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Abstract 

vVe present a review of our fully relativistic approach to calculating atomic data 
charged ions, highlighting a research effort that spans years. De-

discussions of both theoretical and numerical techniques are provided. Our 
basic approach is expected to provide accurate results for ions that range from 
approximately half ionized to fully stripped. Options for improving the accuracy 
and range of validity of this approach are also discussed. In developing numerical 
methods for calculating data within this framework, considerable emphasis is placed 
on techniques that are robust efficient. A of fundamental processes are 
considered including: photoexcitation, electron-impact excitation, electron-impact 
ionization, autoionization, electron capture, photoionization and photorecombina­
tion. Resonance contributions to a variety of these processes are also considered, 
including discussions of autoionization, electron capture and dielectronic recombi­
nation. Ample numerical examples are provided in order to illustrate the approach 
and to demonstrate its usefulness in providing data for large-scale plasma modeling. 
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1 Introduction and purpose 

purpose ot thIS reVIew is to (tescrlbe a tUlly relatlVIstIc approach we 
developed over the past twenty for calculating atomic data pertaining 
to highly charged ions. By fully relativistic, we mean that all orbitals, bound 
and free, are solutions of the single-electron Dirac equation with a central 
potential. 

distorted-
our pnncIpal motlvatlon has been to 

HHJUC;lll15 and diagnostics high-temperature 
mas, for which a very large amount of data is needed, we have emphasized the 
development of very rapid procedures, while maintaining accuracy within the 
distorted-wave framework. However, we have also used procedures for improv­
ing distorted-wave results by including resonance contributions to a variety of 
atomic processes. For example, the resonance contribution to electron-impact 

electron 
to 

outcomes associated with autoionization to a different 
final level or radiative decay of the doubly excited level are also taken into 
account via the use of branching ratios. 

Although radiative processes are also considered, the majority of our work 
pment of verv raoid orocedures for the 

processes ten(t to far, the most 
occurs because, in order to determine a collision rate, the cross section must 
be known for several incident-electron energies and for each energy one must 
determine the scattering matrix elements for many initial and final values of 
the angular momentum quantum numbers associated with the incident and 
scattered electrons (olus those associated with ejected electron for ion-

to produce lasers, transitions between excited levels and ion­
ization from excited levels are important. Then, collision rates for thousands, 
or even millions, of transitions are sometimes needed for treating a particular 
case involving ion stages associated with a nuclear charge Z, or possibly 
several values of Z. 

a lUtle less than "LJV, Where lV IS 
bound electrons per ion. For these conditions, we have been able to develop 
procedures by which excitation and ionization cross sections for a given class 
of transitions can be rapidly calculated for the entire isoelectronic sequence 
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of Z z 
appears to cover essentially 

most of these plasma applications, only total cross sections averaged 
over initial magnetic sublevels and summed over final magnetic sublevels are 
needed. However, a second purpose of the present review is to describe the 
application of our approach to the more detailed cross sections for transitions 

,,>nJ,raD.Yl magnetic sublevels of an ion due to impact with an electron beam. 
Such cross sections are needed for application to plasmas with an anisotropic 
electron distribution and for study of electron beam ion trap (EBIT) experi­
ments. The latter also have the benefit of providing experimental tests of the 
accuracy of our approach. 

nrC"'01'" r':'U1,0'" is organized according to 
which we have developed 

mulae 

are 
approach. Numerical examples are 

reference list of all the calculations that we 
performed RDW method. In chapter 2, a description is provided of 
our approach the atomic structure within the 
(DFS) approximation. A solution of the wave equation for atomic structure 
provides the fundamental wave functions and energies that are necessary to 
compute more involved quantities, such as cross sections and rate ',V'.~"U~H"U 
that describe collisional and radiative processes. A discussion of photoexcita­
tion is provided in chapter 3, while chapter 4 addresses the process of electron­
impact excitation. Chapter 5 deals with electron-impact ionization and chap­
ter 6 deals with photoionization. The concepts of resonances and dielectronic 
recombination, which involve the process of autoionization, are handled in 
chapter 7. Chapter 8 deals with transitions between hyperfinc-structure 
for the process of electron-impact excitation. Chapter 9 deals with 
between sublevels for the processes of electron-impact excitation 
electron-impact Finally, some concluding remarks are provided in 
chapter lO. explicitly noted, Rydberg atomic 
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2 A Dirac-Fock-Slater atomic structure program 

section 2.1, we summarize the general procedures used in our relativis­
atomic structure program [1]. These procedures are very similar to those 

used in most relativistic atomic structure programs and, hence, are quite stan­
dard. The differences the various programs are principally in the different 
numerical procedures used to determine the radial functions and the differ­
ent methods used to determine the central potentials employed solving the 
single-electron Dirac equation. particular procedures we use are described 

detail in 2.2 and 2.3. In later sections, we discuss improvements 
computing the atomic structure of heavy ions, such as generalized Breit 
interaction, and the configuration-average approximation. While the ability to 
calculate radiative oscillator strengths is generally included in atomic struc­
ture programs, our procedures computing quanti tics such as the electric 
dipole oscillator strength are described in chapter 3. 

1 General procedure 

for the present, quantum electrodynamics (QED) corrections, which 
considered in section 2.5. Then, the Hamiltonian H for an ion with N 
electrons and nuclear charge Z is assumed to be given 

N 2 
H= "LHD(i) + "L-, (2.1) 

i=l 

where IID(i) is the single-electron Dirac-Hamiltonian for a pure Coulomb po­
-2Zjri due to the nucleus the ion. Here, are in Rydbergs 

and distances are in units of the Bohr radius ao. We add and subtract 
electron-electron electrostatic contributions, Vf*~(ri) to the central potential 
V (r'i) so that !-I is rewritten as 

N N 2 
H="LHh "Lvee(Ti) + "L ) (2.2) 

i=l i=l Tij 

where 

II;) = !-ID + (2.3) 

Hb is single-electron Dirac Hamiltonian with central potential 
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V(ri) = -2Z + vee(ri) . (2.4) 
r2 

The specific form of vee that we use in our calculations will be discussed in 
section 2.3 (see the discussion following eq. (2.18)). 

It is well known [2,3] that the Dirac equation for a central potential 

HbUn;;,m Cn;;,Un;;,m , (2.5) 

has bound state solutions, the so-called Dirac spinors, which can be written 
in the form 

1 [ Pn;;,(r) X;;,m(B,cp,cy) ] (2.6)un;;,m(x) = -:;: iQn;;,(r) X-;;,m(B,cp,cy) , 

where x stands for all coordinates, spatial and spin, of the electron. Here, Pn ;;, 

and Qn;;, are the large and small components of the radial function, respec­
tively, and Cn;;, is the corresponding energy eigenvalue. The X;;,m are the usual 
spin-angular functions [4], also known as spherical spinors [5], given by 

X;;,m(B, cp, CY) = L C(l~mlms; jm)YzmJB, cp)XTns (CY) (2.7) 
ml,m s 

in which C and Y represent Clebsch-Gordan coefficients and spherical har­
monics, respectively. The Xm , (CY) represent the eigenvectors of the 2 x 2 Pauli 
spin matrix CYz [3] and the relativistic quantum number", has the values 

'" = I, j = I -~; '" = -(l + 1), j = I + ~. (2.8) 

The coupled Dirac radial equations determining PM and Qn;;, are 

[:r + ~]Pn;;,(r) = %[cn;;, - V(r) + :2]Qn;;,(r) (2.9) 

and 

d "'] 0:[dr - -:;: Qn;;,(r) = 2[V(r) - cn;;,]Pn;;,(r), (2.10) 

where 0: is the fine-structure constant. 

As is standard (e.g. Grant et al. [6]) in multi-configuration relativistic pro­
grams, in treating an ion with N bound electrons one uses basis states <!>v(l, 2, ... , N) 
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are "'lll~l<:::-tAJllll~ 

<Pv, standard jj-coupling scheme is 
scheme, the j values all electrons in a subshell nrlrjr are coupled to­

gether to form a total angular momentum J" of the subshell. Then, total, 
subshell values for the angular momentum are successively coupled together, 
starting with the lowest subshell, to form the total angular momentum J of the 
ion. By the lower of the two subshells nddl and n2l2j2, one means the subshell 
with the smaller n value, or if nl n2, the subshell with the smaller l value, 
or if nih = n2l2' the subshell with the smaller j value. Here, of course, the l 
values are those associated with the angular function of the large component. 

One wave 

NSCSF 

'if = L bv<pv) (2.1 
v=l 

where the mixing coefficients bv and the corresponding eigenenergies are ob­
tained by diagonalizing the Hamiltonian, given by eq. (2.2), expressed in the 
<PI/ basis. Since the <Pv are antisymmetric products of the Dirac spinor 'lLnK,TT/' 

which are eigenfunctions of H~ that satisfy eq, (2.5), the first term on the 
right-hand side of eq. (2.2) contributes only to the diagonal matrix elements 
of H. Specifically, this term gives a contribution equal to the sum of the N 

among 
UHOUH.LL mOlnentum J, 
charged ions. However, in cases where 

additional states have near or overlapping with those in the complex, 
mixing with those additional states should also be included. For these cases, 
this term also contributes to off-diagonal matrix elements of that are taken 
between states with the same angular functions, but different n values. 

The final electron-electron electrostatic interaction term in eq. (2.2) con­
tributes to both diagonal and non-diagonal matrix elements of H, In evaluat­
ing this term, one standard expansion the Coulomb interaction 
h",tulDcm two electrons. in terms of Racah t",ncr.rc 

1 
r12 (Td . C(>-) (2.12) 

where C(>-) is the renormalized spherical harmonic of rank A, Tl and T2 rep­
resent the angular coordinates of Tl and T2, respectively, and r< (r» is the 
lesser (greater) of rl and r2' The matrix element of each term in eq. (2.12) can 
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as a product of an angular angular 
!JvJ.L'-UA C 

sum in each case. 
operator corresponding to the electron angular-momentum quantum number 
j commutes with II;), the evaluation of the angular part of the matrix ele­
ments of (2.12) is the same as that encountered when jj coupling is used in 
non-relativistic calculations. However, the radial part of the elements 
is more complex in the relativistic case because the radial functions depend 
on j, as well as nand [, and because the small component makes a contribu­
tion. Specifically, these radial matrix elements, or so-called relativistic Slater 
integrals, are given by 

00 00 

RA(ab, cd) 2/ /[Pnul\u (TdPncr.:JTd + QnaKa (T1 )Qn,r.:c(T1)] 
o 0 

x ) + QnbKb (2.13) 

2d" a 2 


{ dT2 + V(r') 1[En r.: - V(T)] 

2 

0: [ ( ]J -1 dV(T) [ 1 dPnr.: K,]}-- 1 V T) -d- -d- + -;- Pnr.: = Enr.:Pnr.:, (2.14)D
4 T lnK T r 

where use has been made of the relation 

K,(K,+1) [(l+1), (2.15) 

which follows from eq. (2.8). Eq. (2.14) is similar to the usual non-relativistic 
Schrodinger equation except that it has a much more complicated effective 
potential. The radial part of the Hartree-l'ock relativistic (HFR) option of 
Cowan's widely used program [8] corresponds to solving eq. (2.14) with K, 
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replaced by its j-averaged value of 1, so that the large component does not 
depend on j. Then, the small component is neglected and the large component 
is normalized as though it were the total radial function. In our case, we are 
interested in retaining both the K dependence and small component of 
the wave function. Therefore, we simply used the radial part of Cowan's HFR 
program modified to retain the K (or j) dependence and modified to 
obtain QnK,' The latter is readily done because, as seen from eq. (2.9), QnK, is 
essentially given by the final term in effective potential of eq. (2.14). Of 
course, we also use the correct relativistic normalization 

2J
00 

[Pr7K:(r) QnK: = 1. 16) 
o 

We found it necessary to separately consider the - 2ZIr nuclear contribution 
to the potential and determine its contribution to dV(r)/dr analytically 

QnK:(r) with sufficient accuracy for large Z values. In addition, 
we emplOY an initial mesh size that is 1/8 the value typically used with Cowan's 
program. Specifically, 

~Pinit ~3.125 x , P = 4(97r2 ) 
(2.17)r 

was used. This choice did not add much to the computing time because a linear 
mesh is used with a doubling of the interval every 40 points, which auuo:::u 

only 120 points to a usual total of ()40 points. Actually, 
structure data for collision processes, we stop the doubling at the largest mesh 

that satisfies eq. (4.47) in chapter 4 of the present work. 

The method for solving eq. (2.14) is quite standard and can be found, 
example, in ref. [8]. result is a set of radial functions and corresponding 
eigenvalues for each orbital denoted by the quantum numbers nK, along with 
a self-consistent potential, V(r), given byeq. (2.4). The principal manner in 
which speed is obtained in our atomic structure calculations is through our 
choice for this central potential, which we discuss next. 

2.3 Choice central 

The reason we call our relativistic atomic structure program a Dirac-Fock­
Slater program is that we choose Dirac-Fock-Slater potential for the central 
potential V(r) appearing in eqs. (2.9), (2.10) and (2.14). That we use the 
relativistic version of the Hartree-Fock-Slater potential introduced by Slater 



) except that we use the Kohn-Sham [10] value the coefficient of the 
exchange term. In particular, we use 

1/:52Z
V(r) = Vc(r) - (2.18) 

r 

where the first term is the potential due to the nucleus. In a later u1Jf!rade of 
our relativistic atomic structure code, discussed near the end of 
this term is replaced by - 2Z(r ) / r. That 
replaced with a distributed nuclear charge Z (r), which differs 
extremely small values of r. remaining two terms in eq. (2.18) are the 
electron-electron contribution previously called vee(r) eqs. (2.2)(2.4). The 
Vc(r) term is the spherically averaged classical potential due to the bound 
electrons, 

= L '!lin'/'i' 

00 

2 
[P':'K/ + Q~'/'i,(r2)ldr2' (2.19) 

r>n'K' 

where 'Wn'/'i,' is the occupation number of subshell rhc' n'l'j'. The summation 
is over all occupied subshells and, again, r> is the greater of r1 and r2' 

term in eq. (2.18) is the exchange energy of an electron in a free-electron 
gas of density p, averaged over all possible momenta of electron. Following 
Slater [9], we use for p the electron number density at a distance T from the 
nucleus, 

1 2 
= 41Tr2 L 'Wn'/'i' [P , , + Q~f/'i,(T)] (2.20) 

n't<;} nK, 

One sees that, if 'Wn ' /'if were replaced by 'Wn'/'i/ - 1 when n't\,' ru" , where 
Pnr; and Qnr; represent the orbitals being solved for in eqs. and (2.1 

eq. (2.19) would give the relativistic version of the potential. 
undesirable feature that self-interaction is included in is at least 

partially canceled by fact that self-exchange energy is included 
in the calculation because eq. (2.20) contains the contribution from the 
electrons, including those residing in subshell nK 

considering a particular of transitions) we use a single mean configu­
with fractional occupation numbers in evaluating the central potential 

given by eqs. (2.18)(2.20). The prescription generally used in determining 
this mean configuration is that the occupation number of the active elec­
tron is split equally between initial and subshells. For example) 
obtaining structure results for oscillator strengths and collision strengths for 
transitions from the n 2 shell of the ground level to the excited levels with 
n = 3 occupancy in neon-like ions, we could use for the mean configuration 
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1s22s1.9 2 1.9 2p3.7 3s0.13pO.13 0.1 3dO.1 3dO.1 
, h 

(2.21/2 PI/2 3/2 < 1/2 1/2 P3/2 3/2 5/2' 

However, if transitions among the n = 3 excited levels were also being consid­
ered, 

1 22 1.8 2 1.8') 3.63 0. 16 3 0. 16 3 0.163do.163do.16 (2.22)s Sl/2 Pl/2~P3/2 Sl/2 P1/2' P3/2' 3/2 5/2 

would be a more appropriate choice. It should be noted slight shifts 
the occuDation numbers, especially among the subshells a given shell, have 

on the numerical results. 

It should be emphasized that our calculations are generally multi-configuration 
calculations in which, at least, the mixing between all states in a complex 
is included. The single mean configuration is used solely in determining the 
potential and resulting radial functions that comprise the Dirac spinors 

eq. (2.6). (When computing a physically relevant quantity, the appropriate 
integer occupation numbers are assigned to each spinor before performing a 

) This procedure, coupled with the use of eqs. (2.1 (2.20), has 
advantages. For example, the potential is then the same for all electrons, 

so all orbitals are automatically orthogonal and the calculations are much more 
rapid than with a fully multi-configuration Dirac-Fock program, such as that 

the Grant code [6]. We also use this same potential in calculating free-
electron orbitals for other electron-ion and photon-ion processes, as discussed 
in later chapters. 

addition to the fully relativistic (PR) approach that we have discussed, a 
quasi-relativistic (QR) option has also been included in our atomic structure 
program [1J. This option corresponds to simply solving eq. (2.14) for PnK. and 
normalizing this function as though it were the total radial function, i.e. 

00

j[PnK.(T)]2 1 (QR approach) . (2.2:3) 

° 
Then, QnK. is omitted everywhere, as in eqs. (2.13), (2.19) and (2.20). 
Hence, this method is like Cowan's HFR approach [8], except that the j 
dependence is retained, which is quite important for large Z values. It was 
thought initially that the QR approach would be somewhat faster than 
FR option of our program, but it turned out to be only 5-] 0% more rapid 

the FR oDtion. This outcome results because, as noted previously, the 
pVW:;UIJ of the wave function, QnK.l is essentially already computed 

in calculating the final term in the effective potential of eq. (2.14). Neverthe­
less, as seen from sample results given below in tables 1 and 3, the QR 
approach rather accurate structure results, even for very large values of 
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Z, is useful rapidly collision strengths when coupled 
an approximation for electron, as discussed in chapter 4. 

Some comparisons of for H/,-/i/'/U-: 'tons 

In table 1, a sample comparison, taken from ref. [1], is made of excited-level 
energies relative to the ground level for neon-like uranium (Z = 92). Each 

is labeled by the pure SCSF in eq. (2.11) that makes the dominant 
contribution that level's wave function. Specifically, we usc the following state 
abbreviations: 

(2p31)J (ls2 2S2 2p*2 31)J 1 (2p31*).J = (ls2 2p*2 2p331*)J (2.24) 

= (1s2 2S2 2p* 2p4 31).J 1 (2p*31*)J (ls22S2 2p* 2p4 (2.25) 

(2s31).J = (ls22s2p*2 2p43i).Jl (2s3i*).J = 2s2p*22p4 (2.26) 

where use has been of the orbital shorthand llVL<l,L1Ull 

nl* nij, j = i 1 nl= j I + 12 2' 

so 

Is = Is1/ 2, 2s = 2S1/2 , 2p* = 2p1/2, 2p = 2p3/21 etc. 

In table, results computed with ourQR and FR approaches are compared 
with those obtained with the "average level" option of Grant code [6,11]' 
labeled G and G**, and the HFR option of Cowan's program [8]. Comparisons 

lower values of Z and for Ni-like ions (N = 28) are also provided 
ref. [1]. The FR and results slightly FR* values correspond 
to using eq. (2.21) in determining the potential, while FR (and also the QR) 
values are obtained using eq. (2.22). The values correspond to including 

generalized Breit interaction plus other QED corrections and use 
nuclear size (all of which are discussed in the next section), while 

G are obtained without additions or corrections. Hence, the G 
values are calculated similarly to our FR and FR* values, except that the more 
elaborate multi-configuration Dirac-Fock potential is used. Also, a 
radial grid is in calculating the G G** results, 
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Table 1 
Comparison of energies (in eV) for excited-state levels relative to the ground level for 
neon-like ions with Z 92. The levels are designated by the pure jj-coupled state 

the dominant contribution the abbreviations of eqs. (2.24)~(2.26). 

following labeling is used: QR and FR are present quasi-relativistic and 
relativistic results using eq. (2.22) in determining the potential. FR* differs from 
FR only in that eq. (2.21) is used in place of eq. (2.22). G** and G are results 
obtained from the Grant code [6,11] with and without inclusion of the generalized 
Breit interaction, QED corrections and a finite nuclear size, respectively. HFR are 
results obtained using Cowan's [8] HFR program. 

Level QR FR FR* G G** HFR 

(2p3sh 12890.5 12871.4 12872.7 12877.1 12860.3 12596.1 
(2p3s)1 12901.9 12882.4 12883.7 12888.1 12872.0 12607.0 
(2p:~p*h 13103.6 1:)096.7 1:3097.9 13097.8 13075.8 12777.8 
(2p3p*h 13108.8 13101.6 13102.8 13102.6 13075.9 12782.2 
(2p3p)1 14221.9 14204.2 14205.5 14206.0 14167.0 13971.4 
(2p:3ph 1,1222.1 14204.5 14205.8 14206.0 14165.4 13971.6 

14236.5 14219.1 14220.4 14220.7 14184.1 13985.4~2P3Ph 
2p3p)0 14308.2 14295.4 14296.6 14294.9 14262.7 14051.1 

(2P3d*jo 14426.5 14409.6 14411.0 14411.4 14378.5 14092.2 
(2p3d* 1 14445.8 14428.6 14430.0 14430.5 14391.1 14109.3 
(2p3d*h 14448.5 14431.2 14432.5 14432.8 14389.5 14111.4 

14454.9 144:38.4 14439.8 14440.1 14401.6 14117.4~2P3d*h 
2p:3d)4 14688.2 14667.0 14668.4 14668.4 14619.9 14359.5 

(2p3dh 14694.8 14673.6 14675.0 14675.:~ 146:)().5 14365.7 
(2p3d)3 14707.9 14686.6 14688.0 14688.2 14644.2 14378.1 
(2p3dh 14746.7 14725.1 14726.3 14726.3 14679.0 
(2p*:~s)0 16886.6 16820.4 16822.3 16828.3 16764.8 16836.6 
(2p*3s)1 16893.0 16826.6 16828.5 16834.4 16768.1 16842.7 
(2p*3p*)1 17097.8 1704:~.4 17045.2 17046.6 16970.0 17020.1 
(2p*:3p*)o 17158.1 17110.9 17112.7 17112.7 17043.1 17065.9 
(2s3s)1 17581.0 17561.9 17563.1 17553.4 17458.5 
(2s3s)0 17623.7 17621.1 17613.3 17602.8 17511.8 17463.9 
(2s:~p*)0 17797.7 17790.7 17791.8 17777,4 17678.0 17648.3 
(2s3p*)1 17801.8 17794.3 17795.4 17781.0 17676.1 17651.2 
(2p*3ph 18221.1 18158.1 18160.0 18161.9 18077.5 18217.7 
(2p*:3ph 18225.3 18160.9 18162.8 18164.7 18076.0 18220.3 
(2p*3d*h 1844,1.4 18382.1 18384.0 18385.8 18295.1 18351.6 
(2p*3d*h 18474.8 18411.9 1841:3.8 18415.6 18322.5 18385.8 
(2p*3dh 18692.5 18626.1 18628.1 18629.7 18535.9 18605.9 
(2p*3dh 18697.7 18630.9 18632.9 18634.5 18540.2 18612.8 

18918.5 18901.2 18902.3 18888.4 18772.9 18843.4~2S3Ph 
2s3ph 18926.8 18909.2 18910.4 18896.5 18781.0 18850.5 

(2s:3d*h 191:35.3 19119.8 19121.1 19107.3 18991.6 18974.5 
(2s3d*h 19145.6 19129.5 19130.7 19116.8 18996.4 18983.9 
(2s3d)s 19:i83.4 19363.3 19364.6 19:350.5 19225.5 19299.9 
(2s3dh 19399.4 19379.0 19380.3 19366.3 19244.7 19246.0 

The larger discrepancies between the G values and the FR and FR* 
values, of up to 14 eV for involving s orbitals, appear to be due to our 
use of a linear grid. For other levels, and all levels for Z .::s; 60, the differences 
are generally within 2 eV, which is about the same as the differences between 

most accurately computed G** values and measurements performed by 
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2.5 

Beiersdorfer et al. [12]. Eventually, we plan to modify our program to use a 
logarithmic grid. However, the resulting error in energies due to the use of a 
linear is much less than 1%and it that this discrepancy is not very 

or 
G** entries 

Hnm~a.l'C; that the extra corrections used in 
the G** calculations are important for large Z values. We later included these 
effects in our structure and oscillator st.rength calculations, as will be discussed 
in sections 2.5 and 3.3. Finally, one sees t.hat the QR values are moderately 
good even for Z = 92 

G 
contain the additional corrections included in 

G** values. This comparison indicates that including the j dependence in the 
radial functions is important for large Z values, which becomes more apparent 
when oscillator strengths are compared, as done in section 3.3. 

of the generalized Breit interaction a.nd othel' corrections in the 
atomic stTuctuTe 

order to improve 
to include 

t.eract.ion can be derived from quantum electrodynamics (QED) via first-order 
perturbation theory, and represents the lowest-order Feynman diagram for the 
exchange of a single virtual photon between two electrons. Specifically, the gen­
eralized Breit. interaction, which is to be added to the Coulomb interaction 
expressed as 2/Tij in eq. (2.1), is given 

B(i,j) -2(Qi' Qj)--'---~
rij 

+2(Qi . V"i)(Qj . V"j) exp(iwTij) 1 (2.27)
w2.(,.7J 

where w is wavenumber of the exchanged virtual phot.on and tne Qi are 
the usual Dirac matrices. An appropriate value for w will be discussed in 
section 1.10 of chapt.er 1. In writing eq. (2.27), as usual, we have used dist.ances 
in units of the Bohr radius and energies in Rydbergs. 

are to one 
ature. For example, for Z values, an accurate approximation to 
t.he generalized Breit interaction can be obtained by taking t.he w -+ 0 limit 
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eq. (2.27). result is original interaction 

-HBr J') - - 1 . O'.j + (O'.i • rij) (O'.j . rij /I, (2.28) 

where Tij is a unit vector along Tij' We shall refer to this interaction simply 
as "the Breit interaction". This interaction represents one of the earliest at­
tempts to take into account the lowest-order relativistic effects, to 0 
that are associated with retardation and the magnetic interaction. 
tel' effect is similar to the well-known spin-orbit interaction, but from 

interaction between an electron, traveling with speed 11, and the magnetic 
field arising from a different electron, rather than the field that arises 
the nucleus. Retardation is the term used to describe the delay in the electro­
magnetic interaction, which is mediated by photons, due to the finite value of 

speed of light. In this case, as the electron velocities approach the speed 
of light, the effect of retardation becomes more important. original 
of the Breit interaction has the advantage of being computationally simpler 
to calculate, as compared to eq. (2.27), but its range of validity is limited due 
to the approximation of taking limit w O. 

Yet another interaction takes into account, to lowest order, the exchange 
of a virtual photon between two electrons is the M011er interaction. While the 
various flavors of the Breit interaction mentioned above were derived 
the context of resolving discrepancies in bound-electron energies, M011er con­
sidered the problem of scattering between two continuum electrons [16]. And 
while the various forms of the Breit interaction were derived in the Coulomb 

interaction, given by 

.j) = ~(1 O'.i . O'.j)exp(i(.(jrij) , (2.29) 

was aenvea in the Lorentz gauge. We note that the M011er interaction rep­
resents entire, lowest-order interaction between two electrons, while the 

interaction is a perturbation to the Coulomb interaction and must 
added to the usual 2/rij expression. 

More detailed information on these various interactions and their applica­
to bound-state calculations can be found in a number of references, 

e.g. refs. [17 21]. In the current body of work, we primarily consider the gener­
alized Breit interaction given by eq. (2.27), and occasionally consider the more 
approximate expression in eq. (2.28). A detailed evaluation of the matrix el­
ements of the generalized Breit interaction is not considered in this section 
because the approach is essentially the same as that employed in 
the excitation scattering matrix clements, which is described in detail in chap­
ter 4. The only essential difference is that a free electron replaces one of the 



bound electrons for the case of collisional 

In order to compare more favorably with results produced by the Grant code 
[6,11]' we also added options in our program to include the additional QED 
effects of vacuum polarization and self-energy, along with a finite nuclear size. 

QED corrections were implemented in same manner as in the Grant 
using the work of F\tllerton and Rinker [22] and Mohr [23,24]. The nu­

merical procedure for including corrections our program is that the 
diagonal matrix elements of these interactions are added after diagonalization 
of the Dirac-Coulomb Hamiltonian, eq. (2.2), has occurred, but before 
final diagonalization of Hamiltonian that includes the Breit interaction 

performed. This approach is the procedure used in the default option of 
the GRASP program [2.5]. Thus, these additional QED corrections the 
mixing coefficients slightly, but the principal effect is on the energies high 
Z values, where the QED corrections sometimes contribute nearly as much 
as the generalized Breit interaction. For the finite nuclear we used 
Fermi charge distribution of Chen et al. [26]. This choice causes the nuclear 

Z, appearing in eq. (2.4) to be replaced with Z('ri), which differs from 
for extremely small values 'rio Again, this procedure is the same as 

that used in various versions of the Grant code [6,11 

table 2 a comparison is provided between our DFS results that were com­
with all of the above corrections (denoted by FR**) and the corre­

sponding G** and FR* results that were presented in table 1. As expected, 
the agreement the FR** and G** energies is considerably better than 
the agreement between the FR* and G** results for most of the levels con­
sidered. (The FR* and G** data that appear in table 2 are the result of a 
more recent calculation, performed on a different computing platform, 

corresponding values that appear in table 1. The disparity between the 
data appearing in tables 1 and 2 is attributed to issues.) 

2.6 The configuration-average approximation 

previous sections provide a detailed treatment obtaining fine-structure 
quantities associated with the wave functions in eq. (2.11). 'When considering 
a large amount of fine-structure data, the configuration-average approxima­
tion can be a useful approach for drastically reducing the number of states to 

considered. F\lrthermore, these results can be obtained in a manner that is 
computationally demanding. The concept of a configuration-average 

has existed for some time (sec, for example, refs. [8,27,28]). In this sec­
tion, we provide an expression for the configuration-average energy associated 
with a particular relativistic configuration c denoted by 

(naK:a )w" (nflK:fl )w.o (2.30) c 



2 
Comparison energies (in eV) for excited-state levels relative to the ground level 
for neon-like ions with Z = 92. The notation is the same as that used in table 1, 

that FR** to FR-type calculations that include the generalized Breit 
interaction, other QED corrections and a finite nuclear size. 

Level FR* FR** G** 

(2p~~sh 12872.2 12840.4 12856.3 
(2p3sh 12883.3 12852.4 12868.2 

1~3096.8 13068.4 13061.5~2P3P*h 
2p3p*h 13101.7 13068.7 1:3061.8 

(2p3ph 14204.0 14158.4 14152.4 
(2p3p)J 14204.2 14159.6 14153.6 
(2p3ph 14218.8 14176.9 14170.7 
(2p3p)0 14295.0 14257.1 14250.2 
(2p3d*)0 14409.4 14371.0 14363.4 
(2p3d*h 14428.4 14380.8 14373.1 
(2p3d*h 14430.9 14383.5 14375.9 
(2pad*h 144:38.2 14393.8 14386.2 
(2p3d)4 14666.7 14611.9 14604.3 
(2p3dh 14673.3 14622.6 14615.0 
(2p3d)J 14686.3 14635.5 14627.9 
(2p3d)1 14724.8 14672.0 
(2p*3s)0 16820.2 16744.9 16762.9 
(2p*3sh 16826.5 16748.1 16766.2 
(2p*:3p*h 17042.5 16962.a 16957.7 
(2p*3p*)0 17109.9 17036.5 17031.1 
(2s3sh 17558.2 17482.1 17418.4 
(2s3s)0 17608.2 17535.6 17471.5 
(2s3p*)0 17786.3 17712.2 17625.6 
(2s3p*h 17789.9 17714.1 17627.5 

18156.8 18068.3 18064.5~2P*3Ph 
2p*3ph 18159.6 18069.9 18066.0 

(2p*3d*h 18~~80.8 18287.0 18281.6 
(2p*3d*h 18410.6 18314.8 18:309.2 
(2p*3dh 18624.8 18528.0 18522.2 
(2p*3d)J 18629.6 18531.3 18525.8 
(2s3ph 18896.3 18808.5 18723.1 
(2s3p)1 18904.4 18817.1 187:31.3 
(2s3d*)J 19115.0 19027.4 18940.1 
(2s:id*h 19124.7 19032.3 18944.9 
(2$3dh 19358.5 19261.6 19174.3 
(2s3dh 19374.1 19280.5 19193.2 

where Wa represents the occupation number of subshell 0:. In eq. (2.30), as 
well as the subsequent discussion, we have adopted a notation similar to 

of Peyrusse [28], who provided a detailed treatment of the configuration­
average approximation (for both structure and scattering quantities) for non­
relativistic configurations. 
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context the present work, the most general expression the configuration-
average energy can be defined as 

E (2.1 + l)(\[IJIH (2J + l)EJ 
E = levelsEc Ec (2.31 ) 

c - E (2.1 + 1) E (2.1 + 
levelsE c levelsEc 

H is the N-electron Hamiltonian defined eq. (2.1), \[IJ is a 
structure level, described by eq. (2.11), with total angular momentum .1, and 

is the enenrv corresponding to \[IJ. The summations are performed over 
are characterized by a dominant single-configuration state 

that arose from configuration c. However, this definition is 
not particularly useful because there is no way to remove dependence on 

mixing coefficients that appear in eq. (2.11) for an arbitrary amount 
configuration interaction (CI). Thus, in order to evaluate eq. (2.31), one must 
still proceed with the usual diagonalization of H, which defeats the purpose 

defining a configuration-average energy. Nevertheless, eq. (2.31) is useful to 
compare with energies obtained from more approximate, configuration-average 
expressions. Some attempts to approximate the effect of CI in configuration­
average calculations have been made in the context of unresolved-transition­
array theory (see, for example, ref. [29]), but no further discussion will be 
provided in work. 

A more traditional, and practical, definition of the configuration-average en­
is obtained by replacing the fine-structure levels in eq. (2.31) with 

pure SCSFs in eq. (2.11), so that 

(2.1 + 1) (<I>JIHI<I>J) E 
Ec SCSFEc (2.32)

(2.1 + 1) E (2.1 + 
Ec SCSF c 

advantage of using the expression in eq. (2.32) is that it can be rewritten 
in terms of quantities that are readily available from the solution of the coupled 
radial equations given by eqs. (2.9) and 10). To be as general as possible, 

definition eq. (2.32) could have included summations over mixed levels, 
provided that mixing was considered only among those pure SCSFs that result 
from configuration c. When the amount of mixing is restricted in this 
resulting set of mixed levels represents an alternative, orthonormal basis 
spans exactly the same space (with the same dimensionality) as that spanned 
by the corresponding pure SCSFs. Therefore, any formal average 

this space can be computed equivalently with either basis. [n practice, 
it is easier to use the nure SCSF basis in deriving a convenient form for the 
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configuration-average onnrcn, The result is given by 

L 'Wo; +L - 6nfl )(Ct, (3) (2.33a) 
nEe elJ) E e 

+ I V(r) 2Z/rllunQ~QmJ 
00 

En",~", + J[P2no: /'l,o. 

2+ Qn",,,"n [-V(T) (2.~13b) 
o 

(Ct, 
1 

290' 

90; 
o:(3)­

L (jf ).
), "2 0 

_ ) 2 R), . (2.33c) 

In eq. (2.33c), ( ... ) represents a Wigner 3-j symbol, V(T) is the central po­
from eq. (2.4) and EnoK." represents the energy eigenvalue of orbital Ct 

from eq. (2.5). If the finite-nucleus option described in section 2.5 is 
then the Coulomb interaction, -2Z/r, should be replaced with -2Z(T)/T. In 
eq. (2.33c), R),(Ct{3, Ct(3) is a Slater integral of the form given in eq. (2.13) 
90' 2jO' + 1 is the statistical weight of subshcll 0:. 

In oractice, once a self-consistent set of orbitals and eigenvalues, along with 
corresponding potential, have been determined, eq. (2.33a) above can be 

evaluated to determine the configuration-average energy for any 
of the form given in eq. (2.:30). These energies, in turn, will be useful 

in computing configuration-average quantities associated with radiative and 
collisional processes that are described in upcoming chapters. We note that 
the occupation numbers eqs. (2.30) and (2.33a) are integers, as these con­
figurations represent the basis from which the physically meaningful, pure 
SCSFs are constructed. In contrast, the occupation numbers used in solving 
the coupled radial eqs. (2.9) and 10) are typically chosen to be fractional, 
as described in the discussion that follows (2.20). Of course, one could in­
stead compute a different set of wave functions, eigenvalues and potential for 
each configuration of interest, using the appropriate integral occupation num­
bers from eq. (2.30). However, this approach can require significantly more 
computing time and does not produce a set of orbital wave functions that are 
automatically orthogonal, since the orbitals arise from different self-consistent 
potentials. 

Oscillator strengths and line strengths 

Radiative transitions that occur between two bound states are typically char­
acterized by oscillator strengths and line strengths. Since these quantities de­

only on the wave functions of the ion, the capability to calculate them is 
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included in most atomic structure programs. However, because our discussion 
of this topic is somewhat lengthy, we devote a separate chapter to this subject 
matter 

3.1 Geneml for allowed tmnsitions 

The electric dipole, or optically allowed, transitions generally have much larger 
transition probabilities, or rates, than other, so-called forbidden, radiative 
transitions and are the only kind we consider here. However, the forbidden 
transitions can be important very low-density plasmas. Nevertheless, we 
have not included them in our relativistic atomic structure program for several 
reasons. noted in chapter 1, our principal interest is in collision processes 
involving free electrons, which are more lengthy to calculate 
diative processes. Also, relativistic values for the including 
transitions, are available by use of most relativistic programs, such as 
Grant code [6,11,25]. On other hand, addition to direct use 

for 
processes, the results for optically allowed transitions are required 
purposes. example, enter in some of our approximations 

for large angular momentum (or top-up) contribution to electron-impact 
excitation cross sections for the corresponding transitions, as will be described 
in chapter 4. Also, the expressions obtained for optically allowed tran­
sitions can be readily extended to give an expression for the photoionization 
cross section, as will be shown in chapter 6. Finally, these results are used 
the expression for the branching ratio associated with autoionizing resonance 

utions to various processes and for dielectronic recombination, since 
competes with autoionization in this case. This topic will be 

chapter 7. 

Radiative decay rates and the contribution of spectral lines to the radiative 
coefficient are generally expressed in terms of the line 5' or 

eli:tLeU dimensionless oscillator strength f. Specifically, for transition 
i ---+ j, the contribution to the radiative absorption coefficient J.L is 

(v) = Ni " (v), dv <Pij(V) = 1 (3.1) 
me 

where (p is the line shape function, v is the photon frequency and Ni is the 
number of ions per unit volume in level i. the inverse transition j i, 
radiative decay rate is 

28n2 e v2 gi 
(3.2) 

mc3 gj 
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where 9i and gj are the statistical weights of the lower and upper levelS, respec­
Eqs. (3.1) and (3.2) are provided in regular units, and the fundamental 

constants e, m and c have their customary meanings. vVhen units are used, 
Aji is in s 1 and I1,ij is in cm ··1. The relation between the oscillator strength 

line strength is 

!J..E 
3gi 

(3.3) 

where !J..E is the transition energy in Rydbergs. Another useful that 
is sometimes considered is the weighted oscillator strength, 

g/ (2Ji = (2Jj + (3.4) 

which is symmetric in indices that the final levels of the 

3.1.1 Transitions between fine-structure, magnetic sublevels 

Before considering the usual transitions of the form !J..t Jt !J..~J; between 
structure energy levels, we first consider the more detailed transitions of the 

!J.. t JtAit !J..~ J: NI: between magnetic sublevels, where summation of 
the line strength over the magnetic quantum numbers NIt and M: has not 
been performed. Here, J t and M t are the total angular momentum and its z 
component, associated with the initial sublevel, respectively. The symbol !J..t 
indicates all additional quantum numbers required to specify the lower energy 
sublevel. Primes on quantities indicate corresponding quantum numbers for 

energy subleveL These detailed transitions are of interest when 
polarization of the radiation is involved, as EBIT experiments and 
study of anisotropic plasmas. In this case, the gi and gj eqs. (3.2) and (3.3) 
are unitv. and for an ion with N bound electrons line strength is given by 

N 

S(!J..dtAlt - !J..~J:Nln LTi I MDI2, (3.5) 
i=l 

where, as in sections 2.1-2.3, distances are in units of the Bohr 

is convenient to express electron positions in standard irreducible tensor 
form r81 according to 

T r·C(1)(r) = r C(l)(r·) (3.6)2 2 ~ Z q z, 

q 
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rank one. This can 
operator) p(1») in the useful form 

N 

p(l) T' = '" p(l) (3.7)2 ~ q , 

i=l q 


where 

N 

p(l) T.C(1) 


q 2 q 
i=l 

to elemcnt in eq. (3.5)) one obtains 

N 

(!::::.t Jt Ait I L Ti I !::::'~J:j\1D = L(!::::.tJtMt I p~l) I !::::'~J;MD . (3.9) 
i=l q 

Application of the Wigner-Eckart theorem [7,8] to the matrix element on the 
right-hand side of eq. (3.9) gives 

p(1) 

q 
 ( 1 ) 

x (!::::.tJt !::::'~JD ) (:-t 

where ( ...) represents a Wigner 3-,i symbol and (!::::.t1t II p(l) !I !::::'~JD is called 
the reduced matrix clement) which will be discusscd shortly in more detail. 

Now we apply eqs. (3.9) and (3.10) to eq. (3.5) and use the fact that Jt Ait 
is an integer so that (_1)2.lt- 2Mt = 1. Also, 

Jt 1 Jt 1 1 J; ) 2J[ ) ( J~ ) (_Jt
( q ql q

q,q' q 

l}vLi:LU;"v ql must q to 

-Ait + q k!; O. (~3. 

Hence, 

1 J{)2
S(!::::.t Jt Alt, !::::'~J;j\1;) = L (-~{lt q AI'q t 
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xl(~tJt II pel) II ~~JDI2. 13) 

in order to satisfy eq. (3.12), q is fixed for given values M t and 
possible values of q and corresponding polarizations for the radiation 

are provided by Cowan [8] and are as follows: (1) For Mt = !vI;, q 
the polarization is linear, parallel to the z axis. (2) For Aft = !vI; + 1, q = +1, 
the polarization is circular, clockwise in the (x, y) plane. (3) .For !Ilft .Ai; -1, 
q -1, the polarization is circular, counterclockwise in the (x, y) plane. Cases 

and (3) pertain to radiation as seen looking in the negative z 
When viewed from other directions, the radiation field is elliptically polarized, 
except when viewed from a point in the (x, y) it is plane polarized, 
perpendicular to 

8.1.2 Transitions fine-structure levels 

typical plasma applications, where no anisotropy is assumed, 
for a transition between fine-structure enemv levels, ~t1t ~~ J:, is 

S(~tJt, L S(~tJt!vIt, ~~J; 

(~tJt II pel) ~' t 12 , 14) 

where use has made of eq. 13) and that 

Jt 1 J' 2L ( 
q !vI;t ) 1. (3.15) 

Mt,q,M' -Mt 
f. 

This last result is obtained by noting summation over 11at and q yields 
(2J; +1) -1, which is ultimately canceled the summation over Af;. Of course, 
in this case the statistical weights in eqs. (3.2) and (3.3) are 9i 2Jt + 1 and 

= 2J; + 1. 

The procedure we have been discussing for obtaining the oscillator strength 
the so-called length form, i.e. the line strength in eq. (3.5) involves the 

matrix elements of the position vectors Ti. Two other forms, called the velocity 
form and the acceleration form, give results identical to those obtained with 
the length form, if exact wave functions are used in the calculation. However, 

are generally not available. these two other forms depend more 
scnsitively on wave functions for small r values, where the wave functions 
are generally least accurately known, the length form is usually the most ac­
curatc. is also the form that occurs naturally the expression for the 
Coulomb-Bethe approximation of the very angular momentum contri­

to the electron-impact excitation cross section for optically allowed 
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transitions, as discussed in section 4.9. 

3.1.3 Selection rules opticall:1J transitions 

From the properties of the symbol appearing eq. (3.13), one obtains 
familiar selection rule for allowed transitions 

Jt-J:= orO, (3.16) 

but Jt J: 0 is forbidden. Also, since parity must be conserved and p(l) 

odd parity, only transitions in which parity changes are allowed. 
addition, there is the weak selection rule that only single-electron jumps occur. 
However, as will seen from the discussion in the next section, this rule is 

valid only when configuration mixing does not occur. 

3.2 Detailed expr-essions line 

Now we consider evaluation of the reduced element (.6.t 
.6.~JD appearing in eq. (3.14). As discussed in section 2.1, we obtam ap­
proximate wave functions by expanding them in terms a set of eJUJLJ'''"'J 

configuration state functions (SCSFs), as given by (2.11). Then, 
more explicit notation, we 

L b·lt.It II p(l) II !3t) bJ~ (.6.~ J 

Pt ,P~ 

x (!3t II p(l) II (j;J:) , (3. 

!3t represents all quantum numbers in addition to Jt and Mt necessary to 
specify the pure SCSF basis state !3tJt!Vlt with corresponding coefficient 
b·h (.6.tl !3t). Of course, only states with same parity, as well as total angular 
momentum Jt , mix because these are quantum numbers. As usual, primes 
on symbols indicate corresponding quantities in the final state, assumed to be 
the higher energy state in determining the oscillator strength. The case 
no mixing will first be addressed, which requires only the pure-state, reduced 

element appearing in eq. (3.17). Some additional details concerning 
mixed case are provided at the end of this 

Before proceeding, we provide a rather lengthy, explanatory note in order to 
avoid possible confusion concerning the that is used when referring to 
SCSFs, states and fine-structure levels. that, in a complete 
scription of an SCSF basis state or magnetic sublevel requires the specification 
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a magnetic quantum number M, as provided in the description immedi­
ately following eq. (3.17). However, the reduce matrix elements and mixing 
coefficients in eq. (3.17) are independent of the magnetic quantum numbers 
associated with the particular SCSFs from which these quantities were de-

In this case, it can be confusing when a magnetic quantum 
does not explicitly appear in a mathematical expression, but it does appear 
in the subsequent discussion. \Vhen situation occurs, it is understood that 

relevant quantity was determined from wave functions that depend on M, 
the quantity itself is independent of M. A related situation sometimes 

reference is made to the initial and final "states" (denoted by 
or "levels" (denoted by [}.tJt and [}'~JD of a particular process, 

matrix element, etc. These states or levels can not be expressed in an explicit 
mathematical form, although it is not uncommon to see expressions such as 

[}.dt). A common occurrence of this type of notation is enconn­
referring to matrix elements of the Hamiltonian in eq. (2.1). In 

this case, the matrix elements in the SCSF basis are independent of M, so 
it is convenient to refer to the energy associated with a state denoted by the 
quantum numbers {Jtl Jt . However, it is understood that this energy is 
associated with each of the 2Jt + 1 (degenerate) sublevels that are described 
by the additional quantum numbers {3t ,.It. As a different example, the con-

states or levels typically when considering some sort of summing 
or averaging process over quantities that depend on the more fundamental 
SCSFs or magnetic sublevels (sec, for example, eq. (3.14)). In this context 
we will sometimes refer to the initial and final or "levels" as if they 
can be described an explicit wave function. Technically, this is not true, 

it is a convenient terminology when properly understood. Furthermore, 
"states" are often referred to as SCSFs in this context, even though this us-

is technically incorrect because the labeling of these "states" does not 
the requisite magnetic quantum number associated with any SCSF. 

Once again, in this case, it is understood that we are referring to some quantity 
that was derived from SCSFs, but that is ultimately found to be independent 
of any magnetic quantum number. Thus, it is sufficient to simply specify the 
appropriate "state" quantum numbers, without providing a specific magnetic 
quantum number. \Vhen confusion may arise from these types of situations, 
we have attempted to provide a cautionary remark and refer the reader to 
explanatory note. 

Moving along to a consideration of the reduced matrix element, ({JtJt II p(l) 

J;,), we first discuss the case of ions with initially only empty or closed 
shells, addition to the active subshell, which is designated by subscript a. 
Since orbital wave functions entering the SCSF basis states are orthog­

and normalized to unity, p(I) is by eq. (3.7), one sees ­
non-vanishing matrix elements will occur only when the same electrons occur 
initially and finally in inactive, closed subshell. Of course, there 
many terms of this kind resulting from permutations of the electrons between 
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UL>l1CllL> due to the requirement of a completely antisymmetric 
wave function, but presence of these identical terms is exactly canceled by 
the normalization factors in the SCSFs. Thus, the form of the results for the 
matrix element is completely unaffected by the presence of closed subs hells 
of the inactive electrons. Hence, we hereafter the inactive subshells, 
except that, of course, they must be included in determining the central 
tential appearing in eqs. (2.9), (2.10) and (2. 
functions. 

closely 
for two equivalent electrons an 

is given 

1Jt[(nalaja)2JaA-l a I XIX2] L C(jajaTn l rn2; JaAta) 
1nl,ffi2 

X'Unal"ja?nl (3.18) 

Xi stands for 
(3. 

a a a Nl 
1Jt[(n l ja)3 J a IXIX2X~ ,.2J 1}'3 J ) L C(JdaMIm. ; J I'vla) 

a aL...."ha· 1 Ja a 
h I\h,ma 

x1Jt[(na la ja)2 J I , (3. 

of an function, it is 
completely antisymmetric in all three electrons due to the proper­

Clebsch-Gordan coefficients and the CFP. One can continue this 
procedure for any number of equivalent electrons, w. Thus, the completely 
antisymmetric wave function for w electrons in subshell a can be written 

1Jt Ja Nla I XIX2 ••• 

=L L 
J1,0:1 lYf] ,Ut(J, 

x XI X2" . 

the electrons are in the definite increasing order 1,2,3, ... ) W, but 
and Clebsch-Gordan coefficients maintain complete antisymmetry. Here, 

a:1 represents any additional quantum numbers, such as the seniority num­
bers, required to completely specify a state when there are several states 
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from j:;:-l configuration, with the same 11 value. An analogous 
statement applies for aa and j~' configuration. Of course, the functions 
given by eq. (3.20) are assumed to be orthogonal and normalized to 
which reauires the CFP to obey 

'WL (j:;:-l a1 } )a aa'J)a 1 I})'wd baaa~ . (3.21)1 a a 

JI,aI 


Labeling final upper (initially empty) subshell as n~l:lj~, one can write the 
final completely antisYIlnnetrized wave function in a form similar to eq. (3.20), 

with the following changes: (1) the CFP and summation over 11 and a1 

is omitted, (2) an orbital Un~l~j:Lrn;l replaCeSUn(Ll(dnrna 1 (~3) one must include an 
antisymmetrized sum over all the possible states with any of the w electrons 
transitioning to the subshell n;J~j~, and, (4) in order to have a normalized 

one must multiply by the factor 1/JW. The result is 

.T'[( l . )W-l "1" 'I' ., J' ~1,1 I
'±' na aJa aa ana aJa' t"v. t XIX2'" 


1 W
L(_l)W-P L C(l:j~.iVl:rn~; l;iVID 
p=l M::,rn~ 

,T'r( l')'W--IIIJ"~Jf"1x'±' n" "1,, aa' a"Y1o. XIX2'" Xp (Xp) ,(3.22) 

,T'[(. l . )w-l !ll"M" I ' . where the w - 1 electrons '±' na 'aJa aa a a XIX2 ..• Xp-lXp+l •.• 

are in the definite increasing order 1, 3, ... , w, with, of course, the p 
omitted. 

we use eqs. \.~).20) and (~3.22) as the initial and final states the reduced 
matrix element (f3tlt II p(l) II f3~1:). However, as noted previously, the 
tional filled subshells inactive electrons make no contribution. Hence, in the 
summation that appears in the expression for p(l) given by eq. (3.7), we can 
replace N with w. Also, in eq. (3.20) the replacements la ~ lt and l\1a ~ Mt 

be made. In addition, to the orthogonality of Dirac spinors, 
denoted by u, only term8 with the index i in eq. U~.8) equal to the index p 
in eq. (3.22) will contribute to the element. noted previously, even 
though the initial wave function given by eq. (3.20) all the electrons in 
the definite increasing order 1,2, ... , w, it is actually an antisymmetric function 
due to the properties of the CFP and the Clebsch-Gordan coefficients. Hence, 

evaluating lt II p(1) II ,BUD, one can permute the coordinates in the 
tial ion wave function such that they are in the same positions as the final ion 
wave function given by eq. (3.22) in determining the contribution of term 
in the summation over p. This procedure introduces a phase factor, (-l)11J P , 

exactly cancel8 the effect the similar pha8e factor in eq. (3.22). Then, 
sum over p yields w contributions, all with the same value. Using eq. (3.8) 

with N wand i p, one obtains the 
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({JtJt II p(l) II {J~J;) = y'W(nalaja I r I n~l~j~) 

x L (j;:,-la1 Jl 1}j;:'aaJa) 


Jl,Ql 

x / 'w-1 a1 J'1Ja Jt II C(l) II 'w-l aa"J"" J')t , (3.23)\Ja Ja aJa 

which separates into a product consisting of an angular part that can be 
evaluated using irreducible tensor techniques, and a radial integral given by 

(nalaja I r I n~l~j~) 
00 

= .I[Pnalaja(r)Pn~l~j~(r) + Qnalaja(r)Qn~l~j~(r)]rdr. (3.24) 
o 

As mentioned earlier, Jt has been used in place of Ja in the above angular 
matrix element. However, the substitution has not been made in the CFP, for 
reasons that will be made explicit below. 

In order to evaluate the angular part of eq. (3.23), we use eq. (C.90) of Messiah 
[7] to obtain 

/ ·w-l J' J II C(l) II ,w-1 "J"" J')\Ja a1 1Ja t Ja a 1 aJa t 

= r5QIQ~r5hJ{i( -lft+h+j~+1[(2Jt + 1)(2J; + 1)]1/2 

X{j; )1 ~} (ja II c(1) II j~) , (3.25) 

where { ...} represents a Wigner 6- j symbol and 

(ja II C(l) II j~) = (-1)1a+1/2[(2ja + 1)(2j~ + 1)]1/2 (t ~ ~~~). (3.26) 

Applying eq. (3.25) to eq. (3.23), we obtain 

({JtJt II p(l) II {J~J;) = y'W[(2Jt + 1)(2J~ + 1)]1/2(-If;+J::+j~ 


ja 1 j~ } ('w-l "J" I}'w J)

X { J' J" J Ja aa a Ja aa a 

t t t 

x(ja II C(l) II j~)(nalaja I r I n~l~j~). (3.27) 

In writing the phase factor in eq. (3.27), we replaced (_l)Jt+l with (-l)J;. 
This choice is obviously valid when Jt = J; ± 1. For the remaining case of 
Jt = J; (see eq. (3.16)), a factor of (-1) remains, but it will not contribute to 
the line strength, 5, given by eq. (3.14) because it will lead to an overall factor 
of ( -1) 2 = 1. Our reason for making this replacement is that our results then 
take on a form very similar to that obtained in chapter 4 for electron-impact 
excitation when the convenient factorization method of ref. [31] is used. 
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Also, addition to using .It = Ja in eq. (3.27), we have used .1;' .1:, 
.1;,' is the final total angular momentum of the core, which, when coupled 
to .j~, gives .I;. For the present case of initially filled or empty subshel1s, in 
addition to the active subshell, this choice is obviously valid. The reason we 
used .It in place of .la, and .1[' in place of J~', everywhere except in the CFP, 
is that when one considers more complex cases of additional partially filled 
s11b8he118, the form of eq. (3.27) remains unchanged, except for inclusion of 

from the presence of these extra 
were 

in [32]. However, eq. many 
of interest. 

We note that the weak selection rule mentioned in subsection 3.1.3 follows 
from the derivation of eq. (3.27). Specifically, a non-zero value is obtained 
only when the initial and final states are connected by a one-electron jump. 
However, as is apparent from eq. (3.17), this rule is strictly valid only when 

is no mixing. A useful form of the line strength, when becomes 
next. 

order to simplify the notation and make it similar to that used 
we let U l:ltJt and U' = l:l~J: for initial and final levels. Also, we 
13dt to indicate a pure SCSF state contributing to U, while S' 13;.1: indicates 
a pure SCSF state contributing to U'. (The omission of the magnetic quantum 
number in describing an SCSF is potentially confusing. See the explanatory 
note following eq. (3.17).) Thus, 

(3.28) 
S S' 

where the b's in eq. (3.28) are the mixing coefficients referred to as 
bJt(l:lt, (it) and bJ;(l:l~, 13;) in eq. (3.17). In addition, we let 

(US, U'S') = b(U, S)1(1)(S, S')b(U', S'), (3.29) 

(S, S') = [(2Jt + 1) 

j(l 1 } r:::.( '11)-1 /I J" I 


X { .I' .I" .1 y'W Ja aa' (l (3.30) 
t t t 

for more complex cases, extra angular factors will enter eq. (3.30), as men­
tioned previously. Alternatively, we note that it was unnecessary for us to 

values of f(1) S') for the most general case because we found 
d~.(l' (S, S') that is defined in 
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Thus, these coefficients are readily available, in complete generality, from the 
MeT module of the Grant code. 

Applying eq. (3.29) to eqs. (3.27) and (3.17) yields the expression 

(f:j.tJt II p(1) II f:j.~J;) (U II p(1) II U' ) 
= L F(1) (U 5, U'5')L~S(nalaja, n~l~j~) , (3.31) 

S,S' 

where 

L~ = (nalaja I r I n~l~j~) (ja II C(l) II j~) (3.32) 

in which (nalaja I r I n~l~j~) and (ja II C(l) II j~) are given by eqs. (3.24) and 
(3.26). (The "ps" superscript and "H" subscript denote a pseudo-hydrogenic 
quantity that will be explained in more detail in the upcoming subsection 3.2.1.) 
Applying eq. (3.31) to eq. (3.14) for the line strength, we obtain 

5(U U' ) = "" B(l) (U 55 . U' 5 '5 ' ), ~ ,1" 1 
S,S' 

Sl ,S~ 

L PS ( l' 'l' ")LPS( l' 'l"')X H na aJa, na aJa H nal alJal' nal alJal ' (3.33) 

where 

B(l) = F(1)(U5, U'5 ' )F(1)(U51, U{5~). (3.34) 

It is interesting to note that B(l) is a special case of the quantity BA (with 
).. = 1) that appears in the expression for the excitation collision strength to be 
obtained in chapter 4. For the case of transitions between magnetic sublevels, 
eq. (3.33) is easily generalized. In particular, the right-hand side of eq. (3.33) 
must be multiplied by the factor 

Jt 1 J; )2 (3.35)( -Mt q M't 

and it is understood that the state summation indices, as well as the level 
indices U and U' , each contain a valid magnetic quantum number. As stated 
previously, there is no need to include a summation over q, since its value is 
fixed for given values of M t and M;. (See the discussion immediately following 
eq. (3.13).) 

33 




3.2.1 Special simple cases 

Among the several cases for which there are no partially Hlled subshells, in 
addition to the active one, in the initial state, so that no extra angular factors 

eq. (3.30), there are two of particular interest for which j{l) becomes 
are: (1) 

contains a single electron, and (2) the case in which active subshe11 is 
initially Hlled. For case (1), which applies to hydrogenic ions and transitions 
involving the valence electron outside of a closed shell, such as in Li-like and 
Na-like ions, J:' 0 and, consequently, the 6-j symbol eq. (3.30) becomes 

ja 1 ja Jt O} lyu·,JtTl 8Jt}a8.JU~ 

{ } {
J't o Jt J[ j~ 1 [(2Jt + 1)(2J; + 1)]1/2 . 

Also, since both wand the CFP are equal to one, j(l) reduces to (_I)}a+ 3j:,+1. 
Moreover, no mixing can occur for hydrogenic ions or for the alkali-like ions, 

one considers mixing only among the states in a complex 
is active. Therefore, the quadruple sum eq. 

to a single term and the square of j(l), which is equal to one, enters 
final expression for the line strength. Consequently, the factor B(l) = 1 and 
eq. (3.33) reduces to the expression for the pseudo-hydrogenic line strength 

(3.37) 

The corresponding oscillator is given by 

6E 
j PS(. l' 'I' ") ( I' '1' ")2 (3.38)H na·a)a, na a.7a = 3(2ja + 1) n a·a.7a, na a.7a . 

is precIsely ttle IOrm ttlat one 
diative transitions in hydrogenic Of course, 
functions used determining must be obtained from the approximate 
tential displayed in eq. (2.18) that includes the electron-electron contribution, 
rather than just the pure -2Z/T Coulomb potential due to the nucleus, which 
applies to hydrogenic ions. That is why the superscript "ps" (for pseudo) has 

to auantitv L H . 

Next, we consider the second case, which applies to 
like ions. These ion stages arc important in plasma applications 
each onc tends to be the dominant stage of ionization over a wide 
temperatures. For this situation, the CFP is again unity. Also, Jt = 0 so that 
the 6-j symbol in eq. (3.30) reduces to 

http:8Jt}a8.JU


1 .1~' O} = (-1 )ja+J;+j~ 
(3.:39){ .1{ J" o } = { .1{ 1 j~ [(2.1; + 1)(2ja< t 

Thus, eq. (3.30) becomes 

1 

final form applies w = 2ja + 1 for a filled subshell, and 
ja has substituted for .1:', according to eq. (3.39). One can ignore 
phase factor (_1)21;, which must be equal to one, because .1; = 1 due to 
the selection rule in eq. (3.16). Similarly, since ja and j~ are half integers, 
the phase factor 1?(ja+j~) is also equal to one. Finally, it is usually a good 
approximation to omit mixing for closed-shell ground states, specifically 
for highly ions, so that there is mixing only the upper states. 

eqs. 

S(U, U') b(U', S')b(U', SU 
S',S~ 

L Ps ( l' , l' ") LPs ( [. , [' ., )
X H na 'aJa, na aJa H nal alJal' nal a)Jal . (3.41) 

In the present case, the statistical weight 9i in eq. (3.3) is 2.1t + 1 = 1. Hence, 
ignored the upper states, the corresponding os­

eq. 

It may seem odd that different orbitals for the lower state enter into eq. (3.41), 
when there is no mixing included in the lower level. However, this notation 
takes into account the possibility that an electron jump may occur from dif­
ferent subshells in the ground-state wave function, depending on the amount 

mixing included among the upper states. As a simple illustration, when 
n 2 to 3 transitions the ground state of Ne-like ions, it is 

---t 38 and ---t 3s to con­
tribute to a particular fine-structure transition, if mixing is included among 
the IS22s22Plj22pjj23s and 1s22s22pij22p~j2:3s configurations. In these cases, 
the particular lower orbital that appears in the argument of is fixed by 
the upper orbital, in concert with the fixed .1;-value of unity, plus the fixed 
odd parity of the upper level. 

3. case 

For configuration-average transitions, we consider an electron jump from sub­
shell a: of configuration c to subshell (3 of configuration c' \Ve write this 
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transition symbolic 

(naKaJ'Wr> 	 ... ---'t 

(n,'IK~')' rVJ .... 

multitude of fine-structure transitions that can arise from eq. (3.42) is 
sometimes referred to as a "transition array". Analogous to the discussion 
section 2.6, the most general expression for the configuration-average V"'~HlU 
strength, or line strength, would include an average over all of the correspond­

fine-structure values that comprise the transition array. In this case, the 
presence of mixing coefficients is not so problematic due to 
powerful line-strength sum rules and, in theory, an expression 
tained in terms of more fundamental quantities when an arbitrary amount of 

is considered. (See, for example, pp. 423--424 of ref. [8].) However, here we 
limit the discussion to single-configuration approximation, which 
in the so-called "array oscillator strength" . It is most convenient to with 
the line strength, rather than the oscillator strength, because the expression 

the line strength does not explicitly contain the transition energy. The 
ence of the transition energy, which can be different for each SCSF 
that comprises the array, further complicates the averaging process. 

Thus, we write the formal expression for the configuration-average line 
between configurations e and e' as 

Sc-c' =I: I: Si-j , 
iEc jEd 

is the line strength for the transition between two pure SCSFs 
labeled i and j. Note that outer and inner summations consider 
those SCSFs that arise from configuratioIL'l e and e' , respectively. After some 
manipulation eq. (3.4:3) can be simplified according to 

~ 	 wa.9/~ (wp l)S~S(nalaja,'flljlr,jp)
Sc-c' .9c.9a .9r3 

PS( l ....'::::.:~~~:-:--~,\ SH na 'aJeo 

is the pseudo-hydrogenic line strength given by eq. (3.37), .9a = 
+ 1 is the statistical weight of sllbshell a (with a similar expression for 

and 	.9c is statistical weight of configuration c. A detailed expression for 
quantity is given by 

(2ja + 1)! 

.9c g(2ja + 1 - wa)!wa! ' 
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the is over each open subshe11 0:, contains Wo; electrons. 

In order to obtain an expression for the configuration-average oscillator 
we must make the additional approximation that the energy associated with 
each SCSF transition in the transition aITay is approximately equal to the 
configuration-average transition 6.Ee- e, Ee , where the energy 
associated with a particular configuration is given by eq. (2.33a). Then, 
the use of (3.3), the configuration-average oscillator strength can be 
as 

1 
fc-e' L 9di-j/ge = :3L 6.Ei - j S i - j 


iEe jEe' ge iEc jEe' 


c 6.Ec-d
'" 6.E

e
- ' L L Si-j 39(; (3.46) 

~ ;39c iEc jEe' 

Thus, the relationship between the configuration-average oscillator strength 
and corresponding line strength is formally identical to the relationship 
tween the fine-structure (or SCSF) quantities, as given by eq. (3.3) With 
the use of eqs. (3.37), (3.38) and (3.44), the configuration-average oscillator 

can be expressed in the useful form 

fe-c' (nO;lO;jO;' n{3l{3j{3) , (3.47) 

f~~ is the pseudo-hydrogenic oscillator strength given by eq. (3.38). 
It is easily verified that, for hydrogenic ions (i.e. when WO; wj3 = 

the configuration-average oscillator strength reduces to the correct hydro­
genic expression. We also note that eq. (3.47) is the relativistic analog of 

configuration-average expression given by Peyrusse [28] and by Cowan 
eq. (14.97) 

3.3 Some comparisons oscillator strengths 

In table 3, a sample comparison, taken from ref. [1], is made between oscillator 
strengths obtained in various ways for transitions from the ground level to 
the n = 3 levels in Ne-like ions. The notation is the same as 

1 of section which compared energies of excited levels 
level in Ne-like uraniuIIl. However, are a few 

in the oscillator strength table. The HBS values were 
crude approximation of non-relativistic hydrogenic states. However, this 
approximation is seen to give fairly good results for Z 26. The R were 

by Reed [35] using the fully relativistic program of Hagelstein and 
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Table 3 
Comparison of oscillator strengths for transitions from the ground level to certain 

excited levels in neon-like ions. The notation is as in table 1 of section 2.4, except 

that HBS indicates results using hydrogenic basis states and R indicates results ob­

tained by Reed [35] using the relativistic program of Hagelstein and Jung [36]. Also 

G, G* and G** are results obtained with the Grant code [6,11] without retardation, 

with retardation, and with retardation plus the generalized Breit interaction, other 

QED corrections and finite nuclear size, respectively. 

Z =26 
(2p3sh (2p*3sh (2p3d*h (2p3d)) (2p*3d*h (2s3p*) ) (2s3p)J 

~~ 0.1093 
0.1081 

0.0919 
0.0922 

0.0097 
0.0098 

0.6140 
0.5900 

2.5325 
2.5516 

0.0369 
0.0358 

0.2875 
0.2880 

FR' 0.1102 0.0937 0.0099 0.6095 2.5514 0.0358 0.2868 
G 
G' 
G" 

0.1051 
0.1051 
0.1047 

0.0890 
0.0888 
0.0896 

0.0076 
0.0074 
0.0072 

0.6049 
0.6036 
0.5900 

2.3779 
2.3743 
2.3844 

0.0342 
0.0343 
0.0337 

0.2648 
0.2642 
0.2638 

HFR 0.121 0.103 0.010 0.682 2.582 0.039 0.322 
HBS 0.116 0.099 0.010 0.659 2.651 0.041 0.344 

Z =47 
(2p3sh (2p*3sh (2p3d*h (2p3dh (2p*3d*) ) (2s3p*)) (2s3p)J 

0.1262 0.1010 0.0003 2.0531 1.5905 0.1214 0.3273 ~~ 0.1239 0.0971 0.0001 2.0460 1.5797 0.1210 0.3253 
FR' 0.1250 0.0978 0.0001 2.0557 1.5828 0.1207 0.3248 
G 0.1223 0.0957 0.0003 2.0013 1.5491 0.1165 0.3132 
G' 0.1222 0.0947 0.0004 1.9839 1.5420 0.1166 0.3097 
G" 0.1232 0.0947 0.0005 1.9897 1.5305 0.1166 0.3050 
HFR 0.1238 0.1156 0.0005 2.0336 1.6826 0.1084 0.3647 

Z =56 
(2p3sh (2p*3sh (2p3d*h (2p3dh (2p*3d*h (2s3p*)) (2s3p)J 

0.1304 0.0066 2.3117 0.0214 1.4733 0.1083 0.3268 ~~ 0.1268 0.0057 2.2688 0.0534 1.4477 0.1128 0.3232 
FR' 0.1278 0.0058 2.2798 0.0508 1.4511 0.1123 0.3229 
G 0.1256 0.0065 2.2320 0.0457 1.4299 0.1086 0.3138 
G' 0.1254 0.0073 2.2026 0.0452 1.4208 0.1088 0.3084
G** 0.1267 0.0083 2.1624 0.0897 1.4068 0.1114 0.3025 
R 0.1369 0.0068 2.326 0.0564 1.475 0.1050 0.3121 
HFR 0.1217 0.0079 2.2865 0.0000 1.6042 0.0867 0.3744 

Z =74 
(2p3s)J (2p*3sh (2p3d*h (2p3dh (2p*3d*)J (2s3p*)) (2s3p)J 

~~ 0.1527 
0.1451 

0.0640 
0.0599 

2.3918 
2.3787 

0.0280 
0.0266 

0.3962 
0.4196 

1.0370 
0.9725 

0.2899 
0.2829 

FR' 0.1460 0.0603 2.3847 0.0269 0.4186 0.9759 0.2826 
G 
G' 
G** 

0.1441 
0.1441 
0.1456 

0.0611 
0.0648 
0.0704 

2.3413 
2.2827 
2.2783 

0.0269 
0.0260 
0.0256 

0.4081 
0.4068 
0.4809 

0.9726 
0.9600 
0.8756 

0.2722 
0.2676 
0.2609 

HFR 0.127 0.064 2.225 0.062 0.306 1.319 0.364 
HBS 0.078 0.065 2.474 0.028 0.802 1.047 0.534 

Z =92 
(2p3sh (2p*3sh (2p3d*)J (2p3d)J (2p*3d*h (2s3p*)) (2s3p)J 

~~ 0.2045 
0.1893 

0.1297 
0.1197 

2.3564 
2.3393 

0.0306 
0.0287 

0.2985 
0.2768 

0.9947 
0.9517 

0.2143 
0.2041 

FR' 0.1902 0.1202 2.3445 0.0289 0.2768 0.9535 0.2039 
G 
G' 
G" 

0.1878 
0.1886 
0.1895 

0.1202 
0.1271 
0.1356 

2.3087 
2.2143 
2.2020 

0.0288 
0.0272 
0.0268 

0.2725 
0.2725 
0.2775 

0.9498 
0.9299 
0.9177 

0.2012 
0.1882 
0.1834 

HFR 0.1496 0.1167 2.0645 0.0928 0.1851 1.4323 0.3187 

Jung [36]. This code includes the Breit interaction plus other QED corrections 

and a finite nuclear size. 

Also, some further clarification on the differences between the G, G* and G** 

data is required. These values were all obtained using the "average level" ap­

proximation of the Grant code [6,11,25]. As mentioned previously, the G** 
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values include the effects of the Breit interaction, QED cor­
rections and a finite nuclear size. When considering oscillator strengths, the 
G* and G** entries also contain the effect ofretardation, while the G entries do 
not. Analogous to the previous description associated with the Breit interac­
tion, this effect into account the delay the electromagnetic interaction 
between the uhoton and the transitioning bound due to 

contains a 
where k).. is the photon wave vector. When the photon wavelength is much 
larger than r i) this factor can be expanded in powers of (k).. . r i), and retention 
of the lowest-order surviving term produces the unretarded dipole oscillator 
strength, which becomes less accurate for increasing values of Z. The reten­
tion of the complete exponential allows a consideration of higher-order 

with the effect of retardation r5.371. A more 
to 

One sees that the effect of retardation is small in all cases covered by table 3, 
but, as expected, it is generally seen to be more important for large values of Z. 
All of the results in table 3 are generally quite close agreement, except that 
the RFR and RBS values differ appreciably from the other results for some 
transitions where Z is very large. Presumably, this discrepancy is largely due to 

is 
the agreement between FR, FR* and G results improves with increasing 

while that between QR and FR results improves with decreasing The 
former is expected because the difference in the physics of the FR, FR* and 
G calculations is solely in the treatment of the electron-electron contribution 
vee(r) to the central potential. Since veeCr) becomes smaller to the 

contribution as increases, the on f values as Z 
course, quasi-relativistic approximations made the QR 

discussed near the end of section increase in significance as Z 
and relativistic effects become more important. Thus, one expects 

difference between QR and FR results to increase with Z. Nevertheless, 
one sees that, even for Z = 92, the QR results for oscillator strengths appear 
to be quite good. 

One case in which 

56. \Vhen the upper level of a weak transition lies close in to 
upper level of one or more strong transitions with which it can mix, as in 

this case) slight differences in the method of calculation can sufficiently affect 
the mixing of the level to provide an appreciable change in the f value for 

weak transition. The principal reason for the difference in results for this 
transition appears to be the inclusion of the generalized Breit interaction 
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calculations. 

3.4 	 Inclw:;ion oj the generalized interaction other corrections zn 
calculating oscillator 

The necessity to include the generalized Breit interaction (see 2.5) in 
order to obtain more accurate results for oscillator strengths of weak transi­

high-Z ions became very clear when we considered the much more 
complex case of F-like ions in ref. [38]. Before doing large-scale calculations 
for a wide range of Z values, we generally do some preliminary checks. In 
ref. [38], results for and J values for the n 2 to n = 3 transitions for 
F-like ions, with Z = 31 and 92, were compared with other work. For our FR 
calculations, the mean configuration used in determining the central potential 
described by eqs. (2.18)~(2.20) was 

1s22s1.9 2p1.9 2 2.7 3s0.1 3pO.l 3 0.1 3do.1 3dO.1 	 (3.48)1/2 	 1/2 P3/2 1/2 1/2 P3/2 3/2 . 5/2 . 

agreement, associated J values energies, that was obtained 
comparing results determined from various relativistic codes and experiment 
was generally very good Z = 31. Z = 92, we could only com par-

results obtained from the code. In case the G, and G** 
were obtained with newer, more efficient version of the Grant code 
GRASP [25]. Good agreement was found between our FR results 

but somewhat worse agreement was found between our FR 
results for many of the weak transitions. Although inclusion of re­

tardation had some effect, much of the discrepancy was traced to the effect on 
mixing coefficients due to inclusion of the generalized Breit interaction in the 
G** results. This discrepancy provided the original motivation for including 
the generalized Breit interaction plus other QED corrections, a finite nuclear 
size and retardation in performing large-scale calculations for high-Z 
ions. The implementation of all but the retardation correction was described 
previously in section 2.5. In the context of computing oscillator strengths, 
finite nuclear option produced very little effect on this quantity, but can 
significantly alter the energy associated with a particular level for very high-Z 
values. 

retardation, we included this effect when calculating \J","HlaC\J~ 
computing results in the Babushkin [;37,39], 

length form in the non-relativistic limit. Specifically, in to include the 
effect of retardation, radial in eq. (3.24) should be replaced with 

(nalaJa I r 	 {J1+ [(Ka Kat )/2]Ii + (3.49) 

http:2.18)~(2.20


where k>.. is the wavenumber of the photon and 

(Xl 

Ii' = 	 J [PnalajJr)Qn~l~j~ (r) ± QnalajJr)Pn~l~jdr)]j2(k>..r) dr (3.50a) 
o 
(Xl 

J1 = 	 J[Pnalaja(r)Pn~l~jdr) + QnalajJr)Qn~l~jdr)]j1(k>..r) dr. (3.50b) 
o 

The function jdk>..r) is the spherical Bessel function of order L, which can be 
expanded for small arguments according to 

ZL 
jL(Z) f~T ,\,,+ ... , (3.51) 

where!! denotes the double factorial, which contains products of only even, or 
odd, positive integers. Using this expansion in eq. (3.49), and retaining only 
the lowest-order term, which is of O(k>..r), reproduces the unretarded integral 
in eq. (3.24). 

A comparison of oscillator strengths and transition energies that were calcu­
lated with the above improvements is presented in table 4 for F -like ions. The 
notation used in labeling the levels can be found in ref. [38], along with a 
more complete set of tables. With the inclusion of all these additions to our 
program, we obtained very good agreement with the Grant code for oscillator 
strengths for n = 2 to n = 3 transitions in F-like ions with Z = 92, as well 
as 34. Also, the agreement for transition energies was typically within about 
2 or 3 eV, except for transitions to n = 3 levels involving a 3s or 2s electron, 
for which the discrepancies for Z = 92 were typically about 8 eV or 40 eV, 
respectively. However, even in the worst cases, the discrepancy in transition 
energies was only about 0.38%. As in the discussion of energies for neon-like 
ions in section 2.4, we attribute these discrepancies for transitions involving 
s orbitals to numerical imprecision, occurring at small values of r and due 
to our use of a linear grid in solving for the radial functions. This behavior 
can likely be eliminated by using a logarithmic grid. However, it appears that 
this inaccuracy has a negligible effect on line strengths and collision strengths, 
which was confirmed, for example, by the fact that we were able to reproduce 
exactly Grant's hydrogenic line strengths for Z = 90, even for the 1s-2p1/2 and 
1s-2p3/2 transitions, to within 1%. On the other hand, for L::m = 0 transitions, 
where the transition energy can be very small, and hence the percentage er­
ror larger, we have used energies provided by the Grant code. This approach 
added little time to collision strength calculations because the atomic struc­
ture part of such calculations, even with the slower Grant code, required only 
a small portion of the total run time. 
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Table 4 
Comparison of our transition energies and oscillator strengths, computed with 
various options, those obtained with the Grant code (labeled "Grant") 
selected from the ground level (AI) in F-like ions with Z = 34 and 92. 

in ref. 
th nonE 

respectively. 

, 

In 

~E(eV) f 
1 2 Grant 1 2 3 

Z=34 

Al D1 1519.5 1518.4 1516.6 0.0129 0.0128 0.0128 0.0124 
Al - D2 1545.8 1543.8 1541.8 0.0125 0.0127 0.0127 0.0122 
Al - D3 1604.1 1601.4 1599.5 0.0010 0.0011 0.0011 0.0011 
Al - D4 1615.1 161aA 1611.6 0.0022 0.0020 0.0020 0.0022 
Al - D5 1623.2 1621.2 16] 9.4 0.0851 0.0847 0.0845 0.0818 
Al - D7 1672.6 1669.6 1667.8 0.2031 0.2031 0.2028 0.1986 
Al 1505.6 1504.0 1501.9 0.0615 0.0619 0.0618 0.0599 
Al 1542.0 1540.0 1537.9 0.0159 0.0160 0.0160 0.0156 
Al 1556.8 1554.2 1552.1 0.0042 0.0040 0.0040 0.0039 
A1­ 1613.4 1611.8 1609.7 0.0002 0.000] 0.0001 0.0001 
Al 1626.9 1625.1 1623.0 0.1672 0.175 ] 0.] 739 0.1719 
Al 1656.3 1653.9 1651.8 0.0130 0.0117 0.0117 0.0117 
Al 1663.4 1660.7 1658.7 0.0042 0.003] 0.0031 0.0033 
Al 1500.8 1499.2 1497.1 0.0093 0.0091 0.0091 0.0088 
Al 1555.4 1552.8 1550.7 0.0447 0.0450 0.0448 0.0440 
Al F3 1613.3 1611.4 1609.3 0.0002 0.0001 0.0001 0.0001 
Al 1630.4 1628.4 1626.3 0.3552 0.3703 0.3688 0.3646 
Al 1638.5 1636.9 1634.8 0.2585 0.2402 0.2390 0.2316 
Al F6 1661.1 1658.5 1656.4 0.0979 0.1032 0.1030 0.1016 
Al 1662.7 1660.1 1658.0 0.2069 0.1977 0.1971 0.1957 
Al 1673.1 1670.1 1668.0 0.0319 0.0331 0.0329 0.0328 

Z=92 

D1 13134 13127 1a136 0.0239 0.0240 0.0240 0.0236 
D2 14599 14599 14598 0.0520 0.0528 0.0545 

A1- D3 14859 14813 14811 0.1003 0.0994 0.0953 0.0942 
A1­ 17050 16986 16994 
Al D5 18008 17927 17890 
Al - D7 18623 18527 18524 
Al EI 13075 13051 13059 
Al 14588 14553 14551 
Al 14666 14641 14639 0.0119 0.0120 0.0127 0.0126 
Al 14893 14846 14843 0.5381 0.5369 0.5143 0.5081 
Al - 17036 16972 16980 0.0047 0.0045 0.0042 0.0041 
Al E7 17895 17811 17773 0.0~3:38 0.0355 0.0355 0.0349 
Al - E8 18011 17928 17890 0.0580 0.0580 0.0580 0.0568 
Al - F1 13061 13036 13044 0.0234 0.0236 0.0237 0.0232 
Al - F2 14598 14554 14552 0.0453 0.0491 0.0516 0.0512 
Al - F3 14892 14845 14842 0.5780 0.6978 0.6686 0.6643 
Al - F4 14931 14898 14896 0.5294 0.4051 0.3880 0.3836 
Al - F5 17072 16991 16998 0.0145 0.0144 0.0136 0.0133 
Al - F6 17902 17810 17771 0.1395 0.1414 0.1415 0.1388 
Al - F7 18586 18499 18496 0.1258 0.1140 0.1116 0.1126 
Al - F8 18629 18529 18526 0.3562 0.3618 0.3541 0.3535 

0.0934 0.0939 
0.0080 
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4 Electron-impact excitation cross sections and collision strengths 

4.1 Geneml features 

Before going into the details of our relativistic distorted-wave approach that 
was developed in ref. [40J for the rapid calculation of cross sections for exci­
tation of highly charged ions, we give some general features of the relativistic 
distorted-wave method. It is convenient to express the cross section Q( i 1) 
(in units of a6) for a transition i f in terms of the (dimensionless) collision 
strength O(i - f) bv the 

Q(i ­ = 
11 

k2g 
i 
n(i 1). (4.1 ) 

Here, k is the relativistic wavenumber of the impact electron and gi is the 
statistical weight of initial level of N -electron ion. The relation between 
k E is 

k2 = ( 4.2) + 4 

where Q is the fine-structure constant e2 /(/'ic) and E is in Rydbergs. As written, 
(4.1) is of a form that applies to transitions between configurations, 

were 
in chapter 3. Thus, we will consider here transitions from level i = 6. t it to 
level f = 6.~J:. The configuration-average case will be discussed at the end of 
this chapter, while a treatment of transitions between magnetic sublevels is 
reserved for chapter 9. 

cross sect !OIl or 
in terms of matrix ele­

ments iIlvolving the initial and final wave functions that represent the (N +1)­
electron systems formed by the incident electron and the initial ion, and by 
the scattered electron and the final ion. Appropriate expressions for the ion 
wave functions were previously described in chapter 3. On the other hand, the 
free-electron wave are represented as an expansion over an infinite 

to the 

case, tne cross sectIon or collISIOn strength is often expressed terms 
transmission matrix, denoted by T. For example, the collision strength can be 
written in the nonspecific form 
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2n=~I)2J+l) (4.3) 

T represents a particular element of the T matrix. The T matrix can 
alternatively be expressed in terms of the reactance matrix, denoted by R, 
which is commonly used in distorted-wave theory. the highly charged 
ions of interest in the present work, the reactance matrix elements associated 

these system wave functions are sufficiently small that unitarization is 
unnecessary. In this case, the relation between T and R reduces to 

- 2iR '" _ 2iR 
T = 1- 2iR 

and the collision can be as 

n = 2L:(2J + 1) 

precise form of the reactance matrix elements will be provided shortly. 
the moment, we consider a more specific form of eq. (4.5) provides an 

expression for the relativistic distorted-wave collision strength for a transition 
between fine-structure 

)1 2 
N+l 1 In(LltJt-Ll~J;,) 8~(2J+1)EI(Wil ~ Tpq wf , (4.6) 

which can be obtained, for example, from first-order time-dependent 
tion theory. \Ve first note that an extra factor of four appears in this formula, 

to other expressions that one might encounter in the literature, such 
as eq. (4.5), due to the use of Rydberg atomic units. With this choice of 
distances are in units of the Bohr radius and energies Rydbergs, so 
electron-electron interaction is 2/1'pq , analogous to 2/Tij eq. (2'L ,. 

As for the physical quantities in eq. (4.(j) , I'\, and 1'\,' are initial and 
nal relativistic quantum numbers that represent the partial waves associated 
with the incident and scattered electrons, respectively. We have employed the 
customary practice of using unsubscripted quantum numbers to describe the 
free electrons. Thus, I'\, is related to the orbital and total angular momentum 
quantum numbers I and j for the incident free electron according to (2.8). 

the quantum-number 

·f if 1 . f (If 1 ) .f If 11'\,' = l' , J = . - 2' I'\, =- + ,J +2 ( 4.7) 

to the scattered free electron. The symbol J refers the total angular 
momentum of the complete (IV + I)-electron system that is formed by coupling 
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Jt of the initial ion with} of the incident electron, or J; of the final ion 
}' of scattered electron. The resulting value of J must be the same both 
cases in order for the matrix element in eq. (4.6) to be non-zero. The Wi and 
WI in eq. (4.6) are the initial and final antisymmetric wave functions for the 

(N + I)-electron system consisting of the target ion plus a free electron. 
For example, 

1 NH 
--~ :L:> I)N+l-1) .L C(Jd lv1tm; 

p=l Mt,m 

X WL::..t }t A1t (:1:; 1 (4.8) 

with an analogous expression applying for wI in which .6.~, J{, 1\I1I, (', [I, land 
m' replace the corresponding unprimed quantities. Here, as in chapter 3, 
designates the space and spin coordinates of electron p, while x; 1 means the 
space and spin coordinates of all N electrons other than p. The WL::..dtMt and 
WL::..~J~M: are the initial and final target-ion wave functions of kind given 
byeq. (2.11), and in more detail in chapter 3. Of course, .6.t , Jt1 lv1tJ .6.~, J; 
and 1\11: have the same meaning as in chapter 3. The Udjm in eq. (4.8) is the 
distorted-wave Dirac spinor or orbital for a free electron in a central potential 
V(r) due to the target ion. In particular, analogous to eq. (2.6) for a bound 
electron, 

1 [ FEK XKm(8,¢,0') ] 
UEljm(x) = (4.9)

= r iQE/;:(r) X-Km(8, ¢, 0') ) 

where XKm are the usual spin-angular functions given by eq. (2.7), and 
large and small components FEK and QCK satisfy the coupled Dirac equations 

= ~[( QCK (4. 

[~ - ~JQ(K(r) = arc 11)
dr T 2 

expressions are similar to eqs. (2.9) and (2.10) for bonnd electrons, 
except that ( is positive and is the kinetic energy of the electron in Rydbergs 
when T 00. The numerical procedures we use in solving these equations for 
the radial functions will be discussed in detail in section 4.5. 

As stated previously, the distorted-wave collision strength is often expressed 
terms of the reactance matrix elements, 
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n(~t - ~~ =22J2J 1) L IR(~tJtdj.1; ~~.1:c'l'j'J)12, ( 4.12) 
J 

which is an alternative form of eq. (4.6), and a more explicit form of eq. (4.5) 
applied to transitions between fine-structure levels. In general, the initial and 

wave functions associated with the fine-structure levels of the ion are 
each mixtures of the wave functions for pure SCSF states with the same total 
angular momentum and parity, as in eq. (2.11). It is convenient to express the 
reactance matrix in terms of a pure-state representation 

R(~tJtdjJ; ~~.1:c'l'j'J) = L bJt(~t,(3t)bJ:(~~, 
't,t3~ 

xR(f3tJtdjJ; f3~J:c'l'j'.1), (4.13) 

where the additional symbols have the same meanings as in chapter 3. (See, 
for example, eq. (3.17).) The reactance matrix has a direct and an exchange 
part 

R=Rd-Re , (4. 

for which detailed matrix elements can be written as 

Rd(f3t.!ttl.i.1; f3~.1:c'l'j'J) = 2 L C(JtjMtrn; .1A1)C(J{j'M:rn'; .1A1) 

x I dXl I dX2' .. I \Ifbtl t l\;1t )'U!ljm(Xi) 

\IfI)~.J:M; (Xi) (4.15) 

and 

Re Ct3t.1t djJ; f3;.1;c'l'j'J) = 2N L C(Jt.jA1t rn; JivJ)C(J{j'lvf;rn'; JA1) 

1xl I dX2'" I dXN+l 

~ ] \If i3;J;M: (xjl )Ucllljlmi (Xj) , .i =f. i. (4.16) 

only the single term with q = j can contribute to the exchange 
contribution due to the orthogonality of the u spinors. 

A word should be said about how eqs. (4.12) (4.16) follow from eqs. (4.6) 
(4.8). In particular, one might question how the normalization factor 
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2 

(N It- l / 2 in eq. 
wave function, Wf' were removed, 

, one starts 
and 

which IA:LllCC:10 

+ 1)-1/2, and to 
of the N non-vanishing matrix elements 

obtain a non-vanishing matrix element 
between the electron in the final active orbital 

free (scattered) orbital. There are N such terms, 
with an extra factor of 1 due to the permutation of two electrons, which 

leads to eq. (4.16) and the minus sign in eq. (4.14). 

Now we turn to a discussion of our particular approach to electron-impact 
excitation between fine-structure levels. Descriptions are provided for two ver­
sions of our collision strength program that contain the same physics, but the 
angular portion of the calculations is performed in different ways. For treating 
a single ion, with a definite Z value, there is usually little difference in the 
speed in calculating the radial part by the two procedures. However, the sec­
ond version, which will be described in detail, requires less computing time 
the angular part of the calculation (especially for the 6.n = 0 transitions), and 
has an added advantage. Specifically, it can treat a given class of 
simultaneously for all of an iso-electronic sequence for which our 
valid, i.e. for ions having a value of 92, down to a value 
than Z = 2N. Hence, the second Drocedur 

1 of our pmgram: non-factorized 

From inspection, Wi byeq. (4.8) has the same form as the wave func­
tion for an (N + 1 )-electron ion with an N -electron core and a single electron 
in a very high subshell. An analogous statement applies for Wf. Thus, as far 
as the angular part is concerned, the matrix elements appearing in eq. (4.6), 
or more precisely those in (4.15) and (4.16), are of the same form as those 
occurring in atomic structure calculations for an (N + I)-electron ion when 
determining the off-diagonal matrix elements of the electron-electron electro­
static interaction prior to diagonalization of the Hamiltonian. Therefore, in 



evaluating the right-hand side of eq. (4.6) we simply used the angular part 
of the Grant code [6], except that a few modifications had to be made, 
as allowing the outer electron (free electron in our case) to have much larger 
angular momenta than occur in ordinary atomic structure calculations. Also, 

radial part is similar to that of atomic structure calculations and takes the 
form of Slater integrals similar to eq. (2.1;3). Specifically, there are 
terms 

DA 'l' ., 'l' "),na aJaE J 
00 00 

j j[PnalaJa )Pn~l~j~ (r'd + Qnalaja (Tl) ] 
o 0 

1'A 
x~< [P1' A+1 dj

> 
('{"2) + (T2)Qo'[']' dTl d1'2 

"exchange" terms 

- l - , l' -, 'l' ")(na laJa E J; na aJaE . J = 
00 

j[~l.alaja (Tr) + )Q€lll]'(1'dJ 
o 

x [Ptlj (1'2) (1'2) + Qdj (1'2)] ,(4.18) 

where, as chapter 3, T < ) is the lesser (greater) of '['I and '['2. \Ve note 

that occur in version 2 of our program. 


In the evaluation of eq. (4.6), or, equivalently, eqs. (4.12)~(4.16), it is 

that all orbitals, bound free, are orthogonal. This quality, and a com­

pletely consistent treatment of exchange between bound and free electrons, 

are automatically achieved in present approach because the central poten­

used in eqs. (4.10) and (4.11) is exactly the same as that in eqs. (2.9) 
and (2.10) for the bound electrons. That is, we use the same Dirac-Fock-Slater 
potential given by eqs. 18) (2.20), coupled with the use of a mean configu­
ration, such as that given by eq. (2.21) for neon-like ions, to obtain the radial 
functions for both bound and free electrons. This approach, as well as the 
numerical procedures we use to calculate the radial functions, is the same 
both versions of our collision strength program. These numerical procedures 
will be described in detail in section 
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S Version 2 our collision strength pTOgmm: the factoT'lzation method 

Bar-Shalom, Klapisch and Oreg [31] showed how the relativistic distorted­
wave approach for highly charged ions could be expressed in a factorized form 
(sec eq. (4.31) below) and used this approach to simplify the angular 
the calculations for complex cases. One such application is to the 

between excited levels of neon-like and nickel-like ions, where the 
angular part of the calculation becomes very in a conventional treatment. 

addition to that advantage of the factorization method, we realized 
ref. [40]) that it is very convenient calculating simultaneously the cross 
sections for a given class of transitions many members of an iso-electronic 
sequence. In fact, we have used method for all Z values within the expected 
range of validity of our approach. A few years after the publication of ref. 
we published some details concerning the factorization method as it applies 
to collisional excitation (and ionization) [32J. The derivation provided below 
expands upon this later work. It provides an alternative derivation than 
one originally presented in ref. [31], including previously unpublished 
that might be of some use in various applications. 

vVe start with (4.12)-( 4.16) and, as in section 3.2, treat, in detail, the 
case of subshells that are initially filled or empty, in addition to the 
one labeled a. By similar arguments to those given 
that filled inactive subshells make no contribution other than to central 
potential V(r). Hence, they can be ignored in the following derivation. Thus, 

symbol N appearing in eqs. (4.15) and (4.16) can be replaced with w, 
initial occupation number of the active subshell. First we consider Rd 
byeq. 15) and substitute the expressions given by U~.20) and (3.22) for 

1) and '-It t3:J;M;(xi1), and choose coordinate Xi = X",~_l. The result 
is 

Rd({3tJtEljJ; ,8;J:E'l'j' J) 

2 ( 'w-l J IJa 	 0:1 1 
11'fo, J1,0:1 

X L C(Jd!vftTn; J M) C(JU'M{m'; 
fvl1-,m 

x L CUdal\lhma;JtMt)C(J~j~!vl~m~; J;l\.JU 

x J	dXl JdX2' .. J 
x {'-Itt ,Jrl\llt I XIX2 ' .. Xw­

x tl)[Ew 1 
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1 
W 

"( 1)111 ~P'T'[( l,' )W-l "J" ~1" I ' " x L - 'i' na aJa aa' a H a XIX2'" Xp+lXw 
p=l 

XUn~l~j~m~ (Xp)U€llljlml (xw+d} . ( 4.19) 

Of course, this case Ja = Jt and A1a = Alt , which we in writing the 
Clebsch-Gordan coefficient. One sees that. due to orthogonality 

to 
are 

1, .. ., w the initial wave function, 
it is an antisymmetric function due to the properties of the Clebsch-Gordan 
coefficient and the CFP. Thus, evaluating eq. (4.19) we can permute the 
coordinates in the initial target-ion wave function so that they are in the same 
positions as they are in the final target-ion wave function when determining the 
contribution of each term in the summation over p. This reordering introduces 
a phase factor, 1)W-P , that cancels the effect of similar phase 

19). Then, 

sums over p 
set equal to w, 

Since both the initial and final wave functions of the total system have the 
electrons in the same order and with the same type of coupling, we can also 
use irreducible tensor techniques to further simplify Rd. In doing so, we use 
the standard expansion given by eq. (2.12) with wand 11) + 1 replacing 1 and 
2, resnectivelv. The result is 

= L (j~JlalJl !}j:aaJa) 
00 

DA(nalajadj; 
h,O<l A=O 

( 'w-1 J' J 'J~" I e(A)(A ) e(A)(A )! 'w-1 "J""J"'J~")X Ja a1 IJa tJ lVl Tw' Tw+l.1a aa aJa tJ ,lk.! , 

(4.20) 

where DA is given by eq. (4.17), e(A) is the renormalized spherical harmonic 
of rank A, and Tw and TW+1 represent the angular coordinates of Xw 
rp",np,-.ti"p]" TT",inIT ",t<>nrle>rrl fnrTnll1",,, IT;""", ;n rAf f5<1 or 

( 'w-l I' J 'JM I e(A)(A ) e(A)(' ) I '1/)-1 "J"" J' "IM)Ja al'lJa t.7 Tw' Tw+l.1a aa aJa' IJ ' 

= (_l)J+j+J~ {;; ~ ~;} (j II etA) II j') 

( ,w-l J' 1 II etA) (A ) II ,w-l II JIt ·1 JI)
X Ja aI- l.1a' t Tw Ja aa' a.1a t (4.21 ) 

which 



(j;:-la1 e (,\) (~ ) II ,'w-l . "J" ./ l')Tw Ja aa aJa, t );' );' {Iuala~uJlJ::-
,\ 

X [(2Jt (2J~ + 1)]1/2 {J' 
/. 

;" 
a 

~~} (ja II e('\) II j~), (4.22) 
t 

where (ja II e('\) II j~) and e('\) II j') can evaluated applying the 
general 

A(j1 II e('\) j2) = + 1) + 1/2 (jI j2~ )o 
23) 

Thus, applying eqs. (4.21) (4.22) to eq. we have 

Rd ((3t JtElj J; J) = 2rw(j;:-la~J~ 
00 

+}~+J~/+,\""' D,\( l' l' 'l'" J 1x L.., na aJa E J; na aJa E'l' ") 
,\=0 

A A 
x [(2Jt+ 1)(2J; + .~:} { j'}

J J;' ~ 
x (1" II e('\) 

analogous to eq. (3.27) and the discussion below it, we have used the 
that Ja = Jt and J~ = Jt to substitute for Ja and J~ everywhere ex­

cept in the CFP. In this way, when one considers more complicated cases with 
additional partially-filled subshells, the added complexity will only produce 
extra angular factors that do not involve the free electron (in they are 
the same factors as those that enter in the line strength formula for the corre­
sponding radiative transition), leaving (4.24) otherwise unchanged. (These 
same factors also enter the expression for Re in complex cases.) 

CUUClluca Re, given by eq. (4.16), for the same situation. Once 
we let = wand choose Xi = X w+1, along with setting Xj = Xw' Only the 

term for which q = w can contribute due to the orthogonality of the 11 

spiriors. Thus, we obtain expressions similar to eqs. (4.19) (4.20), except 
that E'\ replaces D'\ in the final state wave function it is the orbital );1 

and orbital j' that is a fUIlction of Xw' However, 
tensor techniques, the electrons the final state must 

in the same order as they are in the initial state (1,2, ... , w, w + 1). Also, 
the angular momentum coupling must be the same. Thus, we must recouple in 

a way that both the same coupling scheme and the same ordering of 
electrons occurs in the initial and final states. This objective is accomplished 
by using the standard recoupling formula [7,8] 

I J'~)- 1a~J:j~J:j'J1\1) = I:(_l)/+j~+J;+h [(2.h + 1)(2J: 1)P/2 
h 



.,JII J 
X {a ., ' } I j:v-1a" j~JM) . 

J Jt 1 aJa 

Then we proceed in the same manner that was used to obtain eq. (4.24). 
The result is 

"UJRe ((3t JtdjJ; (3~J:f'l'j'J) 2Vw(j~J- I ) 
} Ja aa' a 

00 

E A( l' l' ,[,., 'l' ")X naaJaf J; na aJaf J 

A-O h 


X (2J2 1) [(2Jt (2J: + 1)F/2 {J;' j' J2 }
A J ., J't 

J? } { ja A j' Ja 
X { l,t j') (j II C(A) , (1.26) 

Ja 
J J .12 J{' } Ua II C(A) 

where EA is given by eq. (4.18). Also, as with Rd , we 
case Ja = Jt and J~ = J;' to substitute for Ja and J~ everywhere, except in 

CFP. This choice was made for the same reasons as given in the discussion 
the expression for Rd given in eq. (4.24). 

In a conventional one wOUld simply obtain the collision strength 
applying eqs. (4.24) (4.26) to eqs. (4.12)-(4.14), that one could 

replace the product of the 6-j symbols in eq. (4.26) with a 9-j 
formula 

J'2)-1)2h (2.h + 1) {Jt }~ J: } { .It ~} {ja A j'}
J2 1"J l .h ' t Jth 

(i' J, ja} 
Ja j A . ( 4.27) 
J't J j' 

However, this 9- j symbol can be recast terms of a different product of 
symbols that allows one to obtain the collision strength in the convenient 

factorization form. Specifically, we use the formula [41] 

{~r J{}7
Ja J (27 + 1) {A}=p- J jJ't J 

7{J; 1} {j ;}, ( 4.28) X 

where the factor (-1 )27 can be ignored because 7 is an integer. Applying 
eqs. (1.27) and (4.28) to eq. (4.26), and then substituting the resulting ex­
nrp"",{\n for Re, along with Rd from (1.24), into eq. (4.14) 
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R(j3t JtEljJ, /3;J;(:'l'j'J) = 

2VW(j~!-lCt~J~ l}j~!aaJa)[(2Jt + 1)(2J; + 1W/2 l)J+Jt+J;'+-J;I+j~+j 

X[L)~lf\{J; A 	~:}{j~. ~, j~}
,,\ J J J Jt Jt Jt 

xD"\ , l' " 'I"') II e("\) II j~) (j II e C"\) II;na 'aJaE J 

+2:::2:::( 1)A'(2T+1){;; 
T J[} { ja T j~ } { j:1 j' ., ~}

N 	 T J j J; J"t .It J Ja 

EA'( [ , [' '[',' 'l' ")(' II e(A') II ")( '11 e("\!) II ")] (429)x na aJaE J; na aJaE 	 J Ja I J J Ja . .. 

we 	useo t,ne tact tnat. since l' is a 

When eq. (4.29) is substituted in eqs. (4.13) and (4.12), and the labeling X 
and T are interchanged so the results look more like ref. [311, one can 
perform the summation over J using the standard 

(2J + 1) {J; C ~;} 	{~t C' ~:} = bcc' ( 4.30) 
J J .I J l' .I J 2C + 1 ' 

is allowed because Jt, J;, j and j' are all 

for 


is 


n(u U') = 8 2::: B"\(U, SSl; U', s'SD 
8,8' ,,\ 

81 

xQ,,\ ) . 

Here, 

Q,,\ 

2::: P,,\ 
u' 

where the p,,\ are given by 

+ 1)-'1'" _ 	 e C"\) II i:.} (i II e("\) 

2:::(~1)A+T(2A+1)1/2{j~ j; T} 
T 	 J Ja A 

ET ( l . l'· '[',' 'l' 	") I' II e(T) I j')(j II e(T) II j~). (4.3:3)x na aJaE J, na 'aJaE 	 J \Ja i 
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B).. are analogous to, but more general R(l) given eq. (3.34). 
In particular, 

R)..(U, ,S'SD = (US, U'S')p)..(USI , U'S~), 

(US,U'S') = b(U,S)j)..(S,S')b(U',S') ( 4.35) 

and, in present case, 

Sf) [(2Jt + 1)(2.1; + 1)] _l)J:+Jr+j~ 

C( 'w-I "J" I}'w J) { A ( 4.36) XywJa Q'a'a JaQ'a a .1: Jr ~} . 

For more complex cases with initially one or more partially filled subshells, 
addition to the active subshell, all that is required is to include extra angular 

involving only quantum numbers of the target ion. These factors are 
exactly the same as those that enter in corresponding radiative transitions. 
When implementing this approach in our computer programs, it was unneces­

to derive the relevant factors the general case because, as noted at the 
end of subsection 3.2.1, the j)..(S, Sf) are equal to the quantities denoted by 
d~al(S, S'), which are available in complete generality from the MeT module 

of the Grant code [6,11 

By comparing eqs. (4.34)-(4.36) 
the B(l) of eq. (3.34) is just a special case of B).. 

is very similar to, but more complex than, eq. (3.33) for the line 
strength. However, in general, only a few values of A and T in the expressions 

the collision strength survive because of restrictions on them due to 
properties of the 6-j symbols appearing in eqs. (4.33) and (4.36). 

4.4 Improvements computing free-electron wave junctions 

In previous two sections, we described some methods for making our col-
strength codes more efficient. Now we describe to improve the 

accuracy of the data calculated with our codes. As noted in chapter 3, some 
level energies calculated by our DFS structure code still differ from those pro­
duced by the Grant code by a few eV, even after we included the generalized 
Breit interaction and other QED corrections. That discrepancy does not affect 
line strength or collision strength results very much for fln > 0 transitions, as 
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transition energies are usually However, for 0 transitions 
results could be affected significantly those transitions with the initial and 
final level energies close to each other. One way to correct this discrepancy is 
to replace the energies obtained from our structure code with calculated 
by the Grant code, as was done in ref. [38] for ions. 'With this approach, 
it is important to recognize that different numerical procedures, such as our 
using a linear radial grid versus the logarithmic grid Grant code, 
different physics, such as our DFS potential vs. the multi-configuration 
Fock (MCDF) potential in the Grant code, will not only affect energies 
obtained, but also the resulting mixing coefficients that form the fine-structure 
wave functions. Different mixing coefficients could (and do) affect considerably 

collision strength results for some weak transitions. For this reason, we 
dded [33] to include an option in our collision strength that would use 
all of the relevant structure data obtained the Grant code, 
level mixing coefficients, radius-dependent nuclear charge Li lr), ra­
dial wave functions and line strengths. Here we note that line strengths are 
used in the Coulomb-Bet he approximation for optically allowed transitions 
to obtain high partial-wave contributions, as described later in section 4.9. 

addition to increasing the accuracy of collision strength results for high-Z 
IOns, use of the Grant structure data also extends the range of the validity of 
our data from Z ~ 2N to Z 1.5N. This extension to lesser charged ions is 
possible because the electron-electron interaction becomes more important to 
the total potential, and the MCDF potential used in the Grant code should 

more accurate than the DFS potential used in our structure 

As mentioned previously, the code uses a logarithmic radial grid 
our collision codes use a linear grid. Therefore, in order to use Grant's 
values and radial wave functions, to be transformed from the log­
arithmic grid to a grid. We use a procedure based on a four-point 
Lagrange-polynomial interpolation scheme originally written by Moores [42] 
for this purpose. Then we construct the potential V(r) for use in solving the 

equation, (4.10) and (4.11), for the free-electron radial functions. 
is noted that, in using the Grant code, we typically use "average 

option [6], which employs a set of fractional occupation 
However, if we were to construct a DFS potential to obtain the free-electron 
wave functions using our original approach, then we would choose a set of 

occupation numbers each class of transitions with the prescrip­
described section 2.3. Obviously, the DFS potential constructed in 

way (based on eqs. (2.18) (2.20)) will not be the same as MCDF puvc;u­

used the Grant to obtain the bound-state wave functions. Since 
this difference in potentials no longer guarantees orthogonality between the 
bound- and free-electron wave functions, we decided to usc a new of the 

when calculating the continuum functions, which has been shown 
to produce more accurate data. This new potential differs from our standard 
DFS potential in that the exchange contribution is the so-called semiclassical 



exchange (SeE) term of Riley and Truhlar [43]. The resulting potential was 
employed extensively by Mann [44,45] and will be referred to as the Mann 
potential, VM (r). The form of this potential is given by 

VM(r) = V(r) + V~t(r), ( 4.37) 

where the direct part is the usual 

- 2Z(r)
V(r) = --- + Vc(r) (4.38) 

r 

and the exchange part is 

V~~nr) = -~ [dRy) - V(r)] [(1 + jj2(r))1/2 - 1] . (4.39) 

The classical potential, Vc(r), in eq. (4.38) is given by eq. (2.19) and jj(r) in 
eq. (4.39) is defined by 

4p(r) 
(4.40)2 ) = r 2 [t:(Ry) _ V(r- )]2'jj (r 

where p(r) is given by eq. (2.20). Of course, in evaluating eqs. (2.19) and 
(2.20), the bound wave functions from the Grant code (transformed on to a 
linear grid) are used, along with a set of fractional occupation numbers WnK, 

that are chosen according to the prescription mentioned above. 

In order to account for the lack of orthogonality that results from the use 
of different bound and continuum potentials, we note that, in general, the 
exchange integral EA given by eq. (4.18) should have an additional one-electron 
exchange term that contains the overlap of the active bound orbital and a free­
electron orbital. In our version of the collision codes that uses the same DFS 
potential in calculating wave functions for both the bound and free electrons, 
this term vanishes due to orthogonality between the bound and free orbitals. 
In the current option of using the structure data obtained from the Grant 
code and the continuum wave functions computed with the Mann potential, 
this term should be retained. 

As pointed out in ref. [44], there are two forms of this overlap integral, the so­
called "prior" form that corresponds to an overlap between the initial bound 
and final scattered orbitals, and the "post" form that corresponds to an overlap 
between the final bound and initial impact orbitals. We use the post form in 
our codes, which is given by 
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E >..=o ( l . l' 'l'" 'l' ")1 na aJa t J;na aJat J = 
00 V;(rd 

- [" 7\T Pna1aja (rdP£llljl (rd + Qnalaja (rdQ£llljl(rd] drl1
o 

00 

X 	I[pElj(r2)Pn~l~j~ (r2) + QElj(r2)Qn~l~j~ (r2)] dr2, (4.41) 
o 

where V;(r) is given by eq. (2.19). Here, the prime denotes that the occupa­
tion numbers to be used in eq. (2.19) are the same values that were used in 
determining the potential for the final continuum wave functions. This distinc­
tion is important because, for the current approach under consideration, we 
sometimes use two different sets of occupation numbers in order to determine 
the potential for the initial and final continuum wave functions. Of course, 
if our original fractional-occupation-number, mean-configuration approach is 
being used (see, for example, eq. (2.21)), then the initial and final configura­
tion occupation numbers are always the same and V;(r) _ Vc(r). The integral 
in eq. (4.41) is to be added to the right-hand side of eq. (4.18) when A = O. It 
should be mentioned that, as stated in ref. [45], it is a minor approximation 
to use V;(r) above instead of V;(r) + V~r(r), which is more generally correct. 

For completeness, we also provide an expression for the prior form of the 
overlap integral, which is given by 

E >..=o ( l . l' 'l'" 'l' ")1 na aJa t J; na aJat J = 
00 

- I [PnalajJrdP£llljl(rd + Qnalaja (rdQ£llljl(rd] drl 
o 

OOV (r2 )c 
x ~[PElj(r2)Pn~l~j~ (r2) + QElj(r2)Qn~l~j~ (r2)] dr2' ( 4.42) l

o 

An option to use either form of the one-electron exchange integral is available, 
for example, in the Los Alamos National Laboratory excitation code ACE [46]. 
Some numerical comparisons using the post and prior forms in non-relativistic 
Coulomb-Born and distorted-wave calculations are available in ref. [44]. 

4.5 Numerics of the free-electron radial functions 

In this section, we discuss our method for obtaining the radial portion of the 
free-electron wave functions from eqs. (4.10) and (4.11). One could proceed in 
a manner similar to that described for the bound-electron case in section 2.2 
by solving for Q£K in eq. (4.10) and substituting the result into eq. (4.11). 
The result would be a second-order differential equation for P£K' analogous to 

57 




is to 

Fo'C(r) = 

where 

0: [ 4o,p(r) = - f - V(r) + 2 ( 4.44) 
2 0: 

The result is a second-order differential equation of the form 

+ 0,
dr2 

( ) )o,p r o,Q (1' "\" + 
1'2 - ft, 1 d ()- - ­ -o,p l' 

l' 0, pI" \ _1 

3 
4 

1 d ( 
]

-o,p l'
o,p(1') d1' ) 

1 1 ,~ 
2 

+--­
2 ap(r) dr2 

(4.46a) 

o,Q(r) 
0:
2"[f V(r)]. (4.46b) 

In writing the second term on the right-hand side of eq. (4.46a), use has been 
made of the relation K,(K, + 1) l(l + 1), in order to facilitate the discus-

the uDcomine: 4.7 concernine: the quasi-relativistic approach. 
the analog of (2.14) for 

(2.14) 
not tend to increase difficulty in obtaining a 
orbitals also enter the Dirac-Fock-Slater potential (2.18)(2.20) 
which, in any event, must be determined self-consistently the solution 
eq. (2.14). 

Similar to the discussion in section 2.2, we separate out the nuclear contribu­
tion to the central potential, -2ZIT, and evaluate its contribution to dVIdT 
and d2Vld1' 2 analytically. Additionally, the radial mesh is started with the 

eq. (2.17), and then doubling of this spacing occurs 
is terminated for the largest value of ,6,1' 

,6,1' < 1 
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where Emax is the largest incident energy Rydbergs) being considered 
calculations. \Vhen this largest value of !J.r is reached, the is continued 

this fixed spacing, typically for a total 1800 points. Although only 
fourth point is used in calculating the radial integrals in (4.17) 

and (4.18), use of (4.47) ensures that a sufficient number of points are 
available to resolve the oscillatory nature of the radial functions at large values 

r. For details on the appropriate normalization these radial functions, 
the reader is referred to the appendix of ref. [40]. 

4.6 Procedures rmnimzzmg n'umber of integrals 

this section, a description is provided for various numerical schemes that are 
to accelerate the calculation collision strengths. For most cases the time 

required to perform collision-strength calculations is principally determined by 
the number of radial wave functions and radial matrix elements or integrals. 
Therefore, it is important to keep the number these auantities that are 

calculated to a minimum. 

In our approach, as described previously the discussion surrounding eqs. (2.21) 
(2.22)), we use a single set of fractional occupation numbers for each cat­

egory calculations which is usually determined by iso-electronic sequence 
and the type of n - n' transition. choice results in use of the same 
potential for determining the orbitals of all electrons, bound and 

in turn produces just one set of bound wave functions for a particular 
type of transition. \Vhile greatly reducing the number of continuum orbitals 
that need to be computed, this procedure also helps to minimize the 
of radial integrals, particularly when treating complex ions. More specifically, 
one can take advantage of the fact that the bound-electron contribution to the 

ulomb integrals appearing in (4.17) and (4.18) (as well as to the inte­
grals in eqs. (4.78) and (4.79), when the generalized Breit interaction is 
considered) is the same for all transitions which the same orbital transition 

n~)~j~ enters. In contrast, in some multi-configuration treatments, the 
bound-electron radial functions are different if they belong to different config­
urations, even if they are described by the same quantum numbers na1aja or 

Since the number of that a particular r1alaja - n~Ll~j~ transition 
occurs can be very large for complex ions, this sort consideration can save 
a considerable amount of computing 

unlike bound-electron contribution, free-electron contribution to 
17) and (4.18) differs for each pair of and scattered energies. 

This will impede the calculations for complex for which many en­
ergy levels are typically and the reSUlting of fine-structure 
transitions can quite large. However, this concern can addressed 
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realizing that, in our approach, the radial matrix elements or integrals as­
sociated with a given na.la.ja. - n~l~j~ transition are smooth functions of the 
free-electron energy. Therefore, in order to minimize the number of integrals to 

calculated, we implemented the following procedure: in considering a 
class of transitions, results are calculated for a fixed set of scattered energies 
beginning from near zero and spanning the range needed to obtain accurate 
collisional rate coefficients, which are discussed in section 4.14. For each of 
these scattered energies, we calculate results for three impact energies span­
ning the range of fine-structure transition energies for the class of transitions 
being considered. Then we interpolate on these three sets of results to obtain 

desired quantity at the specific transition energy for each fine-structure 
transition. 

In version 1 of our collisional excitation code, the interpolation is done on 
the reactance matrix elements between the pure states that appear on the 
right-hand side of eq. (4.13). It should be mentioned that the results would 
be virtually the same if the interpolation were instead made on the direct and 
exchange integrals appearing in (4.15) and 16), according to the proce­
dure described in ref. [40j. In version 2 of our excitation code, the interpolation 
is instead made on the QA appearing in eq. (4.32). The interpolation scheme 

we employed is a non-linear, Lagrange-polynomial interpolation scheme 
taken from the semi-relativistic program of Bottcher [47]. This interpolation 
procedure has been shown to work quite well in both versions of our codes and 
leads to a significant reduction in the number of radial integrals to be 

for a given type of n - n' transition. However, we should mention that, in 
the treatment of lln = 0 transitions, we usually found it necessary to increase 
the number of impact-electron energies for which results were calculated for 

scattered-electron energy to a number larger than three. 

In principle, one could also apply the above interpolation scheme for a fixed set 
impact energies, rather than a fixed set of scattered energies. Such an 

is available in our codes, but no data have been published using this method 
because it is typically impossible to determine a single, compact set of impact­
electron energies that can be used to calculate the rate coefficients all of 
the fine-structure transitions that arise from a given type of n - n' transition. 
Alternatively, we note that many authors calculate collision strengths for a 
fixed set of impact energies in threshold units, rather than absolute energies. 

such an approach the problem of choosing a practical set of impact 
energies for calculating the rate coefficients is obviated. However, most 
above methods for accelerating calculations can not be used with this 
approach, and the evaluations become more lengthy. 

Finally, we mention that the contribution to collision strength from those 
radial integrals or matrix elements that are characterized by large '-"Ubu.mL 

momentum values, associated with the incident- and scattered-electron partial 
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waves, can be significant. This statement is particularly relevant for optically 
allowed transitions, and especially those with fln = O. Some approximate 
procedures for calculating this contribution will be discussed in section 4.9. 

4.7 The quasi-relativistic approach applied to continuum electrons 

As mentioned in section 2.3, we also implemented a quasi-relativistic (QR) 
option in our electron-impact excitation codes that is analogous to the QR 
approach described for the atomic structure calculations. As in the structure 
case, the small component of the continuum-electron wave functions is ignored 
in all expressions and the large component is treated as the entire radial func­
tion. Thus, in this approach, the second term in each of the square brackets 
appearing in the radial integrals of eqs. (4.17) and (4.18) is omitted. Further­
more, the large component of the bound-electron wave functions is normalized 
according to eq. (2.23), while the large component of the continuum electron 
wave functions is normalized according to eq. (A23) in the appendix of ref. [40]. 

Similar to the reasoning provided in section 2.3, the above QR approach saves 
about 10% in computing time relative to the fully relativistic approach, which 
is not a terribly significant amount. However, a much larger reduction in com­
puting time can be obtained by introducing an additional approximation for 
the continuum electrons. Specifically, one can replace the 1'1, value associated 
with a continuum-electron wave function with its j-averaged value of -1, so 
that the large component no longer depends on j. (However, the dependence 
on l is retained.) This additional approximation is implemented by simply 
setting 1'1, = -1 in eq. (4.46a). The appropriate normalization for the result­
ing radial wave functions is given by eq. (A24) or (A25) in the appendix of 
ref. [40]. The benefit of this approximation is a reduction in the number of 
radial functions to be computed by approximately a factor of two and the 
number of radial integrals by a factor of four, which leads to a reduction in 
the overall computing time by a factor of 2.5. 

In ref. [40], numerical examples were provided that showed the QR approach 
with 1'1, = -1 to be quite accurate. The success of this approximation is not 
unexpected if one realizes that the collision strength in eq. (4.12) contains a 
sum over the initial and final continuum-electron quantum numbers j and j'. 
Thus, replacing 1'1, and 1'1,' by their j-averaged value of -1 when computing the 
continuum wave functions is analogous to removing the double sum over j and 
j' in the expression for the collision strength and replacing the summand with 
a suitably averaged value. 
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4-8 The rdativistic plane-wave-Born apprvximation 

anticipation of the upcoming discussion of the Kummer transformation 
subsection 4.9.3, we present here the relativistic plane-wave-Born (RPWB) 
approximation for electron-impact excitation. The treatment closely 
that given in ref. [48], which, in turn, is based strongly on the non-relativistic 
approach of Cowan [8]. For clarity, we divide the discussion into two subsec­

with the first describing an analytic approach and the second describing 
a partial-wave decomposition. The expressions presented in this section are 
written with all fundamental constants intact, except where noted, 
to facilitate the discussion of terms that arise from a relativistic treatment. 

4.8.1 An analytic apPToach to plane-wave-BOTn apprvximation 

goal of this subsection is to produce an analytic for the RPWB 
excitation cross section between two fine-structure levels. We begin by WHClIU­

ering an excitation between an initial magnetic sublevel lD.tJtlv!t) 
and final sublevel ID.~J:MD of an atom or ion with N bound This 
sublevel notation is identical to that used in with .the collision 

for between fine-structure levels eq. (4.6). However, 
the approximation of representing the continuum electrons 

as plane waves, we also anti symmetrization of the continuum function 
with the target in the (N + I)-electron svstem wave function. The RP\;VB 
matrix that characterizes an excitation GHi:llvlVH between two 
sublevels can then be written in the form 

Hcax' = 
N 

(al L L 

2 
__ lla') , ( 4.48) 

q=l 

where 

a lD.t.ltMt ) m) a' = IA' J' ~1') I ik'·r ( 4.49) , s, - Ut' tj~ t e , 

are direct products between appropriate magnetic sublevel and a Dirac 
plane wave. The values k and k' represent the wave vectors of the 11l1,.,1UI::llL 

and scattered plane waves, respectively, and the values ms and m~ represent 
the corresponding spin magnetic quantum numbers. The concept of spin arises 
in a natural, formal way when considering solutions of the Dirac equation, but 
does not occur when considering the non-relativistic case involving solutions to 

Schrodinger equation. Of course, it is possible to manually 
functions into the non-relativistic theory (sec, for example, eq. 
but such an approach does not provide a fully relativistic description 
as described below. 
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While the matrix element in eq. (4.48) is similar to that appearing in eq. (4.6), 
there are some important differences. For example, the summation in eq. (4.48) 
needs to be carried out over onlv the N, bound-electron coordinates because 

is 
waves m eq. \ 4.4~) are wntten anaLytIcally, wIllIe those appearing 

in eq. (4.6) represent a single component of the partial-wave expansion of the 
complete distorted-wave continuum wave functions. A partial-wave analysis 
of the RP\VB approach will be considered in the next subsection, but here 
we continue with the analvtic representation, which can be expressed in a 

Employing the relationship between the momentum and wave vector of a 
continuum electron, p = hk, the Dirac plane waves can be written in the form 
[3] 

r Xms )
(r) = U(k, ms)eik . = Nk (4.50) 

( 
-=----"'--n Xms 

where u are the usual 2x2 Pauli and Xms are the eigenvectors of 

V(E + mc2)/2E, where E v(peF + (mc2)2 is 
energy of the incident electron, has been chosen such that the plane 

waves are orthonormal according to 'I/{ms 1/Jk,mi = ut (k, ms)U(k, m~) Jmsm~,. 
More generally, when k' ::j:. k, the relativistic plane waves satisfy the more 
comprehensive orthonormality condition 

,Tns = ms 

where 

2 
e (u"p IU"p' Xm~)1 52)(k, U(k', ) + In + mc2)(E' + me2) . 

Eq. (4.52) represents the scalar product between the 4-vector amplitudes of the 
incident and scattered plane waves, which has no analog in the non-relativistic 
case. term on far right that contains the two dot products results 

small comDonents of 

factor O(v/e), where v = pc2
/ E is the speed 

the non-relativistic limit, the term containing the dot products can be ignored, 
the normalization constants Nk and N£ can be approximated by one and the 
scalar product in eq. (4.52) can be set to one, provided that m~ = m S1 or to 
zero if ::j:. ms. 
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The PWB and RPWB approaches were considered in detail by Bethe III a 
series of seminal articles [49-51]. This paradigm eventually became known as 
the Bethe high-energy theory and a comprehensive review of this approach has 

written by Inokuti [52]. In the high-energy limit considered by Bethe, 
scattering is strongly peaked in the forward direction for which k' ::::: k. 

this case, the scalar product above can also set to one due to the orthonor­
malization condition, again provided that m: ms (otherwise the result is 
zero). If the spin polarization of the incident and scattered electrons is not of 
interest, then the resulting product obtained after performing the 
propriate averaging and sums over the spin quantum numbers (see discussion 
below) can also be approximated as one in both the non-relativistic high­
energy limits. Approximations of latter type have been used, for example, 

eq. (52.23) ref. [51] and eq. (1:3) of ref. 

In the present discussion, we are indeed interested in scattering by unpolarized 
electrons, as mentioned above. discussion of excitation by polarized elec­
trons will be provided in chapter 9.) However, we do not introduce the Bethe 
approximation, k' ::::: k, as our goal is to obtain an exact expression 
RPWB collision strength, analogous to the RDW expression given in eq. (4.6) 
for a transition between fine-structure levels, denoted by 6. t .It - 6.~.I;' In order 
to obtain such a quantity, one must square matrix element in eq. (4.48), 
then perform the appropriate sums and averages over the magnetic quantum 
numbers associated with continuum electrons and the magnetic 
and finally integrate over the angle of the scattered electron. The details of 

procedure are provided in ref. [48] and additional details are also supplied 
subsection 9.1.3 of the present work, which deals with transitions between 

magnetic sublevels. The resulting RP\VB collision strength can be expressed 
(in Rydberg atomic units) in the closed form 

2 

(6. t .It - 6.~.ID - k:iQRPWB(6.t .It 6.~ 
8 Kmax 

6.E ! Frel(K)gf(6. t .It 6.~.I:; K) d(lnK). 
Kmin 

it is written, eq. (4.5:3) is formally identical to the usual non-relativistic 
P\rVB collision strength for example, eq. (18.157) of ref. [8]), except 
appearance of the relativistic correction factor, }~el (K) 1 which will be discussed 
below. Specifically, gi = 2.It + 1 is the statistical weight of the initial level, 
6.E is the transition energy in Rydbergs, k is the wave number of the incident 
electron in atomic units and K is the magnitude of the momentum transfer 
vector K = k' - k. The quantity gf(···; K) is the generalized oscilla 

(GOS) between the two levels and is given 
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2 

gf(6.t .It - 6.~.I;; I<) 
N6.E 

(I<T )C(I/)
= I<2 I)2v + (6. t .It II fJ fJ 

v q=1 

where jv is the spherical Bessel function of order v and C~v) is the renormal­
spherical harmonic of rank v. In this case, the subscript q indicates 
angular variables associated with position vector Tq are the arguments 

of renormalized spherical harmonic (q should not be confused with the 
component of C(v) in this instance). This expression for the GOS also agrees 
formally with the corresponding non-relativistic formula, but when expanded 
in detail, the reduced matrix element must also contain the small component 
of the target wave functions. When describing an electric dipole allowed tran­
sition, eq. (4.54) has the desired property of to length form of the 
relativistic gf value (i.e. eq. (3.4), with substitutions from eqs. (3.3), (3.14), 
(3.17) and (3.27)) in the limit I< -t O. 

To' - k k' 1.limin = - =- (4.55a)
lie 

max = k + k' = ~e [JE ( E + 2me2 
) + (4.55b) 

where use has been made of eq. (4.2). Of course, E' can always be eliminated in 
favor of E in the above expression, as well as in any other formulae appearing 
in the subsequent discussion, via the energy conservation relationship, ( = 

+E'. 

Lastly, we come to a discussion of the relativistic correction factor, }~el (I<). 
This factor arises from a product of the appropriately scalar product 

eq. (4.52) and an extra kinematic factor [52] that into account the 

lllC1UI::llV 

relationship between the velocity and v vc2 for 
and scattered electrons. The result is 

) 

... 
+ 2me2)(E' + 2me2 

) rI -+ -,-------"--___-'---.:...:: 
4m2e4 
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+ , ~n:-:::-\.(kk'f n,n, (4.56),-, /;-:-. 

a it 
IS easy to show that first line of eq. (4.50) reduces to one III tne non­
relativistic limit, since both p and p' « me in that case. Furthermore, in the 
Bethe high-energy case, p' p, and the first line of eq. (4.56) can again be 
greatly simplified. In particular, the factor arising from the scalar product can 
be set to one (as mentioned earlier in this subsection) and the only factor that 

• .. T'""'f~l f f) A

IS 
in tne tietne mgn-energy However, III tne present worK, no 

such approximations are made. Eq. (4.53) represents an exact expression 
the RPWB collision strength for an arbitrary transition between two 
structure levels. All that is required to evaluate this expression are numerical 
values for the relativistic GOS and the associated transition energy, both of 

followed by a 

4.8.2 A partial-wave approach to the plane-wave-Bom approximation 

the RPWB 
~ a partIal-wave decomposItIOn. 111e treatment is 

same as that used to compute RDW collision strengths 
this chapter. For example, eqs. (4.6) and (4.8) can also be used to describe 
the partial-wave expansion of the RPWB collision strength, provided that 
allowance is made for the use of product wave functions to describe the (N+1 )­

antisymmetrized wave functions, 
one appearmg m ,4.(')). 1'ne difference the RP\VB 

RDW approaches resides 
partial wave. In the RP\VB case, the radial functions can be expressed in an 
analytic form, while the RDW radial functions must be solved for numerically. 
This analyticity arises from the fact that the exponential in eq. (4.50) can be 

fJCUiU,;U according to the well-known expression 

00 

ik re . = L.:(2v + 1) illjll(kr) (k). C(II) 

11=0 

is the spherical Bessel function of order v. Alternatively, this analytic 
setting 

(4.10) and (4.11). The resulting second-order differential equation 
or Qat is the radial equation that one obtains when the Helmholtz equation is 
expressed in spherical coordinates. The solutions of this equation are precisely 
the spherical Bessel functions. Thus, the Dirac spinors that appear in eq. (4.9) 

same functional form for both the RP\VB and RDW cases, but the 
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RPWB functions can written in more explicit form 

RPWB 1 Ui. /'em 1 I /'emP 	 (r) X 1 l kTJ' (kr) X 1'UE/'em (x) - -	 , (4.58) 
r . 	 r ipc 'llQ£/'e(r) X-/'em E + mc2SfikrJI(kr) X-/'em 

accordance with eq. (5.12) of Rose [3J. In (4.58) P"K and Q£/'e are the large 
and small radial components of the RPWB spinor, '" is the usual relativistic 
quantum number that represents a particular pair of land j values, S"" "'/IKi 
is the sign of K and the symbol [ = 1- Sy;, differs from the value of 1 bv 1. 

Combining the above results, a partial-wave expansion of the RPWB collision 
strength can be evaluated in terms of the reactance matrix, according to the 
relationship displayed in eq. (4.12). Therefore, the same computer code that 
is used to calculate RDW collision strengths from a numerically determined 
set FEK and QEy;, functions can also be used to calculate RPWB collision 
strengths via eq. (4.58) provided that: (1) only the "direct" Slater integrals 
are retained for the RPWB calculation and (2) the normalization for the plane 
waves is chosen such that they are consistent with the asymptotic form of the 
distorted waves. Condition (1) is necessary because, as mentioned previously, 
the total (N + 1 )-electroll wave functions contain the plane-wave contribution 
in product form, rather than antisymmetrized form. Thus, the direct Slater 
integrals appearing in eq. (4.17) are retained, while the exchange integrals 

(4.18) are ignored for the RP\tVB calculation. Condition (2) is required 
so that the same mathematical expression for the collision strength can be 
applied to both the RD\tV and RPWB calculations. For example, if the energy 
normalization is chosen according to eq. (A 1) ofref. [40], then the asymptotic 
form of the continuum wave functions, given by eq. (A7) ofthat same reference, 
determines the appropriate normalization for the corresponding plane waves. 

is that the plane-wave spinoI' on the right-hand side of eq. (4.58) 
must be multiplied by the factor 

Cp 	 (4.59)=(~r, 
where k is in atomic units and f. is in Rydbergs. 

9 	 The top-up: approximate treatments of the large angular momentum, 
partial-wave contribution 

Upon choosing one of the previously described numerical procedures to com­
pute the reactance matrix, the collision strength is then obtained by evaluating 
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the summations in eq. (4.12). However, the inner quadruple sum in thls expres­
sion contains an infinite number of terms with different free-electron 

numbers. Each term, denoted by a pair of land j values, is usually 
called a partial-wave contribution. (It is not necessary to consider separately 

infinite pairs of [' and j' associated with the scattered electron because 
the allowed values are determined by selection rules imposed on them and 
on [, j, the expansion index A appearing in eq. (2.12), and the corresponding 
quantum numbers associated with the active bound electrons.) Obviously, one 
can not include all of the infinite number of partial-wave contributions in a 

In practice, the summation is computed numerically up to some 
finite maximum value for land j 1 and then a procedure must be adopted to 
estimate the remaining high partial-wave contributions. This remaining con-

sometimes referred to as the "top-up" in the literature, can be a 
significant portion of the total sum, especially for high impact energies and 
for optically allowed transitions with !J..n O. In this section, we describe the 
methods that have been used in our collision codes to compute the top-up 
contribution. These methods include the Coulomb-Bcthe approximation, 
ratio approximation the Kummer transformation. 

4.9.1 Coulomb-Bethe approximation optically transitions 

The Coulomb-Bethe (CBe) approximation [54] is widely used to obtain the 
high partial-wave contribution for the optically allowed transitions. In this 

one makes the following approximations: (1) neglect exchange; 
approximate the electrostatic interaction between the active bound electron 

the free electron with the replacement 

rA 
. C(A)(TN+d 

TN -

1 
TN+l I L A~J C(A)

A T> 
T~ (1) . C(l) (TII.T-l-l ) 1 ( 4.60) 

( T N+J.)2C 

where IV and + 1 arc used this context to label the coordinates of 
active bound electron and the free electron, respectively; and \;)) usc pure 
Coulomb wave functions to represent the free electron. These approximations 

be valid large angular momenta of the electron. 

A detailed derivation of the relativistic Coulomb-Bethe (RCBe) approxima­
tion will be given in subsection 9.1.2, which deals with transitions between 
magnetic sublevels. Here, we simply write down the form that is 

transitions between fine-structure levels, eq. (14) in 

nRCBe(!J..tlt - !J..~J:) = *8(!J..dt - !J..~J;) 
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XL e'l'j')(j II C(l) II j'), (1.61) 

where S(6 t Jt 6~JD is the line given by eq. (:3.14) I is the 
relativistic Coulomb integral 

e'l'j') 	 J
00 

.~')[Ptlj(T) + (JElj(T)QE'lljl(T)] dT. (1.62) 
o 

In general, one evaluates the partial-wave contributions to the distorted-wave 
collision strength, given by eq. (4.12), up to some reasonably large 
l lo - 1 (where lo typically ranges from 1O~70, depending on the type of 
transition and the impact energy), and designates the result as n~Pa~l' 

remaining high partial-wave contributions up to l 00 are evaluated in 
one of two ways. Since eq. (4.61) can not be further reduced to a 

the first method involves making a further approximation 
the small component (J and the j dependence in eq. (4.62). Speclhcal 
non-relativistic form ofthe Coulomb integral, I(fl, E'l'), is 
sum over j, j' can be simplified accordiIl2: to 

L(j II C(1) II j')2 -+ 2(111 C(l) Ill')~, 	 ( 4.63) 
, 'I 

],] 

where 

(l II C(1) Ill') ±(l> )1/2 . 	 ( 4.64) 

Combining these results yields a collision strength given by 

nPRCBt'(6 J 6' J') 16 S(6 J 6' I') '" l 12(cl ('I')t t t t 3 t t t' t L..t '> ,,' ( 4.65) 
1,[' 

which is identical in form to the well-known, non-relativistic version of the 
CBe approximation [51]. However, in our case, the line strength is 

a fully relativistic manner, while the continuum electrons are treated m a 
non-relativistic manner. Thus, we refer to eq. (1.65) as the partial-relativistic 
Coulomb-Bet he (PRCBe) approximation in this work. The symbol I> in eqs. (4.64) 
and (4.65) is the greater of land t', and the plus sign applies if I = l' + 1, 
while the minus sign applies if l = [' - 1 in eq. (1.64). Combining results. the 

RDW collision strength can be written as 

n RDW '" n lWW + nPRCBe 	 (4.66)'" O,lo~ 1 10,00' 
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this method, after obtaining the distorted-wave contributions up to l = lo ­

where top-up contribution, OfR,:9Be , is given by 
o,,~ 

00 00 

nPRCBe = 16 8(6 I - 6' I') """ """ l E'l') . ( 4.67) Hlo,oo 3 t t ttL... L... > 

kin I'~l±l 


The double summations in eq. (4.67) can evaluated using the convemcnt 
expression given by eq. (10) of Burgess [56], which, in the present notation, 
becomes 

00 00

I: I: l>/2 E'i') 
1=lol'=l±l 

[/2 E'(lo - 1)) - P(E(lo - 1), 1 ~~klo/~)~ '~" (4.68) 

z == N, ( 4.69) 

and k VE and k' are non-relativistic wave l1UHlUt:a of the 
scattered electrons. respectively. 

In most of our calculations of collision strengths, we have used eq. (4.66) to ob­
the complete RDW results. The data calculated should be quite accurate 

for 6n > 0 transitions and for most transitions with 6n = O. However, after 
obtaining the more precise, fully relativistic expression in eq. (4.61), and us­
ing it to verify the total collision strengths obtained from eq. (4.66), we found 
some non-trivial inaccuracies for certain optically allowed transitions. 
problematic cases typically occurred when the impact energies were very high, 
especially for high-Z ions, for which relativistic effects were very important. 

Therefore, we added an option to use a second method, which will be described 
in subsection 9.1.2 when dealing with magnetic sublevel tran­

top-up contribution for the total collision strength. 
1, 

m5uv~ partial-wave contributions from 1= lo to some very high value l = i(;-1 
are computed using the fully relativistic expression in (4.61). This 

can be "written as 

ReBe 88( i\ I0 1 1*-1 ;-1 Ut t
'°'0 ' 

I~-l 

xI: I: E'l'/)(j II C{l) II j') . 
1=10 I',j,l' 
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\Vith l~ sufficiently large, up to 200 in most cases, the ratio of successive 
partial-wave contributions becomes very nearly constant. Assuming this ratio 
is exactly constant, and equal to some value C fora given transition and 
incident (or scattered) electron energy, the properties of the geometric series 
can be invoked to obtain a closed form result. Under this assumption, 
contribution of all partial waves with l 2: [~ can written as 

nl!ATIO nl!CBe ~ (4.71 )
10 ,00 10 -1 1 C' 

where n~~~e is the partial-wave, relativistic Coulomb-Bethe value evaluated 
o 

at l l~ 1 (with [', j and j' taking on all allowed in eq. (4.70)). Hence, the 
complete RDW collision strength computed with the second top-up method 
is given by 

n RDW ::::::; nRDW + n RC!3e + nf!:ATIO . 72)n,lo -1 10,10-1 10 ,00 

It is noted that values of the incident-electron orbital quantum number [ 
have been used to label the approximate top-up contributions in the above 
equations. One could alternatively reformulate these equations such that 
relevant label was the scattered-electron orbital quantum number ['. For ex­
ample, the quadruple summation in eq. (4.70) can be reordered so that 
scattered-electron orbital quantum number [' appears as the index of the out­
ermost sum. If an appropriate range of values is prescribed for [', then the 
numerical values of the RCBe top-up contribution computed this way are 
virtually the same as the results obtained from eq. (4.70). In fact, the latter 
approach is used predominantly in our production calculations, since collision 
strengths are computed for the final, or scattered, electron energies, instead 
of the incident-electron energies. 

4.9.2 Ratio approximation for forb'idden transitions 

For forbidden transitions, the partial-wave contributions rapidly decrease with 
land j and the ratio 

C nRDW/nRDW (1.n)10-2 10-1 

becomes small and almost constant. Similar to the second method in 
previous discussion, the top-up contribution can be written in closed form 

according to the properties of the geometric series, and the complete collision 
strength is approximated by 
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IWW ~n RDW ~ nRDW + n . (4.74)0,10- 1 10-1 1 - C 

This method is usually called the ratio, or geometric progression, approxi­
In using this method to obtain the complete collision strength, one 

still needs to include the RDW partial-wave contributions up to some suffi­
ciently large value, io 1, especially for /:::"n a transitions and high impact 
energies, so that C is small and almost constant. It is noted that for some 
transitions that can occur only through exchange processes, the partial-wave 
contributions associated with large i values are negligible. In this case, the 

approximation is typically not required. 

4.9.8 The Kummer transformation 

A third method for obtaining the top-up contribution to the RDW collision 
strength is to approximate high-l portion with the corresponding RPWB 

This quantity is readily obtained from the expressions provided in sec­
tion 4.8. As in the previous two subsections, the distorted-wave contributions 
to the RDW collision strength are summed up to a value of l = lo - 1. The 
same type of summation can be carried out for the RPWB partial-wave ex­
pansion described in subsection 4.8.2 to obtain n~~:~~lr. This latter quantity is 
then subtracted from the analytic expression for the RPWB collision strength 
given by eq. (4.53) of subsection 4.8.1 to obtain the RPWB top-up contribu­
tion. We refer to this top-up prescription as the Kummer transformation 

resulting RDW collision strength can be expressed in mathematical 
form according to 

+ (nRPW13 RPWB ) . ~ nRDW
O,lo-l 

_ n 75)0,10-1 

We note that this approach has several advantages over the two previously 
scribed methods. For example, the Kummer transformation is not limited to a 
specific type of transition, such as dipole allowed transitions. It can be 
to any transition that is described by a non-~ero RPWB collision strength. 
Also, the Kummer transformation has the desirable property of producing 
RD\V collision strengths that naturally exhibit the correct RPWB behavior 
as the incident-electron energy approaches the appropriate high-energy 
A disadvantage of this approach is that it provides a less accurate approxi­
mation for the top-up contribution at low impact energies. In this regime, 
nuclear and electrostatic interactions have a stronger effect on the continuum 
electrons and, therefore, the high-l partial waves are more accurately repre­
sented by Coulomb waves rather than plane waves. This behavior suggests 

at least for optically allowed transitions, a combined approach that em­
ploys either the PRCBE or RCBe approximation at low impact energies and 

Kummer transformation at higher energies would provide more accurate 
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To clarify the above discussion, we present in figure 
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Fig. 1. RDW collision strengths obtained via different top-up methods as a 
tion of impact energy for the (Is (Is 2PJ/2h transition in He-like iron; ---1 

curve: Kummer (KUM) top-up from eq. (4.75); dotted curve: partial-relativistic, 
Coulomb-Bethe (PRCBe) top-up from eq. (4.66); dot-d&"lhed curve: partial-rela­
tivistic, Kummer (PRKUM) top-up [58]. The RPWB collision strength 

obtained from eq. (4.53) is also provided for reference. 

comparison between three separate methods for computing the top-up 
bution. The Kummer (KUM) PRCBe approximations have been discussed 
previously. The PRKUM curve represents a partial-relativistic Kummer ap­
proximation to calculating the top-up contribution. We have not discussed this 
approach here, but it is described in ref. . By analogy with the PRCBe 
approach, the PRKUM approach is based on the fully relativistic Kummer 
transformation described in this subsection, but additional approximation 
is made to treat the (plane-wave) continuum electrons in a non-relativistic 

bound electrons are handled in a fully relativistic manner. 
QRCBe and QRKUM appears in the legend of fig­

than "QR" to avoid confusion with the quasi-relativistic approach discussed 
previously in chapters 3 and 4.) In the figure, one observes that the RDW 
result computed with the Kummer top-up merges nicely with the RP\VB 
curve as the impact energy increases. On the other hand, there is a widening 
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divergence between this Kummer result and the two partial~relativistic calcu­
lations that starts at an energy of ",5 eV. At the lower impact energies, 
RPWB collision strength is clearly too high due to the use of plane waves in 
a region where the distortion potential plays an important role. As expected, 
the KUM and PRKUM curves merge into each other as the impact energy 
decreases because the relativistic effects on the continuum electrons become 

important. However, both of those curves are somewhat higher than 
PRCBe curve, which suggests that a Coulomb-Bethe approach to 
ing the top-up contribution might be more appropriate at these lower impact 
energIes. 

4.10 	 An the genemlized B1'eit intemction in the excitation 
scatte1'ing elements 

As described in section 2.5, we included the generalized Breit interaction in 
our structure calculations order to improve the accuracy of our results 
high-Z ions. Similar considerations led us to also include this interaction in 
our electron-impact excitation calculations, initially using the non-factorized 
approach [59] and eventually developing the factorization approach [60]. A for­
mal derivation that includes this interaction in scattering matrix elements 
begins with the substitution 

2 ~ + B(q, i) 	 (4.76) 
l'qi 

in the matrix elements appearing in eq. (4.6) and the radial integrals appear­
ing in eqs. (4.15) and (4.16). Here, B(q,i) represents the generalized Breit 
interaction given by eq. (2.27). In practice, an operator that is slightly more 
complicated than B(q, i) is used in our approach to atomic structure and 
electron-impact excitation. Instead of using B(q, i), we replace it by the sum 

two similar terms that differ only in their value of w. It is convenient to 
describe this operator, denoted by the symbol B qi , by considering its matrix 

between pairs of Dirac spinors, i.e. the bound and continuum wave 
functions appearing in (2.6) and (4.9), respectively. If we laq ) represent 
the spin or la) evaluated at coordinate q, then such a matrix element can be 

in the shorthand 

Bqi Icqdi ) = IHBwcJq, i) + BWdb (q, in 	 (4.77) 

where the wavennmbers Wca and Wdb denote the exchange of a virtnal photon 
between two different pairs of spinal'S. For example, Wea lee - Eal/2c, where 
c is the speed of light and ECl Ea are the one-electron energies (in Rydbergs) 



associated with spinors Ie), la), respectively. The operator (q, i) is tne same 
as B(q, i) in eq. (2.27), with the W dependence stated explicitly. 

The advantage in using Bqi is that it is valid off-diagonal matrix elements as 
as diagonal elements. On the other hand, B(q, i) is valid only for diagonal 

clements and is equivalent to when Wen = Wbd. Mittleman [61J derived 
new ODerator by using a succession of contact transformations to decouple the 

and radiation fields and it is claimed to be correct to 0(0;2) [19J. Use 
of Bqi will also take into account part of the fourth-order effects (two-photon 
exchange) [21]. In this work, however, only single-photon exchange is included 
in entirety. 

Upon implementing the substitutions that are implied by eqs. (4.76) and 
, the derivation proceeds in a manner very similar to that given for 

the Coulomb interaction in section 4.2 (non-factorized method) or section 4.3 
(factorization method). The next two subsections are devoted to the treatment 

approaches. 

4.10.1 N on-jactoTized method the BTeit intemction 

The non-factorized approach uses the angular package McKenzie, Grant 
Norrington [l1J when evaluating the Breit contribution to the right-hand 

side of eq. (4.6), after the substitutions by eqs. (4.76) and (4.77) 
been performed. There are also two types of direct radial integrals that arise, 
analogous to the Slater integrals appearing in eq. (4.17). Using notation of 
Grant and Pyper [19] and Grant and McKenzie [20J, we write these integrals 
as 

00 00 

bd) = fJPac(Td [Vv(Tl,T2;Wac ) 
o 

+VV(Tr, T2; Wbd)JPbd(T2) dT2 78) 

00 00 

Sk(ae, J J Pac,(Tl) 1,k+l,k(Tl, T2; wac) 
o 0 

+Wk-1,k+l,k(Tl) T2; W/>d)JPbd(T2) dr2, (4.79) 

where density is given by 

Pac(r) Pa(T)QcCr) 
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with a similar expression for Pbd(T). For the process of excitation considered 
here, orbitals a and c represent bound electrons while orbitals band d represent 
free electrons. So, for example, a 'na.laja and b == dj, in the notation 
eq. (4.17). For the structure calculations discussed in section 2.5, all four 
indices represent bound orbitals. A corresponding set of exchange integrals, 
analogous to those appearing in eq. (4.18), can be obtained by making 
exchange c +-+ d in the above 

The wavenumbers appearing in eqs. (4.78) and (4.79) are given by 
1/2c, where c is the speed of light, and and (yare the one-electront:ll 

spinoI' energies (in Rydbergs) associated with radial functions (Px, Qx) and 
(Py, Qy), respectively. The V and HI functions are given by 

(Tl,T2; (w7'd'nv(WT» , min/max(Tl,T2) (4.81) 

Wk - 1,k+l,k (Tl, T2; 

~{ T2 

k-l 

(W7'l)nk+l (WT2) + ~ Tl < 1'2k+2 1 (4.82) 
(WTl)jk+l Tl > T2 , 

and nv are spherical Bessel functions of first and second kind, 
respectively, and [:7::] = + 1) . 

however, that the integrals appearing in eqs. (4.78) and (4.79) have 
no imaginary part, and yet the generalized Breit interaction in eq. (2.27) is 
complex. In fact, there is an additional set of integrals, very similar to RV 
and Sk, to be considered. Expressions for these additional integrals can 
obtained by retaining all terms in eqs. (4.81) and (4.82) that contain spherical 
Bessel functions of the second kind, and then making the simple 
nv ---+ -ijv in those terms. The explanation for this substitution becomes 
apparent when considering the expansion [62] 

exp(iWT12) 00 

[v] jv(WTd [Jv(WT» + 
1'12 v=o 

x[C(v)(f
1

) . C(v) 

tLLUllllC structure calculations, this imaginary part the interaction is usu­
when calculating: energies is at tributed to the lifetime of a 

bound state collision strength in eq. (4.6) allows for a scat­
interaction consequently, these additional integrals 

should considered process excitation. The effect of this HLUN>'-' 
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contribution on collision is tJ~vu,uy small, as demonstrated 

\Ve are interested in strengths are computed with the 
nal Breit interaction, eq. (2.28), which is accurate up to intermediate-Z 
but breaks down for sufficiently high-Z ions, as will seen shortly. men-

in section this interaction is the w 0 limit of the generalized-7 

Breit interaction. Therefore, the angular algebra is basically unchanged from 
that described above, but V and W must be modified according 
to 

,1'2;W) -7 (4.84) 

and 

1 
(1'1,1'2; -7 -2[v] (1'b 85) 

{;r/1'~+1 if 1'1 < 1'2U v(1'l, 
if 1'1 > 1'2· 

The resulting radial integrals are considerably simpler than those associated 
the generalilf,ed Breit interaction and, therefore, require significantly less 

computing to evaluate. the Breit interaction has the additional 
simplification that it is independent of wand, consequently, does not need to 
be split into two terms, as was done eq. (4.77) for generalized 
interaction. 

As far as actual calculations are concerned, it appears that Walker was the 
person to compute detailed excitation cross sections that included 

Breit and M011er interactions [63]. These results concerned hydrogenic ions 
comparisons of our RD\V (Z4-scaled) cross sections with those provided by 
Walker displayed excellent agreement between the two sets of calculations [59]. 
Subsequent to Walker, hydrogenic results that included the Moller interaction 
were also computed by Pindzola, Moores and [64,65]' providing us 

additional opportunities to test our RD\V calculations. Once again, the 
agreement was found to be excellent when comparing strengths at 
the appropriate impact [59]. 

However, the goal of our approach, with respect to the generalized Breit in­
teraction, was to produce a completely general capability that would include 
this interaction in the excitation scattering matrix elements for an arbitrary 
HUHHJt;l of bound electrons. Therefore, we provided collision strengths 



Table 5 
Collision strengths for the six n 1 to n 2 transitions from the ground i')tate of 
He-like ions with Z = 26, 54 and 92. The final scattered energies are 70 eV, 300 eV 
and 1000 eV, respectively. :r[y] = xx lOy. 

Transition C B GB GI31 

Z=26 
2 - (ls2s)0 7.687[-4] 

ls2 ­
~ 

8. 

8.102[-4 

2. 
. 

- (ls2p*)0 2.267[-4] 2.108[-4] 
- (ls2p*h 8.079[-4] 8.140[-4] 8.143[-4] 

ls2 - (ls2ph 2.122[-3] 2.077[-3] 2.077[-3] 2.077[-3] 
ls2 - (ls2ph 1.065[-3] 1.082[-3] 1.083[-3] 1.083[-3] 

Z 54 

1s2 - (ls2s)0 2.260[-4] 2.777[-4] 2.772[-4] 2.7n[-4] 
ls2 - (ls2sh 9.931[-5] 1.046[-4] 1.062[-4] 1.066[-4] 
1s2 (ls2p*)0 6.211[-5] 4.468[-5] 4.474[-5] 4.477[-5] 

- (ls2p*h 2.854[-4] 3.016[-4] 3.055[-4] 
ls2 - (ls2D)1 4. 113r-41 3.769[-4] 3.798[-4] 

2.579[ 

Z 92 

2.311 

ls2 - (ls2sh 5.531 8.456[-5] 8.961[-5] 

ls2 - (ls2p*)0 3.38;3[-5] 1.198[-5] 1.246[-5] 1.289[-5] 

ls2 - (ls2p*h 1.194[-4] 1.815[-4] 1.965[-4] 1.997[-4] 

1s2 - (ls2ph 1.156[-4] 9.763[-5] 1.041[-4] 1.087[-4] 

1s2 - (ls2ph 6.474[-5] 9.128[-5] 1.009[-4] 1.016[-4] 


9. 

He-like and Li-like ions in ref. [59]. A sample of these results are provided 
5 for the six n = 1 to n = 2 collision strengths from the ground state of 

He-like with Z = 26, 54 and 92, and for near-threshold impact 
The 
was 

were 
Breit interaction (labeled B), with inclusion of the real part 

the generalized Breit interaction (labeled GB) and with inclusion of the 
real+imaginary parts of the generalized Breit interaction (labeled GBI). 

The He-like data presented in table 5 exhibit the same trends that were ob­
served for the H-like and Li-like data that were also provided in ref. [59]. The 
obvious main conclusion is that inclusion of the generalized Breit interaction 
has a significant impact on the collision strengths and, as expected, the 
portance this interaction increases with example, the GBI results are 

Coulomb-only results by more than 50% for Z = 92 for a ma­
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to the collision strength, even for high-Z ions. For example, neglect 
imaginary part produces a maximum difference of 4.5% when comparing 

the GB and GBI data for Z = 92. This finding is of practical importance 
because the majority of the time required to calculate the collision strengths 
is taken up by the evaluation of the Breit integrals. Exclusion of the imaginary 
integrals reduces the total computing time by almost a factor of two. As for 
collision strengths computed with the original Dreit interaction, \vhich 
from taking the w 0 limit of the generalized Breit interaction, these results 
are found to be accurate for ions with intermediate-Z values, such as Z = 54. 
However, appreciable differences, on the order of 10%, are encountered when 
comparing the Breit-interaction (B) data with the GB data for Z = 92. 

An unexpected conclusion that resulted from this work was that the inclusion 
of the generalized Dreit interaction in the scattering matrix elements appeared 
to have a somewhat larger effect on collision strengths associated with more 
complex ions than for hydrogenic ions. For example, the ncar-threshold results 
for the Is-2p* and Is-2p transitions H-like ions with Z = 54 were found to 

affected by less than 1%. On the other hand, the collision strengths for one 
of the four analogous transitions He-like ions with this same value was 
decreased by 28% and those associated with the remaining transitions were 
changed by and 11%. Of course, as one would expect, results obtained 
by summing these He-like data over the J values associated with the final 
levels exhibited decreased sensitivity to the various forms of the Breit inter­
action, very similar to the observed behavior for the corresponding results 
hydrogenic ions. The explanation of this behavior is that the various forms of 
the Breit interaction do affect certain individual matrix elements appreciably, 
even for rather low-Z values, but the effect is largely canceled upon summa­
tion over a significant number of quantum numbers. For additional details 
concerning the effect of the various forms the Breit interaction on ~Ullli::>lUll 

calculations, the reader should consult [59J. 

A comparison of our excitation data with experimental results for xenon 
(Z 54) ions is also available. A comparison between our calculated cross 
sections and EBIT measurements performed at Lawrence Livermore National 
Laboratory (LLNL) was carried out by Deiersdorfer's group [66J for 

He-like xenon ions. For this moderately heavy element, generalized 
Breit interaction was found to exhibit a strong effect for certain transi-

Here, we reproduce tabular data from ref. [66] as table 6, in which three 
sets of distorted-wave results are compared with each other and against the 
EDIT-measured values for an incident energy of 112 keV, which is considerably 
greater than the energies considered in table 5. One set of the distorted-wave 

ulations was made the non-relativistic approximation (our strudure and 
collisional excitation codes include a non-relativistic option), while two of the 

sets represent our relativistic (RD\V) calculations. Furthermore, one 
those relativistic calculations also included the generalized Breit interaction 
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obtaining scattering elements. 

6 
Comparison between measured ((Jl:m) and calculated electron-impact excitation 
cross sections for H-like and He-like xenon ions at an excitation energy of 112 keY. 

calculated cross sections produced by our distorted-wave code are: non­
relativistic (denoted by (Jnon-rei), relativistic {denoted by and relativistic plus 
the generalized Breit interaction {denoted by (JGBI). All cross sections are provided 
in barns. 

Lille (JEE (J llOIl-rei (Jrel (JGBI 

8.6 ± 1.5 8.256 8.109 

Ly-a 2,3 8.2 ± 3.4 6.541 6.787 

w 7.0 ± 2.0 21.64 17.45 8.364 

y 3.9 ± 1.5 0.127 7.313 3.842 

z 1.08 ± 0.48 0.123 0.172 0.152 

table, cross sections are presented for three H-like transitions and three 
He-like transitions for xenon iOIlS. The three H-like transitions, 

2p 2P3/2 -+ Is or 2p3/2 -+ 

2p 2Pl/2 -+ Is or 2P1/2 -+ 1S1/ 2 , 

2S1/2 Is or 281/2 -+ 

are denoted by Ly-al, Ly-a2 and Ly-a3, respectively. (We note that the Ly-a2 
Ly-a3 lines appear as overlapping features in the EBIT experiment.) The 

three He-like transitions, 

2 1P 1 -+ 1 1So or (ls2p)1 -+ 

2 3 P 1 1 or (ls2p*h -+ (ls2)o, 

2 3Skl-+ lISkO or (ls2sh -+ ( 

are typically referred to as the w, y and z lines, respectively. The importance 
relativistic effects for these cross sections is obvious when comparing 

non-relativistic and relativistic data. For example, the relativistic cross section 
for the y line is more than a factor of 50 larger than the corresponding non­
relativistic value. 

In addition, the combination of a large incident energy for the continuum 
electron scattering off relativistic bound electrons produces a significant COIl­

from the generalized Breit interaction for some of the transitions. 
The relativistic cross section for the y line is reduced bv about a factor of two 



in this case, bringing the calculated value in excellent agreement with the ex­
perimental value. A similar, dramatic improvement in the agreement between 
theory and experiment is also observed the w line when the cross sections 
are computed with the generalized Breit interaction. We note that the 
eralized Breit interaction affects the cross sections for these two transitions 
much more strongly for these conditions, in contrast to the trends observed 
when comparing C versus GBI results for the same two transitions in table 5. 
This difference underscores the sensitivity of the cross section to the general­
ized Breit interaction as a function of impact energy. In table 5, the incident 
energy was very close to the threshold value for these n 1 to n 2 transi­
tions, while in table 6 the incident energy was approximately four times the 
threshold value. Returning to the remaining transitions in table 6, all of 
calculations for the z cross section display rather poor agreement with ex­
periment, while both sets of relativistic calculations of the hydrogenic, Ly-a 

agree reasonably well with each other and with experiment. possible 
explanation for this discrepancy is due to the inclusion of cascade effects in 
the experimental data. The z line is a result of emission from the lowest lying, 
metastable n = 2 level, which is the most sensitive to cascade effects. As noted 
in the previous analysis of the data in table 5, the hydrogenic cross sections 
table 6 display considerably less sensitivity to the generalized Breit interaction 
than the He-like results. 

4.10.2 Factorization method including generalized Breit interaction 

The motivation for adapting the factorization method described section 4.3 
to include the generalized Breit interaction was to further explore the effects 

this interaction in more complex ions. An increase in the number of bound 
electrons in the target ion typically leads to a corresponding increase in 
amount of angular coupling that is required to describe the levels involved 
in a given transition. Another motivation was that the factorization method 
provides an efficient means to compute large amounts of collision-strength 
data that are required for plasma modeling efforts. 

The method for including the generalized Breit interaction in the factorization 
method is relatively straightforward. The details have been provided in ref. 
and only a summary is given here. When the generalized Breit interaction is 
included in the scattering matrix elements, the resulting collision strength can 

expressed in the same compact form given byeq. (4.31). The expression for 
the BA coefficients remains unchanged, but the expression for QA in eq. (4.32) 
must be replaced with 

· ,'I'" IQA ( naI'aJa, na aJa; alJal' nal ) 
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= 2: {Re[P,\ 'l' ./ 'l' ")]; na aJaE .1 
l,l' 

j,j' 


xRe[ p,\ [ . [. '[' ., '["')]·alJa! E .7; n al ajJa]E .7 

+Im[p,\ (nalajatlj; 
,\ ( l . ·l· 'l' .,xIm[P najajJajLJ;nal a1 Ja1 } , (4.87) 

where Re[· ..] and Im[· ..] indicate that the real and imaginary parts of their 
respective arguments are to be taken. In the following discussion, we consider 
the complex interaction that appears in ( 4.76). The generalization that is 
necessary to consider the more complicated interaction in eq. (4.77) is straight­
forward. The real portion of p,\ can be written in a form that is very similar 
to the Coulomb-only expression eq. (4 .3~j). Namely, 

R [p,\ ( l' l' / [' ., 'l' ")]e na aJa E .7; naa.7aE .1 
(2,\ + 1)-l/2UaIIC('\)lIj~)(jIIC(A)1 (D,\ + D~ + D~) 

+ 2:(-1)-\+7(2,\+ 1)1/2 IC(7) 11/) U! IC(7) I 
7 

.7 ~}x{j .t + E[ + En, (4.88)
.7a 

where the arguments of the D and E integrals have been suppressed for conve­
nience. The D'\ and E7 integrals are identical to those appearing in eq. (4.33) 
for the Coulomb-only case (see eqs. (4.17) and (4.18) for explicit expressions), 

the subscripted integrals arise from the generalized Breit interaction. 
Here, we present expressions for all of the direct integrals (with their respec­
tive arguments) in a single, consistent notation according to 

D'\ , , , ')nafcaC K 
00 00 

= // dr1dr2 ri [Ra,+l (rl (rl) + Ra.-1 (rd Ra'. 1 

o 0 

x [R",+1(r2)RE'.+1 + RE,-1(r2)R',-1 , (4.89) 

D~(naKaU~; 
'\+1 

= L Vv '\ L (Ka.K~; .\) II( Ka, K~, V)E~p' (K, K'; .\)II(K, K', v) 
v='\-l p,O'=±1 
00 00 

x // dTl dT2 T~ ·,.i Vv(Tl, 1'2; w) Ra,{;(Tl )Ral.-fj(rd R,p' (r2)R E',-f3' ( 4.90) 
o 0 
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and 

D ).( , , , ')
2 	 nal\,aEI\,; nal\,a EI\, 


= W).{ L (-f3f3')E~~l(l\,a, <; A)II(l\,a, I\,~, A-I) 

(3,(3'=±l 

xE~~,l(I\" 	1\,'; A)II(I\" 1\,', A + 1) 
00 00 

x / / dTldT2 T~ T~ W).-l,Hl,).(Tl, T2; w) 
o 	 0 

x Ra,(3(Tl )Ra',-(3( TdRE,(3' (T2)RE',_(3' (T2) 

+[(A + 1) 	~ (A - I)]}. (4.91) 

The corresponding exchange integrals are obtained by making the usual ex­
change of coordinates in the direct integrals, i.e. 

E T - ET ( , , , ') DT ( , , , ')= nal\,aEI\,; nal\,aE I\, = nal\,aEI\,; E I\, nal\,a , 	 (4.92) 

with similar expressions for E[ and E;. 

In eqs. (4.89)-(4.91), Ra,(3(T) is liT times the large (small) component of the 
radial wave function of the bound orbital a - na1aja, if f3 = +1 (-1). A 
similar statement holds for the continuum orbitals labeled E == dj, where E is 
the electron kinetic energy. The functions V and W contain the radial pieces 
of the generalized Breit interaction and are given by eqs. (4.81) and (4.82), 
respectively. The remaining symbols, V v)., W)., E~(3(l\,a, I\,~; A) and II(l\,a, I\,~, v) 
are simple numerical factors, all of which can be found in ref. [19]. The notation 
[(A+1) ~ (A-I)] in eq. (4.91) indicates that the entire summation to the left of 
the preceding plus sign should be repeated with the A expressions exchanged. 

All that remains is to define the imaginary part of p).. An expression for 1m[p).] 
is obtained by discarding D). and ET in eq. (4.88) and then replacing the 
remaining Breit integrals with their imaginary counterparts. The imaginary 
Breit integrals are identical to those given in eqs. (4.90) and (4.91), except 
that the following two modifications must be performed: (1) the second term 
appearing in the first line of the expression for the W function in eq. (4.82), 
which does not contain any Bessel functions, must be discarded and (2) the 
substitution nv -----> -ijv must be made in all of the remaining terms that 
appear in the V and W functions, in accord with the discussion surrounding 
eq. (4.83) of the previous subsection. 

As an application of the factorized form of the Breit interaction, we present 
table 7, which contains collision strengths for the 36 n = 2 to n = 3 transitions 
from the ground state of Ne-like uranium. These data were originally presented 
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http:4.89)-(4.91


in each 
n 2 to n 

uranium. the labels used 
transition is provided in 

3 transitions 

x x lOy. 

€ ' 150 eV (' 30000 eV 
Transition t:..E(Ry) C GB GEl G13I 

Al - Bl 1047.8 

Al - B2 1252.1 

Al - B3 1286.5 

Al- Cl 960.5 

Al - C2 1040.7 

Al - C3 1246.7 

Al- C4 1282.6 

Al - C5 1328.1 

Al - C6 1395.3 

Al - D1 960.5 

Al- D2 1041.9 

Al- D3 1328.0 

Al- D4 1395.6 

Al- D5 141:3.9 

Al - E1 1040.6 

Al - E2 1412.,0; 

Al - Fl 1056.2 

Al - F2 1231.6 

Al - F3 1298.7 

Al - Gl 915.5 

Al - G2 1057.1 

Al - G3 1078.3 

Al - G4 12:n.9 

Al - G5 1298.6 

Al - G6 1346.1 

Al- G7 1379.8 

A1- HI 944.6 

Al - H2 1057.9 

A1- H3 107·1.7 

Al - H4 1344.1 

Al - H5 1:361.8 

Al- H6 1379.2 

Al - I1 1056.9 

Al - 12 107,5.7 

Al - 13 1362.0 

Al - J1 1073.9 


in ref. [60] and the level labeling scheme can be found in Table I of that refer­
ence. The column headings have the same meanings as those used in table 5 
of the previous subsection in order to facilitate comparisons between calcula­

corresponds to 
responds to an impact energy 

Coulomb interaction and those that included 
CLI..-UUll. The collision are provided for 

c' = 150 eV 
eV cor-

First, we note that there is very little difference between the GB and GBI 
results presented in table 7, reinforcing the notion that imaginary part of 
the generalized Breit interaction is not very important for obtaining accurate 
values of the collision strengths, even for high-Z ions. Next, we note that, since 

transitions considered in table 7 refer to n 2 to n 3 transitions, the 
energies involved are somewhat less than those enCOUIl­



for the n 1 to n = 2 transitions for He-like uranium 1Il tne prevIOUS 
subsection. Therefore, the of the generalized Breit interaction is also 
expected to have less of an effect on the collision strengths. In fact, this 
is observed for the strongest transitions that are listed in the table, for which 

GB results typically differ by, at most, a few percent from Coulomb-
data. However, for those collision strengths that are approximately two 

orders of magnitude or more smaller than the largest values, the effect can 
be quite large. For example, the GB results are enhanced by 79% and 53% 
for the AI-C2 and AI-H3 transitions at E' = 30000 eV, and the interaction 

more than a 10% effect for nearly half of all transitions. However, since 
the effect is strong only for such weak transitions, the importance to plasma 
modeling is not expected to be significant when considering excitation pro­
cesses involve n 2 to n 3 transitions. On the hand, our results 
presented in the previous subsection, along with our work in [59] and [60], 
indicate that generalized Breit interaction should typically included 
excitation from the Is subshell for all but low-Z values. 

A summary of completed .fine-stTUctur-e excitation 

In this section, we summarize our production work that involved the calcula­
tion of collision strengths for various iso-electronic sequences. These calcula­

were performed by applying the fully relativistic distorted-wave methods 
described the previous sections. These results have been published in 
Data and Nuclear Data Tables and 

88 transitions from the ground level to n = 3 and n = 4 levels in 71 
Ne-like ions with 22 ~ Z ~ 92 [67]; 

(2) 3 transitions among n = 2 levels and 63 transitions from these levels to 
n = 3, n 4 and n 5 levels in Li-like with 8 ~ Z 92 [68]; 

transitions among n 3 levels and 80 transitions from levels to 
n = 4 and n 5 levels in Na-like ions with 22 ~ Z ~ 92 [69]; 

(4) 	 21 transitions among n = 4 levels and 63 transitions from these levels to 
n 5 levels in 33 Cu-like ions with 60 ~ Z ~ 92 

(5) 	3 transitions among n = 2 levels and 327 transitions from these levels to 
n = 3 levels 71 F-like ions with 22 ~ Z ~ 92 [38]; 
248 transitions from the ground level to n = 1 and n = 5 levels in 33 
Ni-like ions with 60 ~ Z ~ 92 [71]; 

(7) 15 = 0 transitions with n = 2 in 85 Be-like ions with 8 ~ Z ~ 92 

105 t:..n 0 transitions n 2 in 85 B-like ions 8 ::; Z ~ 92 
[7:3]; 

(9) 	 Approximately 1650 n 2 3 transitions in 85 B-like ions with 8 Z ~ 
(only results for Z = 14, 26, 12 and 61 were published explicitly; all 
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data were made available in electronic format) [74]; 
(10) 	 185 ~n = 0 transitions with n = 2 in 46 C-like ions with 9 :s; Z :s; 54 

(only results for 32 Z values were published explicitly; all data were made 
electronic 

n = 2 3 
Z = ana 04 were 

were made available format) 
105 ~n = 0 transitions with n 2 in 81 N-like ions with 12 :s; Z :s; 92 
[77]; 

(13) 	 45 ~n = 0 transitions with n 2 in 79 O-like ions with 14 :s; Z :s; 92 
[78]. 

We will refer to these publications according to the serial numbers listed above. 
For example, Paper 1 refers to publication on ions 

= Z - (5/6)(N - 1), 	 ( 4.93) 

where N is the number of the bound electrons per ion. For example, in Pa­
pers 1, 2 and 5, for Ne-, Li- and F-like ions, respectively, the energies 
were 

E' 	 1, 

7,8, ~n = 0 transitions Be-, B-, C-, 
energies were 

E' 	 0.03, 0.08, 0.2, 0.42, 0.80 and 1.40. ( 4.95) 

For the energies used in other publications, please see the corresponding 
references. 

we usea our lUHy relatlvlStIC structure code, as described in chap­
ter 2, to obtain bound orbital wave functions, level energies, mixing coefficients 
and line strengths or oscillator strengths. The potential used in obtaining the 
radial functions is the Dirac-Fock-Slater potential, given by eqs. (2.18)-(2.20). 
As stated previously, this potential is determined from a different set of frac­
tional occupation numbers for each of transitions. For the or sets, of 
fractional occupation numbers used calculations, the reader is "f'otn"f'l~/Vl 
to the respective publications. Since same potential is 
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radial functions for all bound and free electrons associated with a particu­
lar class of transitions, the resulting set orbitals is automatically orthogonal 
and exchange can be handled in a simple, consistent manner. In latter two 
of these earliest publications (Papers 5 and 6), the structure calculations also 
included the generalized Breit interaction and other corrections described 
section 2.5. 

As mentioned in Paper 7, and chapter 3 of the present work, our structure 
code introduced some slight numerical error in treating transitions involving s 
orbitals with very large Z values. This discrepancy appeared to have a 

effect on most oscillator strengths and collision strengths presented 
Papers 1-6. A notable exception occurred in some tln = 0 transitions 

Papers 2-4, for which the transition energies differed significantly from 
computed with the Grant code [6]. For this reason, calculated with 
the Grant code were used for the tln = 0 transitions considered in Paper 5. 

for this reason, in Papers 7-13 we used improvements described 
section 4.4. is, we used Grant code with the "average level" option to 
obtain bound wave functions, level energies, mixing coefficients and oscillator 

Then we used Mann's potential, eqs. (4.37)-(4.40), in solving the 
Dirac equation for free-electron orbitals. However, these later calculations 
are similar to the earlier ones, described in Papers 1-6, in that they contin­
ued to employ a set of fractional occupation numbers in order to obtain 
electron density, and the resulting potential, for calculating free-electron wave 

(Again, reader is referred to the specific pnblication for a 
the fractional occnpation numbers that were employed.) As pointed out 

section 4.4, cont.inuum orbitals arc no longer orthogonal to those 
bound electrons in this situation and an extra term had to be introduced in 
the appropriate exchange integral. The "post" form of this term, eq. (4.41), 
was used in Papers 7-13. 

There was also some variation in the fitting procedure used to obtain values 
QA for the factorization method described in section 4.3. In most of our 

production calculations, in Papers 1-11 more specifically, in order to 
up the calculations, we made fits of QA as a function of Z. As mentioned in 
Paper 1, Z2QA is a very slowly function of the nuclear charge, and 

number of bound electrons per N. Therefore, we performed detailed 
relativistic distorted-wave calculations for six or eight values of for each of 
the scattered electron energies mentioned above. In each case, values of 
QA were calculated three incident-electron energies given by €i € ' + tlEj , 

where j and values of tlEj are chosen that they span the range 
fine-structure transition energies. Then, each value of QA was fit to a power 
series in Z. For example, in Papers 1 and 5 concerning Ne-like and F-like ions, 
respectively, detailed calculations were made for the Z values 
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Z = 22, 42, 56, 74 92. 


Then, a power of the form 

2 A 3 2 2Z Q a1 Z + o,2Z + o,3Z + 0,4 + + o,6Z­

was usea to obtain a set of fit parameters for each occurrence of QA from the 
results computed at the Z vlaues. A different set of parameters, 

ai, was determined for each QA that can for a particular class of 
tions (see (4.32)). Then, we obtained values of QA at the exact 
associated with a given fine-structure transition by Lagrangian interpolation, 
as mentioned in 4.6. However, in Papers 12 and 13 concerning N-like 

O-like ions, we performed detailed calculations for every Z value consid­
in those respective publications, since the available computing power at 

that time was much greater than previously accessible. case, for a 
value of we still obtained the values QA at the exact transition 
via Lagrange interpolation on the values that were explicitly calculated at the 

representative impact 

Finally, we mention the methods used to obtain the top-up contribution for 
the collision strengths. For optically allowed transitions, we used the 
relativistic Coulomb-Bethe (PRCBe) approximation as described section 4.9.1 
to obtain the high partial-wave contribution. For forbidden transitions, the ra­

approximation described in section 4.9.2 was 

In addition to collisional excitation data, above works also contain 
dipole oscillator strengths for optically allowed transitions. In Papers 1-6 our 
structure code was used to calculate oscillator strengths using the procedure 
described in chapter 3. In these early calculations, retardation effects were 

As mentioned in Papers 2 and 3, such an omission is acceptable 
for transitions involving orbitals with principal quantum number n > 1, since 
retardation effects are small in these cases, as confirmed by the comparisons 
provided in those publications. In the more recent Papcrs 7-13, as mcntioned 
above, we used the Grant code the structure calculations, which automat-

included retardation in the oscillator-strength calculations. 

4·12 simple cases 

to the situation for photoexcitation that was discussed in subsec­
tion 3.2.1, among the several cases for which there are initially no 
filled subshe11s, in addition to the active one, there are two simple cases 
are of particular interest for which the quantity fA in eq. (4.35) can be ex­
pressed in an especially simple form. These are: (1) the case in which the 
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active subshell initially contains a single electron, and (2) the case in which 
the active subshell is initially filled. The absence of partially-filled subshells, 

addition to active one, means that no extra angular factors enter 
eq. (4.36). 

As discussed in subsection 3.2.1, the first case is usually referred to as 
pseudo-hydrogenic case. It applies to hydrogenic ions, as well as to the case 
in which transitions involve the valence electron outside of a closed-shell core, 

as in Li-like and Na-like ions, provided that mixing is neglected between 
states belonging to different complexes. (There can be no mixing among 
tial, or final, states within the same complex if only the valence electron is 
considered to be active for a pseudo-hydrogenic ion.) This situation is a special 

simple scenario considered in section 4.3, where initially there are 
only filled or empty subshells, in addition to the active one labeled a. In this 
special case, the CFP and w occupation number in eq. (4.36) are both 
Also, Jr 0 so that the 6-j symbol eq. (4.36) becomes 

'l)J' +J'+'\ .\' 	 .\' 
ja A j~} 	= { ., O} _ a· t UJdaUJU~ 

( 4.98) { J: 0 Jt Ja A - [(2Jt + 1)(2J: + 1)]1/2 . 

Thus, {\ reduces to l)ja+~~j~+,\, which is equal to since ja and j~ are half 
integers and A is an integer. Consequently, B>' 1 for all values of A because 

square of this phase factor is one and the relevant mixing coefficients 
eq. (4.35) are all unity. Then, the collision strength takes the very simple 

- nps ( l' 'l'" )D(U - = 	~ GH na a.7a, na 'aJa 

8 L Q>'(nalaja, n~l~}j~; nalaja, 


>. 

8 " " (na·aJo,f.J;naa.Jo,f.JI' l' 'l' ")2 ,~~ 	 'l'" 
>. 

j./ 

where the superscript "ps" and the subscript "H)) indicate a pseudo-hydrogenic 
quantity, as in eqs. (3.37) and (3.;38). 

second case applies to excitation from the ground state of systems 
as He-like, Ne-like and Ni-like ions, which are very important in plasma ap­
plications, as stated in subsection 3.2.1. In this case, we assume no mixing 
between the ground configuration and any excited configurations, so that 
ground state is pure and the CFP is again unity. Also, Jt 0 so that the 6-j 

in eq. (4.36) 	reduces to 

A Jt O} (_l)ja+J;+j~ 6J;ljabJ;>' 
(4.

{ J~ O} = {~: A j~ [(2J{ + 1) (2jo, + 1)]1/2 . 
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Thus, eq. becomes 

t, = W
1
/

2 

6]'>.. 6],>", 1)I r. . "t \ 1 jr) ( ­ t t 

where the final expression results because W 2.1a + 1 for a filled subshell, and 
.1a + .1~ and J; are both integers. In this case, if we omit mixing in the ground 
statc, then only mixing among the upper states needs to be considered. Hence, 

collision strength obtained from eqs. (4.31) and (4.34) simplifies to 

U') = 8 L ,S')b(U', S~) 
SI,S; 

. ,'I' .,x na a.7a; .7al , na1 
) . (4.102) 

4.13 Configumtion-avemge CTOSS sections eZectmn-impact excitation 

When considering configuration-average quantities electron-impact excita­
tion, it is convenient to follow a similar approach to that used for photoexci­
tation in 3.2.2. In particular, we begin with the collision strength 
consider the single-configuration approximation by averaging over all possi­
ble SCSF transitions that can arise for a transition the type displayed in 
eq. (3.42). Thus, the configuration-average collision strength between two con­
figurations c and c' is given 

Dc- c' LL 103) 
iEc jEe' 

ni - j is the collision strength between two pure SCSFs labeled i and 
.1. In order to reduce this expression to a useful form, one must introduce 
the additional approximation that the transition energy is the same 
SCSF transitions in the above summation so that the incident and scattered 
free-electron wave functions are also the same. In practice, it is convenient 
to assume that this transition energy can be accurately approximated by the 
configuration-average transition energy, llEc-e" The result is that each SCSF 
collision in eq. 103) is described by a scattered electron with 
energy <:' <: - , where - Ec. This type of assumption 
was not necessary when considering the line strength section 3.2.2 because 
that quantity involved only bound-electron wave functions. With this approx­
imation, the collision strength can be reduced to the simple form 

wn:(2.1f3 + 2 - w(3) DPs 
,n{3lf3.i(3) , 104)

gc (2.1a + 1)(2.1f3 + 1) Ii 



can be expressed in the useful form 

where the pseudo-hydrogenic collision strength, nhs 
, is given by eq. (4.99). We 

note that eq. (4.lO4) has the nice property that it is in exactly the same form 
as that given for the configuration-average line strength in (3.44). As a 
point of reference, we also note that (4.104) is the relativistic analog of 
eq. (15) given by Peyrusse (28]. 

Moving on to a consideration of the excitation cross section, we again assume 
transition between each pair of SCSFs can be approximated by 

configuration-average transition energy, . Then, the configuration-
average excitation cross section can be expressed according to 

1[" 1[" 

Qc-c' ~~ giQi-j/gc = ~~ n i- j = (4.k2 k2 
iEc jEd ' gc iEc jEe' gc 

where ge is the statistical weight of the initial configuration, given by eq. (3.45). 
the relationship between configuration-average excitation cross sec­

and corresponding collision strength is formally identical to the relation­
ship between the fine-structure (or SCSF) quantities, as given by eq. (4.1). 

use of eq. (4.104), the configuration-average excitation cross section 

wn(2jfJ + 2 - Wi") Qf{S(nnlnjcn
Qc-c' = (2j(3 1) 

where the pseudo-hydrogenic excitation cross section is dehned as 

1[" 

(4.Qfl(n(~laj(,-, n(3lfJjf3) = ~n~~(nnlaja, 
go 

g(~ 2jo + 1 being the statistical weight of subshell 0:. It is verified 
all of the configuration-average quantities listed above reduce to cor­

responding hydrogenic expressions for the case of hydrogenic ions when 
W Q wf3 = 1). 

4.14 Rate coefficients for electron-impact 

In this section, we provide useful expressions for two quantities associated 
with electron-impact excitation: the rate coefficient and the effective collision 
strength. These quantities are temperature-dependent and are convenient for 
computing the collisional-excitation contribution to the rate equations 
determine the atomic populations in plasma kinetics modeling. While no nu­
merical results will presented here, the expressions provided in this section 

be applied chapters 5, 7 and 8. 
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As in description at the beginning of this chapter, we again consider a 
generic excitation transition, denoted i - f, that could refer to a transition 
between configurations, fine-structure levels or magnetic sublevels. The 
expressions provided in this section are completely general that they 
to any of these types of transitions. Then, for a transition i - f that is caused 
by electron-impact excitation, the rate coefficient, Gifl is given by the average 
of the product of the electron speed, v, and the corresponding cross section, 
over the electron distribution function. For non-degenerate, Maxwellian 
trons the result is given by 

co 
1 

GiJ = N Jn,.Jp)vQ(i Neh Je-t(p)/kTp2vQ(i dp, (4.
l 

e 
Po Po 

where kT is the temperature expressed in the appropriate energy lVe> IS 

electron number density and ne (p) dp is the number of electrons per 
that exist within a of momenta between p and p + dp The lower 

bound of the integral, Po, is the momentuIIl corresponding to the threshold of 
the transition, [(Po) = = with Ei and EJ the initial andEJ 
final energies of the configurations, states, etc., and the quantity rJ satisfies 

co 

ery = -~~ ~ J dp, 109) 

° 
which provides the appropriate normalization for the electron distribution 
function. The evaluation of the integral in eq. (4.109) can be expressed in terms 

or, alternatively, as a series expansion [79,80]. Specifically, 

8n (rnC)3 2 e7J = - -} (a) = (2nmkT)3/2
I 

X 110)N} 3 ,
L a e L 

a _ mc2
/ kT, l{2 (a) is modified Bessel function of order 2 and 

relativistic correction X is given 

X 1 -= a-I 105 a-2 315 a-3 10395 .... (4.11+ 8 + 128 1024 32768 + 

The series expansion is valid when a > 1 (or, when kT < mc ), 

which holds true for a wide range of cases that might be practical 

When computing numerical data for large amounts of collisional excitation 
processes, it is often convenient to provide the effective collision strength, Y iJ, 

which varies more smoothly with temperature than the rate coefficient, 
effective collision strength for direct excitation is defined 

92 


2 



1 

E' E is the final, or scattered, electron kinetic energy. 

From eqs. (4.108), (4.110) and (4.112), and the standard relationship between 
the cross section and the collision strength given by eq. (4.1), the connection 
between the rate coefficient and the effective collision strength is found to be 

e-Eif!kTTGif 	 if ( 4.113) 

or, inserting 

---c-=Gif = 

where T is the temperature in Kelvin and X is given by eq. (4.111). This 
relationship is particularly useful because it is valid not only for the process of 
direct electron-impact excitation treated in this chapter, but also for resonance 
contributions to the total excitation rate coefficient described in section 7.4. 
This relationship is also valid for the total excitation rate coefficient itself, 
provided that the total effective collision strength is supplied on the right­
hand side. 

energy Efi = - E f < 0, then the corresponding rate coefficient can 
be determined from the detailed-balance relation 

G fi = 	 9i eEiflkTGif . ( 4.115) 
9f 

Inserting numerical values, and using the convenient property that the effective 
collision strength is symmetric (i.e. T fi = T if ), the analog of eq. (4.114) can 
be written in the form 

As 
resonance contributions to the de-excitation rate coemClen 
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5 Electron-impact ionization 

Our basic approach for obtaining expressions for the electron-impact ioniz;ation 
cross sections follows in a straightforward manner from the electron-impact ex­

LGl.1VH theory described in the previous chapter. One must take into account 
fact that the final bound electron in the excitation process is replaced 

by an ejected continuum electron, which shares the available energy with the 
scattered continuum in the of kinetic Consequently, the 
final ion is an (N -I)-electron system, rather than an N-electron system. The 

of this approach have described ref. [82] for non-factoriz;ed 
method and in [32] for the factorized method. A summary of these two 
methods is provided in the next two subsections for transitions between 
structure levels. Additional commentary is provided on the inclusion of the 
generalized Breit interaction, a method for obtaining convenient fit formulae 

the ionization cross section, and the configuration-average approximation 
applied to collisional ionization. A treatment transitions between magnetic 
sublevels is reserved for chaDter 9. 

5.1 The non-factorized approach to computing ionization cross sections 

, five steps are required to extend the expression for 
the collisional excitation cross section, given by eq. (4.1) in the previous chap-

to the case ionization. mentioned previously, eq. (4.1) is valid 
excitation transitions of any type. Here, we will consider transitions between 
fine-structure levels, for which eq. (4.6) applies in the case 
the first in obtaining ionization cross section is to alter the nnal sys­
tem wave function in eq. (4.6), Wf, so that it represents an (N + I)-electron 

comprised of an (N I)-electron ion and two continuum electrons. 
convenience, we first provide an explicit expression for W f as it applies to 

collisional excitation. Such an expression can be written in a manner similar 
to that for the initial system wave function in eq. (4.8), and is given by 

1 N+l 

Wf = L(-l)N+l~P L C(J;/M;m'; 


p=l 

xWb..' J' M' )UE'I'j'ml(Xp ) . (5.1)
t t t 

first required modification can be accomplished by replacing \IIb..' 1'M' (Xp-l )
ttl. 

in eq. (5.1) with an antisymmetrized wave function for an N-electron 
corresponding to the final (N - I)-electron ion plus an ejected electron. The 
appropriate expression is given by 
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1 N-II 

) :L (_I)N-q C(J;'j"A1;'m";\Ii 6.~J;M: 

qfp M:',m" 


x \Ii A II J"Mil 
t 

, (5.2)
L>.t t )Uc"l" j"m" 

where \Ii6./1 Jif Mil is the antisymmetrized wave UHvC1VH that corresponds to the 
t t t 

(N - I)-electron ion with total angular momentum Jt, and U(I/llljllm" 

is a Dirac spinor that represents the ejected electron. This spinor is analogous 
to the UEljm spinor that represents the incident electron defined by eqs. 
(4.11). An important consequence of this last statement, when considered in 
concert with the specific form of eq. (5.2), is that the bound-electron radial 
functions, Prl~l;lj~ and Qn~l~j~, that appear in the and exchange radial 
integrals for excitation, given by (4.17) and (4.18), are simply replaced 

PEiliI/jll and QEI/[lIJI' when calculating corresponding radial integrals 
for the ionization cross section. 

The second required step is to sum eq. (4.6) over possible of J;, 
which represents total angular momentum of the N-electron system con­
.mJvmo of the final 1 )-electron ion with total angular moment urn J~' 

the ejected electron with total angular momentum j". third step is 
to also sum (4.6) over all possible partial waves of the ejected electron, 
which are represented by /')," or, equivalently, .i" and l". The fourth step is 
to integrate eq. (4.6) over the appropriate range of the kinetic energy of the 
ejected electron, E". This range is obtained from a consideration of standard 
energy-conservation arguments and is found to be 0 to (E 1)/2, where I 
is the ionization energy and E is the kinetic of the electron. 

fifth, and step is to divide eq. (4.6) by a factor of 7r in order to 
take into account the fact that a final, bound-electron radial function 
normalization 

J
00 

[P;;,/<;:, (1') Q~! ~-' (1')] dr 1 (5.3)
a ·'a 

o 

has been replaced with a continuum ejected electron function nor­
malization 

J00 

[PEII/<;II (1' )Pclfl/<;1fI (1') + Q€IIKlI (1' )Q(III",'I' = 7rO(E" ­

o 

Combining these steps yields the relativistic distorted-wave ionization cross 
section for transitions between fine-structure levels, 

(6.t Jt - 6.~J:') k~ :L(2J + 1)
gi J 
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J: K,K'K" 

given by Wf given by eqs. 

Most of the practical that need to be considered when numerically eval­
uating the various that comprise eq. (5.5) are similar to those described 
for excitation in chapter 4. For example, the continuum radial functions that 
represent the scattered and ejected electrons are determined from the same 
algorithm that is described in section 4.5. Also, some of the procedures that 
were described in section 4.6 also carryover to the case of collisional ioniza­
tion. For example, a single mean configuration (which may contain fractional 
occupation numbers for certain subshells) is chosen to determine an appropri­
ate central potential (see eqs. (2.18) (2.20) in section 2.3) for a given class of 
transitions. In the case of ionization, a given class of transitions is typically 
denoted by the nnlaja value of the active (ionized) electron. A method for 
determining the mean configuration that is analogous to the approached 
for excitation is to split the occupation number of the active electron 

final In the case of ionization. the final 

of the form 

1s22so.56do.5 (5.6)"" 5/2· 

An alternative approach that we often employed is to simply use the integer 
occupation numbers associated with the initial configuration of the target ion. 
For example, when considering either inner-shell ionization or ionization of 
the valence electron of Li-like ions in the ground level, the configuration 1s22s 
was used in determining the DFS central potential. Similarly, for ionization of 
the 2p* electron in Li-like ions the configuration ls22p* was chosen. 

Another important consideration section 4.6 is the method for reducing 
number of radial integrals need to be calculated. For complex cases in 

which mixing among states is strong, the set 
integrals associa 

a given energies that span 
the range of actual, fine-structure ionization we interpolate on 
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these three sets of to obtain integrals at a ionization 
energy of interest. 

A consideration that applies to collisional ionization, but not collisional ex­
citation, is that the relative phase of the scattered and ejected electrons is 
unknown when the central field approximation is employed in determining 
the wave functions that represent these electrons. The choice of phase used in 
our approach is sometimes to as the "natural" -phase approximation 
(see eq. (10) of ref. [83]). This choice corresponds to the Z -+ 00 limit in 
the non-relativistic case. one might expect this choice to a good 
approximation for highly 

researchers. The entries from [84] were calculated with the RDW program 
was used to compute ionization contribution in [85], as 

opposed to the indirect excitation-autoionization contribution computed 
ref. [86]. This approach also uses the natural-phase approximation, but dif­
fers from our RDW approach only in that the bound and continuum radial 
functions are computed in a Dirac-Fock potential [6], rather than the more 
approximate Dirac-Fock-Slater potential used in our approach. For the highly 
charged ions considered here, this difference in potential typically makes very 
little difference because nuclear potential dominates the electron-electron 
interaction. This statement is verified by noting the excellent agreement 
tween our RDvV results and from refs. [84] and [85]. 

are larger than from [87] and [88]. Nevertheless, the 
agreement is quite good when comparing with these results. 

Finally, the results of [83] from all of the others in two ways. 
these results were computed with the full lowest-order QED interaction for 
electrons scattering with a bound electron. In this case, the interaction was 
written in the Lorentz gauge and so the M0ller interaction was used in these 
calculations (see eq. (2.29) and the surrounding discussion for details). The 
second difference in the data from ref. [83] is that the exchange and interference 
terms were excluded from the scattering matrix elements. This omission was 
expected to have no more than a 15% effect on the cross section. (However, 

ectation was eventually shown to be false, as will be demonstrated 
section 5.3, which concerns the Breit interaction.) Thus, 



T
ab

le
 8

. 
C

om
pa

ri
so

n 
of

 t
h

e 
io

ni
za

ti
on

 c
ro

ss
 s

ec
ti

on
 (

in
 u

ni
ts

 o
f 

cm
2

) 
fo

r 
va

ri
ou

s 
su

bs
he

ll
s 

be
tw

ee
n 

th
e 

pr
es

en
t 

R
D

W
 

re
su

lt
s 

[8
2]

 a
n

d
 r

el
at

iv
is

ti
c 

ca
lc

ul
at

io
ns

 p
er

fo
rm

ed
 b

y 
o

th
er

 w
or

ke
rs

. 
R

es
ul

ts
 a

re
 p

re
se

nt
ed

 f
or

 d
if

fe
re

nt
 i

on
s,

 d
en

ot
ed

 b
y

 
th

e 
nu

cl
ea

r 
ch

ar
ge

 Z
, 

w
it

h 
va

ry
in

g 
nu

m
be

r 
of

 b
o

u
n

d
 e

le
ct

ro
ns

. 
m

ea
n 

co
nf

ig
ur

at
io

n 
us

ed
 t

o 
de

te
rm

in
e 

th
e 

po
te

nt
ia

l 
w

as
 c

ho
se

n 
to

 b
e 

th
e 

gr
ou

nd
 c

on
fi

gu
ra

ti
on

 o
f 

th
e 

in
it

ia
l 

io
n 

in
 a

ll 
ca

se
s.

 x
[y

] 
=

 x
 x

 lO
y.

 

A
ct

iv
e 

Io
n 



su

bs
he

ll
 

ty
p

e 
Z

 
S

ou
rc

e 
I 

(k
eV

) 



3s
 

N
a 

34
 

pr
es

en
t 

1.
03

6 
9.

72
[-

21
] 

1.
09

[-
20

] 
1.

18
[-

20
] 

1.
29

[-
20

] 
[8

4]
 

1.
03

6 
9.

80
[-

21
] 

1.
09

[-
20

] 
1.

18
[-

20
] 

1.
27

[-
20

] 
2p

* 
N

e 
34

 
pr

es
en

t 
2.

58
2 

3.
33

[-
21

] 
4.

80
[-

21
] 

[8
4,

85
] 

2.
58

3 
3.

43
[-

21
] 

4.
88

[-
21

] 
2p

 	
N

e 
34

 
pr

es
en

t 
2.

53
9 

6.
92

[-
21

] 
9.

97
[-

21
] 


[8
4,

85
] 

2.
53

9 
7.

14
[-

21
] 

9.
98

[-
21

] 


u
=

f.
/I

 
1.

05
 

1.
12

5 
1.

25
 

1.
50

 
2.

00
 

2.
50

 
3.

00
 

(
C

 
3s

 
N

a 
79

 
pr

es
en

t 
8.

37
3 

7.
70

[-
23

] 
1.

26
[-

22
] 

1.
79

[-
22

] 
2.

13
[-

22
] 

2.
16

[-
22

] 
2.

12
[-

22
] 

ex
; 

[8
4]

 
8.

37
0 

7.
72

[-
23

J 
1.

24
[-

22
] 

1.
77

[-
22

] 
2.

11
[-

22
] 

2.
17

[-
22

] 
2.

12
[-

22
] 

38
 

N
a 

92
 	

pr
es

en
t 

12
.2

04
 

1.
68

[-
23

] 
3.

67
[-

23
] 

[8
4]

 
12

.2
02

 	
1.

68
[-

23
] 

3.
70

[-
23

] 

2s
 

L
i 

92
 

pr
es

en
t 

32
.9

6 
4.

20
[-

24
] 

1.
24

[-
23

] 
1.

55
[-

23
] 

[8
7]

 
32

.8
4 

4.
09

[-
24

] 
1.

21
[-

23
] 

1.
51

 [-
23

] 
2s

 
N

e 
92

 
pr

es
en

t 
25

.3
1 

1.
34

[-
23

] 
[8

8J
 

25
.3

1 
1.

30
[-

23
J 

2p
* 

N
e 

92
 

pr
es

en
t 

29
.2

7 
4.

93
[-

23
J 

[8
8]

 
29

.2
7 

4.
77

[-
23

] 
2p

 
N

e 
92

 
pr

es
en

t 
30

.0
0 

3.
69

[-
23

] 
[8

8]
 

29
.9

5 
3.

57
[-

23
J 

Is
 

H
e 

92
 

pr
es

en
ta 

13
0.

4 
0.

54
[-

24
] 

1.
95

[-
24

J 
2.

79
[-

24
] 

13
0.

2 
0.

51
[-

24
] 

1.
76

[-
24

] 

a 
C

al
cu

la
te

d 
w

it
h 

ex
ch

an
ge

 a
n

d
 i

nt
er

fe
re

nc
e 

te
rm

s 
se

t 
to

 z
er

o 
as

 i
n 

re
f.

 [
83

]. 



comparing with these the corresponding terms were also omitted from 
our RDW calculations. agreement between the two sets is also very 
good in this case, is somewhat surprising since the generalized Breit 

Melller were eventually shown to cause a substantial (rv 50%) 
increase in cross section when all terms were properly included in the 
scattering elements. 

5.2 	 Use of the factorization to obtain expresszons the ion­
ization cross section 

expression for the collisional ionization cross section can also 
from the corresponding excitation cross section via the five steps 

in the previous section, and also described in ref. [321. The fac­
form of collisional excitation cross is 

substituting the collision strength in eq. (4.31) into eq. (4. 
the prescription in the previous section, factorized 
ionization cross section is by 

8
Q(U ­+ 1)1~2 L L L J£ 1" ,j" S,S" 

Sl 

X LBA[U, JD, JD (5~I" j"JD1 
A 
((-1)/2 

QA(naIa.ial , nallal . (5.7)X 	 ./ 
o 

The quantities BA and QA have the same basic defil:itions as those provided 
in section 4.3, except that the arguments have been modified appropriately 
for the case of ionization. The overall notation has been slightly modified to 
be consistent with that introduced in the previous section. In particular, the 
final ion level with total angular momentum Jt is now denoted by U" rather 
than U'. Similarly, the sums over the states and 5~ have been replaced 
sums over and 5~. The meaning of these symbols is completely CLHCLIUl'-V 

to their excitation counterparts, and 5~' are states with 
momentum J;' that contribute to mixing of ion 
corresponding mixing coefficients b(UIf 

, 5") and b(U", 5D. Also, for the case 
ionization, both of the substitutions n~ l~.i~ (" Ilf.i" and l~l.i:ll---> 

are required. substitutions appear explicitly in the argument of QA 
are understood in corresponding expressions comprise (Le. in 

and (4.36) for FA and fA, respectively). the appearance of 
in the last three arguments of serves to emphasize the notion that 
those arguments refers to an N -electron system comprised of an ion 
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case 
or empty in the target ion. In 

quantity {". The phase factor in that expression, 
, will not contribute to the ionization cross section because j~ is 

-electron level, or state, that is coupled to the ejected 
angular momentum J:. 

replaced by j" and J: is obtained by coupling j" and Jr, which represents the 
total angular momentum of the final ion with one less electron than the initial 
ion. Thus, 1[ + J{' + j" is an integer and, because the square of this phase factor 
appears in the cross section, the factor docs not contribute. Additionally, the 
summation over J; in eq. (5.7) can be evaluated using an alternative form of 
eq. (4.30) given by 

A A (5.j"}. JujU]j" } { , (5.8)'2J2J: + 1) {.!; Jll .It - 2ja + 1 . 
J' t t Jt 'J"t 

t 

Note that this result removes dependence of fA (and, consequently, BA) 
on the index A. 

fact 
This statement applies 

In order for both this latter 
statement and eq. (5.8) to be simultaneously satisfied, it must also be true 
that La] = La. Taking this result into account, we can define a K."-summed 
version of QA according to 

QA(nana]laja; fll) 

" QA ( l' "l" ." l' "l" ''')
- L na a.Ja, f .J; na] a].Ja] , f .J 
,.." 
"PA( I . l' "Z"·,, 'l' ")PA( l"I' "I"'" 'If 'f)= L na o.Ja f .J; f .J f.J nal aJaf .7; f .7 f . .7 . (5.9) 

l,l'jl" 

j,j' ,jll 


This quantity can be combined 
express the factorized version of 
form 

described above to 

8 
L . U" S" 

(2ja + S,S" 

, 1 

SI 
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(£-I)/2 

x dE" L Q>"(nanallaja; E") , (5.10)J >..o 

where 

B(U, 55 . U" 5"5") = F(U5 , U"5")F(U51, U"5")1 , '1 l' (5.11) 

F(U5, U" 5") = b(U, 5)1(5, 5")b(U", 5") , (5.12) 

and 

1(5,5") = Vw(j;:-la~J~ l}j;:aaJa) . (5.13) 

Here, eqs. (5.10)-(5.12) apply to the general case, but eq. (5.13) is valid only 
for the present case under consideration for which all subshells, except the 
active one, are initially filled or empty. For more complex ions, eq. (5.13) 
must be multiplied by the appropriate factor, as discussed in subsection 3.2.1 
and section 4.3, and also in ref. [32] where analytic expressions are provided. 
Alternatively, the value of 1(5,5") that applies to an arbitrarily complex 
transition can be determined from the MeT package [34] of the Grant code. 
However, the relationship is not as straightforward as that provided for the 
case of photoexcitation (see the discussion following eq. (3.30)). 

While it may seem odd that a factor of 2ja +1, rather than 2Jt +1, now appears 
in the denominator of eq. (5.10), this choice is intentional as it lends itself to a 
particularly simple expression when mixing is limited to states that lie within 
the same complex. Up to this point, we have been considering the most general 
case for which the levels that describe the initial and final ions are allowed to 
include mixing of states that reside outside of a single complex. If mixing is 
limited to states within a complex, which is often a good approximation for 
highly charged ions, then there is only a single set of n values to describe the 
active electron so that nal = na' We first consider the simplest possible case 
of this type, i.e. ionization of a hydrogenic ion with no mixing. In this case, 
the quadruple sum in eq. (5.10) reduces to a single term, with the surviving 
B coefficient replaced by one because the relevant mixing coefficients and the 
sole 1 coefficient all have a value of one. Then, the hydrogenic cross section 
for ionization can be written as 

(£-I)/2 

QH(nalaja) = (n' ~ 1 ,,) J dE" L Q>"(nalaja; E") (5.14)\ 

>..o 

with 
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QA L 

Next we consider an arbitrarily complex ion, but with mixing limited to states 
that reside within the same complex. Once again, the relationship na1 = na is 
valid and eq. (5.10) can be rearranged into the convenient form 

8(U, 
S.SII 

Sl 

where Q~s is a pseudo-hydrogenic ionization cross section of the same form as 
eq. (5.14). When evaluating Qh', the ionization energy I eq. (5.14) is chosen 
to be the actual value associated with the fine-structure transition in question 
and the radial wave functions to be used in the integrals that comprise the 
pA values are calculated from the central potential that is appropriate for the 
complex ion 

as 

Q(U - U") = B(U,SSl;UI,S"S~)Q~S(nana1laja), ( 5.17) 
8.8" 

Sl 

laja) is the same as Qh'(nalaja), except that QA(na1aja;[II) in 
be replaced with QA(nanlL1laja; [II) defined in eq. (5.9). Thus, 

(t-I)/2 
S 8 


Qi:i (na na1 laja) = (2ja + l)k f dt" QA 

'0 A 

The expressions provided eqs. (5.16) and (5.17) are the main results of this 
section. The former is to be used when mixing is limited to states within a 

the is to be used when mixing outside of a complex is 
very useful 

lVlHL.<1vlUH cross sectIOns tor tranSItIOns lllvolving arbitrarily 
complex ions. For completeness, we 
provided in ref. [:32] for computing the 1actoflzed IOlllzatIon cross 
the LS-coupling scheme. In that case, an expression similar to that given 
eq. (5.16) is obtained. See eq. (40) in ref. [32] and the surrounding discussion 
for further details. 

As a .llUllJ.ca. we provide in table 9 a portion of the comparisons 
ref. f321 between our RDW ionization cross 
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sections computed with the factorization method and those obtained from 
relativistic calculations performed by Moores and Pindzola [85]. The mean 

Table 9 
Comparison of ionization cross sections (in units of 10-24 cm2) for U85+ ions. The 
present RDW results are labeled SZ, while those of Moores and Pindzola [85] are 
labeled MP. The symbol 2p in table II of ref. [32] has been changed to the present 
notation 2p*. 

Threshold energy Cross section 
(keV) at 2 tho units a 

Transition SZ MP SZ MP 

2p*22p(3/2) ---t 2p*2(0)b 26.59 26.59 30.2 31.4 
2p*22p(3/2) ---t 2p*2p(1) 30.57 30.57 16.8 17.4 
2p*22p(3/2) ---t 2p*2p(2) 30.59 30.59 28.0 29.1 
2p*2p2(3/2) ---t 2p*2p(1) 26.63 26.63 45.3 47.0 
2p*2p2(3/2) ---t 2p*2p(2) 26.65 26.65 15.1 15.7 
2p*2p2(5/2) ---t 2p*2p(1) 26.61 26.61 7.6 7.8 
2p*2p2(5/2) ---t 2p*2p(2) 26.63 26.63 52.8 54.8 
2p*2p2(1/2) ---t 2p*2p(1) 26.53 26.53 22.7 23.5 
2p*2p2(1/2) ---t 2p*2p(2) 26.55 26.55 37.9 39.1 
2p*2p2(3/2) ---t 2p2(2) 30.69 30.69 22.3 23.2 
2p*2p2(5/2) ---t 2p2(2) 30.67 30.67 22.3 23.2 
2p*2p2(1/2) ---t 2p2(0) 30.68 30.68 22.3 23.2 
2p3 (3/2) ---t 2p2 (2) 26.63 26.63 75.5 78.0 
2p3(3/2) ---t 2p2(0) 26.72 26.72 15.1 15.6 

a "th. units" stands for threshold units, i.e. the incident energy divided by the 

threshold energy. 

b The quantity in parentheses is the total angular momentum of the ion. 


configuration used in determining the DFS central potential for these N-like 
uranium calculations was 

1s22s22p*0.832p1.678fo.5 . (5.19) 

Numerical studies showed that the resulting cross sections are relatively in­
sensitive to how the number of electrons was distributed among the subshells 
in the n = 2 shell. The results were also found to be insensitive to the precise 
high subshell that was chosen to mock up the effect of the ejected electron. For 
example, replacement of 8fo.5 with 6fo.5 or 10fo.5 had no effect on the results 
presented in table 9. As in the previous section, the calculations of Moores 
and Pindzola included the lowest-order QED effect in the scattering matrix 
elements, whereas this correction was not included in our RDW calculations. 
Although the agreement between the two data sets is generally quite good, the 
differences that occur at the higher of the two impact energies are probably 
due to this distinction in treating the QED effects. Our approach to including 
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C.lC.l.l.lv.l.ll;;J is 
next 

5.3 An option to include the generalized Breit interaction in the ionization 
scattering matrix elements 

was motivated by a 
EBIT measurements 

ization cross sections for the Is electron in H-like and He-like uranium 
The measured results exceeded those produced by oUr non-factorized approach 
[82], described previously in section 5.1, by about 50%. Since the distorted­
wave approach is expected to produce accurate results for such highly charged 
systems, it was postulated that QED effects might be responsible for the 
discrepancy between theory and experiment. An earlier theoretical study of 

and ions, performed by Pindzola et a1. [83], 
the 

was 
employed 

and interference terms were excluded from the cross section 
subsequent study by Pindzola et a1. [64] displayed a plot of 
various no-exchange, UgH cross sections. However, that work also included a 
statement to the effect that an additional calculation, which did include the 
full exchange and interference terms, had been performed at a single impact 

(222 keY) and the resulting cross section increased by almost 50%. 
to Derform a more comDlcte study of the first-

In our case, we implemented logic in our collisional ionization program to in­
clude the generalized Breit interaction in the scattering matrix elements. The 
necessary modifications were made to the factorized version of the code de-

in section 5.2 and. as mentioned in ref. [90], the were relatively 
same changes that were described in subsec­

to 

ionization, with minor alterations. In brief, the two direct, Breit 
eqs. (4.90) and (4.91) must be added to the standard Coulomb integral 

given by eq. (4.89). The same type of statement applies to the corresponding 
exchange integrals (see eq. (4.92) and the surrounding discussion). In order to 
apply these integrals to the case of ionization, the only change that needs to 
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made is radial functions represent the final (bound) excited 
electron must be replaced everywhere by radial functions that represent 
continuum ejected electron. This change is easily accomplished by performing 
the substitution n~l~j~ ----c> E"l" j" in all of the excitation expressions. 

Upon completion of these modifications, our ionization program contained a 
general caDabilitv for including the generalized Breit interaction in RDW 

of the Is ionization cross section for UH + U~u+ ions l~uJ. Tllese results are 
reproduced in table 10, along with the corresponding EBlT measurements. 
The notation used to describe the various theoretical calculations is the same 

Table 10 
Comparison of ionization cross sections 

InCIdent-electron energy 
for 

ions. 
is 198 keY 
an electron in the Is 

Theory Experiment 

Ion C GB GBI 

Ugo+ 1.95 2.90 2.94 2.82 035 
UgH 0.93 1.:38 1.40 1.55 0.27 

as tllat used In SUbSeCtions 11.10.1 and 4.10.2. the label C refers to 
were performed with only the Coulomb interaction included in 

the scattering matrix elements, the GB-Iabeled results also included the real 
part of the generalized Breit interaction and the GBl-labeled results included 
both the real+imaginary parts of the generalized Breit interaction (labeled 
GBl). As was observed in the case of collisional excitation, the GB and GBl 
results agree to within a couple of percent, underscoring the lack of impor­

Ions, 

of the generalized interaction in these 

over tlle !,Joulomb-oIlly cross 
\JA''''''.'''''''', agreement is observed when comparing QED 

calculations with measurements. Calculations that considered the 
M¢ller interaction, rather than the generalized Breit interaction, in comput­
ing the ionization cross section for UgH ions were concurrently performed by 
Moores and Reed [91]. These M¢ller results were very similar to the UgH cross 

computed by our RDW code, providing a fundamental test 
invariance and additional SUDDort of the agreement between 
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Geneml for ionization from any with n ::; 5 

In the discussions that occur near the end of refs. [32] and [82], a methO(l was 
outlined for producing reduced ionization cross sections from detailed RDW 

and then fitting these reduced quantities to a particular functional 
The resulting fit parameters would make possible very rapid calculations 

that accurately reproduced detailed RDW results for fine-structure 
in arbitrarily complex ions. A procedure of this type was previously imple­
mented, for example, with respect to non-relativistic Coulomb-Born-exchange 
cross sections refs. [92-94] and the references therein). 

Research of this type for RDW calculations was reported in three publications 
[95,96,79] were organized according to the principal quantum number of 
the subshell in which the active electron resides. Transitions in highly charged 

involving active electrons with n = 3, 4 and 5 were considered 
. Ionization of electrons these subshells were the simplest to consider 

because reduced cross sections were relatively independent of Z and 
where N is the number of bound electroIh"l in the ion. Ionization ot a 

was next considered [96], followed by ionization of n = 2 electrons 
. These last two cases exhibited strong dependence on and N, and the 

Is-electron case also required special consideration due to the significant 
of the generalized Breit interaction on the shaDe of the reduced cross 

The development of procedure with a consideration of the sim­
factorized form the ionization cross section that appears in eq. (5.16), 

is repeated here for convenience, 

Q(U - U") = L B(U, 881 ; U", 8"S~)Q';(nlj). (5.20) 
5,5" 

81 

subscript "a", which denotes the active subshell, has also been 
for convenience. The B coefficients depend only on the ion properties such 
as mixing coefficients and angular momenta, and can be rapidly computed. 

mentioned previously, the pseudo-hydro genic cross section, Q~"l(nlj), has 
the same form as the cross section for collisional ionization from sub­

shell nlj in a hydro genic ion, but is calculated with bound and continuum 
radial functions determined from the appropriate potential of the 
under consideration. For relatively low values of Z, which L8 coupling is 
appropriate, the dependence of q';(nlj) on j can generally be neglected so 

Q~ Z ;S ~30. 21) 
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procedure is to design a simple, fast 
method for determining Q~!j(nIj) for an arbitrary transition in any ion. The 

step in achieving this goal is accomplished by defining a suitable reduced 
cross section. Such a quantity was defined for the non-relativistic, Coulomb­
Born approach to collisional ionization of hydrogenic ions by taking advantage 
of the fact that the cross section scales perfectly as 1/J2 in the Z -----+ 00 limit, 
where 1 is the ionization energy of the bound electron. This relationship was 
then extended to ionization in non-relativistic, corlmlex 

and 
an 

are approximately independent 
N, that describe the target ion. 

5.4.1 Fits to n = 8, 4 and 5 ionization cross sections 

In applying this approach to RDW ionization cross we consider 
same type of scaling and define a (dimensionless) ionization cross 

QR, according to 

(5.22) 

where l(Ry) is the ionization energy in Rydbergs and '/1, c/l is the incident­
electron kinetic energy in threshold units. In order to test the utility of such 
a reduced cross section for RDW calculations, we first considered ionization 
of electrons residing in sllbshells having principal quantum numbers n = 3, 
4 and 5. The process of collisional ionization of in these shells is 

to be less affected relativistic effects, relative to 
more tlghtly bound residing in the n = 1 2 
it was hoped that the previously mentioned approach, 
applied to non-relativistic Coulomb-Born cross 

these electrons within an RDW framework. 

To this end, we computed values of QR(nlj, u) for a large number of cases 
involving the ionization of electrons residing in the n 3, 4 and 5 shells [95]. 
A subset of these results is displayed in table 11 for the n 4 values. The 
additional n = 3 and n = 5 data are available in ref. [951, with a detailed 

table 11 

Z, Nand j n:::: 
pseudo-hydrogenic cross 

Q~s (nIj), differ greatly as a function ofthese quantities. Moreover, the 
reduced cross sections are reasonably close to the non-relativistic Coulomb­
Born-exchange values for hydrogenic ions, except that the RDW values tend to 

107 




11 
Comparison of values for reduced ionization cross section Q u for electrons re­
siding in the n 4 shell. 

Active 
subshell Z N I{RYl 1.125 1.250 1.500 2.250 4.000 6.000 

l a4s 0.359 0.580 0.807 0.937 0.800 0.651 
79 1 421.16 0.3624 0.5869 0.8276 0.9600 0.8447 0.6951 

11 18.74 0.3360 0.5473 0.7733 0.9020 0.7703 0.6203 
35 189.48 0.3276 0.5368 0.7668 0.9096 0.7821 0.6355 

79 45 144.28 0.3101 0.5099 0.7325 0.8858 0.7721 0.6286 

Fl 0.394 0.640 0.901 1.057 0.882 0.702 
79 1 421.08 0.3771 0.6145 0.8740 1.0421 0.9184 0.7518 
26 11 17.79 0.3570 0.5812 0.8223 0.9756 0.8492 0.6835 
79 35 181.40 0.3502 0.5703 0.8059 0.9469 0.8339 0.6810 
79 136.05 0.3439 0.5616 0.7975 0.9394 0.8133 0.6782 

l a 0.394 0.640 0.901 1.057 0.882 0.702 
79 1 400.65 0.3965 0.6448 0.9139 1.0913 0.9542 0.7758 
26 11 17.71 0.3582 0.5823 0.8218 0.9786 0.8512 0.6856 
79 35 171.26 0.3665 0.5968 0.8429 0.9984 0.8800 0.7218 
79 45 127.23 0.3607 0.5880 0.8349 0.9890 0.8644 0.7160 

l a4d* 0.488 0.785 1.083 1.205 0.963 0.755 
79 1 400.65 0.4945 0.7981 1.1084 1.2534 1.0367 0.8328 
26 11 16.46 0.4712 0.7617 1.0606 1.2061 0.9882 0.7805 
79 35 158.69 0.4549 0.7430 1.0501 1.2303 1.0:m6 0.8395 
79 45 113.85 0.4327 0.7105 1.0175 1.2226 1.0496 0.8601 

l a4d 0.488 0.785 1.083 1.205 0.963 0.755 
79 1 394.84 0.4977 0.8021 1.1102 1.2560 1.0358 0.8316 
26 11 16.46 0.4710 0.7609 1.0576 1.2057 0.9871 0.7801 
79 35 156.48 0.4585 0.7480 1.0544 1.2335 1.0339 0.8338 
79 45 112.01 0.4364 0.7162 1.0237 1.2271 1.0499 0.8492 

l a4f* 0.538 0.864 1.187 1.326 1.057 0.820 
79 1 394.84 0.5518 0.8856 1.2202 1.3794 1.1263 0.8936 
26 11 15.80 0.5362 0.8617 1.1857 1.3428 1.0799 0.8366 
79 35 142.00 0.5637 0.9096 1.2596 1.4394 1.1783 0.9263 
79 45 95.92 0.5797 0.9404 1.:n26 1.5183 1.2638 1.0059 

1a 0.538 0.864 1.187 1.326 1.057 0.820 
79 1 392.05 0.5514 0.8849 1.2187 1.3787 1.1251 0.8925 
26 11 15.80 0.5359 0.8613 1.1846 1.3426 1.0796 0.8364 
79 35 141.34 0.5632 0.9086 1.2577 1.4374 1.1758 0.9238 
79 45 95.40 0.5792 0.9395 1.3109 1.5161 

a Non-relativistic Coulomb-Born-exchange values for hydrogenic ions 
94]. These values are independent of Z. 

exceed the non-relativistic results for the higher values of Z and 11" as expected. 
This separation is due to the RDW potential being somewhat different 
a pure Coulomb potential and also due to the relativistic effects that are 
included in our RDW calculations. 

Equipped with a reduced cross section that possesses the desired lack of de­
pendence on Z and N (as as j), we next considered fitting the 
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cross section, for a given subshell nlj, to a functional form that is the same as 
that used for the non-relativistic case. Specifically, we considered 

1 l' 2 

u 

+ [C(nl j ) + d(nl
2 

j )] (1 ~)}, ( 5.23) 
u u U 

where, as mentioned previously, the dependence on j was found to be small 
and can neglected. The reasons for choosing this particular formula are 

more detail in subsection 5.4.4. coefficients A, D, c and d 
are fit parameters to be determined from the computed 
cross sections discussed above. Once the fit parameters are determined, the 
cross section in eq. (5.20) for ionization between fine-structure levels can be 
approximated by 

,....., 7r,.....,-;:-::---- ,S,,'h; 
S1 S " 

81 

where I is the actual ionization energy for the fine-structure transition denoted 
by U - U". 

to tile reduced cross 
n = 3 and n 5 results from [95]), we considered the results 
gold (N 35 and Z = 79) to be a representative data set. These values of 
QR were then fit to the functional form given by eq. (5.23). In doing so, for 
subshells with l 2: L fits were made to the mean values 

11. 
2 1.2' vl, + l + 2' 

since, as previously mentioned, the reduced cross sections do not exhibit a 
strong dependence on the j quantum number in this case. Of course, more 
accurate fits would result if each nlj reduced cross section had been considered 
individually. resulting parameters are provided in ref. [95] and are 

12. narameters fit the Br-like Ilold set to 

A numerical example, which will not be reproduced here, was provided in 
ref. [95] to demonstrate the application of these parameters. Specifically, the 

parameters were used to compute fine-structure, inner-shell ionization cross 
state eu-like (N 29) gold ions to final 

were vUH1PCH 

was obtained 
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Table 12 
Values for the parameters in the fits to the reduced cross sections QR(nl, u) ob­

Br-like gold results. These parameters are to be used in eq. (5.23) and 
eq. (5.39). 

nl A(nl) D(nl) c(nl) d(nl) 

38 0.848 :3.67 -0.24 2.70 4f 0.187 6.82 2.67 3.04 
. 0.711 5.06 0.03 3.02 58 0.584 :3.87 0.38 2.56 

3d 0.342 7.31 0.90 4.16 5p 0.570 4.09 0.95 2.31 
4s 0.686 3.38 1.22 1.45 0.468 5.23 0.81 2.97 
4p 0.640 4.17 0.49 2.64 5f 0.288 5.95 2.47 2.66 
4d 0.474 5.48 1.78 5g 0.101 6.64 3.17 2.63 

for strong and moderately strong transitions when comparing the two 
sets. The reader is referred to ref. r951 for further 

5.4.2 Fits to n = 2 crOS8 

to n = 2 ionization cross sections were considered in ref. [79]. This study 
included a large number of calculations of n 2 cross sections to get an 
of what sort of fit formulae and parameters would be required to accurately re­
produce the associated reduced cross sections. A preliminary goal of this study 
was to determine the range of conditions under which the generalized Breit 
interaction had a significant effect on cross sections that represent ionization 
from the n = 2 subshells. It was found that this interaction became 

Z ;G 42 and had a maximum effect of only 13% on the cross sections at the 
Z value of 92. Moreover, these tests indicated a maximum contribu­

tion of only 0.1% from the imaginary part of this interaction. Thus, only 
real of the generalized Breit interaction was included when computing 
the actual reduced cross sections that were used in the fit procedure described 
below. 

The determination of an accurate fit formula and corresponding parameters is 
more complicated for ionization from the n = 2 subshells than for 

n 3-5 subshells described in the previous subsection. The complications 
arise from two separate considerations. First, the relativistic effects (and, to 
a lesser extent, the effects of the generalized Breit interaction) on QR become 

stronger for n = 2 ionization as Z increases. From inspection, rela­
effects start to become important for Z 30, which provides a dividing 

line for consideration of those effects. second complication concerns 
low-Z for which the relativistic effects are not important. In this region, 

ionization cross sections are interest for a relatively large of N 
values (about 1 to 12). This consideration introduces a strong N dependence 
into the reduced cross for low-Z ions, which requires some additional 
attention. 
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on this information, we chose Z = 30 as the approximate boundary for 
deciding whether weak/strong N dependence and relativistic effects must be 
considered. For Z > :30 the fits were somewhat simpler since they displayed 
only a weak dependence on N and so we begin with a discussion of 
results. There is considerable discussion and detail provided in ref. [79], 
will be presently. inspection the various calculations for 
Z > 30 indicated that the dependence could be split two regions: 
1 :::; N < 7 and 8 :::; N :::; 12. Data for the former region can be accurately 
represented by fitting reduced cross sections that were computed for N 4, 
while the latter is well represented by fitting = 10 results. a 
function F( Z) must be chosen such that a modified reduced cross section, 
defined by 

(2lj, u) = QR(2lj, u)/F(Z), (5.26) 

is independent of Z for incident-electron energies. choices 

[66 + (Z/30)2·3j for 2s 
F(Z) = [150 (Z/30)2·5]j151 for 2p* (5.27)

{ [76 + (Z/30)2.3j/77 for 2p 

were the N = 4 case, while the UIUIV:;" 

[13.75 + (Z/30) 14.75 for 2s 
F(Z) = [79 + (Z/30)2] for 2p* (5.28)

{ [49 + (Z/30)2]/50 for 2p 

worked well for the N 10 case. Then, for Z = 30, where Q~ = QR, 
calculated results were fit to the form 

(2lj,u) = ~{Aln(u) + D (1- ~)2 +CU(I- ~)4 

+ I~ + dJ h -~) }) (5.29) 

where D, C, c and d are free fit parameters and is the known constant that 
reproduces the non-relativistic Bethe high-energy limit for hydrogenic ions. 
A comparison of eq. (5.29) with eq. (5.23) used in the previous 
reveals an extra term containing the parameter. This extra term provides 
additional flexibility in fitting the n 2 reduced cross sections at high 
energies. It was originally introduced to better fit the high-energy behavior 
displayed by Is ionization cross sections and will be discussed in more detail 
in the next subsection. The resulting: parameters for the present case of 
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Table 13 

Fit parameters for n 2 ionization to be used in eq. (5.29) and eq. (5.43) 

Z > 30. See also eqs. (5.30)~(5.32) for a prescription of how the C and D coefficients 

should be modified as a function of Z. 


Subshell Z N A D c d C 

28 30 4 0.82300 :3.29272 1.29228 0.97231 0.12297 
10 0.82300 3.42429 0.74161 1.30061 0.10748 

2p* 30 4 0.53000 4.70251 2.21302 1.39644 
10 0.53000 5.08482 1.73067 1.75431 0.16469 

2p 30 4 0.53000 4.69802 2.24186 1.38246 0.15499 
10 0.53000 5.08759 1.75208 1.75654 0.16191 

Z = 30 and N = 4 are displayed in table 13. The previous procedure was also 
repeated for 30 and N 10, and the resulting fit parameters are also 
displayed in table 13. 

In order to extend these fits beyond Z = 30, so that accurate reduced cross 
sections would be obtained, it was necessary to allow for some of the fit pa­
rameters to depend on Z. For the case of N = 4 the values of A, c and d 
were held fixed at their values for Z = :30 in table 1:3. However, C was 
allowed to vary with Z, while D was fixed at its Z = 30 value over the range 
30 :::; ::; 50 and then allowed to with Z beyond this The choices 

to represent this Z dependence were 

0.12297 + [(Z - 30)/122]1·35 for 2s 
C(Z) = 0.15751 + [(Z 30)/90]l.45 for 2p* (5.30)

{ 0.15499 + [(Z - 'HI\ /10,111.25 for 

3.29272 + [(Z - 50)/95]2 for 2s 

D(Z)= 4.70251+(Z 50)/100 for2p*.


{ 4.69802 + (Z 50)/170 for 2p 

N 10, the values of A, c d were also held fixed at their values 
= 30. No improvement was obtained when the D parameter was allowed to 

depend on Z, and so that parameter was also held at its Z 30 value. 
Thus, only the parameter was allowed to vary with Z when N 10 and 

functional form was chosen to be 

0.10748 + [(Z - 30)/91.6]2·8 for 
C(Z) 0.16469 + [(Z 30)/79]2·3 for 2p*. (5.32)

{ 
0.16191 + [(Z 30)/96]2·5 for 2p 

For Z ::; 30 we did not consider any explicit dependence the fit 
or parameters. Therefore, F( Z) = 1 and no Z dependence is included 
C and D parameters. However, the strong N dependence must taken into 
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Table 14 

Fit parameters for n = 2 ionization to be used in eq. (5.29) and cq. (5.43) 

Z S 30. These results are to be used in conjunetion with the information listed in 

label Z N A D c d C 

2s 	 m 20 2 0.82300 3.25608 1.39689 0.90728 0.10312 
n 14 3 0.82300 3.19030 1.26373 0.92092 0.09837 
0 20 7 0.82300 3.40125 0.74015 1.28843 0.08671 
p 23 10 0.82300 3.47502 0.42973 1.47638 
q 20 10 0.82300 3.49865 0.19704 1.61284 0.08620 
r 10 6 0.82300 3.25615 0.24498 1.42340 0.10526 
s 14 9 0.82300 3.37995 -0.16761 1.67916 0.10495 
t 16 12 0.82300 3.47813 -0.60240 1.90515 0.11514 

2p 	 u 20 3 0.53000 4.63025 2.25094 1.33408 0.13207 
v 9 4 0.53000 5.11279 1.58909 1.88921 0.10317 
w 9 5 0.53000 5.49331 1.00456 2.34350 0.11167 
x 18 10 0.53000 5.46097 0.9G675 2.13802 0.17920 

Y 12 8 0.53000 5.33521 0.87126 1.95646 0.25035 
z 16 12 0.53000 5.41330 0.41832 2.08234 0.30398 

for large values of N and small values u. To address 
we found it necessary to compute a number of different sets of fit 

parameters in order to accurately represent all of the relevant regimes of and 
N. In computing these sets of fit parameters, use was 

the QR values are approximately a function of Z / N when the dependence 
on d is strong. Hence, a single set of fit parameters can be used for all cases 
with nearly the same Z!N value. 

first part of table 14, the recommended fit parameters to 
2s ionization, when Z < 30, are given. A lowercase letter is used to label each 
set of fit parameters and the corresponding values of Z and N denote from 
which explicitly calculated set of QR data the parameters were determined. 

these labels, the range of Z and N values for which each of these 
applied is indicated in table 

lower part of table 14 the analogous fit parameters ionization 
a 2p electron when Z ::; 30. In this low-Z region, values of QR for the 2p* and 

2p orbitals agree to within 0.5% and so the same parameters apply to both 
orbitals. The corresponding ranges of Z and N for which these parameters are 
to be applied are provided in table 16. 

A nice summary that describes how to use the various sets of n = 2 nt pa­
rameters is provided in table A of ref. [79]. Some useful discussions of 
numerical comparisons are also provided in that reference. 
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Table 15 

Regions of Nand Z for which each set of 2s fit given in 14 applies. 


1 2 3 4 5 6 7 8 9 10 11 12 

4 m 
5 m 
6 m n 
7 m n 0 

8 m 11 o q 
9 m n o p q 

10 m n o 0 q r 
mn n oqrs 

12 II m m n 0 p q r s 
Z 13 m In n 0 p q r r t 

mmn nopqrs t 
15 m In n n 0 p p r s t t 
16 m In 11 n 0 0 p q r s t t 
17 In In 11 11 0 () P q r s s t 
18 In m n 11 0 0 P q r r r s 
19 m m 11 11 n 0 0 p q r r r 

20 m m n n n 0 0 p p q q r 

21 m In m 11 11 11 0 P P q q r 

22 m m m 11 n n 0 0 p P q q 

23 m m In Il 11 Il 0 0 P P p q 
24 m m m Il n n 0 0 0 p p q 

mmInIlIl11000 p p p 
26 111 m In m n n 11 0 0 P p p 
27 m m m In 11 11 11 0 0 0 p p 
28 m m m m n n n 0 0 0 o p 

29 m m m m 11 11 n 0 0 0 o p 

30 In m In In n n n n 0 0 o 0 

5.4.8 Fits 1s ionization CTOSS sections 

Our investigation into the fitting of ioni;;;ation cross sections for a Is electron 
proceeded a manner very similar to that described in the 

subsection for ions in the n 2 shell. In fact, as mentioned earlier, our study 
Is electron was actually performed before the n = 2 work. The 

part of this study focused on determining the effect of 
interaction on the Is ionization cross section. Cross sections are displayed in 

17 for Is ionization in a of hydrogenic ions with Z ranging from 
10-92. Results are presented for Coulomb-only calculations and calculations 
that also included the real part of the generalized Breit interaction. in 
previous calculations, the imaginary part of the generali;;;ed Breit interaction 
was found to make only a small contribution to the cross section, even at 
highest value of 92. In that case, the contribution of the imaginary Dart was 
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Table 

Regions of Nand Z for which set of 2p fit parameters given in table 14 applies. 


N 

1 2 3 4 5 6 7 8 9 10 11 12 

4 u 

5 u 

6 u u 

7 u u u 

8 11 11 11 V 

9 11 U U V w 

10 U 11 U V W x 

11 uuuvwx y 

12 u u u v v w x y 


Z 	 13 u u u v v w w x y 
14 u u U u v w w x y z 
15 u U u U v v w x y z z 
16 U U U U v v w x y y z z 

uuuuv vwwx y y Z 

11 U U U v v v ww x y y 
U U U U v v v ww x x x 

20uuuuv v vww w x x 
21 11 u U 11 V V V W W W W x 
22 11 U 11 U V V V W W W W x 
23 U 11 U U V v v w w w w w 
24uuuuvvvvww w w 

HUUUV V V vww w w 
uuuu v v v v v w w w 
uuuuvvvvvw w W 

11UUUV V V V V W W w 
29 11 U U U v v v v v w w w 
30 U U 11 U V V V V V V W W 

only 1.6% for incident energies near threshold. The real part of the generalized 
Breit interaction, on the other hand, has a significant effect. expected, 

incident 

The next step was to investigate the reduced Is cross section for a range of ions 
in order to determine the best approach to fitting those results. The results 
used for this purpose are presented in table 18. In this table, results for H-like 
and He-like ions are presented for fine-structure transitions, while the results 
for Li-like and Be-like ions are based on the pseudo-hydrogenic cross section 
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Table 17 
Comparison of results for Is ionization cross sections (in units of 10-24 cm:.!) for 
hydrogenic ions for various incident electron energies u (in threshold units) and 
nuclear charge Z. Upper entries are values calculated only the Coulomb inter­
aetion included, while lower entries are values calculated with the generalized Breit 
interaction also included. 

Z 

u lU :lU 30 42 50 66 79 92 

1.125 2490 155.7 30.8 8.04 4.01 1.327 0.649 0.355 
31.2 8.33 4.27 1.535 0.831 0.516 

1.250 4219 264.0 52.3 13.65 6.82 2.259 1.106 0.605 
53.1 14.21 7.29 2.636 1.432 0.889 

1.500 6374 399.3 79.2 20.74 10.37 3.453 1.695 
80.6 21.71 11.19 4.081 2.227 1.381 

2.250 8624 542.5 108.3 28.67 14.46 4.897 2.429 1.:3:31 
110.9 30.32 15.82 5.910 3.268 2.029 

8453 538.9 109.9 30.03 15.51 5.503 2.815 1.569 
113.1 32.16 17.28 6.823 3.894 2.450 

6.000 7266 471.2 98.6 27.96 14.83 5.512 2.903 1.647 
102.0 30.31 16.80 7.009 4.126 2.639 

of these results, we chose Z 20 to be the approximate value above which 
relativistic effects become significant. It is also noted that the N dependence 
is rather weak above this Z value, so it was decided that the reduced cross 
sections for hydrogenic ions with Z 20 would be used determining 

parameters for Z 2:: 20. We will return to a discussion of ions with Z < 20 
near the end of this subsection. 

final concern with choosing an appropriate 
cross section was the fact that the cross section does not 
In(u)/u dependence, which is the non-relativistic, Bethe high-energy limit. 
stead, as demonstrated by the results in figure 2, the Is cross section is roughly 
constant for the higher impact energies. This behavior is not unexpected be­
cause the standard In(u)/u limit is not valid for such relativistic energies. In 
fact, Bethe's original formula, which was 'written in terms of velocities, is valid 
for both relativistic and non-relativistic energies. A more appropriate form of 
the relativistic Bethe formula is given by In(;32 +G) / ;32, where {-J has the usual 
definition of;3 v / c and is a constant. It is easily verified that this 
expression approaches a constant value for very high energies due to the 
that the velocity v of the incident electron is bounded by the speed of light. 
This expression is expected to describe the limiting behavior when only the 
Coulomb interaction is considered in the scattering matrix clements. If any 

the various forms of the interaction are also considered, then 
is a predicted "relativistic rise" in the cross section that occurs at 
high incident energies. In this case, extra terms, which grow with increasing 

energy, must be added to standard Bethe formula. When spec:ifi­
considering the original Breit interaction, a limiting behavior of the 
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Table 18 
Reduced cross sections QR(ls, u) and ionization energies I(Ry) for ions in the ground 
state with various Nand Z values. x[y] = x x lOY. 

u 

Z N level I(Rv) 1.125 1.250 1.500 2.250 

10 	 1 1.0013[2] 0.2837 0.4807 0.7264 0.9828 0.9632 0.8280 
2 8.7797[1] 0.2714 0.4580 0.7038 0.9682 0.9669 0.8396 
3 8.4376[1] 0.2636 0.4557 0.6951 0.9694 0.9768 0.8495 
3 (ls2s)0 8.4793[1] 0.2647 0.4577 0.6982 0.9744 0.9819 0.8539 
3 (ls2sh 8.4007[1] 0.2626 0.4539 0.6923 0.9650 0.9721 0.8455 
4 8.0893[1] 0.2587 0.4434 0.6824 
4 8.0795[1] 0.4430 0.6816 0.9588 0.9777 

20 	 1 4.0205[2] 0.2861 0.4851 0.7337 0.9968 0.9901 0.8657 
2 3.7688[2] 0.2793 0.4743 0.7217 0.9882 0.9896 0.8682 
3 3.6975[2] 0.2774 0.4722 0.7196 0.9886 0.9942 0.8733 
4 3.6213[2] 0.2730 0.4679 0.7142 0.9862 0.9960 0.8766 

23 1 5.3261[2] 0.2873 0.4871 0.7369 1.0030 1.0017 0.8822 

30 1 9.1063[2] 0.2943 0.5003 0.7602 1.0450 1.0659 

42 1 1.8062[3] 0.3091 0.5269 0.8051 1.1244 1.1927 

50 1 2.5869[3] 0.3245 0.5545 0.8509 1.2030 1.3143 1.2779 
2 2.5181[3] 0.3198 0.5469 0.8407 1.1904 1.3012 1.2642 
3 2.5036[3] 0.3192 0.5461 0.8400 1.1907 1.3027 1.2655 
4 2.4825[3] 0.3173 0.5432 0.8361 1.1869 1.2995 1.2623 

66 	 1 4.6373[3] 0.3751 0.6444 0.9976 1.4447 1.6678 
2 4.5389[3] 0.3702 0.6352 

1 6.8591[3] 0.4446 0.7660 1.1912 1.7477 2.0825 2.2067 
2 6.7311[3] 0.4383 0.7554 1.1754 1.7248 2.0546 2.1764 

92 	 1 9.7078[3] 0.5531 0.9522 1.4798 2.1740 2.6247 2.8273 
2 9.5422[3] 0.5455 0.9391 1.4599 2.1451 2.5903 2.7942 
3 9.5407[3J 0.5459 0.9394 1.4614 2.1481 2.5950 2.8024 
4 9.4934@L 0.5431 0.9394 1.4545 2.1389 2.5845 2.7890 

(1 - 02
)] + G} /02 is obtained [97]. One can see from the data 

in figure 2 and table 17 that the results which include the generalized Breit 
interaction are increasing slightly than the Coulomb-only data as the 
incident energy and Z value increase. behavior is an indication that the 
cross sections are approaching the which the relativistic rise occurs. 

to the difficulties with obtainine: converged cross 
cross 

were calCUlated, we were not able to further explore this behavior. 
In any event, we do not expect our fits to be reliable for u values that are 
appreciably greater than 6, which is sufficiently large for most practical appli ­
cations. 
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2. Ionization cross sections for the Is electron in hydrogenic ions as a function of 
incident energy in threshold units. Results are provided for Z 66, 79 and 92. The 
dashed lines represent results calculated with Coulomb interaction included 
in the scattering matrix elements. The solid lines represent results calculated with 
both the Coulomb interaction and the part of the generalized Breit interaction. 

taking issues into account, the fitting procedure can proceed as 
described in previous subsection. First, we define a modified reduced cross 
section 

Q~(1s, QR(1s, 11,)/P(Z), (5.33) 

where F(Z) is chosen such that Q~(1s, u) is independent of Z for low 
energies (i.e. u:::::; 1). The choice 

F(Z) = + 
 /141 

accomplishes this independence to within 1% for 
ues of QR. Then, for Z 20, where Q~f = QR, we 

= 1 to the form 

Q~(1s,u)=.!.{Aln(u)+ (1 .!.)2 _.!.) 4 

II u U 

1 




(1 ~)}, (5.35) 


where A 1.13 is the known constant that reproduces the non-relativistic, 
Bethe high-energy limit and D, c and d are free fit parameters. As 

previous subsection, the term that contains the C parameter was added 
to the standard fit formula in order to rnore accurately capture the (nearly 
constant) high-energy behavior of the cross section for very high-Z ions. 
The fit parameters that resulted from this procedure arc listed in the second 
row of table 

19 
Fit parameters for Is ionization obtained from hydrogenic ions with Z = 20 and He­
like ions with Z = 10. These parameters are to be used in eq. (5.35) and eq. (5.43). 
The first row of data should be used for ions with Z < 20 and the second row of 
data should be used for ions with Z > 20. The latter results should be used in 
conjunction with eqs. (5.~36)(5.38). 

Z N A D c d c 
10 2 1. :5.82652 -0.80414 2.32431 0.14424 
20 1 1.1300 8.70590 -0.28394 1.95270 0.20594 

For Z > 20, we attempted to use eq. (5.35) with the coefficients A, D, 
c and d fixed at the same values as for Z 20, but allowed C to be a free 
parameter determining best fits at each of the remaining test Z values. 
This approach led to fits that were accurate to within 2.4% or better at each 
of the test Z values. We then used these best values of C to express C as a 

at the test Z 
unction of Z. The resulting functions. which meserve the accuracv to within 

C( = - 20)/50.5jLll + C(Z = 20~ Z ~ 

C(Z) [(Z - 20)/53]°·73 + C(Z 67 S Z < 92. (5.37) 

Furthermore, single formula 

[(Z ­ + C(Z = 20), 20 s Z 92 (5.38) 

only Sllghtly worse accuracy over range 01 Z values. 

the Z = 20 fit parameters obtained from the above procedure 
produce a fairly good reproduction of QR(ls, '11) for Z < 20, further numerical 
studies showed that the He-like, Z = 10 results with eq. (5.35) gives an 
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improved overall accuracy for the low-Z region. In this region, there is no need 
to define a quantity like Q~ F(Z) == 1), or to express C as a function 
Z, because there is essentially no Z dependence exhibited by the reduced cross 
sections in this region. The fit parameters that resulted from procedure 
are listed in the first row of table 19. Thus, we recommend that the first row 
of table 19 should be used for ions with Z < 20 and the second row should 

2 20. The latter set of parameters should be used 
conjunction with eqs. (5.~)6) (5.38). 

form of the fit formulae ionization rate coefficients 5·4·4 

As mentioned in refs. [92-94], which deal with the fitting of non-relativistic 
ionization cross sections, the particular fit formula appearing in eq. (5.23) was 
chosen for two reasons. First, it reproduces the appropriate physical behav­
ior in the various incident-electron energy regimes. For example, the A co­
efficient multiplies the In(u)/tl term, which represents the well-known Bethe 
high-energy limit of the ionization cross section for non-relativistic electrons. 
Second, eq. (5.23) can be readily integrated over a Maxwellian distribution 
function, representing the velocity distribution of the continuum electrons at 
a temperature T, to obtain the ionization rate coefficient in terms of exponen­
tial integrals. The expression for the collisional excitation rate coefficient 
corresponds to cross section Q(i .f) was previously provided in eq. (4.108). 

same expression holds for the ionization rate coefficient, provided that 
excitation cross section is replaced with the ionh~ation cross section. 

For ionization of n 3, 4 and 5 electrons, it is sufficient to consider the 
Maxwellian distribution in non-relativistic form, as opposed to 

approach taken in chapter 4. \Vith this choice, the rate coefficient for 
ionization that corresponds to the cross section in eq. (5.24) is given (in regular 
units, rather than Rydberg atomic 

8kT) 1/2 1lao 
2 L B(U, .u" , S"S")11U"; kT) = ( 7rrn [I(Ry)j2 Y 8,8" 

81 

x t Vlnt))e y d(nlj)E3II 

+ [A(nlj) + y c(nlj) - 2y D(nlj)]El (y) 
+y[D(nlj) + d(nlj) - c(nlj)]E2(Y)} , 

where Tn is the electron mass, 1 is the ionization energy of actual fine-
structure transition denoted by U 

y l/kT 
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k being Boltzmann's constant, and represents exponential 
tegrals 

J 
00 

e-YX 

--dx . (5.41)n 
1 X 

Additional discussion is provided ref. [95] concerning the application of 
lowering to eq. (5.39). The details are relatively straightforward 

and, such considerations, eq. (5.39) becomes eq. (9) of 

The fit formula that was applied to the ionization of electrons residing in the 
n = 1 and n 2 shells, eq. (5.29) or eq. (5.35), can also be integrated over 
a Maxwellian to obtain the associated rate coefficient in terms of exponential 
integrals. Recall that eqs. (5.29) and (5.35) differ from eq. (5.23) only in 
they contain an extra term in order to better represent the high-energy be-

of the reduced cross section. extra term requires some 
but straightforward, work in determining the corresponding rate coefficient. 
Since the ionization of n = 1 and n = 2 electrons is potentially influenced 

relativistic effects, we here the relativistic form of Maxwellian 
is described in chapter 4. Applying eq. (5.20) to eq. (4.108). we obtain 

rate coefficient the form 

C(U ,kT) = L B(U, 551 ; Uff, 5ff5i')C~S(nlj; (5.42) 
8,8" 


8 1 


the pseudo-hydrogenic ionization rate coefficient for an n = lorn 2 
is given (again in regular units) by 

.. [{ [ 3C)+ 

+ -2D+ (y) 

+y(D- + d c)E2 +y(C } 
2 

0: 
1 + D - 2C) 2C/y2]e-V+4I(Ry) { [(c - D + 3C) 
y 

+ +d-c- + A/y]E1 +y(C d)E2 

Some of the symbols in eq. (5.43) have already been previously defined. For 
example, y is given eq. (5.40), and the En are the exponential integrals 
from eq. (5.41). The symbol h! 1 Ry is the ionization energy of the hy­
drogen atomic, h is Planck's constant and (X 1/137.036 is the fine-structure 
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constant. The entire term containing 0: 2 can typically be ignored for ions with 
Z ,:S 26. Finally, Ne is the electron number density and the inverse the ex­
ponential e-'1, which is a normalization factor for the relativistic Maxwellian 
distribution, is provided in eq. 109). It should be noted that useful examples 
for n = 1 and n = 2 ionization have been provided refs. [96] and [79]. re­
garding certain simple cases for which the quadruple sum in eq. (5.42) reduces 
to a single B 

5.5 Configumtion-avemge cross sections for electron-impact ionization 

An expression for the configuration-average cross section for electron-impact 
ionization is determined in exactly the same manner as described in sec­

4.13 for the case of electron-impact excitation. Thus, we define the configuration­
average ionization cross section between two configurations c and elf as 

Qc-c" - 2: 2: giQij/gc, (5.44) 
iEe jEd' 

Qi-j is the cross section between two pure SCSFs labeled i and j, and 
ge is the statistical weight of the initial configuration given by eq. (3.45). 
ionization, the final configuration is denoted as d' instead c' to emphasize 
the fact that the final configuration one fewer electron than initial 
configuration. As in section 4.13, we again make the approximation that the 
ionization energy associated with each of the SCSF transitions can be ac­
curately represented by the configuration-average transition energy, flEe_eft. 

The result is that each SCSF cross section in eq. (5.44) is described by a 
scattered and ejected electron with kinetic that satisfy the relation 
(:' + E" (: flEe-elf, where flEe_elf With this assumption, 
eq. (5.44) can be rewritten in the very simple form 

Qe~c' = wa:Qfl(noZa:joJ, 

where the form of the pseudo-hydrogenic ionization cross section is given by 
eq. (5.14). As usual, the pseudo-hydrogenic cross section should be computed 
with enemies and radial wave functions that are appropriate to the 
lOll consideration. 

For comparison, we note that, if eq. (5.45) were to be recast in the form 
a collisional ionization strength, the result would be the relativistic analog 
of eq. (16) given by Peyrusse [28]. As a check, we note that it is trivial to 

that eq. (5.45) reduces to the correct hydrogenic expression for the 
case of hydrogenic ions (wa 1). We also note that the form of eq. (5.45) is 
very similar to the analogous expression for excitation in eq. (4.106), except 
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leading statistical factor is 
simplification is due to the fact that, 
bound electron residing in subshell no.lo.jn is ionized to become a continuum 
electron that resides in an orbital denoted by the quantum nurnbers Ilf j" with 
an occupancy that is always one. Setting 11}(3 1 in eq. (4.106) produces the 

statistical factor that appears in eq. (5.45) above. 

6 Photoionization 

Photoionization (PI) cross sections of atoms and ions are crucial in the mod­
of astrophysical and laboratory plasmas in the presence of an external 

field, or that are not optically thin. Among the many applications, 

the case of electron-impact ionization, 
ized methods for calculating fine-structure photoionization cross sections are 
described in this chapter. In addition, expressions are also provided for the 
configuration-average case. We note that the expressions for the cross section 
provided in this are in the length form (see subsection ;3.1.2) and with 

of retardation (see sections 3.3 and 3.4) omitted. 

6.1 Geneml expTessions fOT photoionization CTOSS 4Oor-tQnr, 

In writing an expression for the relativistic photoionization cross section, we 
adopt the method that was outlined in [98], which employs generalized 

a fine-structure denoted bv the 
flitt J" in thet 

O\';;\....\.;1\J.l.l is 

Q ( A J A "J") 41TaEp S( A A "J" 'l' '/J/) ()PIUt·t Ut,t 0(07,,\ Ut·ft,D.tt E.7, 6.1 
I',j',}' 

E/ is 
energy ~E 

E/ = Ep - flE(fltJt - fl~J:') . (6.2) 

The symbol S represents the generalized oscillator strength, which is a gener­
alization of the line strength in eq. (3.14), and is given by 
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S(D.tJt , D.~ J:'('['}' J') = I(D.tJt II p(1) !I D.~J;'f'l'j' J')12. (6.3) 

Here, the symbol J' represents the total angular momentum of the final system 
formed by the final ion in level D.~J:' and the free (ionized) electron composed 
of partial waves that are denoted by the usual notation c'l'}'. By analogy with 
eq. (3.17), the reduced matrix clement can written as 

p(I) L 
X UJ"jf II p(1) 

where Pt represents all quantum numbers in addition to Jt that are necessary 
to specify the pure SCSF basis state PtJt with corresponding mixing coefficient 
b·lt(D.t, t3t ). (The omission of the magnetic quantum number in describing an 
SCSF is potentially confusing. See the explanatory note following eq. 0.17).) 
Double primes on symbols indicate corresponding quantities in the final state. 
Due to the presence of the reduced matrix element in eq. (6.4), the summation 

eq. (6.1) all of the free-electron quantum numbers and values of 
angular momentum of the final system J' 

nrI""trll'~nrl in Cl1l"CD£.tlf'"\T) 'l 1 ~ fAr an 

Jt J' , or 0 (6.5) 

must be satisfied, but Jt = J' = 0 is not permitted. Also, the parity must 
change between the initial state, denoted by PtJl, and the final system, denoted 
by (JrJ:' f'l'j' J'. 

In order to evaluate the reduced matrix clement on 
side of eq. (6.4), we mirror the approach 
consider 

for w electrons 
given by eq. (3.20). The corresponding 

of ion plu.'" electron can be obtained from 
eq. (3.22) substituting free-electron quantities for the final, active-electron 
quantities appropriate places. The result is 

'1-' "J" '1' ., J'M' I .L1X2···lTr[( fLa l"aJa )w-laa a f J. 
1 tv 

'"IW L... '" L... C(J"" ~1" ,a J 11 a Tn ; 
Y tv p-l 

xw XIX2" • 
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Then, performing manipulations similar to those described in section 3.2, we 
obtain 

((3t.It II pel) II {J~I.I:IEII'j' .I') VW[(2.It + 1)(2J' + 1)P/2 1 


ia 1 j'} 'w-l ,,1/ ·W 


X { ]' .1:' .It (J a Qa.Ia 1}.7a Qa.Ia) 

xU" II c(1) II j')(nalaja I T IE'l')') , (6.7) 

the matrix is given by 

T I E'l'}') 
00 

= j[PnalaJa (1') + (T)Q€flfjl(1')]1' (6.8) 
o 

We note that in eq. (6., " present case of ions with 
or closed subshells, in to the subshell, relationships 

.It are 

more complex cases of additional partially filled subshells, the form 
eq. (6.7) remains unchanged, except for inclusion of additional angular 
that from the of these extra partially filled subshells. appro­
priate references for obtaining these extra factors are provided in section 3.2. 
Alternatively, as noted at the end of subsection 3.2.1, for the general case, one 
can also use MCT module of the Grant code [34] to obtain the angular 
coefficient for generalized strength. In order to an expression 
for the photoionization cross section for a general transition in terms of 
MCT coefficients, we again follow the approach in section 3.2. Specifically, we 
use the sirnplified notation U D.t.It and U" = D.~.I:' for the initial and final 

Also, we let S = (3t.It indicate a pure SCSF state contributing to 
while S" = (3~'.It indicates a pure SCSF state contributing to U". (The 
sion of the magnetic quantum number descrihing an SCSF is 
confusing. Sec the explanatory note following eq. (3.17).) With 

U=L S)IS), u" = b(U", S") 
S S" 

where the b's are the coefficients formerly (D.t, /3t ) and (D.7, (3~') 
in ea. (6.4). After some manipulation, we arrive at expression 

(D.t.It II pel) II D.~.I:'E'l'j'.I') == (U II pel) II U"E'l'j' 

= L b(U, S)b(U", (S, S"l'j' 


8,S" 

f"'PS( l' 'l' ")X.(..,H nO, 'a.7 a, E ,.7 ) (6.10) 
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IocLlllt:;U froIIl package 

rps( l' 'l' ") (na laJa. I T I 'l' .')(.Jo II C(l) II ") (6.11 ) .L.-H naa)a, E J E J J 

is the pseudo-hydrogenic electric dipole matrix element for the transition be­
tween the bound orbital nalaja and orbital E'l' j' associated with the pho­

electron. 

and to 1 ), photoionization cross 
can be written as 

QPI(U - U") ,47iaEp L I b(U, S)b(U", S") 
3(2Jt + 1) I' ,J'1 

~ 
JI 88" 

J' 

x 

This non-factorized expression was implemented in a computer program to 
compute RDW photoionization cross sections [98]. The motivation for this 
work was to calculate high-energy photoionization cross sections to comple­
ment results computed at lower photon energies by members of the Opacity 

(OP) [99] the close-coupling R-matrix method. an 
RDW and R-matrix total PI cross vt:;vLMHu 

26 were presented 
this reference were computed 

with a more extensive target expansion than previously considered, and were 
compared with data computed from the present RDW approach and with R­
mtarix data computed by Tully et al. [101], under the OP [99], when available. 
It was shown [100] that discernible differences in the background 
to cross section neutral Be ('fYn""Qtt:>nt 

and the R-matrix cross sections 
was around 18% at 5 Ry. However, for C III the difference was around 3% at 
15 Ry. At energies above the inner-shell threshold, the difference between the 
results was consistently around 10% for the various ions under investigation. 
Comparisons for ions with Z = 16-20 and 26 are reproduced here in figure 3. 

CTOSS 

As in the case of electron-impact ionization, the expression for the photoion­
ization cross section can be written in a convenient factorized form. In fact, as 
will be shown, the form of such an expression is very similar to that provided 
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Fig. 3. Total photoionization crOSH sections for Be-like ions with Z = 16~20 and 
26: ~ R-matrix results, ... RDW resultH, - - OP reHults of Tully et al. 
augmented with Ij(Ep )3 extrapolation at high energies. 

collisional ionization in eq. (5.17). In order to produce the factorized ex­
pression for photoionization, we again consider the case where the initial 
of the target ion contains only empty or closed subshells, in addition to the 

subshell a. \Vith this assumption, the summation in eq. (6.1) can be 
expanded according to eqs. (6.3), (6.4), (6.7) and (6.11) to 

1 
2J-- L S(fltlt, flit J"E'Z'" J') 

t + 1 I' "' JI t t J.J , 
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= 1 . 1 b(U, S)b(U", S")({3tJt II p(l) II (3;' J:'('l')'J') 12 
2Jt + 111 '1 JI S' '-'I,J 1 " 1"') 

= 2::: 2::: b(U,S)b(U",S")b(U, )b(U",S~h!wJW].(2J' + 

1XIJ~"'<o:"J" IjJ~O: J )(J·1tI1 
- J" !}J'WI )\ a a a a a a al al al 

{ 
j'}ja 1 j' } {ja l 1 

X J' J't' Jt J' J:' Jt 
I'ps ( l' 'l' ") I'pS ( I' 'l' ")XJ....H no 'aJa, ( J J....H na1 'IIIJal' ( . J . (6.13) 

property of given by 

q 

1 j' }2:::(2J' + 1) { ;, l } { (6.14) 
JI ~ ~ f J2 Jt 2Ja + 1 

and the fact that la = lal' ja = Jal and only states with the same parity 
can we obtain 

1 

2Jt 
2::: S (l::.t Jt , l::.~ JrE' l' j'J') 

1 11 ,jl,J' 

= 2::: b(U, S)b(U", S")b(U, Sl)b(U", SnViUJW]. 

X ) 

X--­

This expression can be used to recast the photoionization cross section in a 
factorized form that is very similar to that given for collisional ionization in 
eq. (5.17). Specifically, 

,S"snQ(l)=2::: 
5.5" 
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where B(l) depends only on quantities related to the atomic structure of the 
initial and final ions and is given by 

(6. 

with 

p(l) (US, U" S") = b(U, S)f(1) (S, S")b(U", S") . 18) 
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The radial quantity Q(1) appearing in eq. (6.16) depends only on the active, 
bound-electron and free-electron orbitals, and is given by 

4rraEpQ(l) 

3(2ja + 1) l',j' 

which is the analog of the pseudo-hydrogenic quantity in eq. (5.18) 
collisional ionization. As discussed in more detail in the next section, eq. (6.19) 
reduces to the pseudo-hydrogenic cross section for photoionization when mix­
ing is limited to states within a complex. 

nresent special 

(S 'ill) = r::::( 'w-l "J" I}~'w J),c V W Ja aa a Ja aa a , 

which is exactly the same expression as the result given in eq. (5.13) for 
case of electron~impact ionization applied to the similar situation of an initial 
target ion in a level that is described by only empty or closed subshells, in 

to the active subshell. In fact, for more complex ions, j(1) (S, S") 
"....entical to the corresponding value obtained for the same transition 

case of collisional ionization. Furthermore, the A 1 dependence can 
t,\.;ClllllCClllY be removed (6.20) because the is independent of A, as 
shown for the case of collisional ionization (see comment after eq. (5.8)). 
As usual, for these more complex cases that involve additional partially filled 
subshells, the form of eq. (6.16) remains unchanged, except for the inclusion 

eq. (6.20) of additional angular factors that arise from the presence of these 
extra partially filled subshells. Alternatively, for more complex cases, one 

numerical values of f U) (S. S") from the MeT package in Grant's 

While no published reSUlts are avaIlable tor photOlolllzatlOn cross 
computed with this factorization approach, it has been benchmarked and used 
extensively in creating massive data sets for large-scale plasma modeling (e.g. 

[102] and [103]). 

The previous section dealt with the general case for which mixing between 
states outside of an n-complex was allowed. When mixing is limited to 
within the same complex, the cross section in eq. (6.19) is transformed into 
the pseudo-hydrogenic cross section for photoionization. Specifically, when nal 

is set equal to na in eq. (6.19), we 
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QPs-H ( l .) 4/TaEp '" Sps ( l' /l/ ./)
PI na aJa = (. ) ~ H na aJa, E J , (6.21) 

3 2Ja + 1 1'", ,J 

with the generalized line strength for the pseudo-hydrogenic case given by 

S PS( l' /l/ ./) 1 rpS( l' /l/ ./) 12H na aJa,E J = LH na aJa,E J . (6.22) 

Eq. (6.21) represents the exact expression for the cross section when consider­
ing hydro genic ions. As usual, for more complex ions, the pseudo-hydrogenic 
cross section should be computed with energies and radial wave functions that 
are appropriate to the ion under consideration. 

Next, we consider the configuration-average case for photoionization. Using 
an equation analogous to eq. (3.43), the configuration-average, generalized line 
strength for a transition between initial configuration e and final configuration 
e" is defined according to 

Sc-c"(E/l/j') L L S(S, S"E/l/j/) 
SEc S"Ec" 

= L L LS(S,S"E/l/j'J') , (6.23) 
SEC S"Ec" J' 

where S(S, S"E/l/j/) is the J'-summed, generalized line strength for the transi­
tion between two pure SCSFs labeled Sand S". As in section 5.5 concerning 
collisional ionization, we denote the final configuration, e", with two primes 
to emphasize that the final configuration has one fewer electron than the ini­
tial configuration. Eq. (6.23) can be simplified in a manner very similar to 
that used in arriving at eq. (3.44) for photoexcitation. Taking note of the fact 
that the final subshell for photoionization actually represents a free electron 
residing in the l/j/ orbital with an occupation number that is always one, the 
configuration-average, generalized line strength can be written in the compact 
form 

/ /./ Woo ps . / /./
Sc-c" (E l J ) = gc f' \ SH (noolooJoo, El J ) . (6.24)

2Joo + 1 

(See the discussion following eq. (5.45) concerning the configuration-average 
collisional ionization cross section for more details.) In writing the above ex­
pression, we have made the usual assumption that the ionization energy ~E 
associated with each SCSF transition in the transition array is approximately 
equal to the configuration-average ionization energy ~Ec-c" = Ec" - Ec. This 
approximation allows for the same value of E/ = Ep - ~Ec-c" to be used for the 
photoionized electron that occurs in all SCSF transitions within the transition 
array. 
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gous to 
average photoionization cross can 

QpI(C,CIf 
) L: L:gSQpl S")/gc=41TQ; 

EP L: L:L:S(S,S"c'l'/)
3SEc SlfEe" ge SEc S"Ee" If,jf 

---'- L:See,,(c'l'/) WnQ~~-H(nnlnjn)' (6.25) 
3gc I',jf 

where the final result follows from eqs. (6.21) and (6.24). As expected, the 
final result in eq. (6.25) has the same fundamental form as the corresponding 
configuration-average expression displayed in eq. (5.45) for collisional ioniza­
tion. As a point of comparison, we note that the final result in eq. (6.25) is 
the relativistic analog of eq. (19) given by Peyrusse [28]. 

7 Resonances and dielectronic recombination 

R-matrix close-coupling method in which resonances 
are included automatically, Cowan [104] developed an approximate Illt;vllVU 

that considered resonances to be the result of a two-step process, with 
process being calculated independent of the other. The first step of 
the creation of a doubly excited level by electron capture, photoexcitation or 
electron-impact excitation. The second step consists of autoionization or radia­
tive decay to the desired final level. We have used this two-step approximation 
in our ROW work to obtain resonance contributions to electron-impact 
tion and ionization, photoionization and photorecombination. The resonance 
contribution to this last process is also commonly referred to as dielectronic 
recombination. In this chapter, we first provide the relevant equations for 
tron capture and its inverse process, autoionizatioIl, as derived in ref. [105]. 

are considered for different applications. 

7.1 

an i to 

- E id ) , 1) 
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where the delta function indicates that the captured-electron kinetic energy, 
(, must be equal to the transition energy Eid . The electron-capture collision 

1 is explicitly distinguished from the quantity n~:~p, which can 
"cLlued by modifying the expression for the electron-impact 

eq. (4.6). Specifically, the summation over J is 

over 1£' is nnntt-Dn 

Jt - /:).dJd) = 27f(2Jd + 1) LI\ 
K, 

\Iii is by eq. (4.8) and the wave function for the doubly excited 
level, \Iid, is of the general form given by eq. (2.11). An extra factor of 7f enters 

above due to the different normalization for bound- and free-
electron wave functions. This expression can be rewritten, as in section 4.1 
for the electron-impact excitation collision strength, in terms of the reactance 

R as 

ncap(/:).tJt - /:).dJet) = 27f(2Jd + 1) L IR(/:).tJtcljJrt, /:).dJd ) 12 . (7.3) 
l,j 

In general, the initial level and the doubly excited level are each comprised 
of mixtures of pure SCSF states, having the same total angular momentum 
and parity, as in eq. (2.11), Therefore, we can express the reactance matrix in 
terms of the pure-state basis according to 

R(/:).to!tdjJet , /:).dJd) = L (/:).t) !3t) bJd (/:).d 1 (id ) 

,BtJ3d 

x R(!3tJtclj Jdl 

same meanmgs as 

free electrons is replaced 

the "direct" terms are given 


DA(nalajaclj; n~l~j~n~l~j~) = 

1:32 



) QnalajJrdQn~l~j~ (rdl 

rA 
x A~l [Pd:i(r2)Pn~1~:i~(T2) + Qdj(r2)Qn~1~j~(r2)l drldr2 (7.5)

T> 

and the "exchange" terms are given by 

( l ° l' 'l' 0' 'l' 0')na aJaE J; na aJanb bJb 
00 . 

rA 
< 

x A+1 + Qdj(r2)Qn~)~:i:, dTl dT2, (7.6) 
r> 

where a indicates the active electron in the initial level i, and a' and b' indicate 
the, active electrons in the doubly excited level d. 

We next obtain the rate coefficients for electron capture and its au­
toionization. For the process of electron capture, the cross section, Q~~P, is 
related to the collision strength, n~;p, according to the usual expression 

eq. ~4.108), and using the usual relativistic re-
electron kinetic E, the velocity, v) and 

momentum, p, we obtain the electron-capture rate coefficient 

Ccap _2_ -(rHEi d)/kT{1cap 
.id 7\ T h ,e "id , (7.8) 

He gt 

where the rate coefficient 
eq. 

(7.9) 

where usc has been made of eq. (4.110) and X is given by eq. (4.111). If the 
temperature is sufficiently small (kT « rnc2

) , then X 1 and the standard-----t 

non-relati vistic expression is recovered. 

The rate for the inverse process of autoionizatioIl, Adi , can be obtained from 
the principle of detailed balance, which can be expressed mathematically as 



ccap _ Nd Aa gd -E;,dkTAa 
iici - NeNi di Ne gi e di 

h:3 9 
d e-f<J"i/kTAa (7.

2(27fmkT)3/2X gi dz 

10-162.071 X gd -Eid/kTAacap - -e dz cm3 js (7.11)Gid - gi 

Comparing eqs. (7.8) and , we obtain 

') -Aa = ~ncap (7.12)cit h td'gd 

which, with the use of eq. (7.2) and gd 2Jd + 1, can be expanded to obtain 

2 22 N+1 2-~L: I( \lJ.IL:- hL I(i- h fi Z p,q rpq 1 fi 
p<q 

where Vint represents the electrostatic interaction between the electrons. We 
note that eq. (7.13) is in a form that is very similar to Cowan's eq. (18.65) [8], 

1 
2 

, 

is to different normalization conventions 
wave 18.3 ). 

7.2 Pse'udo-hydrogenic and configuration-a1)erage expressions fOT electr'OTt cap­
ture and autoionization 

strength, we consider the specific case 
bydrogenic ion in a state described by a configuration with a hlled core 

an expreSSIOn 

an electron denoted by the quantum numbers nalaja' final, doubly 
state shall be described by a configuration with the same filled core plus two 
additional denoted by the quantum numbers n~l;lj~ and n~l~j~. As 

angular momentum of the initial level is 
is the total momentum of active electron. How­

ever, the total angular momentum 
take on multiple values due to coupling among the two electrons 
n~l~j~ and n~lU~. In this case, we perform a sum over all possible values of Jd 

to obtain the appropriate expression for the pseudo-hydrogenic, capture colli­
sion strength. If. addition to this last consideration, mixing can be omitted 



collision strength can be ob­
Li::tlllt:U in a manner similar to that used Dreviouslv in section to 

pseudo-hydrogenic, 
capture collision strength can be obtamed trom eq. 
with ni/bj£ and multiplying by a factor of 1f to account for the different nor­
malizations used for the free-electron and bound-electron wave functions. The 
resulting expression for the pseudo-hydrogenic version of the quantity ncap is 

ncap 
ps-H 

'LPA(na1ajaElj; 2 (7.14 ) 
A lj 

where the factor (1 b' 
equivalent In case, pA are 

P A ( I . I' I I' ., 'l" I ) na aJa f J; na aJanb bJb 
= (2,\ + 1)-1/2DA(na1ajaElj; n~(j~n~)~j~)(ja II e(A) II j~)(j II e(A) II j~) 
+ 'L(_1)A+t(2'\ + 1)1/2 {j:1 ~~ t} 

t J h ,\ 
x II e(t) I e(t) (7. 

is 
bers are replaced 
expression. 

As demonstrated previously for all of the other fundamental processes, the 
configuration-average expression for a particular quantity can typically be 
expressed in a useful form in terms of the corresponding pseudo-hydrogenic 
quantity. A similar statement holds true for autoionization as well. In this case, 

configuration-average autoionization rate can be terms of 
strength quantity in eq. (7.14). definiteness we 

configuration Ci that OvVHL(:tHlCl 0:, 

corresponding free electron. the spirit of eq. (3.42), we represent 
of transition in the symbolic form 

(n f1, )wn -1(n' ·./ )W~(n' r/ )W~3(n K )W, ... --+ 
a: a: a:'U(l< /3 '/3 " " 

( ,,)wl-1( )Wnf3f1,f3 {J n,f1" , ... + e. (7.16) 

135 




a a (7.17)Cd-Ci - L L 9d dl ged' 


dEcd iEe; 

A = '" '" A ; 

where Adi is a fine-structure autoionization rate of the type given 
and Qr. is the statistical weight of the autoionizing configuration Cd. If 

rate, and corresDondine: sums. in ea. (7.17) are limited to 

Aa = ~( W~) - 6a' fJ') (2ja + 1) - (wa -1) 

Cd Ci h 2j~ + 1 (2j6 + 1 - 6al{31 2ja + 1 


· '1' ., I [' ")( 1 (7.18)x na'aJa-na'aJnnfJfJJ{3' 

As mentioned above, 0:' and /3' are the labels of the active subshe11s of the 
doubly excited configuration, Cd, 0: is the label of the active subshe11 of the 
final configuration, Ci, and the presence of the Kronecker delta symbols takes 
into account the case of equivalent electrons (a' (i'). For comparison, we 
note that eq. (7.18) is the relativistic of eq. (17) in ref. [28]. 

2 ~ cap ( l' I l' ., I l' ")
---> --OH no: a.Jn - nn n.Jan {3 (3.J(3 , (7.19)

h9cd 

or, equivalently, 

(we-6n'{3/) 1 
(7.20)

(2j/3 + 1 - 6nl{3l) 9Cd 

order to show that eq. (7.20) is satisfied 

we note 
a He-like configuration is the formula (see 
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eq. (3.45)) (2j~ + 1)2j~/2 9~ 1)/~, wllere we 
the sole active subshell in the doubly excited configuration is 
Making the appropriate substitutions in the left-hand side of eq. (7.20) 
the expression 2/[(2j~+1)2j:J, which is precisely the desired value of 1/9cd' For 
non-equivalent electrons, W~l = w~ 1 (but Ct i= (3) and the statistical weight 
of the doublv excited configuration is simply the product of the statistical , , 

= 9a9fj' 
in 

which, is the desired 

7.3 Approximate methods for electron capture and autoionization 

U\J.1V.l.ll.L.iCLl;lV.l.l rates. 

Pt) + e 1[(J;'n~l~j~)J~n~l~j£l.Jd)' (7.21) 

describes the active electron in the fine-structure 
an core. 

As described in section 7.1, (4.6) or (4.12), apply to tIle process 
of collisional excitation, can be modified to obtain a general expression 
the capture collision strength. necessary are to replace f'l' j' by 
n~l~j~, eliminate the sum over /'1,', eliminate the sum over J and let J Jd , 

resulting eq. (7.2) or (7.3). However, with the approximate method 
described [1051. the capture collision strength could instead be 

\...,V.L11t)lVll 

(J 
and therefore continue to sum over J as in eq. (4.6) or (4.12); 2) we 11"'51."''" 

configuration mixing involving different values for n~lbj~ so that j£ is considered 
to be a 'good' quantum number; 3) J: is also assumed to be a 'good' quantum 
number. As seen from eq. (7.21), J: is now the angular momentum obtained 

momentum of the core J:' to j~, 

I)Jt + e -----+ I(Jt " na'l''aJa") J~nb'l'bJb") . (7.22) 

case, eq. (4.30) applies, provided j' is replaced by 
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neap can expressed 
form 

{2cap (u U'nll'J") 8 '\" '\" B),(U SS . U' S'S')b b b 	 L.." L.." ,1" 1 
S.s' A 

8 1 

QA ( I' ,[,., [' '["')
X b' na aJa, na aJa;n(Jl alJall nal alJal ' (7.23) 

where exactly the same expressions given by eqs. (4.34)-(4.:36) still apply for 
BA. However, in this case, 

. .' l' -, ) 
. 'l'" . n 1 Ja ,na 1 • a1Jai, [' " .. ' l' ")Q~ (nalaJa, na 'aJa, a, a" ,= 7[ L pA (nalaja dj; na oJa n, ,;i, 

Ij 

xpA(n
al 

(ls2)0 + e (ls2p3/2h 7d5/ 2 . 

The second approximate method corresponds to going one step further and 
performing an additional summation over J{. In general, transitions of this 
type can be written in the symbolic form 

I1t) + e 	 I(J:'n~l~j~)n~l~j~) , 

for which a specific example might 

+ e ---)0 

to be a 'good' 
quantum number. 

occurring within the core state 
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= l.In. \Vith these approximations, 6-j symbol in eq. (4.36) can 
eliminated using an alternative form (1.30) given by 

Jo, ,\ ,\ bjnj" I
I)2.I: + 1) { .I: } { 

J0,1 

} (7.25) 
J' .It .I; .It 2'in + 1 

t 

the collision strength neap can be expressed 
simple 

neap L 2.It + 1 s"S")
S.s" 2ja + 1 (U, SSl; 1 1 

x Deap
ps-H (7.26) 

(. " w lere Hps-H - If 'f) IS This approximate 
is applicable when both the n;) and n~ are sufficiently high. 

1 neap naI,'aJa na'I""(lJo,nb bJb bY eq. 

For completeness, we mention that an expression analogous to eq. (7.26) 
also been derived for the appropriate type of collisional-excitation transition 

[106]. The reader is referred to that .reference for additional details. 

7.4 Resonance contrib'utions to electron-impact e'J.;ClUL~t 

As in ref. [104], we treat the resonance contribution to electron-impact ex­
citation as the two-step process of electron capture by an ion in the initial 

, forming a doubly excited level Id), followed by autoionization to 
final level of interest, denoted by If). Through the use of a branching ratio, 
account is taken of the possibility that the doubly excited level autoionizes or 
radiatively decays to a final level other than If). These various processes can 

written symbolically as 

+ e 
f 

li)+e----t 1m') + (7.27) 

+ hv, 

where i and f represent collisional excitation 
transition, d represents level resulting from capture of a 

electron by i, rn' other levels (besides f) to which d canl.llW\".Cl; 

autoionize, and k represents levels to which d can radiatively decay. 
total collision strength for transition i f can written as 
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ntotal n. + nres (7.28)tf ~f ~f ' 

where nil is the usual background (or direct) collision strength given, for 
example, by eq. (4.6), and the resonance contribution can be written as 

=2:: 
d d 

In the above expression, Edf is the branching ratio for excitation, 

Edf (7.30) 
m 

m WhICh the autOloIllzatIon rate Ad! is byeq. (7.12), is the radiative 
decay rate for the transition d -. k (see eq. (3.2)), and m indicates all levels 
to which d can autoionize, including f. In order to delineate the resonance 
contribution when plotting the total collision strength, we typically replace 
the delta function in eq. (7.29) with a Lorentz profile. Hence, 

=2:: 
d 

where the quantities fd and fd are given by 

f~ = Ii fd Ii Adk . (7.32) 
Tn. k 

an resonance profile 

Similar to eq. (7.28), the total, effective collision strength can be separated 
into a direct and resonance contribution 

where Yif is contribution, by eq. (4.112), and Y~? is 
resonance contribution. An expression for Tif was previously provided in 
eq. (4.112). The resonance contribution can be obtained from an integral that 
is identical to that listed in eq. (4.112), except that the resonance collision 
strength from eq. (7.29) must be used in place of nif' The resulting ex pres­

for the resonance contribution to the effective collision strength is 



1 
LkT 

d 

For completeness, we note that the total rate coefficient for electron-impact 
excitation, ettal 

, can also be written as a sum of the direct and resonance 
An expression that is valid for each of contributions was 

eq. (4.114) 1 provided that the appropriate expression for 
case. A usefuL expression 

to rate 

Le~:PBdf , (7.35) 
d 

where the capture rate coefficient e~:p is given by eq. (7.9) or (7.10). 

concerning the resonance contribution to 
Atomic Data 

ctLlclllations were per-
that considered resonance contributions to excitation rate coeffi­

cients for transitions from the (ls2)0 ground level to the n 2 fine-structure 
levels arising from the Is2l configurations in He-like ions with 4 ::; Z ::; 54. 
Resonance contributions from the doubly excited levels of the Is3l3l' complex 
were calculated using the procedure described above with the capture rate 
coefficients and autoionization rates obtained using the detailed method de­

in section 7.1. For resonance contributions from the Is3ln'l' complexes 
5 and 6. canture rates and autoionization rates were obtained 

Is3l6l' contribution by applying a standard 11(n')0 approximation 
[108]. We also note that the contributions from Isnln'l' complexes with n 2': 4 
are negligible for this case and are not included. The rate coefficients and 
effective collision strengths needed to evaluate these resonance contributions 
were calculated for temperatures given by 

IZ3 
= 

where Z is the nuclear the appropriate values are expected 
to cover the temperature of interest for containing the various 
He-like ions mentioned above. It should be mentioned that our RD\V results 
have been compared with those in ref. [81] and the agreement was found to 
be quite good. In table 20, a sample of these unpublished results is presented 
for He-like iron in the form of effective collision strengths. 

can our RDW .lv,",UH" 



Table 20 
Effective collision strengths, computed from only the resonance contributions, as 
a function of temperature for electron-impact excitation in He-like iron. Results 
are presented for transitions from the (ls2)0 ground level to the six n = 2 fine­
structure levels arising from the the 1s2l configurations. The numbers that appear 
immediately below the level labels are the transition energies in Ry. x[y] = x x lOY. 

(ls2s)0 (ls2s)1 (ls2p* )0 (ls2p*)1 (ls2ph (ls2ph 
T(K)/Z3 490.69 488.44 490.45 490.73 493.18 491.83 

400 5.54[-5] 1.05[-4] 3.33[-5] 9.33[-5] 8.84[-5] 1.65[-4] 
600 4.91[-5] 8.99[-5] 2.95[-5] 8.25[-5] 7.54[-5] 1.45[-4] 
900 4.01[-5] 7.16[-5] 2.41 [-5] 6.71[-5] 5.98[-5] 1.18[-4] 

1350 3.07[-5] 5.40[-5] 1.87[-5] 5.14[-5] 4.50[-5] 9.00[-5] 
2000 2.28[-5] 3.96[-5] 1.37[-5] 3.80[-5] 3.29[-5] 6.65[-5] 
3000 1.62[-5] 2.80[-5] 9.73[-6] 2.70[-5] 2.32[-5] 4.73[-5] 
4500 1.13[-5] 1.94[-5] 6.78[-6] 1.88[-5] 1.61[-5] 3.29[-5] 
6700 7.81 [-6] 1.34[-5] 4.69[-6] 1.30[-5] 1.11[-5] 2.27[-5] 

10000 5.34[-6] 9.11[-6] 3.20[-6] 8.89[-6] 7.56[-6] 1.55[-5] 

with the Breit-Pauli R-matrix (BPRM) codes [109,110]. In figure 4, a com­
parison is made of collision strengths, including both the direct and resonance 
contributions, for four transitions, 

11So -----t 2 3S1 or (ls2)0 -----t (ls2sh , 

11So -----t 2 3P 1 or (ls2)0 -----t (ls2p*)) , 

2 3S1 -----t2 1P 1 or (ls2s)1 -----t (ls2p)I' 

2 3 P 1 -----t2 1P 1 or (ls2p*h -----t (ls2p)1 , 

in He-like iron. In the BPRM calculations, radiation damping was not in­
cluded, resulting in some higher peaks in the resonance profiles. However, 
interference effects between the resonances were included, which are not con­
sidered in our RDW calculations. These interference effects produce small 
dips below the background contribution for some energies. Despite these dif­
ferences, the BPRM and RDW results typically agree quite well. 

7.5 Contributions of autoionization to electron-impact ionization 

Autoionization rates calculated via the ROW approach can also be used to 
obtain the autoionization contribution to total ionization cross sections or rate 
coefficients. Similar to the previous section, this contribution is again obtained 
by a two-step process which, in this case, consists of innershell excitation 
followed by autoionization. This two-step process is typically referred to as 
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as specified, in He-like iron. 

excitation-autoionization. Cowan and Mann [111J invei:3tigated this approach 
and found that, for plasma temperatures at which Na-like iron ii:3 abundant, 
the autoionization contribution was twice as large ai:3 the direct collisional 
ionization. It ii:3 noted that Griffin et al. [112] used a similar method to obtain 
excitatioll-autoionization cross sections Ti, Cr, Fe 
we have not Dublii:3hed any RD\V data for orocess. we describe 
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The excitation-autoionization process, with radiative decay taken into ac­
count, can be written symbolically as 

/ 11) + e/ + e" 

Ii) + e ----+ Id) + e/ ----+ Im/) + e/ + e'" (7.36) 

~ Ik) + e/ + hv , 

where i and f are the initial and final levels of the collisional ionization transi­
tion under consideration, d is the doubly excited level resulting from innershell 
excitation of level i, m/ indicates all levels (other than 1) to which level d can 
autoionize, and k represents the levels to which level d can radiatively decay. 
The total ionization cross section from the initial level i to the final level f, 
which includes both the direct ionization cross section Q'fY (see eq. (5.5)) and 
the excitation-autoionization contribution, can be written as 

total _ Qdir + "QexcBQ if - if ~ id df . (7.37) 
d 

Here, Qr:r is an excitation cross section of the type displayed in eq. (4.1) for 
the transition i ----+ d, and Bdf is the branching ratio for ionization given by 

Adf 
(7.38)

Bdf = '\"' Aa + 2: Adk 
~ dm k m 

In this last expression, the autoionization rates Aa can be obtained from 
eq. (7.12), Adk is the radiative decay rate for the transition d ----+ k (see eq. (3.2)) 
and the index m indicates all levels to which level d can autoionize, including 
level f. 

One is often interested in the total ionization cross section from the initial level 
i to all possible final levels, instead of a specific final level f, as considered in 
refs. [111] and [112]. In this case, the total cross section from level i is given 
by 

Q~otal = L Qtr + L Qr:tBd , (7.39) 
f d 

where the branching ratio Bd is given by 

2: Adm 
m (7.40)

Bd = '\"' Aa + 2: Adk 
~ dm k 
m 
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As pointed out by Cowan [104], the excitation-autoionization contribution 
does not produce obvious resonance structures in the ionization cross section 
because the only restriction placed on the incident-electron kinetic is 
that it be equal to or greater than the excitation energy required to create 
a doubly excited level d. In contrast, the case of resonance contributions 

tation discussed in the Drevious section. the electron enere:v must 

a 
to indirect ionization for all subsequent energies, 

producing a step-function increase in the total ionization cross section. 

7. 6 Resonance contributions to photoion'ization 

authors in the Opacity Project 
R-matrix l.lJ.<:;"l.lUU 

Ul;.1l..J.l.1() to 
LUQ.vJ.VHi:>, resonances are generated In our 

RDW approach, one can obtain the resonance contribution to photoionization 
again using Cowan's two-step approach [104]. In this method, an atom or 

ion in a level k absorbs a photon, making a transition to a doubly excited level 
d. This level then autoionizes to a level i, producing a resonance contribution 
to the total photoionization transition k i. Of course, the doubly excited ---t 

level could also radiatively decay to compete with autoionization. This com­
peting process is often referred to as radiation damping of the resonances. The 
resonance contribution to photoionization described above, with allowance for 

decay, can written svmbolicallv as 

+e
/ 


la) 1m) + e' 


~ Ik') hv' , 

where rn' represents all levels (other than i) to which level d can autoionize 
and k' represents all levels to which level d can mdiatively decay. 

In ref. [114], our RDW approach was used to obtain resonance contributions 
to photoionization and its inverse process, photorecombination, in order to 
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r~d =nA~d· 	 (7.42) 


The 	photoexcitation (PE) cross section is given by 

41f2 

QpE(k - d) = 2( \?r~d 5(Ep - Ekd ) , 	 (7.43) 
a Ep 

where Ep and Ekd = Ed - Ek are the photon energy and transition energy, 
respectively, and a is the fine-structure constant. The delta function indicates 
that the photon energy Ep must be equal to the transition energy Ekd in order 
for the photoexcitation transition to occur. The doubly excited level d then 
has two channels for stabilization, as mentioned previously. Taking these two 
possibilities into account, the resonance cross section is given by 

Q~e;(k - i) = . ')~:: \') L r~dBdi 5(Ep - Ekd ) , 	 (7.44) 
d 

where Bdi is the branching ratio for PI and is given by 

A~i 
(7.45)Bdi = '" Aa + ~ Adk , 

~ dm k'm 

Here, the index m includes all levels (including i) to which level d can au­
toionize and the index k' includes all levels that are accessible from level d via 
radiative decay. 

We forgo the presentation of numerical examples in this section, since our 
calculations concerning the resonance contribution to photoionization have 
been used primarily to obtain the resonance contribution to the inverse process 
of photorecombination. Our two methods for computing this type of resonance 
contribution are discussed in the next section. 

7.7 	 Resonance contributions to photorecombination-dielectronic recombina­
tion 

As mentioned in the previous section, the process of photorecombination (PR) 
is the inverse of photoionization. This process can be considered as the capture 
of a free electron by a target ion in level i to form a new ion in level k, with 
one more electron, and an accompanying photon. The resonance contribution 
to photorecombination is typically referred to as dielectronic recombination 
(DR). The DR process can be very important in non-local thermodynamic 
equilibrium plasmas, as demonstrated by the multitude of references in the 
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literature. Among Seaton and Storey [115] and Hahn and LaGattuta 
[116] give detailed of the history, theoretical developments and applica­

of DR. In our RDW approach, we use two different methods to compute 
resonance contribution to photorecombination, as described below. 

on 
example, 
process can be 

/ ,k) + hv 

Ii) + e ----1 Id) ----1 1m') + hv' (7.46) 

~ Ii') + e'. 

In this case, the capture of an electron by the ion in level i to form a doubly 
excited level d is followed by radiative decay to the final level k. Through the 
use of a branching ratio, account is taken of the possibility that doubly 
excited level d to a level if, or radiativelv decays to a final level m' 

v v 

is different 

eqs. electron-capture cross section 
i ----1 d can 

-

Applying the appropriate branching ratio yields DR cross section 

2 

QDR(i k) Q~~PBdk = L; gdnA~iBd": 15(E Eid)' (7.48) 
d d gi 

This branching ratio for DR. is given by 

(7.49)
Bdk = Adk 

l 

Cmt(i k) B dk ) 

d 
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where C~:p can be obtained from eq. (7.10). 

We now present some numerical results, originally published in ref. [105], for 
the process of DR that were computed with this first method. Specifically, 
eqs. (7.50) and (7.49) were used to obtain DR rate coefficients. The results 
that we present here are the contributions from two different n complexes, 
n~ = 5 and 7, to the total DR rate coefficients of the (ls2)0 ground level in 
He-like ions. More specifically, we considered processes of the type 

(ls2)0 + e ---+ (ls2l~j~)J;n~l~j~ ---+ (ls2)on~l~j~ + hv, 

where the total angular momentum of both the doubly excited levels and 
the final recombined levels have been purposefully omitted. This choice was 
made in order to calculate the required capture rate coefficients using the first 
approximate method described in section 7.3 (referred to as "Approx" below), 
in addition to the detailed method described in section 7.1 (referred to as 
"Full DW" below). In this way, we can also assess the accuracy of the former 
method. 

We note that, in this case, the final configuration for the process of dielectronic 
recombination was chosen to always be of the form 1s2n~l~j~. That is, we 
assumed that it is the 2l~j~ = 2p* or 2p electron that radiatively decays 
from the autoionizing level, which is the most probable outcome. However, 
it is also possible for the more highly excited electron to decay, which we 
have neglected in the present calculations. When performing detailed plasma 
kinetics calculations, these additional cascading transitions can be taken into 
account in a straightforward manner according to the method described above. 
Under the above assumption, eq. (7.50) reduces to the simpler form 

Ar 
~ cap dk (7.51)CDR(i - k) ~ ~ Cid Aa + Adk 

d dt 

The results for these calculations are given in table 21 for iron, molybdenum 
and gold, with nuclear charges Z = 26, 42 and 79, respectively. In each case, 
the results are given for a temperature near that for which the dielectronic 
recombination rate is a maximum, but additional calculations indicate that 
the accuracy of the "Approx" entries appears to be nearly independent of 
temperature. It is understood that the values for each n~l~j~ entry represent the 
partial sum associated with the ls2l~j~n~l~j~ contributions from all possible 
doubly excited levels that arise from the two allowed choices for 2l~j~. The row 
labeled "Sum" indicates values of the DR rate coefficients that were obtained 
by adding the appropriate partial sums. Thus, these summed rate coefficients 
take into account all of the processes described above that radiatively decay 
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Table 21 
A comparison of contributions to the diclectronic recombination rate coefficient, 
CDR (in units of cm3/s), due to electron capture by He-like ions in the ground level 
(182)0 to form doubly excited levels arising from the 1s2l~j~n~l~j~ configurations of 

ions, followed by radiative stabilization to levels from the 1s2n~l~j~ 
configurations. x x lOy. 

Z =26, T=:.~ x 107 K Z=42, T=1.5x108 K T=5x 108 K 

n'l' j' Full DW Approx Full DW Approx Full DWb b b 

58 	 9.82[-16] 1.98[-15] 3.19[-16] 7.71[-16] 7.08[-17] 2.21 
2.88[-15] 3.58[-15] 8.n[-16] 1.15[-15] 1.27[-16] 2.11[-16] 
6.75[-15] 7.65[-15] 2.02[-15] 2.68[-15] 2.58[-16] 3.77[-16] 
2.49[-15] 1.48[-15] 7.51[-16] 1.39[-15] 9.71[-17] 1.52[-16] 

5d 3.76[-15] 5.92[-15] 1.08[-15] 1.51[-15] 1.11[-16] 2.27[-16] 
5£* :3.61 [-16J :3.78[-16] 1.10[-16] 2.29[-16] 1.13[-17] 3.36[-17] 
5f 4.72[-16] 8.13[-16] 1.37[-16] 2.79[-16] 1.15[-17] 
5g* 1.16[-17] 1.87[-17] 3.15[-18] 4.36[-18] 3.35[-19] 
5g 1.42[-17] 2.79[-17] 3.69[-18] 1.03[-17] 3.32[-19] 3.74[-19] 

1.77[-14] 2.19[-14] 5.29[-15] 8.02[-15] 6.88[-16] 1.24[-15] 

78 3.28[-16] 1.12[-15] 1.08[-16] 2.10[-16] 2.33[-17] 
7p* 9.80[-16] 1.12[-15] 3.02[-16] 4.23[-16] 4.31[-17] 
7p 2.33[-15] 2.50[-15] 6.98[-16] 8.82[-16] 8.92[-17] 
7d* 9.04[-16] 5.19[-16] 2.80[-16] 4.19[-16] 3.60[-17] 9.13[-17] 
7d 1.37[-15] 1.91[-15] 4.02[-16] 6.55[-16] 4.14[-17] 5.51 [-17] 
7£* 1.63[-16] 1.72[-16] 5.07[-17] 7.87[-17] 5.31 [-18] 6.57[-18] 

2.1:.~[-16] 2.52[-16] 6.34[-17] 1.39[-16] 5.43[-18] 1.07[-17] 
9.76[-18] 1.50[-17] 2.81[-18] 3.46[-18] 2.88[-19] 3.38[-19] 

7g 1.20[-17] 2.02[-17] 3.29[-18] 5.72[-18] 2.86[-19] 
7h* 2.26[-19] 5.12[-19] 6.89[-20] 7.44[-20] 6.35[-21] 
7h 2.67[-19] 4.18[-19] 7.85[-20] 9.76[-20] 6.17[-21] 5.04[-21] 
7i* 1.99[-21] 1.57[-20] 1.06[-21] 3.46[-22] 4.42[-2:3] 5.2~}[-23] 

7i 2.29[-21] 2.49[-21] 1.19[-21] 4.02[-22] 4.22[-23] 5.11[-23] 

6.3H-151 7.62[-15] 1.91[-15] 2.82[-15] 

7.23[-17] 

into any of the levels from configurations of the form ls2n~l~j~ (n~ = 5 
or 7). 

One observes that "Approx" underestimate the "Full D\V" values 
nearly all cases. Furthermore, on a percentage basis, this underestimation 

is roughly the same when considering the rate coefficients associated 
with n~ 5 versus 7 for a particular value Specifically, the sum 
"Approx" entries are about 0.82, 0.67 and 0.56 corresponding "Full 

agreement between the obtained 
from these two calculations, and also the "Approx" values given in 

DW" values for Z 26, 42 and 79, respectively. Calculations were also made 
configuration mixing was completely omitted in obtaining both "Ap­



was almost pertect. ThIS agreement mmcates tflat: (1) mixing between 
(ls2p*h and (ls2ph levels, which is only mixing included in obtaining 

the "Approx" in the table, has little on the CDR values and (2) 
the individual single-configuration (Le. no mixing) rate coefficients produced 
by the "Approx" and "Full DW" calculations, which are based on completely 
different angular formulations, are consistent (as verified by detailed inspec­
tion). This type of test provides a good check that no errors were made in 
either of the two computational approaches. 

to the "Approx" results. How­
(ls2p*)on~l~lj~1' (ls2phn~l~d~l 

(ls2s)0,1 n~l~d~l levels having the same parity and total angular moment urn, 
one obtains contributions from many more doubly excited levels in the "Full 
DW" results. In general, for lower Z values, where the value of Adi in the 
denominator of eq. (7.51) tends to be significantly larger than the correspond­
ing value of Adk , these extra contributions that arise from mixing are rather 
small since they are comprised primarily of radiative decay rates rather than 
autoionizing rates. However, as Z increases, the radiative rates 
rapidly and tend to dominat 

even Z 

CDR(i ( 
lCap (7.52)Jid ' 

d 

where the summation over d includes essentially all doubly excited levels for 
which there exists a non-zero value of Adk . This property results in a summa­
tion that includes many more doubly excited levels in the case of the "Full 
DW" calculations. 

Zhang l114J. ThIS t:H-"lUVl worK used an 
on earlier R-matrix work Nahal' and Pradhan 

[117], in which total photorecombination cross which include both 
the direct photorecombination and resonance DR contributions, were obtained 
from photoionization cross sections using the detailed-balance (Milne relation) 
method. 

In this second RDW method, we also use the detailed-balance approach, but 
only to obtain the DR contribution to the total PIt cross section, rather than 
to obtain the total PR cross section, as in the BPRM work mentioned above. 

we the DR process to be the of the resonance 
to eq. 
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bution to the photoionization cross section is computed with eq. (7.44) and 
then the result is used in the detailed-balance method to obtain DR cross 

In this case, the Milne detailed-balance relation can be written in 
relativistic form and Rydberg atomic units as 

2( )2
Qres ('i _ k) gk ex Ep Qr€S(k - i) (7.53)

PR gi 4k2 PI , 

where ex is the fine-structure constant, Ep is the photon energy, and k is the 
wavenumber related to the free-electron kinetic energy, e, by eq. (4.2). Using 
eq. (7.44), we obtain 

Qpe~Ci L rkdBdi 6(Ep­

d 


Bdi is the branching ratio by eq. right-hand side 
eq. (7.54) can be shown to be identical to that eq. (7.48) by noting eq. (7.42) 
and the additional relationships 

gArgkAkd 

Ep =e - Ekd e-

A~iBdk = A~kBdi' 

order to delineate the resonance contributions when plotting the total PR 
cross section, we replace the delta function in eq. (7.54), first with the 
alent expression 6(e Eid ), then with a Lorentz profile. Hence, 

2 
gk 'if "'"' rr B ,Qres (i k) -. L.... kd di ( + P /2)2PR g. k 2 e d 
• t d 

r~ L r~m fi L A~m rr = =11.L 
d k'm m k' 

As written, eq. (7.55) includes the effect of radiation damping of the reso­
nances. A number of methods have also been developed which take into ac­
count this effect when computing photorecombination cross sections 
the R-matrix framework [114,118,1191. However. for light elements tllat are 
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not too highly chargcd, the error that results from neglecting radiation damp­
ing is small since the radiative rates are much smaller than the autoionization 
rates for systems [120]. Nevertheless, it is possible to modify (7.55) 

order to perform calculations that can be used to dctermine the relative 
importancc of radiation damping, and also to compare with BPRM calcula­
tions that did not take this effect into account. The modifications require that 
all valucs of Ar be sct to zero in both the branching ratio Bdi and the Lorentz 
profile in (7.55) to 

rdd21T 
(7.56)- k) ~; ~2 21 r kd (E Eid)2 + (r~/2)2 . 

Eqs. (7.55) and (7.56) have been used to compute resonance contributions, 
and without inclusion of radiation damping, to the total cross sec­

tions recombination of He-like ions and compared with BPRM results 
refs. [114] and [120]. Good overall agreement was obtained in these compar­
isons and, to illustrate behavior, we reproduce 1 from [114] 
as figure 5 the present work. In this figure, a comparison is provided 
tween RDW and BPRM total photorecombination cross scctions that wcre 
computed with without radiation damping the n 2 (KLL) group of 
the XXV recombination. As stated above, the agreement is obscrved to be 
very good. 

Hyperfine-structure transitions 

Our work on collision strengths for hyperfine-structure 
by a remark [121] that the 3.071 mm hyperfine line 

of interest in the study of cooling flows in clusters of galaxies, and that rate 
coefficicnts were needed to investigate the role of electron-impact 
as a mcchanism for populating the upper, = 1 hyperfine-structure 

transition. Also, Syunyaev and Churazov [122] considered the possible 
astrophysical interest in this hyperfinc line, as well as hyperfine transitions 
other ions. such as Li-like Na, Mg, Al and Si, and H-like C and 

In order to calculate collision strengths and effective collision strengths 
transitions between hyperfine-structure levels, our relativistic distorted-wave 
approach described in chapter 4 was expanded and applied to these Li-like 
and H-like ions [123,124]. Since resonance contributions to the total collision 
strengths and effectivc collision strengths are expccted to be important, we also 
developed thc theory and corresponding computer code [125] for calculating 
electron-capture rate coefficients to form a doubly excited hyperfin€-strncture 
level, as well as for calculating rates for the inverse process of autoionization. 
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Fig. 5. Comparison of the n = 2 (KLL) group of resonances in photorecombination 
of Fe XXV: Breit-Pauli R-matrix (BPRM) cross sections without (a) and with (b) 
radiation damping; relativistic distorted-wave (RDW) cross sections without (c) and 
with (d) dampin,e;. 

proach for 
this manner been applied to 
astrophysical [125,126]. 

8.1 The background contribution to hyperjine-structuTe collision strengths 

4.3. We a 
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U u' I D.tJtIF)- I D.~JUF') , 

where I is the nuclear spin, and F and F' are the total angular momenta 
for the initial and final hyperfine-structure levels, respectively. (The mean­

of the D.t , Jt and D.~, JI quantum numbers associated with the initial and 
fine-structure levels, respectively, is identical to that provided in chap­

ters 3 and 4.) The hyperfine interaction can be treated perturbatively in this 
application because it is extremely weak to the nuclear and electron-

Dotentials. Hence, the interaction on the radial Dart of 
and the only substantive is on 

case, we 
case of subshells that are 

or empty, in to the one labeled a. By analogy 
with eq. (4.20), we write direct part of reactance matrix element in 

case as 

Rd((3tJ/1FdjJ; /3:JUF'E'l' j'J) 

2VW L (j~u-lal.h 1}j~'aaJa) L
00 

DA(nalajadj; n~l~j~t'l'j') (8.1) 
1),0:1 A=I) 

(Ja'11)-1 J' I IFJ'J lV
~1 I e(A) (' ) • etA) (~T 1V +1 ) I '11)-1 t J ,a1 t J o, O'a,'"I""aJa 

J'IF' "J ~1)x 1Jo.' Tw IV 

where all of the symbols for the quantum numbers, I F, have 
previously specified in sections 3.2 and In 

is now 

J~j~J:IF'j' J!vl) 

xll~J< + 1)(2F' + 1)(2Jt + 1)1 

{ 
FA F' } {Jt A J:} {ja A j~} 

X j' J j F' I F J: J"t Jt 


x (ja II etA) II j~) (j II etA) II j') , (8.2) 


which is the analog of eqs. (4.21) and (4.22). The matrix element Re 
can be written as 

Re((3tJtIFtljJ; (3~JUF'E'l'j'J) 
00 

- J1 LEA 
Jl,O:I A=O 

x etA) ) . etA) ) J;I F'j'J Nl)e , 



as seen from the description preceding eq. (4.25), electrons in the wave 
function represented by the ket I ... ) e are in the order 1, 2, ... , w + 1, w. This 

corresponds to w + 1 and w being in orbitals j~ and j', 
adding a superscript to 

to use 
techniques to manipulate 
system wave function according to same argument 
The result is 

J~j~J;IF'j' Jl'vf)e 

2:(-1 F' th(2F" + 1) 
F" F2 J2 

xlt:lJ t + + 1) + 
J" Ix { a FI!} {
F' j~ J; J j~ 
J~ j' J2 } I "w-l "J"" J I I,' ., JM) (8 4){ F" Ja aa' aJ • 2 r2Ja • ,.X F2 I 

where the electrons wave function represented by the ket on the right­
1,2, "', W, W + 1. If ea. (8.4) is sub-

appears m tne expression. 
is very similar to eq. (8.2) and is given 

j,'iLl-l al'J'IJa JIL';J~1IC(A)(Ar 	 )·C(A)(ATwtl ) I 'w--l aa'"J""JII,'aJ r2Ja'"JM)\Ja t J. 11' Tw J a 2 


J;:( _1)J+Hj'+J::+l+2(JiHJt +A) 


+ 	 (2J2 + 1)] 
A ja A 
J j J l F2 I F } { J2 Jt} 

x (ja II C(A) II j') (j II C(A) II j:J . (8.5) 

The exchange matrix element in eq. (8.3) can now be written as a rather 
lengthy expression that contains a product of the angular factor in eq. (8.5) 
and the triule summation plus angular factors that precede the ket on 

eq. (8.4). This cumbersome result can be 
3- j symbol [123] for more , 

a compact form the exchange matrix element Re. This new result for R e is 
then combined with expression for Rd eq. (8.2), according to eq. (4.14), 
to yield an expression for the reactance matrix elements for transitions between 
pure hyperfine-structure states in the form 

R(!=IfJt J I FelJ'J; t . 



= 2Vw(j:-1a~J~ 1}j:aaJa)(-1)2lt+l-F+j~+J:' 

x [(2F + 1)(2F' + 1)(2Jt + 1)(2J: + 1)]1/2 

D'\ ( l· l· 'l'·' 'l' .')X [ " ~ na aJac J; na aJac J 
,\ 

F A F'} {Jt A J; } { ja A j~}
{X j' J j F' I F J; J;' Jt 

X (ja II C(,\) II j~) (j II C(,\) II j') 

""( 1)A'+7(2 l)E,\I( l . l·· 'l'·' 'l' .') {F T+ ~~ - T + na aJac J, na aJac J ., J ~'}
A' 7 J 

Jt T J;} { ja T j~ } { ja j' X} 
X { F' I F J' J" J .., 

Ttat J Ja 

X (ja II C(,\I) II j') (j II C(A') II j~)] . (8.6) 

At this point, eq. (8.6) can be substituted into expressions similar to eqs. (4.13) 
and (4.12) to obtain the collision strength for the hyperfine transition V - V' 
in non-factorized form. Since the effect of the hyperfine interaction on the mix­
ing coefficients is neglected, those quantities remain unchanged in eq. (4.13). 
Thus, the non-factorized form of the collision strength can be written as a 
combination of the two equations 

O(LltJtIF - Ll~JUF') 

= 22::(2J + 1) 2:: IR(LltJtIFeljJ; Ll~JUFc'l'j'J)12 (8.7) 
J /.] 

, ·1 
/ .J 

and 

R(LltJtIFelj J; Ll~JUFc'l'j' J) 

= 2:: blt (Llt,(3t )bJ:(Ll~, f3DR(f3t JtI Felj J; f3:J;I F'c' l'j' J) . (8.8) 
{3t ,(3~ 

In order to obtain the collision strength in factorized form, we proceed accord­
ing to the discussion presented after eq. (4.29). Specifically, we interchange 
the labeling A' and T in eq. (8.6) above so that the result looks more like the 
expression for p,\ given by eq. (4.33). Since F, F', j and j' are all 'good' 
quantum numbers, the summation over J in eq. (8.7) can be performed using 
the formula [41] 

F C F'} {F C' F'} _ ~ (8.9)2::(2J + 1) { j' J j j' J j - 2C + 1 . 
J 

From this result, one sees that the factorized form of the collision strength, 
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gIven eqs. (4.31)(4.35), is also applicable to hyperfine-structure transitions 
U- provided that the following substitution 

is made for the appearing in eq. (4.36). The above equation can 
be written in a more compact form by noting that, since the 
hyperfine interaction on mixing coefficients is neglected, Jt and J{ can 
considered to be 'good' quantum numbers and an extra 'hyperfine-structure 
corrective' (hfsc) factor of the form 

fl~fsc = ( 1?Jt +l-F-.Jq(2F + 1)(2F' + 1)P/2 {~, i ~} (8.11 ) 

can be out. The remaining piece is simply the fine-structure C>Vl-'.,.","_ 

sion for F' by (4.36), which allows us to write 

, I, x 

expression can 
into eq. (4.35) and then eq. (4.34) is evaluated to 
Since Jt + I and Jt J{ are integers, the square of 
factors can be ignored. The final result is that the factorized for 
the hyperfine-structure collision strength can be obtained from the full set of 
fine-structure (4.31 )-(4.36), provided that a corrective factor 

,\
B;fsc (2F + 1)(2F' + 1) {;, (8.1:3)

I ~r 
is applied to BA coefficients so that 

BA(U. 
x 

vVe eq. \I:S.IU) applies the case 
U.:lll<:Oll.:l. However, as discussed 4.3, 
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to 

multiplies by the appropriate correction factor, f'~fse or to 

f A or BA values, respectively, that are necessary to compute the hyperfine­

structure result. 


Once the collision strength has been obtained for a particular hyperfine­

structure transition according to the above description, other quantities of 

interest are readily computed. example, the cross section can be obtained 

from eq. (4.1), the effective collision strength from eq. (4.112) and the rate co­

efficient from eq. (4.1 , with the statistical weight now given bv Qi 2F+ 1. 


22 
Ions to be considered and hyperfine-structure properties: isotope abun­
dance A (relative to one for 1H), the nuclear magnetic moment 11, nuclear 
I, the initial and final total angular momentum quantum F and F', the 
hyperfine-structure corrective factor B~fsc' the wavelength ,\ and transition en­
ergy b.E. Values of A, ft, I and ,\ for all isotopes are taken from [122]. 

Ion Ax106 
11 I F F' B~fse ,\ (mm) b.E (Ry) x 10'<; 

13C5+ 3.3 0.7024 1/2 0 1 0.500 3.87 2.35 
14N6+ 91.0 0.4036 1 1/2 3/2 0.889 5.64 1.62 
23Na8+ 1.8 2.2180 ;3/2 1 2 1.250 3.11 2.93 

2.6 	 5/2 3 2 1.944 6.71 1.36 
2 3 1.944 1.21 7.53 
1 0 0.500 	 2.44 
0 1 0.500 3.07 2.97 

case, We are considering transitions between hyperfine belonging to the 
fine-structure ground level of each ion. Thus, Jt Ji 1/2 in all cases, We 
note that a negative value for the nuclear magnetic moment, It, indicates a 
transition for which F > F', so that the initial level is actually described by 
the larger quantum number in those cases. 

The corresponding collision strengths, r2, are presented as a function of scat­
tered electron £' (Ry) in table 23, while the collision strengths, 
Y, are as a function of electron temperature degrees Kelvin in 

24. 	The latter results are expected to cover the complete range of tem-
We note that it is generallv that the ~V.LU"HVH 

case, 
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expected 
manner. 

Table 23 

Collision strengths, 0, for the hyperfine excitation transition F -t F' (see table 22) 

given as a function of scattered electron energy f' (Ry) for various ions. 


Ox102 nx103 

13C5+ 14N6 + 23Na8+ 27 AI1O+ 29Si 1l+ 57 Fe23 +E'(Ry) 

0.15 4.836 6.327 7.948 9.933 8.153 1.751 1.0 4.187 
0.75 4.727 6.222 7.544 9.520 7.870 1.700 5.0 3.986 
3.0 4.350 5.850 6.284 8.187 6.936 1.527 25.0 3.181 
7.0 3.784 5.268 4.730 6.445 5.656 1.281 60.0 2.276 

15.0 2.944 4.340 2.984 4.324 3.994 0.944 125.0 1.398 
30.0 1.975 3.159 1.576 2.441 2.392 0.595 240.0 0.734 
55.0 1.175 2.045 0.753 1.235 1.277 0.3:34 450.0 0.330 
90.0 0.671 1.260 0.372 0.634 0.680 0.185 800.0 0.139 

140.0 0.374 0.746 0.160 0.296 0.338 0.096 1400.0 0.054 
210.0 0.174 0.367 0.055 0.110 0.137 0.040 
300.0 0.112 0.245 0.029 0.060 0.076 0.024 

8.2 to 

It is expected that, for the hyperfine-structure transitions considered in the 
previous section, the resonance contribution would be important, since these 
are forbidden transitions. In this section, we provide the relevant equations 
for electron-capt ure collision strengths from a hyperfine-struct ure level to fine­
structure levels, along with equations for the autoionization rates from 

to a 

Resonance contributions to the total collision strength for a hyperfine-structure 


Table 24 

Effective collision strengths, Y, for the hyperfine excitation transition F F' 

table 22) given as a function of temperature T(K) for various ions. 


Tx102 Tx103 

13C5+ 14N6 + 23Na8+ 25Mg9+ 27AI1O+ 29Si1l+ 57 Fe23+T(K)!106 

1.0 4.747 6.241 7.625 9.600 7.924 1.709 1.0 3.934 
1.5 4.694 6.189 7.443 9.409 7.791 1.685 1.5 3.807 
2.5 4.592 6.087 7.111 9.055 7.541 1.639 2.5 3.58.5 
4.0 4.449 5.943 6.681 8.589 7.206 1.575 4.0 3.309 
6.0 4.278 5.765 6.205 8.058 6.818 1.501 6.0 3.017 

10.0 3.982 5.450 5.471 7.216 6.186 1.377 10.0 2.589 
15.0 3.680 5.115 4.805 6.429 5.578 1.255 15.0 2.221 
25.0 3.219 4.582 3.917 5.341 4.713 1.076 25.0 1.755 
40.0 2.739 3.997 3.113 4.322 3.876 0.898 40.0 1.356 
60.0 2.:307 3.444 2.474 3.486 3.171 0.744 60.0 1.053 

100.0 1.781 2.737 1.780 2.553 2.361 0.563 100.0 0.737 
150.0 1.403 2.204 1.330 1.933 1.810 0.436 



I 

transition can again be treated as the same two-step process that is symboli­
cally represented by eq. (7.27). Of course, in the present case, i and f represent 
hyperfine-structure levels. From a practical perspective, it is possible to ob­
tain the desired hyperfine quantities from the corresponding fine-structure 
results. For example, as shown in the Appendix of ref. [125], the capture col­
lision strength for a transition from a hyperfine-structure level i = PIF) to 
a doubly excited fine-structure level d = Jd ) can be obtained from the cap-
t ure collision strength for the fine-structure transition of the type Pt) 
according to relationship 

-+-+ =2::: 
Fd 

7.1 to 

For the capture cross section, one obtains 

cap ( ) 11" 2F + l-cap ( ) _( ) 

Qhfs F -+ Jd = (2F + 1)k2 2J + 1 rlfs Jt -+ Jd a E Eid 


t 
cap ( )= -+ Jd (8.16)Qrs Jt 

with a similar expression for the capture rate coefficient given by 

C~~;(F -+ Jd ) = C~sap(Jt -+ Jd ). (8.17) 

Far a,utoionization, we first note that, for the present case involving transitions 
between hyperfine-structure levels, the statistical weight for the doubly excited 
fine-structure level is given by 

(2Fd + 1) = (2Jd + 1)(21 + 1). 18) 
Fd 

From eqs. and (8. we obtain 

+ 1)(21 + 1)(2J

+ 1) 
(2J[ + 1)(21 + 1) Acs(Jd -+ 

d 
+ 1 \ n~~~p -+ 

19) 

resonance to from i to f IJ:F') 
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can then vCH.LLC;U In manner (see eq. (7.35)), and is expressed 

F') = L C~~:(F 
d 

where the branching ratio is 

---t 1) 

m 

In this last expression, the quantities without the subscript "hfs" refer to fine­
structure transitions and are written with the same notation as in chapter 7. 

an expression for the autoionization rate associated with the transition 
IJ:F') that is to eq. (8.19), and employing eq. (7.30), one 

') (2F' + 1) ( . I(Jd ---t F = (" 71 ,'\ (" T , 1 \ Bfs Jd Jt ) (8.22) 

between hyperfine-structure and fine-structure branching ratios, where B fs 

type displayed in eq. (7.30). Thus, the 
for 

(Jt JD, (8.23) 

resonance 

(2F + + 1 (Jt ---t J;) (8.24)Y~~~(F ---t F') = (2J + 1) (2JI + 1)(21 +t 

to total CU1l1blUll is given by 

+1) (2F'+1) ~t:S(Jt---tJD. (8.25)nhf~(F ---t F') + 1) (2JI + 1)(21 1) fs 

In the above expression, 1£;8 is given by the quantity Yl'? in eq. (7.34), and 
is given by the quantity n~? in eq. (7.29), respectively. Hence, order to 
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obtain the hyperfine-structure resonance contributions to these various quan­
tities, it is only necessary to calculate the corresponding fine-structure quan­
tities and then multiply by the extra angular factors appearing in eq. (8.19) 
and eqs. (8.23)(8.25). 

As a numerical example, we reproduce some of results from ref. [125]. 
we present effective collision for Li-like 57Fe and H-like 

IOns III their fine-structure ground levels. In 
structure transition energies, EiJ' are so small that 

exponent of eq. (7.34) can 

we GVUCHLH:;.l 

(8.26) 

Only contributions from the Is'2nln'l' doubly withn 2 and 3 
are significant in this example. Based on energy considerations, for n 2, only 
levels with n' 2: 11 can contribute, while for n 3 contributions, all levels 
with n' 2: 3 are energetically possible. For 3 n' 6, a full distorted-wave 
treatment was used, while results were computed with the rapid, first approx­
imation method described in section 7.3 to obtain accurate contributions for 
n' > 6 up to some prescribed value of n' for the two possible values of n. The 
contributions for '11' > 20 when n = 2, and for n' > 10 when n 3, were 
then estimated by assuming that they scaled as 1/ (n')3 for large values of '11' 

[108]. In the discussion below, the background or "direct" contributions are 
indicated by BG or by adding "dir" as a superscript. 

Values for the total effective collision strength, ytotal ydir + yres, are shown 
figure 6. The direct contribution to this quantity, labeled BG the figure, 

was taken from table 24. The resonance contributions from the Is22ln'l' and 
Is231n'l' doubly excited levels arc indicated by 2ln'l' and 3ln'l', respectively. 
One indeed observes that the resonance contributions are 
entire temperature range of interest. The dashed 
when radiative decay is neglected. One also observes 
decay is not highly important, but does 

at 

un­

2nres , = 3Hfs . (8.27) 
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Fig. 6. Effective collision strengths, Y, as a function of temperature, T(106 K), for 
the transition (1..:;22sh;2F - (ls22sh;2F', with F = 0 and 1, in Li-like 57Fe. 
The dashed and solid lines represent the results with radiative decay neglected and 
included, respectively. The curve labeled BG represents the background contribution 
and the curves labeled Total represent the sum of the background and resonance 
contributions. 

Furthermore, only contributions from the 2ln'l' doubly excited levels are signif­
icant. For 2 ::; n' ::; 6, a full distorted-wave treatment was for 6 < 11,' 
the first approximate method of section 7.3 was again used, and for n' > 10 
results were estimated by assuming a 1/ (11,1)3 dependence. Due to the fact that 

free electron must have a rather large energy in order to excite the 
electron to the 11, 2 shell when forming a doubly excited level during the 

capture process, resonances contribute only at quite high Hence, 
are significant only for high temperatures. Even then, the resonances are not 
highly important as can be seen from the effective collision strengths listed as 
a function of T(K) in table In this case, the background (BG) contribu­
tion was taken table 24. One observes that, at the highest temperature 
considered in the present work, the resonance contribution to ytotal has risen 
to only 17%. The labeled as "NRD" and "RD" in the table correspond 
to neglect and inclusion, respectively, of the effect of radiative decay. In this 
case, the maximum effect of radiative decay on ytotal is only about 2%. 

In addition to the numerical examples provided above, resonance contribu­
tions were also considered for the case of electron-impact excitation to the 

Total 
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Table 
Effective collision strengths as a function of temperature, T(K), for the transition 
1S1/ 2F 1S1/ 2 P', with F 1/2 and p' = 3/2, in H-like 14N. Results are presented for 

background (BG) values, the resonance contributions from the 2ln'l' levels, and 
the total collision strengths. entries labeled NRD and RD are 

n 2 Resonances Total 

T(K) BG NRD RD NRD RD 

1.0E+05 6.24E-02 1.75E-19 1.73E-19 6.24E-02 6.24E-02 
1.5E+05 6.19E-02 1.53E-13 1.51E-13 6.19E-02 6. 19E-02 

6.09E-02 7.53E-09 7.44E-09 6.09E-02 6.09E-02 
2.87E-06 

5. 77E-02 7.45E-05 7.24E-05 5.77E-02 
1.0E+06 5.45E-02 8.97E-04 8.54E-04 5.54E-02 5.54E-02 
1.5E+06 5.12E-02 2.79E-03 2.62E-03 5.39E-02 5.38E-02 
2.5E+06 4.5SE-02 5.87E-03 5.44E-03 5.17E-02 5.13E-02 
4.0E+06 4.00E-02 7.51E-03 6.89E-03 4.75E-02 4.69E-02 
6.0E+06 3.44E-02 7.47E-03 6.82E-03 4. 19E-02 4.1 
1 2.74E-02 
1 2.20E-02 4.39E-03 2.69E-02 2.64E-02 

upper hyperfine-structure associated with the ground level of H-like 13C 

and Li-like 23Na, 25Mg, 27 Al and 29Si ions, and the resulting effective colli­
sion strengths were provided in ref. [126J. In that work, it was found that 

4.S4E-03 

the resonance contributions were very important for the Li-like ions, 
erably more so than for the Li-like 57Fe example in figure 

were 

Transitions between magnetic sublevels due to impact with an 
electron beam 

all1:>1101Ull;' between lUC~MlJLC; 
an electron The chapter is organized into two sec­

tions. The section deals with collisional excitation while the second deals 
with collisional ionization. 

9.1 Tmnsitions between magnetic 

It is well known that the radiation emitted from ions excited by a directed 
electron beam can be strongly polarized. In order to predict the polarization 
of the emitted radiation, one must know the values of the cross sections for 



transitions between specific magnetic sublevels of the ion. Another motivation 
concerning our interest in obtaining electron-impact excitation cross sections 
for magnetic sublevel transitions was to compare our results with the EBIT 
experiments at LLNL [127]. Often, these experiments involved highly charged 
ions of heavy elements, such as Ba, for which a fully relativistic description 
is necessary. In this section, the pertinent equations for these cross sections 
or collision strengths, obtained in [128], are given. Additional discussion 
is provided concerning the calculation of the top-up contribution, an option 
for including the generalized Breit interaction and the calculation of the res­
onance contribution to electron-impact excitation. Numerical examples, and 
comparisons with results computed by other workers, are provided through­
out. Comparisons with experimentally determined values are also provided for 
the specific application of the magnetic sublevel cross sections in determining 
the polarization of the emitted radiation. 

9.1.1 	 Geneml formulae for electron-impact excitation between magnetic sub­
levels 

procedure we use for calculating cross sections for excitation by an elec­
tron beam has been given in ref. [128] and is summarized here. The relativis­
tic amplitude, B;;:f, for scattering an incident electron with spin magnetic 

s 	
AI 

quantum number m 8 , wavenumber and direction k 
A 

into direction k with 
wavenumber kl and final spin magnetic quantum number m~, accompanied by 
a change in the magnetic sublevel of the target ion from JtNfl, to l}.UU'vf{, 
can be written [3,129] 

( l}.t Jt Nft - l}.~ J: l\1f;) 
A AI

27f L i1-1'+1 exp[i + 61\:' (k)}!lm;(k)
k 

xC(l!mIm8,'J'm)C(II!mlml'J"m')T(aI 	 1)2 	 2 8' , 

where 

- A 'J'M'k'll"m'a = l}.tJtlVftkljrn, -Ut t t J " 	 (9.2) 

As usual, the symbol Y denotes spherical harmonics, C denotes Clebsch­
Gordan coefficients and the quantum numbers (l, mi, j, m) and (t', mi, 

refer to the angular momenta of the incident and scattered free electrons. 
The appearance of k and k' in eq. (9.2), rather than the energies I" and 1'" that 
appear in previous chapters, is merely a reminder that we are also concerned 

the direction of the incident and scattered electrons for the current case 
of transitions between magnetic sublevels. The 6 quantities are relativistic 
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distorted-wave phase shifts of the incident and scattered electrons de­
eq. (AI) of ref. [128J. highly charged ions, these shifts differ 

from the corresponding relativistic Coulomb phase shifts by a small correction, 
as described in the appendix of ref. [128J. The quantum numbers Jt and 
represent the total angular momentum and corresponding z-component asso­
ciated with the initial sublevel, while ~t represents all additional quantum 
numbers required to specify the initial sublevel of the ion. Analogous primed 
quantities apply to the final sublevel of the ion. The quantity T(o:, 0/) repre­
sents specific elements of the transmission matrix, T, that was mentioned in 
section 4.1. 

Before considering an expression for the excitation cross section, we note that 
scattering amplitude eq. (9.1) was derived for the specific case in 

the spin of the incident electron can be in the positive or negative z direc­
tion, with a similar statement applying to the spin of the scattered electron. 
This choice results from plane waves the type given in eq. (4.50) or 
eq. (4.58) when describing the asymptotic form of the incident- and scattered­
electron wave functions in order to obtain the scattering amplitude. Those 
4-vector plane waves contain 2-component Pauli spinors, XrTls 

, which cor­
responds to the electron spin being in one of two possible directions ±z. 
However, an expression for the scattering amplitude applies to the situa­
tion in which the spins of incident and scattered electrons are in arbitrary 
directions can be handled in a straightforward manner. For this general case, 
the 2-component spinors in eq. (4.50) or eq. (4.58) are to be replaced with an 
arbitrary linear combination of those spinors [3,129]' i.e. 

xm , -t X = C Xms _ ( C1/2 ) 12 = 1.--1n s l ­ L 
ms C-1/2 ms 

A similar expression, in which all appropriate quantities are primed, 
to the 2-component spinors appearing in the wave function associated with 
the scattered electron. Then, the scattering amplitude in eq. (9.1) takes on 
the more general form 

* -t (X')tBx L cmscm~ (9.4) 

where B is the 2 x 2 matrix given 

Bl/2 
B = . 1/2 (9.5)

( 2B1/
-1/2 

) 
our work, we choose to use the amplitude in eq. (9.1) because that form is 

more convenient when deriving an expression for the excitation cross section 



an unpolaIlzea beam 01 electrons [129]. Also, eq. (9.1) can be 
an the cross section when a beam is composed of 

ectrons with a specific polarization, such as the case 
polarized electrons, which is discussed next. 

Thus, assuming that one is not interested in the z-component of spin of 
the scattered electron, the excitation cross section is given by 

- =2: dkA' 12. (9.6) 

In evaluating eq. (9.6), we choose k to be the z aXls so 
Tnl = 0 (as a consequence Tn = Tn s ) and 

Ylml(k) = Ylo(k) (21 + 1) 1/2 (9.7)
/1=0 41f 

VHUV"HL!". k to z 
is longitudinally because the 
either parallel or anti-parallel. After eq. (9. 
result in eq. (9.6), the integration over the scattered-electron direction yields 
a factor of the form 

A' A'Jdk' (k )Yl'm;(k) = (9.8) 

a 
sets 

taking the square of eq. (9.1). After performing 
Ii, another simplification, 

" C(l'l , , ., ')C(l'l2Tnl Tns
,.., 

, J rn ') ()j~j'()m~mls: s: , (9.9)L..,. 2Tnl Tn s; lI rn l ' 
, 

occurs to re­
jJl;:;llUt;llU::; on 

we express the T matrix in terms of the reactance matrix, R, according to 
eq. (4.4). Combining these last several results, we obtain an expression for the 
cross section for excitation between magnetic sublevels, due to collisions with 
a longitudinally polarized beam of electrons, that can be written in the form 

Qms (~tltlvlt 

167 




47T 
= k2 L il

- h [(2l + 1)(2l1 + 1)P/2 
l.ll,j,h 
l'd"l,m' 

x exp[i(6" 6"1 )lC(l~Oms, jm)C(h ~Orn8; j(ln) 
xR(Q,a/)R(Ql,a'), (9.10) 

where a1 differs from a in that l1 and j1 replace land j, rPQnPr'1" In writ­
ing eq. (9.10), the summation over m was 
previously, m =ms. This restriction is 
Clebsch-Gordan coefficients can only be non-zero if m ms. 

LV.H::>luca reactance 

,= 1 

because the matrix elements are independent of M this coupling scheme. 
the corresponding equations provided in 4.1-4.2 for fine-

structure levels can be immediately applied to the case. The transfor­
mation between matrix elements in the uncoupled and the coupled represen­
tations is given by 

R(a, ci) = L C(Jd 1VItm; JAf)C(JU'M:m'; J A1)R(J, I') (9.12) 
.I,M 

and 

R(Ql' a') = L C(Jd1 1"'v1t m1; J1A1dC(JU'A1;m'; J11VdR(Jl, ,~), (9.13) 
h,M1 

where ,1 differs from, in that J1, l1 and j1 replace J, land j, respectively, 
while,~ differs from,' in that only J1 replaces J. Due to the lack of dependence 
on M mentioned above, we note that Rh, ,I) in eq. (9.12) is identical 
left-hand side of eq. (4.13), which applies to fine-structure 
eq. (9.2), the use of k and kl, instead of E and E', in eq. (9.11) is an HlLC;1lLIUl 

choice to denote the consideration of 

eq. . we 

- ~~ 

L L + + 
.I,h,l'vf 

;jlm) 
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xC(J{.i'M;m'; Jl\11)C(JU'M;m'; J1 1\11) 
xR(" ,')R(,lJ ,D. (9.14) 

writing eq. (9.14), the summation over Ail was eliminated due to the fact 
that )\11 M because both quantum numbers must be simultaneously 
to Nft + ms (recall that m m'l = ms in this case), as well as Ai; + m', if the 
Clebsch-Gordan coefficients are to be non-zero. 

In practice, it is computationally more efficient to first obtain the R matrix 
elements in the uncoupled representation using (9.12) and (9.13), and 
then to calculate the cross section via eq. (9.10), rather than using eq. (9. 
directly. However, obtaining the cross section directly from eq. (9.14) can be 

as a convenient check on the former procedure. 

While eqs. (9.10) and (9.14) give the cross section between magnetic 
when the electron beam is longitudinally polarized, one is often interested 

impact excitation by an unpolarized electron beam. In that case, the ini­
tial spin orientations must be averaged over and the cross section of 
becomes 

Q(C1t Jt lvft - C1~J;MD ~ L Qrns(C1 t Jt Mt - 15) 
ms 

Additionally, in most applications the target ions are randomly oriented so 
of interest is given by averaging eq. (9.10) or eq. (9.14) over initial 

Therefore, the cross section for a transition from a fine-structure 
level to a magnetic sublevel is given by 

Qms(C1 t Jt C1~J:MD = n 	 11 1 LQms(C1t Jt lvft - C1~J;Ai:) (9. 
t + Mt 

the incident beam is comprised of longitudinally polarized electrons, and 
by 

Q(C1t Jt - C1~J:MD 	 1 L Qms (I1tJtMt - J;A1;) 
m"kit 

the beam is unpolarized. Of course, substituting eq. (9. into eq. (9. 
and summing over M; leads to the standard expression excitation cross 
section for transitions between fine-structure levels eqs. (4.1) and (4.12)), 

provides a useful check OIl our equations. 

The RDW formalism described above has been used to compute excitation 
cross sections for transitions to specific magnetic sublevels for a variety of 
applications. example, Inal et a1. have used the appropriate RDW cross 

169 




sections to predict degree of polarization for various spectral lines emit­
ted by different ions. These calculations include a prediction of the circular 
polarization of lines from He-like iron excited by longitudinally polarized, di-

electrons [1~30] and a study of the of the hyperfine interaction 
on the circular polarization of various x-ray lines from Scxx [131]. a spe­
cific numerical application of eq. (9.10) or eq. (9. ,we consider here the 
collisional data for excitation to magnetic sublevels by impact with an 

electron beam that were presented in ref. [128]. In work, collision 
were presented for He-like, Li-like and Ne-like iron, as well as for 

Ne-like molybdenum. Comparisons were also provided with results other 
works when available. We note that for sublevel transitions, the 
relationship holds between the collision strength, n, and the cross section, Q, 

specifically, eq. (4.1), or eq. (9.18) the next subsection). However, the 
statistical weight associated with initial sublevel, gi, is always one in this 
case. 

In table 26, we present a sample of those results from ref. 

our results for collision strengths for excitation from the ground 

magnetic sublevels ]\;1; of the 1s2p levels in He-like iron are compared with two 

different sets of semi-relativistic results produced by Inal and Dubau [132] 


Los Alamos excitation code ACE [46]. As can be seen from the table, the 
agreement between the three sets of calculations is good. Therefore, the 
relativistic effects are not particularly significant iron ions and a 
relativistic treatment is 

9.1.2 The relativistic Cmtlomb-Bethe approximation 

pointed out in section 4.9, when considering optically allowed Lln = 0 tran­
which generally have small transition energies, very large values of the 

angular momentum quantum numbers land l' that are associated with the 
incident and scattered electrons, respectively, can contribute significantly to 

excitation collision strength. In subsection 4.9.1, we briefly described 
partial-relativistic Coulomb-Bethe (PRCBe) and relativistic Coulomb-Bet he 
(RCBe) approximations as a way to estimate the top-up contribution 
der to obtain converged collision strengths for fine-structure transitions. 
ever, those formulations of the PRCBe and RCBe approximations can not 

applied to collision strengths associated with transitions between 
magnetic sublevels. For example, the presence of the Coulomb phase shifts 
associated with the continuum partial waves must be considered CA!JUvl 

Also, a useful form of the PRCBe method can not be readily obtained for 
magnetic sublevel transitions because one is not allowed to perform a sum 
over the magnetic quantum numbers associated with the initial and final tar­
get states. Furthermore, for moderate and high values ofthe nuclear charge Z, 
a relativistic treatment should be used, especially since more detailed (i.e. less 
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Table 26 
collision strengths for excitation from the ground level to the mag­

netic sublevels lvIt of various Is2p levels in He-like iron. In each case, upper entries 
represent our fully relativistic (RDW) values, second entries are from the code of 

, and third entries are from ref. [132]. The results from ref. [132] were 
computed with the same transition energy b.E 493 Ry. Also, as discussed in 
ref. [128], most transitions, the present RDW results were calculated at 
different values of the incident-electron energy, E, than those listed in table. 
x[y] = x x lOY. 

E (Ry) 

Level 	 550 900 1200 2000 

1s2p lPl 0 493.2 1.69[-3] 2.37[-3] 3.09[-3] 3.85[-3] 


or 493.0 
 2.39[-3] 3.07[-3] 3.76[-3] 4.68[-3] 

(lS1/22P3/2h 1.69[-3] 2.38[-3] 3.06[-3] 3.76r-31 4.69 

1 4.19[-4] 	 6.12[-4] 8.84[-4] 1.30[-3] 2.32 

6.20[-4] 2.30[-3] 

5.84[-4] 8.87[-4] 1 2.39[-3] 

1s2p o 490.7 2.08[-4] 2.42[-4] 3.37[-4] 


or 2.19[-4] 2.55[-4] 
 3.47[-4] 4.16[-4] 

(lS1/ 22Pl!2h 

1 2.65[-4] 1.76[-4] 1 

2.66[-4] 1.78r-41 1.72[-4] 

ls2p o 491.9 1.98[-4] 1.27[-4] 7.35[-5] 2.50[-5] 

or 491.7 2.10[-4] 1.35[-4] 2.63[-5] 

(lS1/22P3/2)z 

1 2.37[-4] 1 6.04[-5] 2. 
1.70[-4] 6.36[-5] 2.23[-5] 

1.65 6.05[-5] 2.10[-5] 

2 	 7.46[-5] 5.00[-5] 3.32[-5] 2.11 

5.13 [-5] 3.42 [-5] 2.19[-5] 


4.96[-5] 3.28[-5] 2.09[-5] 9.74[-6] 


averaged) collision strengths, such as those associated with transitions 
tween magnetic sublevels, tend to be more sensitive to any approximation 
made. Based on these considerations, we provide in section some the 
details associated with the RCBe approximation and application to ob­
~aHHl% the top-up contribution to collision strengths that describe transitions 
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between magnetic sublevels produced by impact with directional electrons. A 
more detailed description of this approach is provided ref. [55]. 

between the active bound elec­

coordinate label N, and the free electron, with coordinate label 


N 1, can be approximated byeq. (4.60). In addition, exchange is neglected 

the R matrix elements and relativistic Coulomb functions are used to rep­


resent the free electrons. These approximations can be applied directly to the 

cross section that describes a transition between magnetic sublevels that ap­

pears in eq. (9.10) or eq. (9.14). Here, we choose to apply these approximations 

to the collision strength, which is related to the cross in the usual way, 


Q(l:!.t - l:!.~ ; n( l:!.tJtJv1t - l:!.~ (9.18) 

In the present case, the statistical weight of the initial sublevel that would 
normally appear in the denominator of the right-hand side of eq. (9.18) is 
always one. We note that this expression is also valid for the quantities Qms and 
Oms' which apply to excitation by a beam of longitudinally polarized electrons. 
Applying the previous approximations to the cross 

appropriate version of eq. (9.18), the <'nrrPQnnnri1 

can 

o~~Be(l:!.tJtl'\11t - l:!.~ 


= 16 S( l:!.t Jt , l:!.~Jn .z= il- h [(2l + 1) (211 + 1)] 

Ih,j,il 
1',}I,m' 

x exp[i(6Kc - 6KIC)]C(l~Oms;jm)C(lt !Oms ; jIm) 
x ( -1 )j+jl-2m

s I (dj, Ellff) I(dd, c' [Ij') 
X (i II C(1) II jf) II C(l) II 

)2'f ) ( 1 1x.z=(}m
. 1 

J -Tn )(q q qq 

where reduced matrix elements of the form (ja II C(l) II j~) are given by 
(3.26) and the (...) are Wigner 3-.7 symbols. The I symbols represent rel­

ativistic Coulomb integrals given by eq. (4.62), 6KC is the relativistic Coulomb 
phase shift given by eq. (A2) in ref. [128] and S is the fine-structure line 
strength given by eq. (3.14). As mentioned in the previous subsection, one is 
often interested in impact excitation by an unpolarized beam. In that case, 
the appropriate RCBe collision is given 



nRCBe(LltJtMt - Ll~J;MD = ~ L n~~Be(LltJti'\1t Ll~JU\1D . 
rns 

We note that, if eq. (9.19) is i-lummed over the magnetic quantum numberi-l 
and M; associated with the initial final sublevels, and also averaged 

over the two possible i-lpin polarizations the incident electron represented 
by m s , then one should obtain the RCBe expression for the fine-structure 
collision strength by eq. (4.61) in i-lubsection 4.9.1. outcome is 

straightforward to verify, as follows. double summation over M t 
A1{ eliminates the squared 3-j symbol and replacei-l it with a value of 1. 

The summationi-l over q m l can next be performed, which eliminates 
remaining two 3-j symbols and replaces them with a factor of 6jh /(2.i + 1). 
Next, the summation over ms (recall thatm = ms for the case of longitudinally 
polarized electrons) removes the two Clebsch-Gordan coefficients and replaces 

with a value of r51d(2.i + 1)/(2l + 1)]. The factor of ~ that remains from 
taking the average over ms is combined the factor of 16 to yield 8, 
remaining three phase factors can be i-let to one for obvious reasons, 
final result is 

nRCBe(LltJt - Ll~J~) 	 ~ S(LltJt - Ll~JD 


x L ]2(clj, clllj')(j II C(1) 


[ 'I,j .J-, 

is precisely expression ( 4.61). 

The procedure we follow in order to calculate the complete collision strength 
between magnetic sublevels is similar to the second method described in sub­
section 4.9.1 for transitions between fine-structure levels, except that it is 
more convenient to make the final summation over the final orbital quantum 
number ii, rather than l. As noted in the last paragraph of subi-lection 4.9.1, 
the outcome is the same as what would obtained if the final summation 
were performed over l. In the present illustration, we consider the case an 
unpolarized electron beam, but same basic logic can also be applied to the 
polarized case. We begin with eq. (9.18), along with eqs. (9. and (9. 
to calculate the relativistic distorted-wave collision strength up to some 
value of II lo 1. This contribution is denoted by n~Po\Vl' where 
ment that denotes the magnetic sublevel transition from eq. (9.18) has been 
omitted here and in the subsequent discussion for brevity. 

we employ the RCBe collision strength given byeq. (9.20), along 
(9.19), to approximate contribution from II = la up to some much higher 

value lo - 1, usually chosen to be the maximum value can be 
before encountering numerical difficulties on a computer platform. This 
contribution is denoted by nR '!3-=1' Finally, as noted in subsection 4.9.1, for l0, 

C10 . 
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values of i', of successive partial-wave 
becomes very nearly constant. Assuming this ratio is exactly constant when 
i' = io I, and equal to the specific value C for a given transition and incident 
(or scattered) electron energy, then the contribution of all partial waves with 
i' 2: lo is given by 

C 
(9.22)

l-C' 

where n~<.2~e is the partial-wave RCBe value for [' = 10 -1. Hence, the complete
o 

collision strength for transitions between magnetic sublevels is given by 

nRDW,...,.,...,. + + 

is l\.ttlltll'v{.Ll to the expression given by eq. in subsec­
4.9.1 applies to fine-structure transitions. 

As a numerical exarnp~e of the application of eq. (9.2:3), we consider the results 
presented in [55]. In that work, we calculated and presented results for 
transitions the sublevels of (ls2s)1 to the sublevels of (ls2p*)01 
(ls2phand ( for He-like neon, barium and we rOm'r",; 

UltHlUU1"> were 
chapter 2, with the improvements described in section also included. As 
described in [55], results between some sublevels are not presented because 
they can be obtained from the symmetry relation 

n(!}.tJt1V1t !}'~JtlVln = )- ) . 

table represent the collision strengths associ­
ated with the corresponding fine-structure-level transitions. These results are 
obtained by summing over all possible pairs of I\l1t and M{. We also list the 
values of [0 and 10 that were used in the top-up calculations for each of the 
three scattered-electron energies. 

9.1.3 to 

Recent attempts to obtain a more accurate approximation of the top-up contri­
bution for excitation between magnetic sublevels [133] have involved an exten­
sion of the relativistic plane-wave-Born (RPWB) approach, or Kummer trans­
formation, described in subsection 4.9.:3 transitions finp_"trl 

http:l\.ttlltll'v{.Ll


transitions between magnetic sub-
are presented for three en­

ergies, E', along with the corresponding values of lo and Lo used in eq. 
transition energy, b.E, is also provided for each transition. 

E'(eV) E'(eV) 


Nft Mi 1000 4500 22000 M t M't 1000 4500 22000 


10 = 23 33 58 10 = 23 33 58 
l{; = 50 100 190 I{; = 50 100 190 

I - \lS-'P )1, .6.E 82.0 eV (ls2sh - (1s2p)I, .6.E 575 eV 

-1 -1 9.10[-3] 2.23[-3] -1 -1 
-1 0 5.63[-3] 1.59[-2] -1 0 
-1 1 5.26[-8] 2.95[-8] -1 1 

0 -1 5.65[-3] 
 1.59[-2] 0 -1 

0 0 8.98[-5] 
 1.78[-5] 0 0 

:E 4.08[-2] 6.80[-2] E 1.31[-2] 1.57[-2] 2.221-2] 

an analytic expression for the RPWB collision strength, H'" .. ,J 

sponding cross section). Then the appropriate partial-wave, RPWB collision 
strength is subtracted from the analytic expression to obtain the top-up con­
tribution, which is to be added to the corresponding partial-wave, RDW value 

A partial-wave to computing 
sit ions between 
directly from the RDW prescription in subsection 4.8.2. Specifically, for mag­
netic sublevel transitions, a partial-wave, RPWB calculation can be performed 
with the same computer code that is used for the corresponding RDW calcula­
tion. The main is that the radial wave functions associated with the 

RPWB ,",umi:>lUH 

sublevels is relatively straightforward and 

CIC,",vHJlli:> in the RDW 
must 
eq. (4.58). Also, only the direct Slater are 
the reactance matrix elements, due to use of product wave functions 
RPWB approach. Additionally, the normalization of the plane waves is chosen 
according to eq. (4.59), in order to be consistent with the normalization of the 
RDW radial wave functions. Thus, taking these considerations into account, 

(9.10) and (9.14) can also be used to comoute the RPWB excitation cross 

electrons is 
beam of electrons is unpolarized. 

by eq. (4.75). In order to 
lor we corre­

The remaining task is to determine an analytic expression for the RPWB 
excitation cross section for magnetic sublevel transitions. As stated in subsec­
tion 4.8.1, the cross section depends on the square of the RPWB 

1 




RPWB 

matrix clement in eq. (4.48). By analogy with the scattering amplitude in 
eq. (9.1), we consider a magnetic sublevel transition, denoted by !.it ltJl.1t 
!.i~J:M:, that is caused by relativistic plane waves, rather than distorted waves. 
The incident plane wave is characterized by momentum k and spin magnetic 
quantum number m s , while the scattered electron is characterized by momen­
tum k' and spin magnetic quantum number m~. If one is not interested in 
the spin polarization of the scattered then eq. (9.6) applies and the 
RPWB form of the excitation cross can be written as 

scattering amplitude is 

RPWH 1 ')1 1/( ) k' H 
[B~:~ ] (!.i tl t Mt - !.i t l t A1t V m2c4 k aa' 

(9.26) 

4and the matrix element Haa l is given by eq. (4.48). The factor EE'/(m2c ), 

which is written in standard units for clarity, is the extra kinematic factor (see 
ref. [52]) that was mentioned in subsection 4.8.1. This factor takes into account 
the relativistic relationship between the velocity and momentum, v = pc2 

/ E, 
incident and scattered electrons. Aside from this extra factor, eq. (9.26) 

is identical form to the standard (see eq. (18.154) 
of Cowan 

con­
case. In 

two a scalar product 
HJ.',"..<'~J.U and plane waves) given 

(4.52), and another matrix element that has exactly the same form as 
the corresponding non-relativistic RP\VB matrix element (see eq. (18.140) of 
Cowan [8]). Thus) we write the square of eq. (4.48) as 

2 
2 64n 1 t , 1 12Haa l K4 U (k, ms)U(k ,ms ) 


2 


1 1 

x I(!.i t l t A1t l ~eiK.rql!.i~lUVfDI ' (9.27) 

where K k' - k is 
element containing 
the 
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element can be expanded according to well-established vt.;Lll111q u 

are summarized below when considering the generalized 

In order to reduce eq. (9.27) to a more useful form, we first focus on the square 
of the scalar-product factor, Ut U) which contains the entire dependence on the 
spin magnetic quantum numbers, rns and n<~) associated with the incident and 
scattered electrons. Thus, we can apply the Lm! that appears eq. (9.25) 

s 

to this factor. Expanding the square of the scalar product, as it appears 
eq. (4.52), and repeatedly applying the relationship 

(Uop)(uop') = pop' iuo(pxp'), (9.28) 

we obtain 

)'2(k, rns)U(k', L 

[(1+ DP·P')' + ~:(p X p')2] (9.29) 

where D + rnc2 )(E' + rnc2 
). An expression for the normalization factor 

associated with the incident plane wave, N k , is presented in the text after 
eq. (4.50), with a similar expression valid for the scattered-electron factor, N~. 
Eq. (9.29) is a particularly useful result because its derivation does not require 
any assumption about the direction of the incident or scattered electrons, 
and it is independent of the magnetic quantum number associated 
the incident electron, rns. This latter characteristic is a consequence of the 
use of product, rather than antisymmetrized, wave functions in the RPWB 
approach. Thus, eq. (9.29) applies equally well to excitation caused by a beam 

contains either spin-polarized or unpolarized electrons. F\lrthermore, 
case of a spin-polarized beam, there is no constraint between the direction 

the spin incident electron, s, and direction of incident or 
scattered electrons, k 

~ 

or k 
~, 

respectively.1 

Before proceeding with a discussion of the RPWB excitation cross section in 
eq. (~).25), we next define the generalized oscillator strength (GOS) for the case 

transitions between magnetic sublevels. An expression that is appropriate 
magnetic sublevels can be defined in a manner analogous to the GOS 

presented in eq. (4.54) for fine-structure levels in subsection 4.8.1. The 
for obtaining this quantity are provided in ref. [133] and are only summarized 
here. 

usual, the derivation of an expression for the GOS begins the matrix 
elE~rrl(;nt containing the magnetic sublevels on the right-hand of eq. (9.27), 



which can be reduced to a more useful form according to standard irreducible­
tensor techniques (see eq. (18.144) of Cowan [8]). The square of this expres­
sion is subsequently expanded and further simplifications ensue. An important 
difference that occurs the GOS for magnetic sublevels versus 

vU'..A,""",-,v on the direction of 

J(.6.t .1t.1'v1t - .6.~.1:fvl:; K) 

2 


_ .6.E I ( A I iK·r IA' , ') I
= K2 D.t.1tMt q e q D.JtMt 

2.6.E '" 1)'V-I/
K2 ~ 1 + 

X LP~T) ()K) p(T')
v' 

1
7,7

l/ )( )
T 

N N 

x (.6.[.1t ll L .1v(J<rq)Cr) 11.0.~.1:) (.6. I .1t II L jv' (Krql )C~') 11.6.~.1:), 
q=l q'=l 

with 

cos ()K = _1_ [(k')2 _ K2 _ k2] (9.31 ) 2kK . 

(9.30), the symbols appearing reduced matrix elements 
for 

v. 
K appearing in the argument of the magnetic 

within the expression COS()K, where ()K the angle between K and k, and 
is measured with respect to the direction of the incident beam, k. Here, cos ()K 

appears as the argument of the normalized associated Legendre functions of 
degree l/ and order T, which are denoted by pST) [134]. The origin of the 
relationship expressed in eq. (9.31) can be more easily understood by applying 
the law of cosines to the triangle formed by the vectors -k, k' and K to obtain 
the relationships 

K 2 +P -2kK + + 2kK cos 

to a 
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magnetic sublevels, we note that the summations over 7 and 7 
1 in eq. (9.30) are 

unnecessary because of the properties of the 3- j symbols. For fixed values 
and !vi;, which is the case currently under consideration, the 3-j symbols are 
non-zero only when 7 (!vit -!vi;). However, this more general expression 
of the GOS is useful when performing certain reductions, as illustrated in the 
next paragraph. We also note that, unlike the fine-structure GOS that appears 

eq. (4.54), the GOS in eq. (9.30) does not contain the statistical weight 
9 because, as stated previously, the statistical of any magnetic 

su blevel is one. 

As a check on eq. (9.30), we can show that it reduces to the correct fine­
structure result in eq. (4.54). The reduction is performed in the standard way 

by summing over the initial and final magnetic quantum numbers .A1t 

!vi;) but there is a slight difference this case due to presence of 
normalized associated Legendre functions. Proceeding in usual way, we 
note that summations over !vit and M; act only on the product of the 3- j 
8ymbols, which can be reduced according to 

( 
Jt V J[ ) ( Jt VI 

1 

J;) ___~___ (9.33)
7 !vi; 7 !vi; - 2v + 1M/,M; - !vIt 

This can be used to greatly eq. (9.30), can be rewritten 
as 

L !(b.t Jt .r..1t - b.~J:!vi;; K) 

MtN; 


_ 2b.E """"[ (T)( • )]2 ( II ~ "( ) (11)11 1 1)2- K2 L..,L.., P II cosBK b.Jt L..,.711 Krg C q b. Jt . (9.34) 
II T g=l 

The of the of the normalized Legendre functions can 
be performed arbitrary of v. The can be expressed 
compact form 

2v + 1 
II [PST )(C08 (9.35)

2T=-II 

conveniently removes dependence fine-structure GOS on 
direction of K. This last readily from the well-known sum 
for the spherical harmonics 

I 
12 = 2l + 1L IYlm(B, (9.36)

47rm=-I 
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terms 

Ylm(O, 
(
.J27T

l)m p(m) 
(cos 0) eim

¢ . (9.37)I 

If eq. (9.35) is then substituted into eq. (9.34), we obtain 

L J(i::ltJtMt i::l~JU'vf:; K) 
Mt,M: 

N 

i::lE L(2v + (i::lJtll (Krq)C~)IIi::l'
K2 v q=l 

is eq. 

GOS denned as m eq. \ !:/.0U) , the determmatlon 01 a use1Ul, ana-
RPWB excitation cross section for between 

magnetic sublevels proceeds in a manner very similar to presented for , 
the fine-structure case. Returning to eq. (9.25), the integration over k 

~ 

can be 
performed in the standard way. Specifically, the polar is chosen to be in 
the direction of the unit vector k (which is not required to be in the direction 
of the z axis for this application) and the integration is carried out over all 

angles 0' and <p' that describe k 
~ , 

in this coordinate The integral over 
<p' is trivial, producin~ a factor of 27r, because the azimuthal 
symmetry about the k direction. The remaining 
verted into an over 
the standard wav [81. At 

nRPWB (i::l J !v! i::l' J'!vi')ms t t t t t t 

2
 

- k QRPWB( A J M A'I'M')= -; ms Ut t t u t ' t t 

8 Kmax 

= i::lE J (K)f(i::l t Jtf'11t - tl~J:M:; K) d(1nK) . (9.39) 
I<min 



quantity f(···; K) represents the GOS for magnetic sublevels given 
eq. (9.30). Aside from these two differences, the expressions for the UH.F,""_' 

sublevel and fine-structure RP\i\TB collision strengths are identical. Hence, the 
Frd(K), which represents the relativistic correction factor that was 

previously discussed for the case of transitions between fine-structure levels, 
by eq. (4.56). Also, the limits of integration are still given 

and (4.55b). 

the integral eq. (9.39) can be evaluated with the same numerical 
techniques that were used in the fine-structure case. However, when consid­
ering the K 0 limit magnetic sublevel GOS, the dependence on the 
direction of K does require some additional attention. the fine-structure 

this limit is unambiguous and readily produces the corresponding dipole 
oscillator strength, as mentioned the discussion following eq. (4.54). 
case of transitions between magnetic sublevels, the situation is more 
cated due to the dependence of the GOS on K. A discussion of this issue is 
provided in ref. [133] and the reader is to that work for details. 

As written, the subscript ms eq. (9.39) that collision 
is valid for the case of excitation between magnetic sublevels due to collisions 
with a beam of spin-polarized electrons. More precisely, this expression is valid 
for arbitrary orienta!iolls between the electron spin, 5, and the direction of 

incident k, not just for the case of longitudinally polarized elec­
trons in which 5 and k are parallel. This general outcome is obtained because 
the derivation above did not require the specification of a particular 
tion for k. Furthermore, because the final expression on the right-hand side 

eq. (9.39) is independent of the spin magnetic quantum ms the dis­
cussion following eq. (9.29)), this result also applies to the case of excitation 
caused by impact with a beam of unpolarized electrons. Thus, eq. (9.39) can 
be used to obtain top-up contribution for transitions between magnetic 

via eq. (4.75), for either an arbitrarily polarized of electrons 
or an unpolarized beam. 

As a specific numerical example, we consider the case of excitation between 
magnetic sublevels caused by a beam of unpolarized electrons. In table 28, 
we reproduce results from ref. [133] for certain magnetic sublevel transitions 
associated with the (ls2)0 ---+ (ls2p*h fine-structure transition in He-like 

Z = 10, 26, 56 and 79. Collision strengths for all possible magnetic 
transitions arising from this fine-structure transition were previously presented 
in table 27 for Ba54+ ions. Those results were calculated using the RCBe top-up 

presented in eq. (9.23). (As mentioned previously, some transitions 
were omitted from table 27 due to symmetry arguments. See eq. (9.24). 
slight differences between those results the RCBe collision strengths pre­
sented in table 28 are due to calculations having been performed on different 

platforms.) In table 28, results are presented for onlv two of the 
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nine magnetic sublevel transitions in order to illustrate the differences 
can when the top-up contribution is computed with the Kummer 

transformation in eq. (4.75) versus the RCBe approach. 
tial magnetic quantum number is fixed at a value of 1, 
values of the final magnetic quantum, 1\1; = -1 0, are considered. 
behavior observed for these two transitions was indicative of entire set. 

For both magnetic sublevel transitions under consideration, the Kummer re­
sults are lower than the RCBe results for all of the ions considered when 
examining the lowest few energies. The differences range from approximately 

This behavior indicates that the Kummer results are inaccurate 
to the use of plane waves, rather than Coulomb waves, at these energies. 
slightly higher energies, the two sets become comparable and 
the Kummer results start to exceed the RCBe values, particularly for the 
heavier Ba5H and Au77+ ions. For the highest energies, the Kummer results 
are greater than RCBe results for both transitions and for all ions. 
discrepancies for the (Mt = -1) -t (M; = -1) transition are particularly 
sensitive to the method to compute the top-up contribution, while the 
(Mt = -1) -t (M; = 0) transition is not quite so strongly affected. For exam­

Au77+ values differ by more than a factor of 40 at the lHJ;m;;:, 

l\1; = -1 transition, but display a more benign, yet 
difference for the M; 0 transition. Similar trends are observed for Ba5H 

ions. The discrepancies in high-energy region are due to convergence prob­
lems associated with the RCBe approach. It can be numerically challenging 
to compute the RCBe contributions up to a sufficiently high value of l~ when 
evaluating eq. (9.23). If the value of l~ is too then ratio approxi­
mation does not provide an accurate estimate of the remaining partial-wave 
contribution. On the other hand, the Kummer transformation is designed to 
automatically reproduce the correct RPWB behavior in the collision strength 
at such high energies, as illustrated in figure 1 for the (ls2sh -t (ls2p*h 
fine-structure transition in He-like iron. 

9.1.4 Comparisons EBIT p'Y'",,,,,,...rn at LLNL 

of polarization associated with thA ~mission of a particular 
can be obtained from the magnetic sublevel excitation cross sections described 

the previous subsections. For example, comparisons of polarization results 
obtained from cross sections produced by our codes and data obtained from 

measurements have been by Beiersdorfer and coworkers at LLNL. 
Generally, the agreement between theory and experiment was found to be 

those cases [135,136]. a specific example, we include comparisons between 
measured calculated values of the polarization in tables 29 and 30. These 
results were taken from refs. [137] and [138], and expressions for computing 
the polarization from the magnetic sublevel cross sections are provided, for 
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example, in ref. [137]. Table 29 displays polarization results for He-like iron 
for the w, y and z lines described in subsection 4.10.1, as well as the x line, 
which represents the transition 

2 ----+1 or 

ltLLJCICU "Shlyaptseva coworkers" are predictions based on Coulomb-
Born calculations from refs. [139] and [140]. The values labeled "Inal and 
Dubau" are based on excitation calculations using the semi-relativistic distorted­
wave programs of refs. [1:32] and [141]. The values labeled "Present calcula­
tions" are based on calculations from our RDW excitatioIl code. One sees 
that there is very good agreement between theory and measurements with 
the exception of the Coulomb-Born calculations. Table 30 similar com­
parisons of the predicted polarization based on calculations from our RD\V 

are 
is again very good, exception of a discrepancy for 

w line. 


Table 29 

Comparison of calculated and measured values of the polarization of lines w, x, y 

and z at an excitation energy of 6800 eV. Results are for He-like iron. 


Shlyaptseva Ina! and Present 
Line and coworkers Dubau calculations Measurements 

+0.82 

-0.75 
05P.y -0.23 -0.l96 -0.192 _022+0.. -0.02 

Pz (no cascades) 0.000 0.000 0.000 
007-0 076+0.Pz (with cascades) -0.078 -0.074 . -0.007 

Table 30 
Intensities (adjusted for the spectrometer response function) and inferred linear 
polarization of the helium-like lines w, x, y and z, and of the line q 
for titanium measured with Si(220) Si(111) 

Predicted Measured 
Ion 

with our RDW code, are 

Ti2o+w 18976 1820 +0.608 +O.4:3:!=g:i~ 
x Ti2O+ 3628 185 -0.519 _048+0.06 

· -0.06 
Ti2O+ 4468 268 -0.339 _033+0.07

Y · -0.07 
Ti2O+ -0 101+0.014z 6511 470 -0.106 · -0.013 

q Ti 19+ 5999 569 +0.341 

http:033+0.07
http:048+0.06


9.1.5 generalized Br'eit interaction in excitation between rnag­
netic 

The need to include the generalized Breit interaction in calculating excitation 
cross sections between magnetic sublevels was motivated by possible EBIT ex­
periments to be performed on highly charged ions heavy elements at LLNL. 
As discussed previously in subsection 4.10.1, the generalized Breit interaction 
was (unexpectedly) found to provide a stronger effect on excitation cross sec­
tions between fine-structure levels for more complex ions. Here, we are 
cally referring to complexity as a measure of how much fine-structure splitting 
occurs among the various levels under consideration. For example, the effect 

generalized Breit interaction on the n = 1 to 2 excitation cross sections 
hydrogenic xenon ions was shown to be than 1% for near-threshold impact 
energies. On the other hand, the effect was observed to be as large as 28% 
in the corresponding transitions for He-like xenon ions. Summing the He-like 
cross sections in the appropriate to obtain hydrogenic-type results pro-

results that displayed a much smaller sensitivity to the generalized Breit 
interaction, on a par with the true hydrogenic results. This behavior suggested 
that the additional splitting associated with magnetic sublevels might result 
in cross sections that displayed an even stronger sensitivity to the generalized 
Breit interaction, relative to cross sections associated with the corresponding 
fine-structure transitions. 

As described near the beginning of section 10, the generalized Breit interac­
tion can be included in electron-impact excitation processes by replacing the 
standard Coulomb interaction with an appropriate expression for the more 
complete interaction. This replacement is described by eqs. (4.76) and (4.77) 
and, in the present case of excitation between magnetic sublevels, must be 
applied to the cross section in eq. (9.10) (or eq. (9.14)). As usual, the replace­
ment is specifically performed in the reactance matrix elements of eq. (9.10). 
However, because expression for the generalized Breit interaction has 
an imaginary part, the product of reactance matrix elements displayed 
eq. (9.10), o:')R(cq,o:'), must be replaced with the more general 
R(o:, o:')R*(o:l, 0:'), so that the complex conjugate of the second is 

In the discussion to follow, we write these complex matrix elements 
the abbreviations 

R(o:, ~ R = Rr +iRi (9.40) 

R* ~ Ri = R1r - iRli , (9.41) 

subscripts rand i denote real and imaginary parts appro­
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given 
given in eqs. 78)-(4.82). The matrix elements 
integrals. and are obtained by the prescription that precedes eq. 

In order to obtain an expression for the cross section that is convenient and 
efficient to evaluate numerically, it is useful to consider the remaining complex 
quantities that appear in eq. (9.10). The phase factor 

l l1 is always an even integer due to restnN 

angular momenta l 
COllS11J.er is the 

abbreviated as . The product 
with the two reactance matrix elements can be rearranged as 

exp[i( OK 0"1)1R( 0:, 0:/)R* (0:1,0:/) 
-7 [cos D + i sin D][Rr + i Rd [R lr - i RliJ 

D)(RrR1r + RiRli ) (sin D) (RrRli - RiR1r ) 

D)( RrR1r + RiRli ) D)(RrRu ­

Since the cross is a 
contained within square brackets of 
z:ero. In fact, we have verified numerically that this statement is true. There­
fore, the expression that we use for including the generalized Breit interac­
tion in the excitation cross section for transitions between magnetic sublevels, 
caused by collisions with a beam of longitudinally polarized electrons, has the 
explicit form 

411 1/2+1)(2l1+
k2 

xC(1 ~Oms; .jm)C(l1 ~Oms; .hm) 
x {cos( Ot;; ()/q) [Rr(a, a/)Rr(a1, 0:/) RJ 0:, n/)Ri (aI, 0:/)J 

+ sin(Ot;; Ot;;l) [Rr( 0:, a/)Ri(a1, 0:/) Ri (0:,0:/) Rr(a1, o:')]}. (9.43) 

only Breit radial 

As a numerical application of eq. (9.43), we consider the case in which the 
electron beam is unpolarized, so that ~ Lrn8 is applied to eq. (9.43), as in 
eq. (9.15). In table 31, we reproduce a portion of the results of this type that 
were originally presented ref. [142]. The data presented in the table are ac­

are correspondmg cross 
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in the usual way (e.g. eq. (9.18)). 
tions starting from the ground state of He-like xenon ions to 
sublevels that contain an n 2 electron. Results are presented for five impact 
energies ranging from near-threshold to about 4.5 times the ionization energy 

a given transition. As in all of the previous studies involving the general­
ized Breit interaction, we observe the usual behavior that the imaginary part 

does not contribute much to collision strengths. 
.-.•..,'IUI<1 collision 

for a couple 
can typically be ignored, which amounts to almost a 
in the computing time for these types of calculations. 

Further investigation of table 31 indicates the expected trend of an increase in 
the importance of the generalized Breit interaction with increasing impact en­
ergy. In the near-threshold region, the change associated with this interaction 

signifying a relatively modest effect. On the other 
collision associated with 

Even the stronger J 1 colllSlOn strengt 
30-40%. We note that the effect of the generalized 
strong J = 1 transitions is to increase or decrease the collision strength 
the corresponding magnetic sublevel transitions. Finally, as postulated at the 
beginning of this subsection, the collision strengths associated with the cor­
responding fine-structure transitions, obtained by summing the appropriate 
values over !\If[ and denoted by ~ in table 31, show a decreased sensitivity to 

generalized 

9.1.6 Resonance contributions to 

In chapter 7, we stressed the importance of resonances and described a pro­
cedure for including those contributions when considering various processes. 
In this subsection, we are concerned with resonances for excitation transitions 
between magnetic sublevels caused by impact with directional electrons. We 
again treat resonance contribution as the two-step process of electron 

eq. 

VIVIHE1CLulVH occurring in an 
autoionizing sublevel is denoted by d and the final sublevel is denoted by f. 
The pertinent equations for this two-step process have been derived for 
netic sublevel transitions in ref. [143] and we now summarize those results in 
this subsection. 

The notation this used in 7. 
uCLHllHIS to z 
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Table 31 
Comparison of collision strengths for excitation of He-like xenon ions from the 
ground level to specific magnetic sublevels M; for various incident-electron ener­
gies E. Values of the transition energy, !:::..E, are also provided for each transition. 
The r; entries are the total collision strengths obtained from summing the contri­
bution from all possible values of Ai£' In each case, the upper, middle and lower 
entries represent data computed with inclusion of only the Coulomb interaction, the 
Coulomb plus real part of the generali~ed Breit interaction and the Coulomb plus 
the full generalized Breit interaction, respectively. x[ul x x lOy. 

Excited 
Level 

115215 
or 
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or denoted with a subscript t, those pertaining to the doubly excited sublevel 
d will have a subscript d, and those pertaining to the final sublevel f will be 
primed, or primed with a subscript t. First we treat the capture of an electron 
from a directional beam. In doing so, we start with the amplitude 

(see eq. (2.1) in ref. [143]), 

3 2
27T / L (k)C(l~'TnI'Tns; (9.44) 

k l.m£,j,m 

which was obtained by modifying the scattering amplitude for electron-impact 
excitation, i.e. eq. (9.1) of the present work. (See ref. [143] for more detaiL) In 
eq. (9.44), k is the direction of the incident electron, and a and (Xd are given 

a= ad 

As subsection 9.1.1, we choose k to be in the direction of the z axis so 
that eq. (9.7) applies. Also, we express the T matrix in terms ofthe R matrix 
using eq. (4.4). Then we transform the R matrix elements from the uncoupled 
representation to the coupled representation according to 

r ana rd are 

r = !:::.tJtkljJd1vJd, rd ad· (9.47) 

(We note that in eq. (9.46), unlike eq. (9.12) or eq. (9.13), there is no summa­
tion required because Jd and Nfd are fixed in the sense that electron capture 
to a specific doubly excited sublevel is being considered.) Thus, we 

= 27T L il(2l + 
k l,j,m 

xC(Jd1vft'Tn; JdMd)Rb, rd), (9.48) 

where 'Tn = 'Tn s because 'Tnz O. 

The capture cross section for a beam of unpolarized electrons is given by 
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~I: 
rn$ 

+ I)J 
Ul, 

.j,.il,ms 

x expliloK - OK! )J(;\l~Ums; ,Jm)G'lll ~Oms; 

X lVltm; Jdlvld) C(Jt.i1 Mtm; Jdfv1d) 

xRb, Id)Rbll Id)5(c Eid ) , (9.49) 


II differs from I only in that lJ and.h replace land j, E is the kinetic 
energy of the incident electron and is the transition energy. 

As a check on eq. (9049), we use eq. (C.13c) of Messiah [7], 

d 
C(JdM,m; JdM ) 1/2 C(J,J -M,Md;jm), (9.50)

( l)j Jrl'vft • d 

along with the analogous expression applied to C(Ji.hl'vltm; JdIVld). Then, we 
operate with 1/ (2Jt + 1) L.Mt,M

d 
on eq. (9049), keeping in mind that the R 

matrix elements in the coupled representation are independent of II/It 
and !v[d; that is, we over initial magnetic sublevels and sum over final 
magnetic sublevels, which eliminates the last two Clebsch-Gordan coefficients 
and gives a factor of 5jjj (2Jd + 1)/[(2Jt + 1)(2j + I)J. Then, after summing 
over j1, we apply eq. (C.13b) of Messiah to the remaining two Clebsch-Gordan 
coefficients and perform the sum over ms m. This procedure eliminates those 
two Clebsch-Gordan and yields a factor of [(2j + 1)/(2l + 

an expression for the capture cross 

+1 2Qcap 

+ 1 I:
l,j 

We next consider an for the autoionization rate 
the sublevel transition denoted by d usual, this rate is related to 

strength for the via the appropriate form 
of eq. (7.12). We emphasize here that eq. (9049) applies to the capture of 
directional electrons. It does not apply to capture of randomly oriented 
electrons because the impact electron not moving in the z direction. 
Thus, eq. (9049) can not be used to obtain autoionization rates for the case in 
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which ejected electrons are randomly oriented. For capture or autoionization 
involving randomly oriented electrons, a different treatment is required. We 

consider cross section for the electron-capture transition f -+ d and 
subsequently obtain an expression for the autoionization rate for the inverse 
transition d -+ f. 

Thus, we begin by considering an amplitude that is analogous to the expression 
given in eq. (9.44), but for the specific sublevel transition El.~JU'vf: - El.dJd Nfd · 

In this case, an expression that is analogous to eq. (9.7) for [' and m~ can not 
be used because m~ = 0 is not always true. Using the relation between 
T and R matrices given in eq. (4.4), and making a similar transformation on 

R matrix elements from the uncoupled representation, R(ci, Qd), to the 
coupled representation, Rb', , where 

., ,
ci = .7 m (9.52) 

and 

- A' l'k"l' .,
- Ut' t .7 (9.53) 

we obtain scattering amplitude 

, '"711' L ·1' (. s: ) A'
Ems 1 exp luK ' (k )C(l'~mfm~;

k' 

xC(J;J'Nf:m'; 'ld)' (9.54) 

capture of randomly oriented electrons, one must average over the electron 
A'direction k . Specifically, the amplitude above should be substituted 

first expression for the cross section that appears in eq. (9.49) and then an 
A'

integration over k combined with a division by is performed. The resulting 
expression for the capture cross section is 

A'Qcap (El.~ J:M; 1

2 dk - Efd)' (9.55) 

Using the orthonormality relation 

1 A' A'
Yz:m,(k )Yi'm' dk = 141T , (9.56)

1 I 11 


performing the summations over m~J ['1 , we have 
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Qcap(fl~JU\lI: - fld J<1 1Vfd) 


21T2 

51\;~)1 

xC(l' !rn~m~;j'm')C(l' 
xC(J;J'M;rn'; Jd1vI<1)C(J;J~ 
x R(,', ,<1) R(I~' ~f<1)5((' 

., 1 ., d
" only J1 rep aces J an. ;:)HIllH:Ll "',' differs1 ,
replaces j'. the summations over rns are 

L C(l' . J"m')C(l' ;Jl
./ m /)

l = 8m/m~ . 

Then the summations over m~ and j~ are performed to obtain the final result 

Qcap(fl~J; ;1\1; fld Jet 1vIet ) 

1L C(J;J'1vI:n"'; Jd1vIet)2IRb/, 2 5((/ - . (9.58) 
1'';' ,m/ 

Using eq. (7.7), with the label i replaced by f, ( and k replaced by the corre­
sponding primed values, and noting that gj = 1 for any ll.:..agnetic sublevel, we 

an expression for the collision strength quantity [leap associated with 
the of randomly oriented electrons that can be written as 

ocap(fl~J;M; - fld Jd1vId) 
= 21T L C(J;J/ J\1;m/; Jd1vId)2IRb/, 'd)12. (9.59) 

If.jf,rnf 

As a check on eq. (9.59), one can perform additional summations over IvI: 
to see if the correct expression for the fine-structure expression is obtained. 

case, the sums over Tn/ and 1vI: can be used to eliminate the square of 
the Clebsch-Gordan coefficient, and then the sum over 1vId yields a factor of 
(2Jd + 1). The resulting expression, 

ocap(fl~J: - fldJd) = L 0.cap(fl~JUvf; - fldJdMd) 
M{,Md 

= 21T(2Jd + 1) L IRb/, 'd)1 2 
, (9.60) 

I f ·f . ,J 

applies to collision for transitions between fine-structure levels, 
is identical form to (7.3). 
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In order to obtain the autoionization rate for the transition d j', eq. (7.12) 
can applied to the case of transitions between sublevels. 
Using eq. (9.59), which describes the inverse of electron capture, and 

statistical weight 9d = 1 for the case of magnetic 
we oDtam an expression for the autoionization rate according to 

Aa(f:ldJdA1d - 2 '""' C(J' "M' , 12. (9.61)h L..t t.7 t Tn ; IRb', 
/1,jI,Tn' 

above discussion provides all of the pieces that are necessary to 
the resonance contribution to the total cross section for excitation 
magnetic sublevels. The process can again be symbolically represented by 
eq. (7.27), except that all labels representing fine-structure levels ex­
pression now denote magnetic sublevels. The total cross section, in analogy to 
eq. (7.28) for the collision strength, can be written as 

Q total Q. + Qres (9.62)2f 2f 2f ' 

where Qif is the usual background direct) excitation cross section, given 
by eq. (9.15) for an unpolarized beam, or by eq. (9.14) for a longitudinally 
polarized electron beam, and the resonance contribution can be written as 

Qres '""' Qcap B
if = L..t id df· 


d 


The ratio is given by (see eq. (7.30)) GHLHlHt; 

B df = L 
m 

where denominator into account the possibility that, instead of au­
toionizing to the final magnetic sublevel j' of the transition under considera­

doubly excited sublevel d autoionizes or radiatively decays to some 
sublevel. In applying eq. (9.64) to eq. (9.63), the autoionization rates 

Adf and Adm are given by the appropriate form of eq. (9.61). However, 
summation of the Adm values in the denominator of eq. (9.64) can be further 
simplified. Since the summation of Adm implicitly includes a summation over 
M;, that summation plus the explicit summation over the ejected-electron 

number m' can be used to eliminate the Clebsch-Gordan coefficient 
appears in eq. (9.61). Therefore, in this case, one can replace the sum 

magnetic sublevel autoionization rates with the corresponding sum of 
structure autoionization rates because 



1 
Aa(.6.d Jd - .6.~JD = 2J 1 Aa(.6.d Jd l\4d - .6.~J:M:) 

d 

2 12 

graphical 
the background and resonance 

contributions, for He-like and oxygen and iron. In making plots, 
the J(£ - E id ) factor in eq. (9.49) was replaced with a Lorentz profile, as in 
eq. (7.31). This work dealt with spin-change transitions for which the res­
onance contributions are generally more important. Here, we provide total 
collision strengths involving transitions from the ground level of He-like iron 
in figure 7, which is a reproduction of fig. 5 from ref. [143]. In this case, res­
onance contributions from the doubly excited levels arising from the 1s3l3l' 
configurations are included between the magnetic as­

two 

1 1 Sn - 2 3S1 or ( 

and 

11S0 23Pl or (ls2)0 - (ls2p*h . 

As another numerical example, we provide in table 32 a comparison of our 
RDW excitation rate coefficients with the semi-relativistic results computed 
by Inal and Dubau [141] for certain transitions from the ground level of He-like 

mentioned in section 4.14, the used to compute the rate 
a 
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7. Total RDW collision strengths as a function of impact energy for transitions 
between the magnetic sublevels of the 11S0 - 2 3S1 or (ls2)0 - (ls2s)1 transition 
(the left panels) and the 1 - 23Pl or (ls2)0 - (ls2p*)] transition (the 
panels), in iron. Only the resonances associated with doubly excited 
levels involving the 1s3l3l' configurations are included for the impact-electron energy 
range considered. 
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Energy (Ry) 
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In order to obtain RD\tV results similar to those provided in ref. [141], we aver­
aged the collision strength for both the background (or direct) and resonance 
contributions over resonance region, assuming a free-electron energy dis­
tribution that was uniform over the Is3l3l' resonance region, and zero outside 
of this region. For Z ::; 26 the use of non-relativistic relations between 
quantities v, k and f is a good approximation. Making this choice, combi­
nation with inserting numerical values for the physical constants and using a 
mean value for the electron energy the narrow resonance region, yields a 

expression for the rate coefficient for these transitions of interest 
He-like iron. The result is 



32 
Comparison of direct and resonance contributions, and Cres , respectively, to 
the rate coefficients (in units of 1O-13cm3 Is) for excitation from the ground level 
to magnetic sublevels of the n = 2 levels in He-like iron. Superscripts RDW and ID 
indicate present RDW results and semi-relativistic results from ref. [141], respec­
tively. The free-electron energy distribution was assumed to be constant over the 
1s3/3/' resonance region, and 7,ero otherwise. 

2.71 

2.82 

1.67 

1.42 

2.15 

1.77 1.86 

2.888 2.905 

2.851 2.864 

CRDW 2.51res 

e ID 2.26 0.987-'res 

10 
Gil = 8.493- (Oil) Cln3/s , (9.67)

gi 

where 

1 


fb fa 

Here, fb - fa covers the 1s3l3l' resonance region, gi 1 the He-like 
ground level currently under consideration. 

The data listed in table 32 provide a comparison of our results (labeled RDW) 
with those from table IV of ref. [141], computed by Inal and Dubau (labeled 
ID). Results are presented for both the direct contribution, C'dir, and the 1s3l3l' 
resonance contribution, , to the rate coefficient for excitation from the 
1S2 ISo ground level He-like iron to various ~UC"F,~Jlv 

is Cfi"tYlD'tlr 

.screpancies are 
excitation to 

9.2 Transitions between magnetic sublevels due to electron-impact ionization 

In this section, the fully relativistic treatment of electron-impact excitation 
was described 9.1 is extended to 
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We consider an ionizing transition from the magnetic sublevel M t of 
b..t}t to the magnetic sublevel Mf' of level b..~}r. By analogy 

amplitude for excitation displayed in eq. (9.1), we can define an 
ionization scattering amplitude B;;:1 mil for the scattering of an electron with 

spin magnetic quantum number m
s 

s , 

s 

wave number k and direction k into
A'

direction k with wave number k' and spin magnetic quantum number 
m~. This scattering is accompanied by a change in the sublevel of 
the ion from b..t}tN!t to b..~'}r N!:' with one less bound electron, which 

All 
has been ejected into direction k WIth wave k" and spin magnetic 

number rn~. The scattering amplitude process can be written 
as 

27r 1/ 2 

L + 15K , + )]
k 

A A' A"
Xl[:n1(k)Yi'm;(k )Yi"m;,(k ) 

.' )C'(lll , '.x C(l 2mlrns»)ml 2mlms) 
x C(l"l,rn"m'"I )."m")T(a

)? s 1 

where quantity 

All 

Yillrn;' (k ) exp (i t5K II ) lm/'rn"'
2 Is' 

pertains to the ejected electron, and the extra factor of 7r- I / 2 relative to 
eq. (9.1) is due to the different normalization of the extra (ejected) 
tron eq. (5.4) for the continuum normalization), which has replaced the 

active bound electron. The notation for uncoupled states a and a' is 
given by 

A II J" ~/fllk"l" '"'nl"Lll"", ' 0: b..t}tJ'v!tkljm, L..l.t • t IVl t, ) ,ft,) m , (9.70) 

IS very SlIIular to eq. (9.2) excitation. 

integrated cross section for ionization from one specific sublevel to a 
specific sublevel by directional electrons with spin magnetic quantum 
ms can obtained from the scattering amplitude according to the relation 

(E-I)/2 

Qms (b.. 1
2 

t b.." )"A!") '" J df" dk' Jdk" , (9.71)t ttL.. 
1n~5 ~rn~ o 



Llmm!:> one is not interested in the values of m: and m~ UUk'V~.Lal'<;U 
scattered ejected electrons, respectively. In the above E and E" 

are energies of the incident and ejected electrons, respectively, and 
I is the ionization energy. In evaluating eq. (9.71), we again choose Ie to be in 
the z direction (Le. longitudinal polarization), as in subsection 9.1.1, so that 
eqs. (9.7)-(9.9) apply. Expressions similar to eqs. (9.8) and (9.9) also apply 
to the analogous double-primed quantities that describe the ejected electron. 
Then, using eq. (4.4) and making similar manipulations as in section 9.1, we 
obtain an expression for the ionbmtion cross section in terms of the reactance 
matrix elements according to 

Qrn"(l:::. t 1t Mt 1:::.71[' !vI;') 
4 + 1) + 1W/:.l exp[i(Jr;; - ) 1 k2 

x 

x 

it and j1 replace land j, respectively, 
properties of the Clebsch-Gordan 

The the uncoupled representation in eq. (9.72) can be 
written in terms of the clements in the fully coupled representation by 
performing a transformation analogous to eq. (9.12), i.e. 

R(a, a' ) C(ldMlm; 1M)C(1;J' M;m'; 1M) 
J,M,J~,M: 

xC(lI'j"lvI:'m"; 1U'VI;)Rh, ,') , (9.73) 

where "f and " are given by 

, = I:::.t1tklj l!vI and " 1:::.~ll:lk"II/j" l;kll'j' 1ll/1. (9.74) 

One could express tne cross 
ments in the fully coupled repreQPnt 

(9.73). However, as noted in 
to 

eq. 

is greater for the present case 
more matrix elements to evaluate and many more 

case of excitation. 
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most applications, the ions are initially randomly oriented so the 
cross section of interest is given by averaging eq. (9.72) over initial target-ion 
sublevels. The corresponding cross section is 

Qrns (~ J _ ~"J" 71,,1") 1" (~tJtA1t b..~J:' Af:') . t t t tit 2J + 1 L 
t Mt 

If the ioni7.ation is due to with llnpolarized directional electrons, 
the cross of interest is 

Q(~tJt - ~~' - L Qms (b..tJtNIt - b..~J;' !'vI:'). (9.76) 
ffi5,Mt 

Finally, if one is not interested in a particular, final magnetic sublevel 
then the ionization cross section for transitions between fine-structure levels 
is obtained by further summing (9.76) over the final ion sublevels A1:' and 
is by 

Q(~dt ~~Jn= (/ ) L Qm8(~tJtA1t b..~JrAfn· (9.77)
2 2, t + 1 m, 

It is easily that, by applying eq. (9.73) to eq. (9.72) and using the 
properties Clebsch-Gordan coefficients, eq. (9.77) can be expressed in 
the form 

Q(~tJt - ~~ 
(E-J)/2 

J I2 L(2J + L R ( [,[) 12 . (9.78)= J 
l,j,ll,j' o 
.J~ ,[11,)'1 

One sees that eq. (9.78) agrees with the expression for the ionization cross sec­
associated with transitions between fine-structure levels given by eq. 

which provides an important check on fundamental expression displayed 

As with the excitation cross sections described in the previous section, ion­
ization cross sections computed with the RDW formalism described 
section have been used a variety of applications. For example, Inal et al. 
have applied cross sections for ionization to specific magnetic sublevels, which 
were computed with the procedures described herein, to study the effect of 

on the degree of polarization for various spectral lines different 
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IOns. .Examples or this type include predictions of the linear polari;r,a­
tion of Ne-like lines [144] and a study of the effect of inner-shell ionization 
on the circular polari~ation of the (ls2s)1 ---+ 182 line produced by col­
lisions with a longitudinally polarized electron beam [145]. The latter study 
also provides numerical examples for which the generalized Breit interaction 
was included when computing excitation cross sections 

9. 

10 Conduding remarks 

A complete review been provided of the relativistic methods pro­
LJHc>llCU. over 

work has been to provide high quality atomic physics 
applications in plasma modeling. Many of the methods described 

above have been implemented within the relativistic capabilities of the Los 
Alamos suite of atomic physics codes and applied to a variety of plasma mod­
eling applications (e.g. refs. [102] and [103]). We hope that this review will 
offer some useful assistance to future research efforts in fundamental 

energy, modeliIH! of 
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