JDEM-like data (set B) however, g(z) is reconstructed quite accurately, and has 
low errors at low redshifts (right panel). At z = 0.3, g(z) is constrained accurately to rv 2% for both models for set 
B, while at z = 1, g(z) is constrained to rv 4%. 

Fig 2 shows the reconstruction of the growth rate fez). As before, the results for set A are poor. The results for 
Set B are reasonable, however, the errors are slightly larger in this case, since there is an additional error from the 
calculation of H(z ) from E(z). At z = 0.3, fez) is constrained accurately to 3% for both models for set B, while rv 

at z = 1, fez) is constrained to 8%. We also note that the quantity fez) has slightly greater discriminatory power 
than g(z), since typically the linear growth suppresion factor shows rather less variation between different dark energy 

http:significa.nt
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FIG. 4: Reconstructed growth rate fe z) for JDEM-like dataset using a modified gravity model (DGP, eq (??)). The thick 
black dotted line represents the result reconstructed from just the expansion history (eq (14)), while the green dashed line 
represents the result reconstructed from large scale structure (eq (??)) . The red solid lines show the 10' error bars for the 
integral reconstruction using eqs (7) The blue vertical lines show the expected observational constraints from Euclid [16J. The 
discrepancy between the two would act as a signal for modified gravity. 

TABLE I: Reconstructed linear g rowth factor 9 and growth rate f using different datasets for Modell 

Datasets Z g(z) gsmooth(Z) gexact(Z) fe z) f smooth(Z) f exact(Z) 

A (Union SNe) 

0.3 

1.0 

1.5 

1.11 ± 0.04 

1.27 ± 0.06 

1.24 ± 0.15 

1.12 ± 0.02 

1.26 ± 0.04 

1.26 ± 0.09 

1.12 

1.25 

1.28 

0.65 ± 0.04 

0.82 ± 0.09 

0.97 ± 0.21 

0.63 ± 0.03 

0.83 ± 0.04 

0.94 ± 0.10 

0.64 

0.85 

0.92 

B (JDEM SNe) 

0.3 

1.0 

1.5 

1.13 ± 0.02 

1.24 ± 0.05 

1.25 ± 0.08 

1.12 ± 0.01 

1.23 ± 0.04 

1.26 ± 0.09 

1.12 

1.25 

1.28 

0.64 ± 0.02 

0.86 ± 0.07 

0.93 ± 0.11 

0.63 ± om 
0.84 ± 0.05 

0.92 ± 0.10 

0.64 

0.85 

0.92 

C (BOSS BAO) 2.5 1.28 ± 0.13 1.29 ± 0.11 1.30 1.01 ± 0.09 1.00 ± 0.07 0.97 

models as compared to the growth rate at any given redshift. Therefore, even though J(z) is slightly noisier, for set 
B, Modell and Model 2 can be discriminated at 10' using J(z) . 

If the data is first smoothed with the smoothing scheme (11), the results improve, especially for set A which has 
much noisier data, as seen in figure 3. The results for J(z) improve markedly for both datasets. Errors on g(z) and 
J(z) are rv 1% and rv 1.5% respectively at z = 0.3, and rv 3% and rv 6% respectively at z = 1 for Modell with JDEM 
like data. Model 2 gives similar constraints. The results for the growth parameters are summarized in Table I for 
Model 1, and in Table II for Model 2. We see that this method obtains quite reasonable constraints on the growth 
parameters at low redshifts for the set B, therefore it can be used successfully to constrain growth parameters from 

TABLE II: Reconstructed linear g rowth factor 9 and growth rate f using different datasets for Model 2 

Datasets Z g(z) gsmooth(Z) gexact(Z) fe z) f smooth(Z) f exact(Z) 

A (Union SNe) 

0.3 

1.0 

1.5 

1.12 ± 0.03 

1.26 ± 0.76 

1.34 ± 0.18 

1.12 ± 0.01 

1.27 ± 0.04 

1.33 ± 0.010 

1.13 

1.28 

1.32 

0.60 ± 0.04 

0.82 ± 0.09 

0.89 ± 0.20 

0.61 ± 0.03 

0.81 ± 0.07 

0.90 ± 0.13 

0.61 

0.80 

0.87 

B (JDEM SNe) 

0.3 

1.0 

1.5 

1.13 ± 0.02 

1.27 ± 0.05 

1.33 ± 0.08 

1.11 ± 0.01 

1.27 ± 0.04 

1.31 ± 0.07 

1.13 

1.28 

1.32 

0.62 ± 0.02 

0.81 ± 0.05 

0.88 ± 0.08 

0.61 ± 0.01 

0.80 ± 0.04 

0.86 ± 0.06 

0.61 

0.80 

0.87 

C (BOSS BAO) 2.5 1.37 ± 0.13 1.346 ± 0.07 1.34 0.96 ± 0.11 0.94 ± 0.06 0.93 
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FIG. 5: Reconstructed growth rate fez) for model 1 (ACDM) using various redshift distributions. We use (a) set A (Union-like) 
with number of SNe doubled at low and high redshifts (left panel) (b) set A with number of supernova doubled for mid-range 
SNe (center panel) and (c) JDEM-like (set B) redshift distribution with Union-like (set A) errors (right panel). In each panel, 
the red solid lines depict 10' error bars on set A, while the green dashed lines show the 10' error bars on set A modified according 
to (a), (b), (c). The black dotted line represents the true model. 

FIG. 6: Reconstructed growth rate fez) for model 1 (ACDM) using various error distributions. We use (a) set A (Union-like) 
with errors halved at low and high redshifts (left panel) (b) set A with errors halved for mid-range SNe (center panel) and (c) 
set A with JDEM-like errors for each SNe (right panel). In each panel, the red solid lines depict 10' error bars on set A, while 
the green dashed lines show the 10' error bars on set A modified according to (a), (b), (c). The black dotted line represents the 
true model. 

future SNe data. It should be noted that, for future SNe data to accurately constrain the growth parameters, it 
is important to keep the SNe systematics under control (usys ~ 0.05) . A systematic error of u sys = 0.1 (as on the 
current data) would weaken all constraints significantly. 

A. Dependence on nature of data 

0.9 

0.8 
~ 

N 

~ 
0.7 

0.6 

0.5 0(z<0.3 or z>0.7) --> 012 

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Z 

0.9 

0.8 
~ 

N 

~ 
0.7 

0.6 

0.5 0(0.3<z<0.7) --> 012 

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Z 

0.9 

0.8 
~ 

N 

~ 
0.7 

0.6 

0.5 

o 0.2 0.4 0.6 0.8 1.2 1.4 1.6 

Z 

We now check how the results change if the redshift distribution or error distribution is changed. To study the 
dependency on the number ofSNe, we use three redshift distributions- (a) set A (rv 300 SNe) with double the number 
of supernovae at low (z < 0.3) and high(z > 0.7) redshifts, (b) set A with double the SNe at mid-range (0.3 < z < 0.7) 
redshifts, and (c) a distribution with the JDEM (set B) redshift distribution (rv 2000 SNe) with errors of the order of 
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the Union (set A) SNe. The results for Modell are shown in figure 5. We see that doubling the number of SNe in a 
particular redshift bin changes the results very slightly. This is to be expected because when integrating noisy data, 
having a larger number of points with the same amount of noise does not improve results significantly. Increasing the 
total number of SNe by a significant amount (nearly seven times, as in right panel) does improve the scatter, but the 
results still do not compare with those of set B (fig 2, top right panel) which has the same number of supernovae but 
smaller errors. 

We now study the effect of the errors. Once again we study three distributions - (a) set A with the errors halved 
for z < 0.3 and z > 0.7 redshift bins, (b) set A with errors halved in the 0.3 < z < 0.7 redshift bin, and (c) set A 
with errors replaced by JDEM-like errors on all SNe. The results for Modell are shown in figure 6. We see that in 
this case, decreasing the errors at low redshift or high redshift changes the results very slightly. This is because there 
are very few points at low redshift so they do not affect the integration process strongly, and the high redshift points 
cannot affect the low redshift points. The results in the redshift range 0 < z < 0.7 become better if the mid-range 
SNe have lower errors. As we see in the right panel of fig 6, decreasing the errors to JDEM errors gives results almost 
identical to the results for Set B (fig 2, top right panel) , even though the number of points is much less for set A. 
Thus we find that this method would work quite well even for a reasonable number of supernovae (of the order of a 
few hundred) provided the errors were tightly constrained. 

Since the high errors of set A make it unsuitable for this reconstruction approach, in the next sections we will use 
the set B to study the robustness of the results to various other factors. 

B. Growth rate from w{z} 

We may also calculate the growth rate J from the supernova data via the equation of state using the following 
approximation [26] : 

J(z) (nOm~: Z)3 ) r(z) (14) 

r(z) = 3 _ ~ (1 - w)(l - ~w) (1 _ nom (1 + Z)3 ) 
5 ­ ~ 125 (1 - 2W)3 H 2'

l-w 5 

(15) 

where the equation of state w(z) may be calculated using a likelihood parameter estimation from the luminosity 
distance. We use the familiar parameterization [27] : 

(16) 

(17) 

A likelihood parameter estimation is expected to lead to smaller errors, but the drawback of this method is that the 
result may be biased due to the parameterization. Also the errors on w(z) would propagate extremely non-linearly 
to J and therefore the result for J(z) would be much less trustworthy. 

Figure 7 shows the reconstructed J(z) for Model 1 and 2 for set B. As expected, the errors are lower that those 
for our reconstruction method. However, it is also noteworthy that the resulting confidence levels are not symmetric 
around the true value, in fact at higher redshifts, the true model appears to be on the verge of being ruled out! These 
results are commensurate with those found in [28], where reconstruction of the growth parameters through w leads 
to biases in the growth parameter results even though w is recovered accurately. This is due to the fact that errors 
propagate non-linearly from w to J( z) . We therefore conclude that, when reconstructing the growth parameters from 
supernova data, it is better to reconstruct the quantities directly, rather than reconstructing them indirectly from the 
energy density or equation of state. 

C. Dependence on nOm 

Supernova data does not simultaneously constrain information on nOm and dark energy parameters. To reconstruct 
dark energy parameters it is necessary to place constraints on nOm from other observations. In the calculations so 
far, we have marginalized over the true fiducial value for nom. However, since there is considerable uncertainty as 
to the real value of the matter density, we check how using incorrect values of nOm may bias our analysis. (It is 
well known that an incorrect value of nOm can significantly bias the results for DE [7, 18].) The fiducial universe 
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FIG. 7: Reconstructed growth rate J(z) for model 1 (left panel) and model 2 (right panel) using set B (JDEM) with different 
reconstruction methods. The red solid lines show the 10' limits for reconstructed J(z) using the integral reconstruction method, 
eq (7), while the green hatched region shows the 10' limits for J(z) using w parameterization, eqs (14) , (16). The black dotted 
line represents the true model. 
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FIG. 8: Reconstructed growth rate J(z) for model 1 (left panel) and model 2 (right panel) using set B with different recon­
struction methods, using nOm = nOm (true) + 0.03. The red solid lines show the 10' limits for reconstructed J(z) using the 
integral reconstruction method, eq (7) , while the green hatched region shows the 10' limits for J(z) using w parameterization, 
eqs (14), (16). The black dotted line represents the true model. Note that the results for the two reconstructions lie on opposite 
sides of the true value of J(z). 

for model 1 contains nOm = 0.27. We now choose a different, incorrect value of nOm = 0.3 for marginalization and 
proceed to analyze the data using both the integral reconstruction method and the likelihood parameter estimation 
of w outlined in the previous section. The results are shown in figure 8. We see that choosing a higher value of nOm 

gives biased Tesults in both methods, but interestingly enough, the biases are in opposite directions! In case of the 
integral reconstruction method, a higher value of nOm leads to a lower value of J(z) at high redshifts, whereas for the 
w parameterization, a higher value of nOm leads to a higher value of J(z). 

These results may be understood as follows. For the reconstruction from w, we see from eq (14) that J(z) changes 
primarily due to the change in the matter density nom (1 + z )3 , since the value of r does not vary very strongly with 
w. Choosing a higher value of nOm would therefore simply result in a higher value of J(z). In the case of the integral 
reconstruction however, we see from eq (7) that both /) and /)' depend on nOm. In /) the leading term is unity and the 
other two terms containing /)0 and nOm are at about an order of magnitude smaller. In /)' the two terms containing 
/)0 and nOm are of the same order, so both contribute equally to the result. Therefore increasing nOm increases both 
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6 and 6', with 6' increasing by a greater amount, so the ratio between 6 and 6' increases on the whole. Since J(z) is 
the ratio of 6' to 6 with a negative sign, this means that J(z) decreases. Therefore, choosing a wrong value of nOm 
causes the two different methods of reconstruction to be biased in different directions. This leads to the interesting 
conclusion that, provided other systematics are under control, comparing the integral reconstruction method with 
the standard likelihood estimation would give us a valuable consistency check on the accuracy of the prior chosen for 
nom. 

D. Reconstruction for modified gravity 

We consider a simple modified gravity model- the Dvali-Gabadadze-Porrati braneworld model [? J. The expansion 
history is for this model is given by 

(18) 

For physical models of dark energy, the growth rate is well approximated byeqs (14), where typically rsimeqO.55. 
This equation is not valid however if the observed acceleration originates from a modification of the equations of the 
general theory of relativity; in the DGP braneworld theory, the growth rate is approximated by 

(19) 

We therefore expect that if the growth rate for this model is reconstructed using on one hand, the integral recon­
struction method with SNe data, and on the other hand, redshift distortions, the results will be different. 

E. Current SNe Data 

In figure 9 we show the reconstructed growth parameters for the currently available supernova data- the Union 
dataset [2J. The results are marginalized over nOm = 0.26 ± 0.03, the currently accepted value of nOm [29J. The 
nuisance parameter M which contains information on Ho is also marginalized over. For the non-smoothed method, 
since the errors are quite large, it is difficult to put any constraints on the growth parameters. If the smoothing 
scheme is used, J(z) may be constrained to rv 6% at z = 0.3. The reconstructed J(z) is commensurate with the 
cosmological constant model as well as Model 2 (variable w, eq (13)) used in this paper. We also show the three 
current observations of J(z) from redshift space distortions [11, 14, 15J. The error bars on these observations are 
at present quite large, but it is expected that future data in this field could be comparable with our results from 
supernovae, thus we would be able to discern physical and geometrical DE using these different techniques. Table III 
shows the 10' limits on the growth parameters for the reconstruction. 

F. Data expected from future BAD experiments 

We now check the method with BAO data. The SDSS baryon acoustic oscillation survey of BOSS is expected 
to measure the baryon acoustic oscillation power spectrum very accurately. The expected accuracy on the angular 
diameter distance dA is of the order of 1.0% at z = 0.35, 1.1% at z = 0.6, and 1.5% at z = 2 : 5, with errors on H(z) 
of 1.8%, 1.7% and 1.5% at the same redshifts [8J. We populate a redshift range of z = 0.2 - 2.5 with 20 datapoints 
with errors based on these numbers and use this dataset to reconstruct the growth parameters. Since there are only 
20 points in the dataset, and not many at very low redshifts, the integration is not very accurate even though the 
errors on dA and H are small. We find that for this dataset g(z) and J(z) are both constrained to rv 9% at z = 2.5 
(see Tables I and II, bottom row). Although these errors appear to be large compared to those from the SNe data, 
for a high redshift of z = 2.5, these errors are actually commensurate to the errors from SNe. The advantage of using 
the BAO is that we obtain the growth parameters at a higher redshift, which is complementary to the SNe results. 
In the future , if systematics are controlled, and probes like JDEM are able to measure both SNe and BAO data, we 
should be able to obtain independent estimates of the growth parameters at both very low and very high redshifts 
from this method. 

http:rsimeqO.55
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FIG. 9: Reconstructed growth rate fez) for current Union set of SNe data, using nOm = 0.27 ± 0.03. The red solid lines show 
the 1<7 limits for reconstructed growth parameter using the integral reconstruction method, eq (7), while the green dashed 
shaded area shows the 1<7 limits for the parameter using smoothing scheme, eq (11), for the integral reconstruction methods. 
The black dotted line shows fez) for LCDM , the green dashed line shows Model 2 (variable w, eq (13)) The three vertical blue 
lines show the current measurements of fez) from 2dFGRS, 2SLAQ and VVDS. 

TABLE III: R econstructed linear growth factor 9 and growth rate f us ing curre nt supernova data 

Z g(z) g smooth (z) gACDM(Z) fez) f smooth(z) /ACDM(Z) 

0.3 1.13 ± 0.05 1.13 ± 0.05 1.12 0.62 ± 0.06 0.61 ± 0.04 0.64 

1.0 1.29 ± 0.10 1.28 ± 0.07 1.25 0.93 ± 0.11 0.88 ± 0.08 0.85 

1.5 1.37 ± 0.16 1.35 ± 0.12 1.28 1.05 ± 0.24 0.98 ± 0.11 0.92 

IV. CONCLUSIONS 

In this paper we have proposed a method for extracting growth parameters for dark energy models (within the 
spatially flat FRW universe) from observations that map the background universe, such as measures of luminosity 
distance or angular diameter distance. The method is model independent and unbiased. For future JDEM SNe data, 
it will be able to put constraints of the order of a few percent on the growth parameters, e.g. 2% on the growth factor 
and 3% on the growth rate at a redshift of 0.3 , and 4% on thegrowth factor and 8% on the growth rate at a redshift 
of unity. In conjunction with the likelihood parameter estimation method, it acts as an important consistency check 
on the accuracy of the priors on nOm for SNe. With future probes like JDEM and BOSS taken in conjunction, this 
method will lead to an unbiased estimation of the growth parameters upto a redshift of z = 2.5 . 

It is well known that, in GR and for most DE models, the expansion history completely determines the linearlized 
growth rate of density perturbations [4, 5] . Consequently, a comparison of the density contrast reconstructed from 
the expansion history would provide an important consistency check for a large variety of DE models including the 
cosmological constant and quintessence. On the other hand, a departure of the observed density contrast from that 
reconstructed using standard candles and rulers would almost certainly indicate one of the following: 

1. 	A simple description of dark energy in terms of a scalar field (quintessence) or the cosmological constant is 
inadequate: DE may be more complicated, possessing for instance, an anisotropic stress or having interactions 
with dark matter. 

2. 	Cosmic acceleration is a consequence of modified gravity. In modified gravity theories, such as Braneworld 
models, scalar-tensor gravity, etc., the linearized perturbation equation does not follow the Newtonian form (4). 
Hence the density contrast reconstructed using observations of standard candles/rulers via (4) and the density 
contrast determined directly from observations of large scale structure, say, by weak lensing, are likely to differ 
[20, 21]; also see [30] and references therein . 

Future surveys such as JDEM are expected to deliver high quality data for both supernovae and weak lensing. Using 



13 

such surveys it would be possible to compare the reconstructed density contrast from standard candles (SNe) with the 
density contrast observed from gravitational clustering (lensing). Therefore, we hope that, the techniques developed 
in this paper combined with future observations, will help unravel t he nature of that most enigmatic quantity - dark 
energy. 
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