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SUMMARY
Using an asymptotic methodology, including an expansion in inverse powers of

√

ω, where ω

is the frequency, we derive a solution for flow in a medium with pressure dependent properties.
The solution is valid for a heterogeneous medium with smoothly varying properties. That is, the
scale length of the heterogeneity must be significantly larger then the scale length over which
the pressure increases from it initial value to its peak value. The resulting asymptotic expres-
sion is similar in form to the solution for pressure in a medium in which the flow properties are
not functions of pressure. Both the expression for pseudo-phase, which is related to the ’travel
time’ of the transient pressure disturbance, and the expression for pressure amplitude contain
modifications due to the pressure dependence of the medium. We apply the method to synthetic
and observed pressure variations in a deforming medium. In the synthetic test we model one-
dimensional propagation in a pressure-dependent medium. Comparisons with both an analytic
self-similar solution and the results of a numerical simulation indicate general agreement. Fur-
thermore, we are able to match pressure variations observed during a pulse test at the Coaraze
Laboratory site in France.
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1 INTRODUCTION

The introduction of a volume of fluid into the Earth will induce
some degree of deformation within the geologic material compris-
ing the subsurface. In most cases the resulting deformation is not
significant, or even observable, and may be safely ignored. How-
ever, in some situations, such as poorly consolidated sediments,
fractured media (Gale 1975, Jones 1975, Noorishad et al. 1992,
Cappa et al. 2008), and large pressure changes and flow rates (Fatt
1958, Raghavan et al. 1972, Rutqvist et al. 1998), the changes
within the matrix may impact the flow in important ways. For ex-
ample, large pressure changes can modify the flow properties such
as porosity and permeability. Also, due to the transmission of stress
within the medium, pressure changes can lead to non-local effects.

A comprehensive approach to this problem involves coupled
modeling of the fluid flow and the deformation. Such coupled mod-
eling can be complicated, making numerical methods attractive.
While the utility of numerical modeling is well established (Noor-
ishad et al. 1992, Rutqvist et al. 2002, Minkoff et al. 2003, Minkoff
et al. 2004, Dean et al.2006), analytic solutions can aid in our un-
derstanding of the factors, such as medium parameters, contributing
to the calculated pressure and deformation. Thus, analytic solutions
may provide valuable insight, complementing existing purely nu-
merical approaches. To date, analytic studies of the coupled prob-
lem have been restricted to relatively simple cases, such as for a ho-
mogeneous medium in which the flow properties do not change as
a function of pressure. A classic example is a homogeneous poroe-
lastic medium (Booker and Carter 1986, Rudnicki 1986) which can

exhibit the non-local effects noted above (Segall 1985). Recently,
a semi-analytic solution was developed for a poroelastic medium
with heterogeneous flow properties which also contained non-local
effects due to the coupling of the diffusive Biot wave and the ’fast’
elastic wave (Vasco 2008, 2009).

While coupled modeling provides a more complete and satis-
factory approach for understanding flow in a deformable medium,
it is also useful to examine particular aspects of this problem. In
fact, the studies just mentioned focused on the coupling between
elastic deformation in the medium and the fluid flow, neglecting
the change in flow properties due to changes in the effective stress.
In this paper we examine the alternative situation, in which the
flow properties are functions of the fluid pressure and we neglect
the transmission of elastic deformation throughout the medium. As
such, this paper is a complement to the studies cited above.

Allowing for pressure dependent flow properties leads to a
non-linear diffusion equation (Wu and Pruess 2000). The non-
linear diffusion equation has been used to model the flow of flu-
ids in a deformable medium (Barenblatt 1952), flow in rock joints
with pressure-dependent openings (Murphy et al. 2004), tempera-
ture and pressure waves in fluid saturated rock (Natale and Salusti
1996), and compaction in sedimentary basins (Audet and Fowler
1992) among other things (Newman 1983). The non-linear diffu-
sion equation has been studied rather extensively from a mathe-
matical perspective (Crank 1975, Hayashi et al. 2006), particularly
for a homogeneous medium and the case that the permeability is
proportional to the pressure raised to a power. In this instance one
may derive an exact self-similar solution to the non-linear diffu-
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sion equation (Boussinesq 1904, Leibenzon 1947, Polubarinova-
Kochina 1948, Zel’dovich and Kompaneets 1950, Barenblatt 1952,
Pattle 1959, Boyer 1961, Peletier 1971, Tuck 1976, Gilding and
Peletier 1977, Pert 1977, Grundy 1979, Lacey et al. 1982, Mat-
suno 1991, King 1993, Korsunsky 1997). The one dimensional self-
similar solutions have also generalized to include heterogeneity in
a special separable form (Kamin and Rosenau 1981, Grundy 1983).
Asymptotic (Peletier 1970) and group-theoretic (Bluman and Cole
1974) methods have been used to consider a general dependence
of the permeability on pressure, though only for a homogeneous
medium.

In this paper we derive a semi-analytic solution to the non-
linear pressure equation. Because a goal of this work is to de-
velop tools for solving the inverse problem, it is important that the
solution be valid in the presence of three-dimensional, smoothly-
varying heterogeneity, and for a fairly general dependence on pres-
sure, even an empirical laboratory-derived relationship. The solu-
tion is derived using an asymptotic technique (Jeffrey and Kawa-
hara 1982, Anile et al. 1993), similar to ray-theoretical approaches
used in modeling the propagation of elastic and electromagnetic
waves, (Friedlander and Keller 1955, Kline and Kay 1965, Luneb-
urg 1966, Kravtsov and Orlov 1990, Virieux et al. 1994), and tran-
sient pressure diffusion (Cohen and Lewis 1967, Vasco et al. 2000).
As such, we will present expressions for the pressure pseudo-phase,
which is related to the ’arrival time’ of the transient disturbance,
and for the pressure amplitude.

2 METHODOLOGY

2.1 The Governing Equation

Our starting point is the continuity equation for a fluid (Bear 1972,
p. 197; de Marsily 1986, p. 85)

∇ · (ρU) +
∂

∂t
(ρφ) + q = 0 (1)

where ρ is the fluid density, U is the fluid velocity vector, φ is the
total porosity of the host material, and q is the flow rate of fluid
injected or withdrawn from the volume. Equation (1) states that the
rate of change in the fluid mass of an elemental volume is equal
to the divergence of fluid from the volume and the rate at which 
fluid is injected or withdrawn from the volume, the conservation of
the fluid mass within the volume. Augmenting this equation with
Darcy’s law which relates the fluid flow velocity vector, U (x, t),
to the gradient of the fluid pressure, P (x, t),

U = −K∇P (2)

where the constant of proportionality, the normalized permeability
K, depends upon the intrinsic or specif c permeability k and the
dynamic viscosity of the fluid µ

K =
k

µ
. (3)

Typically, when modeling fluid flow within the Earth it is as-
sumed that the flow properties, in particular φ and K do not depend
upon the fluid pressure. In this paper we relax this assumption and
allow ρ, φ, and K to be functions of the fluid pressure. In addition,
both φ and K are assumed to be functions of the spatial coordinates
x. Thus, we can write the porosity and permeability as the functions
φ(x, P ) and K(x, P ), respectively. In addition, we allow the fluid
density to be a function of pressure ρ = ρ(P ), signifying that any
spatial and temporal density dependence is through the pressure

change and not due to explicit changes in the fluid properties, such
as variations in salinity. Note that, because the pressure is a func-
tion of space and time, the flow properties contain an implicit de-
pendence on these variables in addition to the explicit dependence
on x.

Substituting Darcy’s law (2) into the conservation equation
(1), we arrive at the equation

∇ · (ρK∇P ) =
∂

∂t
(ρφ) + q. (4)

Grouping terms and defining the coefficients

Kρ = ρ(P )K(x, P ) (5)

and

φρ = ρ(P )φ(x, P ) (6)

allows us to rewrite equation (4) as

∇ · (Kρ∇P ) =
∂φρ

∂t
+ q. (7)

Because φρ only depends on time through its dependence on
P (x, t), we can apply the chain rule to arrive at

∇ · (Kρ∇P ) = Cρ
∂P

∂t
+ q, (8)

where we have defined the pressure-dependent coefficient

Cρ(x, P ) =
∂φρ(x, P )

∂P
. (9)

Expanding the spatial derivative on the left-hand-side we have

∇Kρ · ∇P +
∂Kρ

∂P
∇P · ∇P + Kρ∇ · ∇P = Cρ

∂P

∂t
+ q, (10)

and, after dividing through by Kρ, we can define

Υ(x, P ) = ∇ ln Kρ (11)

λ(x, P ) =
∂ ln Kρ

∂P
, (12)

κ(x, P ) =
Cρ

Kρ
, (13)

Q =
q

Kρ
, (14)

and then write equation (10) as

Υ · ∇P + λ∇P · ∇P + ∇ · ∇P = κ
∂P

∂t
+ Q (15)

the governing equation for flow in a medium with pressure-
sensitive properties. In equation (15) we have included the source
Q explicitly in the formulation. It is also possible to include the
source as a boundary conditions which is incorporated into the so-
lution of the homogeneous equation

Υ · ∇P + λ∇P · ∇P + ∇ · ∇P = κ
∂P

∂t
. (16)

In some cases it may be more advantageous to follow this approach,
and we mention it as one option for flow modeling. Note that both
equations (15) and (16) contain coefficients which depend upon
both the pressure field, P , and upon spatial coordinates, x. As such,
they cannot be solved analytically, and one must resort to approxi-
mations in order to make progress. Our primary assumption will be
that the heterogeneity is smoothly-varying, in a sense made precise
in the next sub-section and in Appendix A.
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2.2 An Asymptotic Solution for Flow in a Medium with
Smoothly-Varying Properties

One of the applications of this work will be to solve the inverse
problem, in which flow properties are estimated from a set of ob-
servations. In most inverse problems one has a limited and sparsely
distributed set of data and wishes to estimate a spatial distribution
of properties, such as permeability. Thus, one does not have enough
data to constrain the small-scale heterogeneity and typically seeks
a smooth model which satisf es the data (Vasco et al. 2000). For this
reason, we shall derive a solution which is valid in a medium with
smoothly-varying properties. Note that, though the heterogeneity
is smooth overall, we can include a finite number of discontinu-
ities, such as layering and faults, as boundaries in the model. That
is, we can include explicit boundary conditions in which there are
discontinuities in the flow properties, as is done in ray-methods in
optics, electromagnetics, elastic and poroelastic wave propagation
(Luneburg 1966, Kline and Kay 1965, Kravtsov and Orlov 1990,
Vasco 2008).

The exact def nition of smooth is relative to the length-scale
over which the pressure changes from the background value to a
new value induced by the pumping. Let us denote this length scale
by l, and the length-scale of the heterogeneity by L. Defining the
ratio ε = l/L, and assuming that ε ≪ 1, we can define new ’slow’
space and time coordinates in terms of ε

Xi = εxi (17)

and

T = ε2t. (18)

The difference in scaling between the spatial variables and the tem-
poral variables is necessary because we are considering a diffusive
process and the order of the equation is different for the classes of
variables. As shown in Appendix A, we can represent the solution
as a power series in ε

P (X, T ) = P0(X) +

∞
∑

l=1

εlPl(X, T ), (19)

where P0(X) is the background pressure which is assumed to only
vary in space. Because ε is small the lower order terms are the most
important. Furthermore, because Υ(X, P ), λ(X, P ), and κ(X, P )
are functions of P we can also expand them as power series in ε.
Substituting the power series expansions into the governing equa-
tion (16) results in an equation containing an infinite number of
terms, each or a specific order in ε ,

[

Υ(X, P0) +

∞
∑

l=1

εl ∂lλ

∂P l
Pl(X, T )

]

· ∇P

+

[

λ(X, P0) +

∞
∑

l=1

εl ∂lλ

∂P l
Pl(X, T )

]

∇P · ∇P

+∇ · ∇P =

[

κ(X, P0) +

∞
∑

l=1

εl ∂lκ

∂P l
Pl(X, T )

]

∂P

∂T
(20)

after factoring out ε2 which multiplies each term [see Appendix A],
which can be grouped according to their order in ε. In the next two
sub-sections we consider terms of order ε0 and ε1.

2.3 Terms of Order ε0: An Equation for P0(X)

Because ε is assumed to be small, we are interested in terms of
lowest order in ε. To the lowest order in ε we have an equation for
P0(X), given by

Υ0 · ∇P0 + λ0∇P0 · ∇P0 + ∇ · ∇P0 = 0 (21)

where

Υ0 = Υ(X, P0) (22)

and

λ0 = λ(X, P0). (23)

Equation (21) is a nonlinear equation for the background pressure
variation P0(X). For the most part, nonlinear equations are diff -
cult to solve and, with the possible exception of techniques from the
theory of continuous groups (Bluman and Cole 1974, Olver 1986),
there are no general methods that one can employ. Fortunately, the
background pressure P0(X) only depends upon the spatial coor-
dinates X and thus equation (21) does not require time-stepping.
Thus, numerical methods should allow for the efficient solution of
the scalar equation (21). Note that one possible solution to equation
(21) consists of a constant background pressure P0(X) = Pb.

2.4 Terms of Order ε: A Linear Equation for P1(X, T )

Considering terms of order ε in equation (20) results in a linear
equation for P1(X, T )

∇ · ∇P1 + Ψ1 · ∇P1 + Ψ2P1 = κ0
∂P1

∂T
(24)

where the coefficients depend on the medium parameters and the
background pressure field,

Ψ1 = Υ0 + 2λ0∇P0 (25)

and

Ψ2 =
∂Υ0

∂P
· ∇P0 +

∂λ0

∂P
∇P0 · ∇P0 (26)

where λ0, ∂λ0/∂P , ∂Υ0/∂P , and κ0 are evaluated at P =
P0(X). Even though equation (24) is a linear diffusion equation,
it is still not possible to solve it analytically. Such a solution is pre-
cluded by the presence of the coefficients Ψ 1, Ψ2, and κ0 which
depend upon X.

Using the approach of Virieux et al. (1994) and following
Vasco et al. (2000), we can derive a semi-analytic solution for
P1(X, T ) which is valid for the high-frequency component of pres-
sure. As discussed in Appendix B, the method is implemented in
the frequency domain and requires the application of the Fourier
transform to the equation (24)

∇ · ∇P̂1 + Ψ1 · ∇P̂1 + Ψ2P̂1 = iωκ0P̂1 (27)

where P̂1(X, ω) is the Fourier transform of P1(X, T ) (Bracewell
1978). In Appendix B an asymptotic solution for equation (27) is
derived, the zeroth-order term of the solution is

P̂1(X, ω) = A0(X)e−
√
−iωσ(X) (28)

which is characterized by an amplitude function A0(X) and a
phase or ’pseudo-phase’ function σ(X). The phase function σ(X)
is a line integral along a trajectory X(s) through the model

σ(X) =

∫

X

√
κ0ds (29)
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a function of the medium properties, as contained in κ0. The ex-
pression of κ0 in terms of the medium properties is given by equa-
tion (13), evaluated at the background pressure P0

κ0 = κ(X, P0) =
Cρ(X, P0)

Kρ(X, P0)
. (30)

The trajectory is the solution of a system of ordinary differential
equations, as shown in Appendix B, equations (B10) and (B11).
Alternatively, as discussed in Vasco and Finsterle (2004), the tra-
jectory can be computed by post-processing the output of a nu-
merical simulator to derive the peak pressure arrival time and con-
sequently, the phase σ(X). In particular, the quantity σ(X) is re-
lated to the time at which the peak pressure is observed, Tpeak.
For an observation made at location X, the exact relationship is
σ(X) =

√

6Tpeak. From the phase field one can compute the tra-
jectories by numerically integrating equation (B10), a much sim-
pler approach than ray-tracing. Note that the integrand depends
upon the flow properties due to the presence of κ0 . The amplitude
function, A0(X), evolves along the trajectory according to

A0(s) = A0(s0)

√

Kx(s0)

Kx(s)

√

√

κ0(s0)J(s0)
√

κ0(s)J(s)

e−η(s0)

e−η(s)
(31)

where J(s) is the Jacobian which is a measure of the geometrical
spreading of the trajectories as a function of distance (Kravtsov and
Orlov 1990) and

η(s) =

∫ s

0

λ
dP0

dγ′
dγ′. (32)

Applying the inverse Fourier transform to the expression (28) gives
the time-domain equivalent

P1(X, T ) = A0(X)σ(X)
e−σ2(X)/4T

2
√

πT 3
(33)

which is similar in form to the solution of the diffusion equation for
a homogeneous medium (de Marsily 1986, p. 162). However, the
solution (33) accounts for smoothly-varying heterogeneity in flow
properties and pressure-sensitive f ow properties.

We should note the special situations in which the source and
medium are such that we may assume particular symmetries in the
solution of equation (24). For example, there may be problems in
which we may consider a one- or two-dimensional solution. For a
source and medium with m-dimensional radial symmetry the solu-
tion to the pressure equation is given by

P1(X, T ) = A0(X)σ(X)
e−σ2(X)/4T

2
√

πT
m+1

2

(34)

as noted by Virieux et al. (1994). Note that 0-dimensional symme-
try (m = 0) denotes a one-dimensional solution while 1− and
2−dimensional symmetry represent two- and three-dimensional
solutions, respectively.

2.5 The Full Solution for Pressure

The resulting expression for the pressure, valid to order ε, is ob-
tained by combining the expressions for P0(X) and P1(X, T )

P (X, T ) = P0(X) + A0(X)σ(X)
e−σ2(X)/4T

2
√

πT 3
. (35)

This expression is of the same form as the expression for pressure
in a uniform medium (de Marsily 1986) and in a heterogeneous

medium whose coefficients do not depend on pressure (Vasco et al.
2000). The form of the solution (35) is similar to the asymptotic
solution of the nonlinear heat equation discussed in Hayashi et al.
(2006) though the assumptions of large X and T are not equivalent
to those invoked in this paper.

3 APPLICATIONS

3.1 Numerical Illustrations

In this section we implement the expressions for flow in a pressure-
sensitive, heterogeneous medium. First, we compare the asymptotic
solutions to an analytic self-similar solution and a numerical finite-
element solution in a homogeneous medium in which the conduc-
tivity K only varies as a function of the pressure. Specifically, the
conductivity is equal to the pressure to the power n. Next we com-
pare the self-similar and asymptotic solutions for a medium with
cylindrical symmetry. Finally, we compare the asymptotic solution
with a numerical result for a heterogeneous medium with pressure-
sensitive permeability.

3.1.1 Comparison with Analytic and Numerical Solutions

As noted in the Introduction, in a medium in which the conductivity
varies as the pressure to a power n,

K = P n, (36)

one can take advantage of the self-similarity of the problem to
deduce an analytic solution as a function of spatial location (x)
and time (t) (Boussinesq, 1904; Leibenzon, 1947; Polubarinova-
Kochina, 1948; Zel’dovich and Kompaneez, 1950; Barenblatt,
1952; Pattle, 1959; Boyer, 1961; Tuck, 1976; Pert, 1977; Grundy,
1979; Lacey et al., 1982),

P (x, t) =
1

t1/(n+2)

[

γ − nx2

2(n + 2)t2/(n+2)

]1/n

(37)

when x < x0 and zero otherwise. The quantity γ is a constant of
integration and x0 is given by

x0 =

√

2(n + 2)γ

n
t2/(n+2). (38)

Here we compare the explicit solution presented in Tuck (1976)
and given by equation (37) with a numerical solution and with
our asymptotic solution, equation (35). A Gelerkin finite element
method is used to calculate the numerical solution to the pressure
equation with pressure-sensitive coefficients ( Minkoff and Kridler,
2006).

We fix the density and the porosity at constant values for our
comparison, i.e., they are not sensitive to pressure variations. In
this illustration we consider the case in which n = 0.5, the source
is an impulse, and the boundaries are open. Due to the specific form
of the pressure-sensitive component of conductivity, equation (36),
we can derive an explicit expression for λ(P ), given by equation
(12),

λ(P ) =
∂ ln Kp

∂P
=

n

P
. (39)

The self-similar and asymptotic solutions appear to be very differ-
ent in form and depend upon different parameters. For example,
the self-similar solution depends on the constant of integration γ
while the asymptotic solution depends on the background pressure
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P0. We should point out that the pressure-dependence of K, given
by equation (36) is a degenerate form. Specifically, for a general
pressure dependence we expect a Taylor expansion of the form

K(P0 + P ) = K(P0) +
∂K

∂P
|P0

P +
1

2

∂2K

∂2P
|P0

P 2 + ... (40)

For the relationship considered here, equation (36), the lower order
coefficients vanish and we are left with a single term. The asymp-
totic solution relies on the power series expansion of the coeff -
cients (A9), (A10), and (A11) in which the partial derivatives are
assumed to be non-zero. Thus, the functional form (36) represents
a particularly difficult case for the asymptotic approach.

To compare the self-similar, numeric, and asymptotic solu-
tions we calculated the pressure variations predicted by the three
methods for observation points 100, 433, 767, and 1100 meters
away from the source (Figure 1). In order to compare the results
we normalized the pressure amplitudes such that the amplitudes at
500 s for the station 100 m from the source were unity. In gen-
eral, the normalized pressures predicted by the three methods show
good agreement (Figure 1). Each set of curves displays the same
relative amplitude for the four observation points. Furthermore, all
the curves vary slowly in time after roughly 100 seconds. A more
detailed comparison of the temporal variations for the observation
point at 767 meters from the source indicates the overall agree-
ment between the three techniques (Figure 2). There are some dif-
ferences in detail between the predictions, but that is to be expected,
given the variations in parameterizations and the various assump-
tions made in each approach. In order to examine the variations be-
tween the three methods we have plotted the relative and absolute
errors or differences between the three solutions (Figure 3). The top
two panels display the differences between the asymptotic solution
and the self-similar and numeric solutions respectively. In general,
the relative error is below 10% except at early times when the val-
ues are close to zero and any difference is magnified significantly.
The absolute error peaks at around 0.15 for the comparison with the
self-similar solution and around 0.05 for the comparison with the
numeric solution. Note that the difference between the asymptotic
solution and the self-similar and numeric solutions is of the same
order as the difference between the self-similar solution and the
numeric solution. In fact, the discrepancy between the numeric and
the asymptotic solutions is smaller than that between the numeric
and the self-similar solutions. Thus, for this case the approxima-
tions leading to the asymptotic solution do not appear to introduce
significant error.

3.1.2 Propagation in a Medium with Cylindrical Symmetry

In this sub-section we consider a medium with cylindrical symme-
try and the same properties as in the previous calculation. Here we
compare the self-similar solution, given in Kamin and Rosenau
(1981) to the asymptotic expression (34), with m = 1. Calcula-
tions were made for four distances from the source, 100 m, 433
m, 767 m, and 1100 m, as shown in Figure 4. There is fair agree-
ment between the two sets of pressure estimates with both methods
indicating a rapid pressure decrease over time. This behavior is pre-
dicted by the time dependence of the asymptotic solution, equation
(37), in which the solution decays as the logarithm of 1/T as com-
pared to the logarithm of 1/

√
T in the previous example.

In Figures 5 and 6 three snapshots of the pressure variation are
shown for the self-similar and asymptotic solutions, respectively.
The pressure at each node point has been normalized by the peak
value obtained at the node. Thus, the propagating pressure peaks

at values of one, and the pressure change at nodes further from the
source are amplified relative to the pressure change near the source.
With this scaling the pressure resembles a disturbance propagating
away from the source, similar to a wave. Such transient propagation
was noted for the linear heterogeneous pressure equation by Vasco
and Finsterle (2004). In that study, in which the source was a step-
function and not a delta-function, the pressure time derivative was
plotted. There is overall agreement between the self-similar and
the asymptotic solutions with differences in detail. For example,
the self-similar solution seems to have a sharper outer boundary
in comparison to the asymptotic solution. This is consistent with
the fact that the self-similar solution is actually a generalized solu-
tion, with a discontinuity in the derivative at the leading edge of the
pressure front ( Peletier, 1971).

3.1.3 Propagation in a Heterogeneous Medium

The final application involves pressure propagation in a heteroge-
neous medium. The heterogeneity is in the form of a smoothly-
varying increase from a permeability of around 0.1 Darcies to just
under 1.5 Darcies (Figure 7). The increase is produced by the hy-
perbolic tangent function, tanh(x), with a width of 33 m. The full
expression of the hydraulic conductivity is in a separable form

K(x, P ) = Kx(x)Kp(P ) (41)

where Kx(x) is the spatially-varying component and Kp(P ) is the
pressure dependent component. For comparison with our previous
results, we consider a pressure dependent component of the form
Kp(P ) = P 1/2. The results, corresponding to a delta-function
source at the origin, are shown in Figure 8 for the numerical and
asymptotic solutions. Due to the presence of the heterogeneity it
was not possible to construct a self-similar analytic solution. Note
the close correspondence of the two solutions at the four observa-
tion points, 10, 40, 70, and 100 meters. There are some differences
in the early time amplitude for the observation point at 10 meters.
However, the amplitude for this station, so close to the source, is
likely to be sensitive to properties of the numerical simulation, such
as the location of the finite element nodes.

3.2 Application to a Hydromechanical Pulse Test Conducted
at the Coaraze Laboratory Site, France

In this sub-section we analyze a pressure pulse test conducted at the
Coaraze Laboratory field site in France, in which fluid is rapidly in-
jected into a fracture (Cappa et al. 2006, 2008). During the injection
the fluid pressure and normal displacements are measured in two
boreholes intersecting the fracture. Using a planar fracture model
(Witherspoon et al. 1980) we can relate changes in flow properties
to changes in pressure and to fracture deformation. Given these re-
lationships we can use the expressions presented above to calculate
the travel time and amplitude variation due to propagation within
the fracture.

3.2.1 The Coaraze Laboratory Field Site

The Coaraze Laboratory is located within the French Southern Alps
and is a natural reservoir, 30 by 30 m in areal extent, composed of
a 15 m thick sequence of dipping, fractured limestone bounded by
impervious glauconious marl layers (Guglielmi and Mudry 2001).
A three-dimensional model of the various fractures and bedding
planes has been constructed, based upon surface exposures and
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borehole scan-line data (Cappa et al. 2006). There are two signif-
icant fracture sets, three near-vertical fractures trending northeast
to east (North 50-70 degrees east) with a 2 to 3 m spacing, and
eleven near-vertical fracture trending southeast (North 120-140 de-
grees east) with a 2 m spacing. The permeability of the near-vertical
fracture ranges from 0.6 × 10−4 to 1.9 × 10−4 m/s. In addition,
there are twelve bedding planes, spaced 0.5-1.0 m within the lime-
stone which trend north 40 degrees east and dip roughly 45o to-
wards the southeast. The permeability of the bedding planes is ap-
proximately two orders of magnitude less than that of the fractures,
varying from 0.9× 10−6 to 7.6× 10−6 m/s. The limestone matrix
is essentially impervious and, over the time scales considered, fluid
storage and flow occurs within the fractures and bedding planes. A
number of boreholes and surface sensors record deformation within
the fractures and at the surface of the outcrop. In addition, pressure
is measured in several boreholes intersecting the outcrop.

3.2.2 A Pressure Pulse Test

The field experiment involved two horizontal boreholes (HM1 and
HM2) intersecting one of the northeast trending sub-vertical frac-
tures. The intersections of the wells with the fracture were isolated
by inflatable packers to create a 0.4 m long sealed section. The
borehole intersections were 1 m apart in the vertical direction. In
each sealed section fiber-optic pressure and displacement sensors
provided measurements of fluid pressure and fracture normal dis-
placement as a function of time. Pressure and displacement data
were collected at 120 samples per second, a much higher rate than
standard hydrologic pressure measurements, allowing for short-
duration pulses and accurate timing.

The pulse test involved injecting 1.2 l of water into borehole
HM1 leading to a pulse of pressure of 86 kPa. The resulting pres-
sure and normal displacements recorded in the two boreholes HM1
and HM2, are shown in Figure 9. The total test duration is roughly
40s, with the pulse beginning 15s after the start of monitoring. In
the injection borehole HM1 the pressure increases rapidly, reaching
a peak of around 125 kPa in less than 4 seconds. The pressure de-
creases almost as rapidly though there is some slightly oscillatory
behavior as it returns to the background value of 39 kPa, possibly
due to inertial effects due to the high injection rate. The normal
displacement observed at borehole HM1 is similar in nature to the
pressure though the oscillations are muted and the decay back to
the background value is slightly more gradual. In borehole HM2
the pressure increases from a background value of 27 kPa to a peak
of 49 kPa, for a pressure change of 22 kPa. The pressure peak in
borehole HM2 is delayed by 1.5 s with respect to the peak in the
injection borehole HM1 (Cappa et al. 2008). The pulse shape has
also changed significantly due to the 1 m of propagation within the
fracture.

Normalizing the fracture displacement and plotting it on the
same graph as the pressure reveals that, though both pulses start at
the same time, the displacement quickly begins to lag the pressure
(Figure 10). The lag increases over time and is more pronounced
in the tail of the pulses. The lag is most notable at the source bore-
hole (HM1) and is not as clear at borehole HM2. The hysteresis is
clearer if we plot pressure at a given time against the correspond-
ing normal displacement (Figure 11). The graph does not lie along
a straight line, rather is forms a loop in which the arm of increasing
pressure lies below that of decreasing pressure. Furthermore, in this
type of plot the pressure lag at HM2 becomes clearer (Figure 11).
The hysteresis displayed in Figure 11 has been noted by previous
investigators (Murdoch and Germanovich 2006, Cappa et al. 2006).

Cappa et al. (2006) provide an explanation for the observed
hysteresis in terms of the evolving pressure distribution within the
fracture zone. In essence, the normal displacement of the fracture
reflects the total pressure distribution within the fracture and not
simply the local pressure field near the point of interest. Thus, the
pressure increase ’props’ open the fracture behind the propagat-
ing pressure front. Note that the non-linearity due to the pressure-
dependent flow properties is an important part of this explanation.
For example, the increase in permeability due to the opening frac-
ture allows the pressure to equilibrate faster behind the propagating
front. Furthermore, the pressure does not act at points ahead of the
propagating pressure disturbance, where the permeability has not
yet increased and is still at the lower background value. That is, the
fracture does not open ahead of the arrival of the pressure pulse. In
fact, the normal displacement recorded at HM2 indicates fracture
closure ahead of the arrival of the pressure pulse. This may be due
to a decrease in pressure, observed in borehole HM2 just before the
arrival of the pressure pulse (Figure 10).

3.2.3 Pressure Dependent Flow in a Fracture

The deformation of the fracture due to the increase in f uid pres-
sure changes its aperture and hence its flow properties. That is, as
the fracture opens due to the pressure increase, its storage and per-
meability are altered. In this sub-section we derive expressions for
pressure-sensitive permeability and storage for a simple fracture
model.

Permeability
We begin with the analysis by Witherspoon et al. (1980), based

upon earlier modeling of a fracture as two parallel plates (Boussi-
nesq 1868, Lomize 1951, Romm 1966), which leads to the follow-
ing law relating the f uid flow velocity vector U to the gradient in
hydraulic head H(x, t)

U = − (ai + f∆a)2

12

ρg

µ
∇H (42)

where ai is the initial aperture, f is a factor reflecting the influence
of the fracture roughness, ∆a is the change in aperture due to the
pressure change, w is a geometrical factor related to the effective
width of the fracture, ρ is the density of the fluid, g is the gravi-
tational acceleration, µ is the dynamic viscosity of the fluid. The
gradient in hydraulic head is related to the fluid pressure gradient
according to the formula

∇H = ∇
[

P

ρg
+ z

]

. (43)

Assuming a constant fluid density we can write equation (43) as

∇H =
1

ρg
∇P + z (44)

where z is the gradient vector in the direction of the z axis. Note
that if we integrate equation (42) over the fracture aperture we ar-
rive at the cubic law which relates flow within the fracture to the
gradient of head within the fracture (Witherspoon et al. 1980).

The normal displacement of the fracture, ∆a in equation (42)
is hypothesized to be due to changes in the effective stress field, σ̄ n,
acting on the fracture. Terzaghi introduced the concept of effective
stress to describe the stress that is transmitted between grains in a
fluid saturated soil (Terzaghi 1923, Terzaghi and Peck 1967). For a
fracture it is the stress transmitted from one side of the fracture to
the other. As such, the normal stress σn is the stress that would be
measured in the rock itself a short distance away from the fracture.
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The effective normal stress is the normal stress reduced by the fluid
pressure, which tends to open the fracture. The effective normal
stress is formally defined as

σ̄n = σn − SP (45)

where S is the Biot effective stress constant (Biot 1941). Based
upon hydromechanical laboratory tests, Duveau et al. (1997) de-
fined the Biot effective stress coefficient in terms of the fraction of
the fracture in contact, S = 1 − Sc.

A change in the effective stress field acting on the fracture
typically leads to a change in the aperture of the fracture, inducing
a normal displacement ∆a. A simple expression follows from an
elastic model of the fracture, which leads to a linear relationship

∆a =
∆σ̄n

kn
(46)

where ∆σ̄n is the change in the effective normal stress and kn is the
initial normal fracture stiffness (Cappa et al. 2008). There are more
complicated models for the relationship between aperture changes
and the normal stress and pressure changes (Goodman 1974) but
we shall not consider them here. Substituting the expression for
effective stress into equation (46) leads to a relationship between
the change in ∆a and the change in fluid pressure and normal stress

∆a =
∆σn − S∆P

kn
(47)

where ∆P = P (X, T ) − Pb(X, T ) where Pb(X, T ) is the back-
ground pressure field. Similarly, ∆ σn = σn −σnb is the change in
effective normal stress. Substituting the expression (47) into equa-
tion (42) gives

U = − 1

12

[

ai −
f

kn
(∆σn − S∆P )

]2 ρg

µ
∇H. (48)

Note that the expression (48) is just Darcy’s law written in terms of
hydraulic head H ,

U = −kρg

µ
∇H (49)

or

U = − k

µ
[∇P + ρgz] (50)

where

k =
1

12

[

ai − f

kn
(∆σn − S∆P )

]2

(51)

is the intrinsic or specific permeability (de Marsily 1986, p. 60).
Allowing the parameters such as the initial aperture, ai and the
fracture normal stiffness, kn, to vary as functions of X produces
an intrinsic permeability of the form k(X, P ). In what follows we
shall assume that the fracture normal stiffness, kn, is constant while
allowing the initial aperture to be a function of depth, z.

As an aside we note that, for flow in a fracture, the permeabil-
ity is actually a tensor quantity because its value depends strongly
on the direction of flow. If the flow restricted to the plane of the
fracture is isotropic we can reduce the permeability to a scalar
measure by integrating over the direction normal to the fracture
plane (de Marsily, 1986, p. 72). The resulting quantity, known as
the transmissivity, relates the head gradient within the fracture to
the flow velocity within the fracture and leads to the well-known
cubic law (Witherspoon et al. 1980).

Compressibility and the Storage Coeff cient
The other important coefficient in the governing pressure

equation (8) is the coefficient C ρ, defined in equation (9). Noting

the definition of φ ρ we can write the derivative with respect to pres-
sure as

Cρ(x, P ) = φ
∂ρ

∂P
+ ρ

∂φ

∂P
. (52)

For liquid water the equation of isothermal compressibility (de
Marsily 1980, p. 102) is rather small, 5.0 × 10−10Pa−1 and for
this reason we shall assume that the fluid is incompressible. Then,
equation (52) becomes

Cρ(x, P ) = ρ
∂φ

∂P
. (53)

The change in the pore volume is due to the opening of the fracture,
the change in aperture and so

Cρ(x, P ) = Aρ
∂∆a

∂P
(54)

where A is the unit area. Making use of the def nition of ∆a, equa-
tion (47), and ∆P = P − Pb, we arrive at our final expression for
Cρ

Cρ(x, P ) = −ρAS
kn

. (55)

Thus, under the stated assumptions, the storage coefficient does not
depend upon X or P (X, T ).

3.2.4 Modeling the Background Pressure Field P0(X) and
Associated Permeability Variation

Summarizing up to this point, on the basis of an elastic hydrome-
chanical model of a fluid filled fracture, we have derived an expres-
sion for the permeability k(x, P ) which depends upon both the
fluid pressure and position within the fracture. This relationship
can be used in the asymptotic solution presented in the Methodol-
ogy section and allow us to predict the pressure variation associated
with the pulse test. One important aspect of the modeling will be
the fact that the background pressure field, P0 (X), varies as a func-
tion of position within the fracture. Because the fracture is vertical
and the observation borehole HM2 is situated 1 m above the source
borehole HM1, there is a notable pressure gradient and the pres-
sure at HM2 is significantly lower than the pressure at HM1 (Figure
9). This will have implications for the propagation of the pressure
pulse, for example the travel time of the pulse, which depends upon
κ(X, P0), as indicated in equation (30), will vary as a function of
depth. Similarly, the amplitude decay away from the source, given
by the expression (31) will depend upon the propagation path.

An important consideration in our modeling is that the back-
ground pressure satisfies equation (21). As a starting point we adopt
the simplest model for a pressure increase between the source bore-
hole HM1 and the observation borehole, a linear pressure gradient,
for the background pressure model

P0(x) = a · x + b (56)

where

a = ∇P0(x). (57)

Substituting the form (56) into the governing equation for the back-
ground pressure (21) produces the relationship

Υ0 · a + λ0a · a = 0 (58)

which we may write as

[Υ0 · I + λ0a · I]a = 0. (59)
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Note that, for non-zero a equation (59) has a solution if

Υ0 = −λ0a. (60)

Noting the definitions of Υ 0, equations (11) and (22), and λ0, equa-
tions (12) and (23), we can write (60) as

∇ ln Kρ = −∂ ln Kρ

∂P
a (61)

or, noting that a is a vector in the vertical direction

∇ ln Kρ = −a
∂ ln Kρ

∂P
ẑ (62)

where a denotes the magnitude of the vector a and ẑ is a unit vector
in the vertical direction. Assuming that the permeability only varies
in the vertical direction due to the pressure increase with depth, we
can write this equation as

∂ lnKρ

∂z
+ a

∂ lnKρ

∂P
= 0 (63)

or, canceling out the 1/Kρ assuming that the permeability never
vanishes, and using the fact that a = |∇P0|,
∂Kρ

∂z
+ |∇P0|∂Kρ

∂P
= 0. (64)

In order to make progress on equation (64) we must make
some assumptions regarding the permeability function Kρ(X, P ).
First, the expression (51) is taken as the governing equation for
permeability as a function of pressure and position. Second, we as-
sume that the density change of the fluid, the variation of ρ with
depth and pressure, can be neglected over the 1 m change in depth,
Third, we assume that both the fracture normal stiffness (kn) and
the fracture roughness (f ) are constant over the fracture plane.
Fourth, we assume that the normal stress on the fracture (σn) only
varies as a function of depth, due to the increasing weight of the
overlying rock and a constant Poisson’s ratio. Finally, we assume
that the initial fracture aperture, ai, only varies as a function of
depth, due to the variation of the pressure field P0 (z) and σn. We
take the background fluid pressure field to be Pb , the constant pres-
sure field before the fracture deforms in response to the weight of
the fluid. Conceptually, Pb would be the fluid pressure before the
fracture is filled with water and would be either zero or the atmo-
spheric pressure at the site. Similarly, we assume a constant back-
ground normal stress field σ nb, such as the regional stress field, and
a new normal stress field, σ n(z), due to the weight of the overlying
rock. The normal stress field is given by the linear increase in stress
with depth

σn(z) = ρrg(z − zt) + σnb (65)

where ρr is the density of the rock and zt is the position of the
surface of the formation. Similarly, the pressure field, which is due
to the weight of the overlying water, is given by

P (z) = ρlg(z − zt) + Pb (66)

where ρl is the density of water.
Starting with the expression (51) for the intrinsic permeability,

we can evaluate the partial derivative with respect to the pressure

∂Kρ

∂P
= − fS

6kn

[

ai +
f

kn
(σn(z) − σnb) −

fS
kn

(P (z) − Pb)
]

.(67)

We can also take the derivative of equation (51) with respect to the
depth

∂Kρ

∂z
=

1

6

[

ai +
f

kn
(σn(z) − σnb) −

fS
kn

(P (z) − Pb)
]

(68)

×
[

∂ai

∂z
+

f

kn

∂σn

∂z
− fS

kn

∂P

∂z

]

Substituting expressions (67) and (68) into equation (64) results in
an equation for the initial aperture ai(z)

dai

dz
+

f

kn

dσn

dz
− fS

kn

dP

dz
= ∇P0

fS
kn

. (69)

The derivatives of σn and P with respect to the depth z may be
evaluated using the linear expressions (65) and (66) to arrive at

dai

dz
+

f

kn
ρrg − fS

kn
ρlg = ∇P0

fS
kn

. (70)

This equation for ai(z) may be integrated to recover the linear form

ai(z) = a0 − asz (71)

for the aperture as a function of depth, where a0 is a constant of
integration and

as =
fg

kn
(ρr − 2Sρl) . (72)

Substituting the linear expression for ai(z), equation (71), into the
permeability function (51) results in

k(z, P0(z)) =
1

12

[

a0 − asz − f

kn
(∆σn − S∆P )

]2

(73)

which has an explicit dependence on the vertical coordinate z and
an implicit dependence through the pressure field.

3.2.5 Modeling the Pressure Field P1(X, T ) due to Fluid
Injection at Borehole HM1

Now we consider the evolution of the pressure f eld P1(X, T ) due
to the injection of fluid in borehole HM1. The governing equation
is (24) and the semi-analytic solution is given by the expression
(35). In the coefficients Ψ 1, Ψ2, and κ0, the background pressure
field P0 (X) is given by the linear increase with depth (66), as dis-
cussed in the previous sub-section. The permeability is given by
equation (51), with the background pressure P0(z). We assume that
the change in the normal stress, which is primarily due to the weight
of the overlying rock, does not change as the water is injected and
thus ∆σn = 0. In addition, ∆P = P − P0(z), so that the perme-
ability is given by

K(z, P ) =
1

12µ

[

a0 − asz − fS
kn

(P − ρlg(z − zt) − Pb)
]2

.(74)

In Figure 12 we plot the logarithm of the permeability as a func-
tion of the pressure due to injection and the elevation within the
laboratory site. The permeability increases by nearly an order of
magnitude as the surface is approached and as the injection pres-
sure approaches 150 kPa. In Figure 13 we emphasize that the per-
meability varies with direction in the fracture zone. For example,
the permeability changes roughly 500% if one moves from 3 m be-
low the borehole to 7 m above the borehole. Moving laterally by
the same amount does not change the permeability. This difference
may explain the apparent anisotropy noted by Cappa et al. (2008).
Those authors required a hydraulic conductivity some 86.3 times
greater in the dip direction then that in the strike direction in their
modeling of the pulse test results. Such a large variation in per-
meability with depth is primarily due to the shallow depth of the
fracture, less than 10 m. Deeper fractures are overlain by a thick
section of rock and the permeability will not change much as one
moves up the fracture by a few meters or a few tens of meters.
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In order to predict the response at borehole HM2 due to the
injection at HM1 we constructed the full solution given by equa-
tion (35). An important quantity is the ’pseudo-phase’ σ(X), given
by equation (29) which depends upon the flow properties, as indi-
cated by (30). The depth- and pressure-dependent permeability is
given above (74) and the storage coefficient is a constant (55). We
emphasize that our modeling involves a number of approximations,
for example the fracture stiffness kn is assumed to be constant, and
we are simply trying to capture the overall pressure variation. In
particular, we seek to match the arrival time of the pulse, as mea-
sured by the time at which the peak pressure is observed at HM2.
Furthermore, given the source pulse, we are attempting to match
the observed pulse width and general decay. The parameters used
in our modeling are taken from the papers of Cappa et. al. (2005,
2006, 2008), modified for our situation and to match to observed
pressure change at HM2 (Figure 10). We modif ed the parameters
to account for the fact that our initial aperture and permeability are
not uniform over the fracture plane. Rather, the permeability varies
as a function of depth.

The initial fracture aperture at the injection well HM1 was
taken to be 1.0 ×10−4 m (Cappa et al. 2008). As indicated in equa-
tion (71), the aperture decreases with depth due to the increasing
normal stress due to the weight of the overlying rock. The density
of the fluid is assumed to be 1000 kg/m3 while that of the limestone
is taken to be 2500 kg/m3. The normal stiffness of the fracture, kn,
is set at 8.0 GPa/m while S is set at 0.88. The fracture roughness
parameter f is set at 2.00 and the Poisson’s ratio is assumed to
be 0.29. The elevation of the observation interval is inferred from
the intersection of the limestone bedding planes with the fault F12
(Cappa et al. 2005), 3 m for borehole HM1 and 4 m for borehole
HM2. The source pulse was inferred from the pressure response at
borehole HM1 and convolved with the predicted response at HM2.
The resulting predicted pressure variation (filled squares) at HM2 is
shown in Figure 14, as are the observed pressures (crosses). Over-
all, there we are able to match the arrival time of the pressure and
the general rise and fall of the pressure as a function of time. We
cannot fit some of the detailed pressure variations, such as the pres-
sure decrease just before the arrival of the pressure pulse, and the
slight oscillations in the tail of the pulse. These features may be
due to non-local pressure and stress propagation and possibly elas-
tic and inertial effects that are not included in our model.

4 DISCUSSION AND CONCLUSIONS

Numerical coupled modeling of fluid flow in a deformable medium
is becoming increasingly common (Lewis and Schref er 1978,
Noorishad et al. 1992, Rutqvist et al. 2002, Minkoff et al. 2003).
Such modeling is useful as a predictive tool, in exploring the impli-
cations of our physical theories, and even for parameter identifica-
tion and sensitivity studies. However, from the results of a numer-
ical solution it is not always clear how properties of the final solu-
tion depend upon the parameters of the medium. The semi-analytic
solution presented in this paper should prove useful in both under-
standing the results of a numerical solution as well as interpret-
ing field data. It was shown that the functional form of the rapidly
varying component of the pressure disturbance is similar to that
for a medium in which the flow properties do not depend on pres-
sure. Also, the expression for the pseudo-phase, which is related
to the transient pressure ’arrival time’, has a simple relationship to
the medium parameters along a trajectory through the model. The
trajectory itself indicates the region of sensitivity to the model pa-

rameters and proves useful in solving the inverse problem (Vasco et
al. 2000, Vasco and Finsterle 2004). Similarly, the governing equa-
tion for the amplitude indicates that it is sensitive to the geometrical
spreading of the trajectories as well as the rate of change of the log-
arithm of the permeability along the trajectory.

The expression for flow in a medium with pressure-dependent
properties should prove useful in interpreting pressure variations
induced by fluid injection into fractured rock (Gale 1975, Mur-
phy et al. 2004, Cappa et al. 2008, Vasco et al. 2008) and injec-
tion at high pressure. In particular, the expressions for the phase or
’pseudo-phase’ amplitude, and the general expression for pressure
itself, are similar to those used in the inversion of transient pres-
sure data (Vasco et al. 2000, Brauchler et al. 2003, He et al. 2006,
Vasco et al. 2008). It should be possible to combine this methodol-
ogy with the coupled modeling of flow and deformation described
in Vasco (2008, 2009). Thus, one could model coupled pressure
and deformation in a medium with pressure dependent flow prop-
erties. This should be of interest in studying pumping tests in frac-
tures for example. It should also prove valuable in the interpreta-
tion of time-lapse seismic studies associated with high production
rates and primary production (Hatchell and Bourne 2005, Tura et
al. 2005, Rickett et al. 2007, Staples et al. 2007, Hawkins et al.
2007, Hodgson et al.2007).
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5 APPENDIX A: AN ASYMPTOTIC SOLUTION FOR
FLOW IN A MEDIUMWITH SMOOTHLY VARYING
PROPERTIES

This Appendix sets the stage for solving equation (16) in a medium
with smoothly-varying properties. That is, the coeff cients Υ, λ,
and κ vary slowly within a particular formation. Note, that there
is no limitation on the magnitude of the heterogeneity, just on the
spatial-scale of the variation. The technique employed in treating
equation (16) is related to the method of multiple scales or the two-
timing method (Whitham 1974, Jeffrey and Kawahara 1982, Anile
et al. 1993, Korsunsky 1997). We shall modify the technique by
not introducing a variable for the phase at this juncture. Rather, one
brings in the phase at a later stage, when examining the results in
the frequency domain, in Appendix B. For now, we represent the
length scale over which the flow properties vary by the variable L.
As mentioned above, we are interested in smoothly-varying prop-
erties, signified by a large value of L. One can only specify the size
of L relative to some other physically meaningful quantity. That
is, one needs a reference scale with which to compare L and eval-
uate its size. The scale that makes the most physical sense is the
length-scale, l, over which the pressure increases from its back-
ground value to the value due to pumping or injection. We will
model flow in a medium in which the flow properties vary over a
spatial scale that is much larger then the distance over which the
pressure increases. Thus, we can define a variable ε which is the
ratio of the scale-lengths:

ε = l/L, (A1)

assuming that ε ≪ 1, and rescale the problem in terms of ε, def n-
ing ’slow’ time

T = ε2t (A2)

and ’slow’ space

X = εx (A3)

coordinates. The difference in the scaling of the time and space
coordinates is necessary to preserve the similarity of the equations,
due to the differences in the orders of the time and space derivatives
(Cohen and Lewis 1967, Bluman and Cole 1974, Crank 1975). In
an asymptotic approach, the pressure is represented as a power se-
ries, which may be divergent as l → ∞, in the ratio ε:

P (X, T ) = P0(X) +

∞
∑

l=1

εlPl(X, T ). (A4)

An important fact about the series (A4) is that, because ε ≪ 1, only
the first one or two terms are significant The coordinate scalings
(A2) and (A3) or transformations, lead to changes in the partial
derivatives in the governing equation. In particular,

∂

∂t
=

∂T

∂t

∂

∂T
(A5)

and
∂

∂xi
=

∂Xi

∂xi

∂

∂Xi
, (A6)

or, using equations (A2) and (A3),

∂

∂t
= ε2 ∂

∂T
(A7)

∂

∂xi
= ε

∂

∂Xi
. (A8)

Furthermore, substituting the power series representation for
P (X, T ), equation (A4), into the coefficients Υ (X, P ), κ(X, P ),
and λ(X, P ) and using a Taylor series expansion of these functions
about the background pressure field P0 , gives

Υ(X, P ) = Υ(X, P0) +

∞
∑

l=1

εl ∂
lΥ

∂P l
Pl(X, T ) (A9)

κ(X, P ) = κ(X, P0) +

∞
∑

l=1

εl ∂lκ

∂P l
Pl(X, T ) (A10)

λ(X, P ) = λ(X, P0) +

∞
∑

l=1

εl ∂lλ

∂P l
Pl(X, T ) (A11)

where the partial derivatives are evaluated P = P0. Substituting
the transformed derivatives and the power series representations of
the coefficients into equation (16) we obtain the expression

[

Υ(X, P0) +

∞
∑

l=1

εl ∂
lΥ

∂P l
Pl(X, T )

]

· ∇P

+

[

λ(X, P0) +

∞
∑

l=1

εl ∂lλ

∂P l
Pl(X, T )

]

∇P · ∇P + ∇ · ∇P

=

[

κ(X, P0) +

∞
∑

l=1

εl ∂lκ

∂P l
Pl(X, T )

]

∂P

∂T
(A12)

where we have factored out ε2, and the gradients are now evaluated
with respect to the slow spatial variables X. Replacing P (X, T )
by the power series representation (A4) results in an equation con-
taining an infinite number of terms, each of a particular order in
ε.
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6 APPENDIX B: AN ASYMPTOTIC SOLUTION OF THE
EQUATION FOR P1(X, T )

In this Appendix we utilize an asymptotic expansion in frequency
to produce an approximate solution to equation (24), valid for
smoothly varying heterogeneity (Virieux et al. 1994, Vasco et al.
2000). Because the technique has been described elsewhere and ap-
plied to several problems in fluid flow (Brauchler et al. 2003, Vasco
and Finsterle 2004, He et al. 2006), we only outline the method and
present the resulting equations.

In order to derive a semi-analytic solution we work in the fre-
quency domain by applying the Fourier transform to equation (24).
The resulting equation is

∇ · ∇P̂1 + Ψ1 · ∇P̂1 + Ψ2P̂1 = iωκ0P̂1, (B1)

where P̂1(X, ω) is the Fourier transform of P1(X, T ) (Bracewell
1978) and

Ψ1 = Υ0 + 2λ0∇P0, (B2)

Ψ2 =
∂Υ0

∂P
· ∇P0 +

∂λ0

∂P
∇P0 · ∇P0, (B3)

and

κ0 = κ(X, P0) =
Cρ

Kρ
. (B4)

Because we are interested in the rapidly-varying component of
pressure, rather than the slower variations, consider a solution in
the form of a power series in 1/

√
ω

P̂1(X, ω) = e−
√

−iωσ(X)

∞
∑

n=0

An(X)

(
√
−iω)n

. (B5)

For the high-frequency component of P (X, ω), for large ω, the first
few terms of (B5) are the most important. For example, in many
cases the zeroth-order term,

P̂1(X, ω) = A0(X)e−
√
−iωσ(X) (B6)

is sufficient to represent the pressure variation (Virieux et al. 1994).
Taking the inverse Fourier transform with respect to ω produces the
time domain equivalent of equation (B6)

P1(X, T ) = A0(X)σ(X)
e−σ2(X)/4T

2
√

πT 3
(B7)

(Virieux et al. 1994). Returning to the full expansion, substitute
equation (B5) into the governing equation (B1) and apply the differ-
ential operators ∇ and ∂/∂T term-by-term. The resulting equation
is an endless string of terms, each of a particular order in 1/

√
ω.

Because we are interested in the high-frequency component of the
pressure change, the frequency ω is assumed to be large. Thus, only
the terms in the lowest power of 1/

√
ω are considered to be signif -

cant. The following two sub-sections consider terms of lowest order
in 1/

√
ω: those of order (1/

√
ω)−2 ∼ ω and (1/

√
ω)−1 ∼ √

ω.

6.1 Terms of Order ω: A Governing Equation for σ(X)

Retaining terms of lowest order in 1/
√

ω results in a nonlinear dif-
ferential equation for the function σ(X) (Vasco et al. 2000)

∇σ · ∇σ = κ0, (B8)

the equivalent of the Eikonal equation in hyperbolic wave propaga-
tion (Friedlander and Keller 1955, Kravtsov and Orlov 1990, Anile
et al. 1993). A physical interpretation of σ(X) may be obtained

from the time-domain equivalent of the zeroth-order solution, equa-
tion (B7). As shown by Virieux et al. (1994), differentiating the ex-
pression (B7) with respect to time and setting the result equation to
zero, we find that

σ(X) =
√

6Tpeak (B9)

where Tpeak is the time associated with the occurrence of the peak
pressure at the location X. Thus, σ(X) is related to the ’arrival
time’ of the peak amplitude of P1(X, T ).

There is a well established link between the differential equa-
tion (B8) and its bi-characteristic equations, a set of ordinary dif-
ferential equations (Courant and Hilbert 1962) for the coordinates
of a path X(s) through the model and σ(X(s)), where s is the dis-
tance along the path. The bi-characteristic equations for X(s) and
σ(X(s)) are

dX

ds
=

p

ς
(B10)

dp

ds
= ∇ς (B11)

where p = ∇σ and

ς =
√

κ0. (B12)

These equations can either be solved using a numerical technique,
such as a shooting method coupled with a Newton-Raphson algo-
rithm (Press et al. 1992), or using the results of a numerical sim-
ulator to compute σ(X) and subsequently p (Vasco and Finsterle
2004). Writing equation (B8) in a coordinate system oriented along
the trajectories X(s), taking the square root, and integrating gives

σ(X) =

∫

X

√
κ0ds, (B13)

an equation relating the ’phase’ or ’pseudo-phase’ to the flow prop-
erties, as contained in κ0 [see equation (B4)].

6.2 Terms of Order
√

ω: A Governing Equation for A0(X)

Consideration of terms of order
√

ω results in an equation for the
zeroth-order amplitude, A0(X),

2∇σ · ∇A0 + (∇ · ∇σ + Ψ1 · ∇σ)A0 = 0 (B14)

because σ(X) is known through the solution of equation (B8). For
a medium in which the conductivity and background pressure are
constant, Ψ1 vanishes and equation (B14) reduces to the standard
transport equation treated in geometrical optics (Kline and Kay
1965, Kravtsov and Orlov 1990). Introducing the variable γ such
that

dγ =
ds√
κb

(B15)

equation (B14) can be written as an ordinary differential equation
along the trajectory X(s)

2
d lnA0

dγ
+

d ln K

dγ
+ 2λ

dP0

dγ
+ ∇ · ∇σ = 0 (B16)

(Vasco et al. 2000). Making use of the Eikonal equation (B8), the 
final term in equation (B16) can be written as

∇ · ∇σ =
d ln

√
κ0J(γ)

dγ
(B17)
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where J(γ) is the Jacobian which measures the divergence of the
trajectories as a function of distance along the trajectory. Substitut-
ing (B17) into equation (B16) and integrating provides an equation
describing the evolution of the amplitude along the trajectory X(γ)

A0(γ) = A0(γ0)

√

Kx(γ0)

Kx(γ)

√

√

κ0(γ0)J(γ0)
√

κ0(γ)J(γ)

e−η(γ0)

e−η(γ)
(B18)

where

η(γ) =

∫ γ

0

λ
dP0

dγ′
dγ′ (B19)

(Vasco et al. 2000).
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7 FIGURE CAPTIONS

Figure 1. Pressure variations calculated using a self-similar, a numeric, and
an asymptotic technique. The solutions correspond to a medium with a uni-
form initial conductivity and a pressure-dependence of the form K = P n

where n = 0.5. The pressure-versus-time curves are plotted for four loca-
tions, 100 m, 433, m, 767 m, and 1100 m. The pressures have been normal-
ized by the values at the 100 m location at a time of 500s.

Figure 2. Detailed comparison of the self-similar, numeric, and asymptotic
pressure estimates at a point 767 m from the source.

Figure 3. Relative and absolute differences between the various solutions.
The relative error is given by the difference between the two solutions di-
vided by the value of the f rst solution, relative error = (f2−f1)/f1, where
f1 is the first solution in the title. The absolute error is the straight-forward
difference: f2 − f1.

Figure 4. The self-similar and asymptotic solutions for a cylindrically sym-
metric medium. The medium properties are identical to the previous test
case but the propagation is that of a cylindrical disturbance moving in the
radial direction. The pressure variation is computed at four distances from
the source: 100 m (f lled squares), 433 m (crosses), 676 m (unfilled circles),
and 1100 m (f lled triangles).

Figure 5. A two-dimensional view of the self-similar solution in a cylin-
drical medium.. Three snapshots of the normalized pressure variations for
propagation of a cylindrical disturbance in the radial direction. The source
is an impulse in time, located at the point (750 m, 750 m). The pressure is
normalized by the peak value in each node of the grid.

Figure 6. A two-dimensional view of the asymptotic solution in a cylindri-
cal medium. As in Figure 5, the source is an impulse, located at the point
(750 m, 750 m). The pressure is normalized by the peak value in each node
of the grid.

Figure 7. The spatial variation in permeability used in the comparison of
the numerical and asymptotic solutions. The permeability increases from
values below 0.1 Darcies to values just under 1.5 Darcies according to the
function Kx(x) = tanh[(x − xc)/w] where xc = 55m and w = 33m.

Figure 8. (Left) The numerical solution corresponding to the spatially-
varying permeability shown in Figure 7. The numerical solution is com-
puted using a finite-element algorithm. (Right) The asymptotic solution for
a medium with the spatially-varying permeability shown in Figure 7.

Figure 9. Pressure and normal displacement measurements made at the
Coaraze Laboratory site in France. (Top) Pressures measured in boreholes
HM1 and HM2, spaced 1 m apart. (Bottom) Normal displacements for the
corresponding boreholes.

Figure 10. A comparison of pressure and displacement observed in the two
boreholes HM1 and HM2. (Top) Normalized pressure superimposed on the
normalized displacement curve for the injection borehole HM1. The curves
have been normalized such that the peak amplitude is 1. (Bottom) Normal-
ized pressure and displacement for the observation borehole HM2.

Figure 11. The observed displacement in the borehole plotted against the
corresponding observed pressure.

Figure 12. The variation of the logarithm of permeability plotted as a func-
tion of the fluid pressure change and the elevation above the base of the
limestone outcrop.

Figure 13. Permeability variation along two lines through the injection well
location HM1. One of the traverses is horizontal while the other is vertical.

Figure 14. Observed and predicted pressure variation at the observation
borehole HM2.
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