LA-UR- OF —C//</

Approved for public release;
distribution is unlimited.

Tite: | A Fully Relativistic Approach for Calculating Atomic Data
for Highly Charged lons

Author(s): | Douglas H. Sampson, Hong Lin Zhang and
Christopher J. Fontes

Intended for: | Submission for publication to Physics Reports

A
o IRAIamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Depariment of Energy under contract DE-AC52-06NA25396. By acceptance
of this arficle, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-iree license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.8. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



A FULLY RELATIVISTIC APPROACH
FOR CALCULATING ATOMIC DATA FOR
HIGHLY CHARGED IONS

Douglas 1. Sampson *

Department of Astronomy and Astrophysics, The Pennsylvania State University,
University Park, PA 16802, USA

Hong Lin Zhang and Christopher J. Fontes **

Applied Physics Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Abstract

We present a review of our fully relativistic approach to calculating atomic data
for highly charged ions, highlighting a research effort that spans twenty years. De-
tailed discussions of both theoretical and numerical techniques are provided. Our
basic approach is expected to provide accurate results for ions that range from
approximately half ionized to fully stripped. Options for improving the accuracy
and range of validity of this approach are also discussed. In developing numerical
methods for calculating data within this framework, considerable emphasis is placed
on techniques that are robust and efficient. A variety of fundamental processes are
considered including: photoexcitation, electron-impact excitation, electron-impact
ionization, autoionization, electron capture, photoionization and photorecombina-
tion. Resonance contributions to a variety of these processes are also considered,
including discussions of autoionization, electron capture and dielectronic recombi-
nation. Ample numerical examples are provided in order to illustrate the approach
and to demonstrate its usefulness in providing data for large-scale plasma modeling.
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1 Introduction and purpose

The purpose of this review is to describe a fully relativistic approach we have
developed over the past twenty years for calculating atomic data pertaining
to highly charged ions. By fully relativistic, we mean that all orbitals, bound
and free, are solutions of the single-electron Dirac equation with a central
potential.

The method used in calculating the atomic data is a relativistic distorted-
wave (RDW) approach. Since our principal motivation has been to provide
atomic data needed for modeling and diagnostics of high-temperature plas-
mas, for which a very large amount of data is needed, we have emphasized the
development of very rapid procedures, while maintaining accuracy within the
distorted-wave framework. However, we have also used procedures for improv-
ing distorted-wave results by including resonance contributions to a variety of
atomic processes. For example, the resonance contribution to electron-impact
excitation can be calculated by considering the two-step process of electron
capture to form a doubly excited state, followed by autoionization to the fi-
nal level. The alternate outcomes associated with autoionization to a different
final level or radiative decay of the doubly excited level are also taken into
account via the use of branching ratios.

Although radiative processes are also considered, in the majority of our work
we have focused on the development of very rapid procedures for the calcula-
tion of cross sections for excitation and ionization by electron impact because
these processes tend to be, by far, the most lengthy to calculate. This trend
occurs because, in order to determine a collision rate, the cross section must
be known for several incident-electron energies and for each energy one must
determine the scattering matrix elements for many initial and final values of
the angular momentum quantum numbers associated with the incident and
scattered electrons (plus those associated with the ejected electron for ion-
ization). In addition, particularly for relatively high density plasmas, such as
laser-produced plasmas used in inertial confinement fusion experiments and
research to produce x-ray lasers, transitions between excited levels and ion-
ization from excited levels are important. Then, collision rates for thousands,
or even millions, of transitions are sometimes needed for treating a particular
case involving ion stages associated with a single nuclear charge Z, or possibly
several values of Z.

The range of validity of our approach is restricted to the region of Z values
from 92 down to a value a little less than 2N, where N is the number of
bound electrons per ion. For these conditions, we have been able to develop
procedures by which excitation and ionization cross sections for a given class
of transitions can be rapidly calculated for the entire isoelectronic sequence



within the range of Z values. It should be noted that this range of 7 values
appears to cover essentially all cases in which a fully relativistic treatment is
necessary for plasma applications.

For most of these plasma applications, only total cross sections averaged
over initial magnetic sublevels and summed over final magnetic sublevels are
needed. However, a second purpose of the present review is to describe the
application of our approach to the more detailed cross sections for transitions
between magnetic sublevels of an ion due to impact with an electron beam.
Such cross sections are needed for application to plasmas with an anisotropic
electron distribution and for study of electron beam ion trap (EBIT) experi-
ments. The latter also have the benefit of providing experimental tests of the
accuracy of our approach.

The present review is organized according to the various fundamental atomic
processes for which we have developed theoretical expressions and numerical
procedures for calculating useful data. Emphasis is placed on basic theoretical
formulae for these data, such as cross sections, associated with each of these
processes, as well as on the numerical procedures that were implemented to
compute these quantities. Derivations are provided for a variety of expressions
in order to illustrate certain techniques that are useful in manipulating expres-
sions within a fully relativistic approach. Numerical examples are provided
along with a comprehensive reference list of all the calculations that we have
performed using the RDW method. In chapter 2, a description is provided of
our approach for generating the atomic structure within the Dirac-Fock-Slater
(DFS) approximation. A solution of the wave equation for atomic structure
provides the fundamental wave functions and energies that are necessary to
compute more involved quantities, such as cross sections and rate coefficients,
that describe collisional and radiative processes. A discussion of photoexcita-
tion is provided in chapter 3, while chapter 4 addresses the process of electron-
impact excitation. Chapter 5 deals with electron-impact ionization and chap-
ter 6 deals with photoionization. The concepts of resonances and dielectronic
recombination, which involve the process of autoionization, are handled in
chapter 7. Chapter 8 deals with transitions between hyperfine-structure levels
for the process of electron-impact excitation. Chapter 9 deals with transitions
between magnetic sublevels for the processes of electron-impact excitation and
electron-impact ionization. Finally, some concluding remarks are provided in
chapter 10. Except where explicitly noted, Rydberg atomic units have been
used throughout this work.
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2 A Dirac-Fock-Slater atomic structure program

In section 2.1, we summarize the general procedures used in our relativis-
tic atomic structure program [1]. These procedures are very similar to those
used in most relativistic atomic structure programs and, hence, are quite stan-
dard. The differences in the various programs are principally in the different
numerical procedures used to determine the radial functions and the differ-
ent methods used to determine the central potentials employed in solving the
single-electron Dirac equation. The particular procedures we use are described
in detail in sections 2.2 and 2.3. In later sections, we discuss improvements for
computing the atomic structure of heavy ions, such as the generalized Breit
interaction, and the configuration-average approximation. While the ability to
calculate radiative oscillator strengths is generally included in atomic struc-
ture programs, our procedures for computing quantities such as the electric
dipole oscillator strength are described in chapter 3.

2.1 General procedure

We omit, for the present, quantum electrodynamics (QED) corrections, which
will be considered in section 2.5. Then, the Hamiltonian H for an ion with N
bound electrons and nuclear charge Z is assumed to be given by

N
. 2
i=1 v Tij
i
where Hp(i) is the single-electron Dirac-Hamiltonian for a pure Coulomb po-
tential —2Z/r; due to the nucleus of the ion. Here, energies are in Rydbergs
and distances are in units of the Bohr radius ag. We add and subtract the
electron-electron electrostatic contributions, V(r;), to the central potential
V(r;) so that H is rewritten as

i=1

H =3 Hpli) = V() + 3 % | (2.2)

i<y

where

Hjy = Hp + V() . (2.3)

Thus, H}, is the single-electron Dirac Hamiltonian with the central potential



V() = —27 + Vee(r,). (2.4)

T3

The specific form of V¢ that we use in our calculations will be discussed in
section 2.3 (see the discussion following eq. (2.18)).

It is well known [2,3] that the Dirac equation for a central potential

!
HDu'rmm = €nxlUnkm » (25)

has bound state solutions, the so-called Dirac spinors, which can be written
in the form

_ L[ Pu(r)  Xum(6,6,0)
Urmm(m) - ; lQnN(T) X—nm(67 ¢’ U) 7

where x stands for all coordinates, spatial and spin, of the electron. Here, P,
and ()., are the large and small components of the radial function, respec-
tively, and €,, is the corresponding energy eigenvalue. The x.,, are the usual
spin-angular functions [4], also known as spherical spinors [5], given by

(2.6)

Xem(0,0,0) = D> C(limymy; jm)Yim, (0, ¢)x™ (o) (2.7)

my,ms
in which C' and Y represent Clebsch-Gordan coeflicients and spherical har-
monics, respectively. The x™ (o) represent the eigenvectors of the 2 x 2 Pauli
spin matrix o, [3] and the relativistic quantum number  has the values

k=1 j=l—% k=—(+1), j=I1+3. (2.8)

The coupled Dirac radial equations determining P,,. and @),,. are

[% + g] P (r) = %{em —V(r)+ é Qnr(T) (2.9)
and
[% — 2] @unr) = SV () = e Pantr), (2.10)

where « is the fine-structure constant.

As is standard (e.g. Grant et al. [6]) in multi-configuration relativistic pro-

grams, in treating an ion with N bound electrons one uses basis states ®,(1,2, ...

' N)



that are single-configuration state functions (SCSFs). These are antisymmet-
ric sums of the products of N single-electron Dirac spinors u,.m, given by
eq. (2.6). In forming the ®,, the standard jj-coupling scheme is followed. In
this scheme, the 7 values of all electrons in a subshell n.[,j, are coupled to-
gether to form a total angular momentum J, of the subshell. Then, these total,
subshell values for the angular momentum are successively coupled together,
starting with the lowest subshell, to form the total angular momentum J of the
ion. By the lower of the two subshells nil; j; and nylyjs, one means the subshell
with the smaller n value, or if ny = n,, the subshell with the smaller [ value,
or if n1ly = nslsy, the subshell with the smaller j value. Here, of course, the [
values are those associated with the angular function of the large component.

One then obtains approximate, fine-structure ion wave functions ¥ given by

Ngcsr

= > b9, (2.11)
v=1

where the mixing coefficients b, and the corresponding cigenenergies are ob-
tained by diagonalizing the Hamiltonian, given by eq. (2.2), expressed in the
®, basis. Since the ®, are antisymmetric products of the Dirac spinor ,.m,
which are eigenfunctions of Hj, that satisfy eq. (2.5), the first term on the
right-hand side of eq. (2.2) contributes only to the diagonal matrix elements
of H. Specifically, this term gives a contribution equal to the sum of the N
energy eigenvalues ¢,, associated with the N spinors contained in ®,. The
second term, — Y, V(r,), also contributes only to the diagonal matrix el-
ements, provided one includes mixing only among the states in a complex,
i.e. those states having the same total angular momentum J, parity and set
of n values, as is often done for highly charged ions. However, in cases where
additional states have energies near or overlapping with those in the complex,
mixing with those additional states should also be included. For these cases,
this term also contributes to off-diagonal matrix elements of H that are taken
between states with the same angular functions, but different n values.

The final electron-electron electrostatic interaction term in eq. (2.2) con-
tributes to both diagonal and non-diagonal matrix elements of H. In evaluat-
ing this term, one employs the standard expansion of the Coulomb interaction
between two electrons, in terms of Racah tensors, such that

1 SN N .
= 3 =5 CYV(r) - CV (), (2.12)
12 \=0">

where C™ is the renormalized spherical harmonic of rank A, #; and #5 rep-
resent the angular coordinates of r; and ry, respectively, and r- (r») is the
lesser (greater) of r1 and ro. The matrix element of each term in eq. (2.12) can

10


http:t",ncr.rc
http:UHOUH.LL

be expressed as a product of an angular and radial part. The angular part is
determined using irreducible tensor techniques (e.g. Appendix C of Messiah
[7]). The results are similar to those arising in the calculation of scattering
matrix elements, which are considered in more detail in later chapters. In our
atomic structure program [l1], we simply used the angular package from the
program of Grant and coworkers [6] (hereafter referred to as the Grant code)
in determining the angular coefficient associated with a particular value of
A. Due to selection rules arising from the angular contribution, only a few
values of A contribute to the sum in each case. We note that, because the
operator corresponding to the electron angular-momentum quantum number
J commutes with I1},, the evaluation of the angular part of the matrix ele-
ments of eq. (2.12) is the same as that encountered when jj coupling is used in
non-relativistic calculations. However, the radial part of the matrix elements
is more complex in the relativistic case because the radial functions depend
on j, as well as n and [, and because the small component makes a contribu-
tion. Specifically, these radial matrix elements, or so-called relativistic Slater
integrals, are given by

RA(abv Cd) =2 / ‘/[Pn{mu(7‘1)})”6,%(7‘1) + Q'rla&a (Tl )anﬁc (’rl)}

00
A
r
Xr)\ﬂuj"b&b(rg)}j"d”d(rz) + Qﬂb%b (T2)Qndﬁd(r2)]drldr2 ' (2'13)
>

2.2 Numerical determination of the radial functions

We use eq. (2.9) to express @y, in terms of P, and substitute the result into
eq. (2.10) to obtain a second-order differential equation for P,

d> Il +1) ol ,
{_@ t 2?"2 +V(r) - T[en'@ — V(r)]
& @ - dV(T) 1 dP, K o
_—/-1— [1 -+ "Zl"[enm - V(T”] dr |:Pm<; ar + ;:l }Pm.g == Em-an& ) (214)

where use has been made of the relation

k(k+1)=1l+1), (2.15)

which follows from eq. (2.8). Eq. (2.14) is similar to the usual non-relativistic
Schrodinger equation except that it has a much more complicated effective
potential. The radial part of the Hartree-Fock relativistic (HFR) option of
Cowan’s widely used program [8] corresponds to solving eq. (2.14) with &

11



replaced by its j-averaged value of —1, so that the large component does not
depend on j. Then, the small component is neglected and the large component
is normalized as though it were the total radial function. In our case, we are
interested in retaining both the x dependence and the small component of
the wave function. Therefore, we simply used the radial part of Cowan’s HFR
program modified to retain the s (or j) dependence and modified to also
obtain @,,,. The latter is readily done because, as seen from eq. (2.9), Qnx 18
essentially given by the final term in the effective potential of eq. (2.14). Of
course, we also use the correct relativistic normalization

JIPE() + Q)] ar = 1. (2.16)

We found it necessary to separately consider the —27/r nuclear contribution
to the potential and determine its contribution to dV/(r)/dr analytically in
order to obtain Q. (r) with sufficient accuracy for large Z values. In addition,
we employ an initial mesh size that is 1/8 the value typically used with Cowan’s
program. Specifically,

97\ 1/3
Apime = 3.125 x 1074, p = 4(__) ,

o (2.17)

was used. This choice did not add much to the computing time because a linear
mesh is used with a doubling of the interval size every 40 points, which added
only 120 points to a usual total of 640 points. Actually, in providing atomic
structure data for collision processes, we stop the doubling at the largest mesh
size that satisfies eq. (4.47) in chapter 4 of the present work.

The method for solving eq. (2.14) is quite standard and can be found, for
example, in ref. [8]. The result is a set of radial functions and corresponding
eigenvalues for each orbital denoted by the quantum numbers nx, along with
a self-consistent potential, V' (r), given by eq. (2.4). The principal manner in
which speed is obtained in our atomic structure calculations is through our
choice for this central potential, which we discuss next.

2.3  Chouce for the central potential

The reason we call our relativistic atomic structure program a Dirac-Fock-
Slater program is that we choose the Dirac-Fock-Slater potential for the central
potential V(r) appearing in egs. (2.9), (2.10) and (2.14). That is, we use the
relativistic version of the Hartree-Fock-Slater potential introduced by Slater

12



9], except that we use the Kohn-Sham [10] value for the coefficient of the
exchange term. In particular, we use

‘ 1/3
Vi) = -2 v - [Zetn)] (218)
r 7
where the first term is the potential due to the nucleus. In a later upgrade of
our relativistic atomic structure code, discussed near the end of section 2.5,
this term is replaced by —2Z(r)/r. That is, the point nuclear charge 7 is
replaced with a distributed nuclear charge Z(r), which differs from Z only for
extremely small values of r. The remaining two terms in eq. (2.18) are the
electron-electron contribution previously called V¢(r) in eqs. (2.2)-(2.4). The
Ve(r) term is the spherically averaged classical potential due to the bound
electrons,

¢

2 .
Ve(r) = Z Wt et / E[Pﬁ,m,(rg) + Q2 (re)]drs, (2.19)
0

n'k’

where w,. is the occupation number of subshell n'x" = n'l'j’. The summation
is over all occupied subshells and, again, r. is the greater of r| and ry. The
final term in eq. (2.18) is the exchange energy of an electron in a free-electron
gas of density p, averaged over all possible momenta of the electron. Following
Slater [9], we use for p the electron number density at a distance r from the
nucleus,

1
T3 2 Wew [P (1) + QR ()] (2.20)

n'w’

p(r) =

One sees that, if w, . were replaced by w, — 1 when n's’ = nx, where
P, and Q.. represent the orbitals being solved for in egs. (2.9) and (2.10),
then eq. (2.19) would give the relativistic version of the Hartree potential.
The undesirable feature that self-interaction is included in V,(r) is at least
partially canceled by the fact that the self-exchange energy is also included
in the calculation because eq. (2.20) contains the contribution from all of the
electrons, including those residing in subshell ns.

In considering a particular class of transitions, we use a single mean configu-
ration with fractional occupation numbers in evaluating the central potential
given by eqs. (2.18)-(2.20). The prescription generally used in determining
this mean configuration is that the occupation number of the active elec-
tron is split equally between the initial and final subshells. For example, in
obtaining structure results for oscillator strengths and collision strengths for
transitions from the n = 2 shell of the ground level to the excited levels with
n = 3 occupancy in neon-like ions, we could use for the mean configuration

13
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1322‘31/22P1j02p 3/°351/23¥)1;2 3/2Sdo 3d512 (2.21)

However, if transitions among the n = 3 excited levels were also being consid-
ered, then

1s*2s; 72p1): /22D 3/235(1)/126 3p(1)/126 3D} f1263dg'/126 ?’dg'/l‘z6 (2.22)

would be a more appropriate choice. It should be noted that slight shifts in
the occupation numbers, especially among the subshells of a given shell, have
little effect on the numerical results.

It should be emphasized that our calculations are generally multi-configuration
calculations in which, at least, the mixing between all states in a complex
is included. The single mean configuration is used solely in determining the
potential and the resulting radial functions that comprise the Dirac spinors
in eq. (2.6). (When computing a physically relevant quantity, the appropriate
integer occupation numbers are assigned to each spinor before performing a
calculation.) This procedure, coupled with the use of egs. (2.18)-(2.20), has
many advantages. For example, the potential is then the same for all electrons,
so all orbitals are automatically orthogonal and the calculations are much more
rapid than with a fully multi-configuration Dirac-Fock program, such as that
of the Grant code [6]. We also use this same potential in calculating free-
electron orbitals for other electron-ion and photon-ion processes, as discussed
in later chapters.

In addition to the fully relativistic (FR) approach that we have discussed, a
quasi-relativistic (QR) option has also been included in our atomic structure
program [1]. This option corresponds to simply solving eq. (2.14) for P, and
normalizing this function as though it were the total radial function, i.e.

/ 2dr =1 (QR approach). (2.23)
0

Then, @, is omitted everywhere, such as in eqgs. (2.13), (2.19) and (2.20).
Hence, this method is like Cowan’s HFR approach [8], except that the j
dependence is retained, which is quite important for large Z values. It was
thought initially that the QR approach would be somewhat faster than the
FR option of our program, but it turned out to be only 5-10% more rapid
than the FR option. This outcome results because, as noted previously, the
small component of the wave function, Q,, is essentially already computed
in calculating the final term in the effective potential of eq. (2.14). Neverthe-
less, as seen from the sample results given below in tables 1 and 3, the QR
approach gives rather accurate structure results, even for very large values of

14
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Z, and is useful in rapidly computing collision strengths when coupled with
an additional approximation for the free electron, as discussed in chapter 4.

2.4  Some comparisons of energies for neon-like ions

In table 1, a sample comparison, taken from ref. [1], is made of excited-level
energies relative to the ground level for neon-like uranium (Z = 92). Each
level is labeled by the pure SCSF in eq. (2.11) that makes the dominant
contribution that level’s wave function. Specifically, we use the following state
abbreviations:

(2p31); = (18282 2p** 2p331),,  (2p31*); = (1s? 252 2p*? 2p® 31%); (2.24)

(2p*30); = (1s?2s%2p* 2p* 31),, (2p*31%); = (1s? 287 2p* 2p? 31*); (2.25)

(2831); = (1s2 25 2p*2 2p* 31);,  (2831%), = (15 2s2p** 2p* 31*),, (2.26)

where use has been made of the orbital shorthand notation

nl* = nlj, jzl-—-% and nl=nlj, j=1+1,

so that
Is = 1Is19, 25=2s1;2, 2p" =2pys2, 2p=2ps;p, etc

In this table, results computed with our QR and FR approaches are compared
with those obtained with the “average level” option of the Grant code [6,11],
labeled G and G**, and the HFR option of Cowan’s program [8]. Comparisons
for lower values of Z and for Ni-like ions (N = 28) are also provided in
ref. [1]. The FR and FR* results differ slightly because FR* values correspond
to using eq. (2.21) in determining the potential, while FR (and also the QR)
values are obtained using eq. (2.22). The G** values correspond to including
the generalized Breit interaction plus other QED corrections and use of a
finite nuclear size (all of which are discussed in the next section), while the
G values are obtained without these additions or corrections. Hence, the G
values are calculated similarly to our FR and FR* values, except that the more
elaborate multi-configuration Dirac-Fock potential is used. Also, a logarithmic
radial grid is used in calculating the G and G** results, while we use a linear
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Table 1

Comparison of energies (in eV) for excited-state levels relative to the ground level for
neon-like ions with Z = 92. The levels are designated by the pure jj-coupled state
making the dominant contribution using the abbreviations of egs. (2.24)-(2.26).
The following labeling is used: QR and FR are present quasi-relativistic and fully
relativistic results using eq. (2.22) in determining the potential. FR* differs from
FR only in that eq. (2.21) is used in place of eq. (2.22). G** and G are results
obtained from the Grant code [6,11] with and without inclusion of the generalized
Breit interaction, QED corrections and a finite nuclear size, respectively. HFR are
results obtained using Cowan’s [8] HFR program.

Level QR FR FR* G G™ HFR

(2p3s), 128905 128714 12872.7 12877.1 12860.3 12596.1
(2p3s); 129019 128824 128837 128881 12872.0 12607.0
(2p3p*);  13103.6 130967 13097.9 13097.8 13075.8 12777.8
(2p3p*), 131088 13101.6 131028 13102.6 13075.9 12782.2
(2p3p)1 142219 142042 142055 14206.0 14167.0 13971.4
(2p3p)s 142221 142045 142058 14206.0 14165.4 13971.6
2p3p)a  14236.5 14219.1 142204 142207 14184.1 13985.4
ngpo 14308.2 142954 14296.6 142949 14262.7 14051.1
(2p3d*% 14426.5 14409.6 14411.0 144114 14378.5 14092.2
(2p3d* 144458 14428.6 144300 144305 14391.1 14109.3
(2p3d*)s 144485 144312 144325 14432.8 14389.5 14111.4
EZP‘Sd*)Q 14454.9 14438.4 144398 14440.1 14401.6 141174
(
(
(
(
(
(
(
(
(

2p3d) 14688.2 14667.0 146684 14668.4 14619.9 14359.5
2p3d)s 146948 14673.6 146750 146753 14630.5 14365.7
2p3d)s  14707.9 14686.6 146880 14688.2 14644.2 14378.1
2p3d);  14746.7 147251 147263 147263 14679.0 144135
2p*3s)o  16886.6 168204 168223 16828.3 16764.8 16836.6
2p*3s),  16893.0 16826.6 16828.5 16834.4 16768.1 16842.7
2p*3p*); 17097.8 170434 170452 17046.6 16970.0 17020.1
2p*3p*)p  17158.1 171109 171127 171127 17043.1 17065.9
2s3s), 17581.0 17561.9 17563.1 17553.4 17458.5 17504.6
2s3s)g 176237 176211 176133 17602.8 175118 17463.9
(2s3p*)o 177977 17790.7 177918 17777.4 17678.0 17648.3
(2s3p*); 178018 177943 177954 17781.0 17676.1 17651.2
(2p*3p);  18221.1 18158.1 18160.0 181619 18077.5 18217.7
(2p*3p), 182253 18160.9 181628 18164.7 18076.0 18220.3
(2p*3d*), 184444 18382.1 18384.0 18385.8 18295.1 18351.6
(2p*3d*); 184748 18411.0 184138 184156 183225 18385.8
(2p*3d); 186925 18626.1 186281 18629.7 185359 18605.9
(2p*3d); 186977 18630.0 186329 18634.5 18540.2 18612.8
2s3p)2 18918.5 18901.2 189023 18888.4 18772.9 18843.4
2s3p);  18926.8 18909.2 189104 18896.5 18781.0 18850.5
(2s3d%); 191353 19119.8 191211 19107.3 18991.6 18974.5
(2s3d*)y  19145.6 19129.5 19130.7 19116.8 18996.4 18983.9
(2s3d); 19383.4 19363.3 193646 19350.5 19225.5 19299.9
(2s3d)e  19399.4 19379.0 193803 19366.3 19244.7 19246.0

grid. The larger discrepancies between the G values and the FR and FR*
values, of up to 14 eV for levels involving s orbitals, appear to be due to our
use of a linear grid. For other levels, and all levels for Z < 60, the differences
are generally within 2 eV, which is about the same as the differences between
the most accurately computed G** values and measurements performed by

16


http:2.24)~(2.26

Beiersdorfer et al. [12]. Eventually, we plan to modify our program to use a
logarithmic grid. However, the resulting error in energies due to the use of a
linear grid is much less than 1% and it appears that this discrepancy is not very
important in determining accurate oscillator strengths, collision strengths or
ionization cross sections. The much larger differences between the G** entries
and the FR, FR* and G entries indicate that the extra corrections used in
the G** calculations are important for large Z values. We later included these
effects in our structure and oscillator strength calculations, as will be discussed
in sections 2.5 and 3.3. Finally, one sees that the QR values are moderately
good even for Z = 92 and are a considerable improvement over the HFR
values. Both the HFR and QR values should be compared with the G entries
because neither of them contain the additional corrections included in the
G values. This comparison indicates that including the j dependence in the
radial functions is important for large Z values, which becomes more apparent
when oscillator strengths are compared, as done in section 3.3.

2.5 Inclusion of the generalized Breit interaction and other corrections in the
atomic structure

In order to improve the accuracy of our calculations for high-Z ions, it was
necessary to include the effect of the generalized Breit interaction. This in-
teraction can be derived from quantum electrodynamics (QED) via first-order
perturbation theory, and represents the lowest-order Feynman diagram for the
exchange of a single virtual photon between two electrons. Specifically, the gen-
eralized Breit interaction, which is to be added to the Coulomb interaction
expressed as 2/r;; in eq. (2.1), is given by

. expliwr;;
B, 5) = ~2ey - o) TP
ij
T
12 Vi) (e - v, ZRET) Z L (2.27)

Wiy

where w is the wavenumber of the exchanged virtual photon and the «; are
the usual Dirac matrices. An appropriate value for w will be discussed in
section 4.10 of chapter 4. In writing eq. (2.27), as usual, we have used distances
in units of the Bohr radius and energies in Rydbergs.

Other interactions that are related to the one above also appear in the liter-

ature. For example, for intermediate Z values, an accurate approximation to
the generalized Breit interaction can be obtained by taking the w — 0 limit
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of eq. (2.27). The result is the original Breit interaction [13-15],

Hg:(i,7) = *i[ﬂti o+ (a7 (o T, (2.28)

T ij

where 7;; is a unit vector along r;;. We shall refer to this interaction simply
as “the Breit interaction”. This interaction represents one of the earliest at-
tempts to take into account the lowest-order relativistic effects, to O(v?/c?),
that are associated with retardation and the magnetic interaction. The lat-
ter effect is similar to the well-known spin-orbit interaction, but arises from
the interaction between an electron, traveling with speed v, and the magnetic
field arising from a different electron, rather than the field that arises from
the nucleus. Retardation is the term used to describe the delay in the electro-
magnetic interaction, which is mediated by photons, due to the finite value of
the speed of light. In this case, as the electron velocities approach the speed
of light, the effect of retardation becomes more important. This original form
of the Breit interaction has the advantage of being computationally simpler
to calculate, as compared to eq. (2.27), but its range of validity is limited due
to the approximation of taking the limit w — 0.

Yet another interaction that takes into account, to lowest order, the exchange
of a virtual photon between two electrons is the Mgller interaction. While the
various flavors of the Breit interaction mentioned above were derived within
the context of resolving discrepancies in bound-electron energies, Moller con-
sidered the problem of scattering between two continuum electrons [16]. And
while the various forms of the Breit interaction were derived in the Coulomb
gauge, the Mgller interaction, given by

M j) = 2(1 - a - o) )explivr) (2.29)

T@j

3

was derived in the Lorentz gauge. We note that the Mgller interaction rep-
resents the entire, lowest-order interaction between two electrons, while the
Breit interaction is a perturbation to the Coulomb interaction and must be
added to the usual 2/r;; expression.

More detailed information on these various interactions and their applica-
tion to bound-state calculations can be found in a number of references,
e.g. refs. [17-21]. In the current body of work, we primarily consider the gener-
alized Breit interaction given by eq. (2.27), and occasionally consider the more
approximate expression in eq. (2.28). A detailed evaluation of the matrix el-
ements of the generalized Breit interaction is not considered in this section
because the approach is essentially the same as that employed in evaluating
the excitation scattering matrix elements, which is described in detail in chap-
ter 4. The only essential difference is that a free electron replaces one of the
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bound electrons for the case of collisional excitation.

In order to compare more favorably with results produced by the Grant code
[6,11], we also added options in our program to include the additional QED
effects of vacuum polarization and self-energy, along with a finite nuclear size.
The QED corrections were implemented in the same manner as in the Grant
code, using the work of Fullerton and Rinker [22] and Mohr [23,24]. The nu-
merical procedure for including these corrections in our program is that the
diagonal matrix elements of these interactions are added after diagonalization
of the Dirac-Coulomb Hamiltonian, eq. (2.2), has occurred, but before the
final diagonalization of Hamiltonian that includes the Breit interaction has
been performed. This approach is the procedure used in the default option of
the GRASP program [25]. Thus, these additional QED corrections affect the
mixing coefficients slightly, but the principal effect is on the energies for high
Z values, where the QED corrections sometimes contribute nearly as much
as the generalized Breit interaction. For the finite nuclear size, we used the
Fermi charge distribution of Chen et al. [26]. This choice causes the nuclear
charge, Z, appearing in eq. (2.4) to be replaced with Z(r;), which differs from
Z only for extremely small values of ;. Again, this procedure is the same as
that used in various versions of the Grant code [6,11,25].

In table 2 a comparison is provided between our DFS results that were com-
puted with all of the above corrections (denoted by FR**) and the corre-
sponding G** and FR* results that were presented in table 1. As expected,
the agreement between the FR*™ and G** energies is considerably better than
the agreement between the FR* and G** results for most of the levels con-
sidered. (The FR* and G** data that appear in table 2 are the result of a
more recent calculation, performed on a different computing platform, than
the corresponding values that appear in table 1. The disparity between the
data appearing in tables 1 and 2 is attributed to these issues.)

2.6 The configuration-average approximation

The previous sections provide a detailed treatment for obtaining fine-structure
quantities associated with the wave functions in eq. (2.11). When considering
a large amount of fine-structure data, the configuration-average approxima-
tion can be a useful approach for drastically reducing the number of states to
be considered. Furthermore, these results can be obtained in a manner that is
far less computationally demanding. The concept of a configuration-average
energy has existed for some time (see, for example, refs. [8,27,28]). In this sec-
tion, we provide an expression for the configuration-average energy associated
with a particular relativistic configuration ¢ denoted by

¢ = (Neka) (ngrg) ™ (Nyky ) o (2.30)
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Table 2

Comparison of energies (in eV) for excited-state levels relative to the ground level
for neon-like ions with Z = 92. The notation is the same as that used in table 1,
except that FR** refers to FR-type calculations that include the generalized Breit
interaction, other QED corrections and a finite nuclear size.

Level FR* FR** G*™*

(2p3s), 12872.2 128404 12856.3
(2p3s); 12883.3 12852.4 12868.2
2p3p*)1  13096.8 13068.4 13061.5
2p3p*)e  13101.7 13068.7 13061.8
(2p3p)1  14204.0 14158.4 14152.4
(2p3p)s  14204.2 14159.6 14153.6
(2p3p)2 14218.8 14176.9 14170.7
(2p3p)y 142950 14257.1 14250.2
(2p3d*)y  14409.4 14371.0 14363.4
(2p3d*); 144284 14380.8 14373.1
(2p3d*);  14430.9 14383.5 14375.9
(2p3d*),  14438.2 14393.8 14386.2
(2p3d)y;  14666.7 14611.9 14604.3
(2p3d),  14673.3 14622.6 14615.0
(2p3d);  14686.3 14635.5 14627.9
(
(
(
(

2p3d);  14724.8 14672.0 14664.3

2p*3s)y  16820.2 16744.9 16762.9

2p*3s);  16826.5 16748.1 16766.2

2p*3p*); 170425 16962.3 16957.7
(2p*3p*)e  17109.9 17036.5 17031.1
(2s3s), 17558.2 17482.1 174184
(2s3s)o 17608.2 17535.6 17471.5
(283p*)o  17786.3 17712.2 17625.6
(2s3p*);  17789.9 17714.1 17627.5
ng*Sp)l 18156.8 18068.3 18064.5

2p*3p)2  18159.6 18069.9 18066.0
(2p*3d*), 18380.8 18287.0 18281.6
(2p*3d*); 18410.6 18314.8 18309.2
(2p*3d),  18624.8 18528.0 18522.2
(2p*3d);  18629.6 18531.3 18525.8
(2s3p),  18896.3 18808.5 18723.1
(2s3p)) 18904.4 18817.1 18731.3
(283d*);  19115.0 19027.4 18940.1
(283d*),  19124.7 19032.3 18944.9
(2s3d);  19358.5 19261.6 19174.3
(2s3d),  19374.1 19280.5 19193.2

where w, represents the occupation number of subshell «. In eq. (2.30), as
well as the subsequent discussion, we have adopted a notation similar to
that of Peyrusse [28], who provided a detailed treatment of the configuration-
average approximation (for both structure and scattering quantities) for non-
relativistic configurations.



In the context of the present work, the most general expression for the configuration-
average energy can be defined as

S (27 + D)UY |H| DY) S (2 + 1)E’

E{} = levels € ¢ — levels € ¢ ? 231
’ > (2 +1) > (2J+1) ( )
levels € ¢ levelsc e

where H is the N-electron Hamiltonian defined in eq. (2.1), ¥’ is a fine-
structure level, described by eq. (2.11), with total angular momentum J, and
E” is the energy corresponding to ¥”. The summations are performed over
all such levels that are characterized by a dominant single-configuration state
function (SCSF) that arose from configuration ¢. However, this definition is
not particularly useful because there is no way to remove the dependence on
the mixing coefficients that appear in eq. (2.11) for an arbitrary amount of
configuration interaction (CI). Thus, in order to evaluate eq. (2.31), one must
still proceed with the usual diagonalization of H, which defeats the purpose
of defining a configuration-average energy. Nevertheless, eq. (2.31) is useful to
compare with energies obtained from more approximate, configuration-average
expressions. Some attempts to approximate the effect of CI in configuration-
average calculations have been made in the context of unresolved-transition-
array theory (see, for example, ref. [29]), but no further discussion will be
provided in this work.

A more traditional, and practical, definition of the configuration-average en-
ergy is obtained by replacing the fine-structure levels in eq. (2.31) with the

pure SCSFs in eq. (2.11), so that

S @I+ D@IH) = 2]+ Db

Ec — SCS8Fee — SFec . 9.39
Y (20 +1) > (2J+1) (2:52)
SCSFec SCSFec

The advantage of using the expression in eq. (2.32) is that it can be rewritten
in terms of quantities that are readily available from the solution of the coupled
radial equations given by egs. (2.9) and (2.10). To be as general as possible,
the definition in eq. (2.32) could have included summations over mixed levels,
provided that mixing was considered only among those pure SCSF's that result
from configuration ¢. When the amount of mixing is restricted in this way, the
resulting set of mixed levels represents an alternative, orthonormal basis that
spans exactly the same space (with the same dimensionality) as that spanned
by the corresponding pure SCSFs. Therefore, any formal average computed
within this space can be computed equivalently with either basis. In practice,
it is easier to use the pure SCSF basis in deriving a convenient form for the
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configuration-average energy. The result is given by

E. =Y wola)+ Y walwg—das){c,B) (2.33a)

€ w,G€c

<05> = €ngre T <"1\nnr@amal["v(7‘) - QZ/THunanama>
— e+ f (P2 () + Q2 (M][-V(r) — 22Z/r]dr  (2.33b)
0

(o, By = }.____‘Zg_ [RO(&[.?,(X,B)—

2 Ga — éaﬁ

. . 9

> <jf 3 i‘i) R*aB, [J’a)} . (2.33¢)
N2 2

In eq. (2.33c), (---) represents a Wigner 3-j symbol, V{r) is the central po-
tential from eq. (2.4) and €,,,, represents the energy eigenvalue of orbital «
from eq. {2.5). If the finite-nucleus option described in section 2.5 is used,
then the Coulomb interaction, —2Z/r, should be replaced with —2Z(r)/r. In
eq. (2.33c), R* (a3, af3) is a Slater integral of the form given in eq. (2.13) and
Jo = 2jo + 1 is the statistical weight of subshell «.

In practice, once a self-consistent set of orbitals and eigenvalues, along with
the corresponding potential, have been determined, eq. (2.33a) above can be
evaluated to determine the configuration-average energy for any configura-
tion of the form given in eq. (2.30). These energies, in turn, will be useful
in computing configuration-average quantities associated with radiative and
collisional processes that are described in upcoming chapters. We note that
the occupation numbers in egs. (2.30) and (2.33a) are integers, as these con-
figurations represent the basis from which the physically meaningful, pure
SCSF's are constructed. In contrast, the occupation numbers used in solving
the coupled radial egs. (2.9) and (2.10) are typically chosen to be fractional,
as described in the discussion that follows eq. (2.20). Of course, one could in-
stead compute a different set of wave functions, eigenvalues and potential for
each configuration of interest, using the appropriate integral occupation num-
bers from eq. (2.30). However, this approach can require significantly more
computing time and does not produce a set of orbital wave functions that are
automatically orthogonal, since the orbitals arise from different self-consistent
potentials.

3 Oscillator strengths and line strengths

Radiative transitions that occur between two bound states are typically char-
acterized by oscillator strengths and line strengths. Since these quantities de-
pend only on the wave functions of the ion, the capability to calculate them is
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included in most atomic structure programs. However, because our discussion
of this topic is somewhat lengthy, we devote a separate chapter to this subject
matter here.

3.1  General relations for optically allowed transitions

The electric dipole, or optically allowed, transitions generally have much larger
transition probabilities, or rates, than the other, so-called forbidden, radiative
transitions and are the only kind we consider here. However, the forbidden
transitions can be important for very low-density plasmas. Nevertheless, we
have not included them in our relativistic atomic structure program for several
reasons. As noted in chapter 1, our principal interest is in collision processes
involving free electrons, which are much more lengthy to calculate than ra-
diative processes. Also, relativistic values for the latter, including forbidden
transitions, are available by use of most relativistic programs, such as the
Grant code [6,11,25]. On the other hand, in addition to the direct use for
radiative processes, the results for optically allowed transitions are required
for other purposes. For example, they enter in some of our approximations
for the large angular momentum (or top-up) contribution to electron-impact
excitation cross sections for the corresponding transitions, as will be described
in chapter 4. Also, the expressions obtained here for optically allowed tran-
sitions can be readily extended to give an expression for the photoionization
cross section, as will be shown in chapter 6. Finally, these results are used in
the expression for the branching ratio associated with autoionizing resonance
contributions to various processes and for dielectronic recombination, since
radiative decay competes with autoionization in this case. This topic will be
addressed in chapter 7.

Radiative decay rates and the contribution of spectral lines to the radiative
absorption coeflicient are generally expressed in terms of the line strength S or
the related dimensionless oscillator strength f. Specifically, for the transition
i — 7, the contribution to the radiative absorption coefficient y is

e
paj (v) = Ni—

2

-fijbi(v), /dV ¢i(v) =1, (3.1)
where ¢ is the line shape function, v is the photon frequency and N; is the
number of ions per unit volume in level 7. For the inverse transition j — 1, the
radiative decay rate is

8n2e?u? g;
A’z' == —’.‘_i i 3.2
2 med gjf} ( )
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where g; and g; are the statistical weights of the lower and upper levels, respec-
tively. Egs. (3.1) and (3.2) are provided in regular units, and the fundamental
constants e, m and ¢ have their customary meanings. When cgs units are used,
Ajisins ! and py; is in cm ! The relation between the oscillator strength
and line strength is

(3.3)

where AFE is the transition energy in Rydbergs. Another useful quantity that
is sometimes considered is the weighted oscillator strength,

gf = (2(]3 -+ l)fu = —(2Jj -+ ]V)fjl‘, (34)

which is symmetric in the indices that denote the initial and final levels of the
transition.

3.1.1 Transitions between fine-structure, magnetic sublevels

Before considering the usual transitions of the form A,J; — AlJ] between fine-
structure energy levels, we first consider the more detailed transitions of the
type A, J; My — A} J; M, between magnetic sublevels, where the summation of
the line strength over the magnetic quantum numbers M, and M] has not
been performed. Here, J, and M, are the total angular momentum and its z
component, associated with the initial sublevel, respectively. The symbol A,
indicates all additional quantum numbers required to specify the lower energy
sublevel. Primes on quantities indicate corresponding quantum numbers for
the higher energy sublevel. These detailed transitions are of interest when
polarization of the radiation is involved, as in EBIT experiments and the
study of anisotropic plasmas. In this case, the g; and g; in egs. (3.2) and (3.3)
are unity, and for an ion with N bound electrons the line strength is given by

N ' 2
S(AtJt]V[t — A;J{M’[) == <A5J£Mt [ Zr,; | A’{JQM,’) , (3.5)
i=1

where, as in sections 2.1-2.3, distances are in units of the Bohr radius.

It is convenient to express the electron positions in standard irreducible tensor
form [8] according to

ri=r,CY(#) =1 > CP(#), (3.6)
q
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where CV is the renormalized spherical harmonic of rank one. This result can
be used to express the electric dipole operator, PV, in the useful form

N
PO=%"r =3PV, (3.7)
q==1 q
where
. N ‘
P =3"rcM (). (3.8)
i=1

Then, applying eqgs. (3.6)-(3.8) to the matrix element in eq. (3.5), one obtains

N
(NTM Y e | AT M) = S (A M, | P | AL M) (3.9)

1=1 g

Application of the Wigner-Eckart theorem [7,8] to the matrix element on the
right-hand side of eq. (3.9) gives

) (1 P agn Ji—M, Joo 1 J
(BulMe | Py | AcJiMo) = (=17 (-—-Mi g ﬁg>

(A | PV ALY, (3.10)

where (- - -) represents a Wigner 3-j symbol and (A,J, || PY 1] AL is called
‘the reduced matrix element, which will be discussed shortly in more detail.

Now we apply egs. (3.9) and (3.10) to eq. (3.5) and use the fact that J; — M,
is an integer so that (—1)2%72M: = 1. Also,

Joo LN ] Jt’)_ (] J;>2

7.9

because ¢’ must equal ¢ in order to satisfy the 3-j property

~M, +q+ M =0. (3.12)

Hence,

Joo1 Jg)g

S(Atjtﬂv{t, A;,Jéﬂft,) = Z <_fV[t q Aft,
q
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<A PO AL (3.13)

Actually, in order to satisfy eq. (3.12), ¢ is fixed for given values of M, and
M;]. The possible values of ¢ and corresponding polarizations for the radiation
field are provided by Cowan [8] and are as follows: (1) For M; = M|, g = 0,
the polarization is linear, parallel to the z axis. (2) For M; = M| +1, ¢ = +1,
the polarization is circular, clockwise in the (x, y) plane. (3) For M, = M]—1,
g = —1, the polarization is circular, counterclockwise in the (z, y) plane. Cases
(2) and (3) pertain to radiation as seen looking in the negative z direction.
When viewed from other directions, the radiation field is elliptically polarized,
except that when viewed from a point in the (x,y) plane it is plane polarized,
perpendicular to the z axis.

3.1.2  Transitions between fine-structure levels

In typical plasma applications, where no anisotropy is assumed, the line strength
for a transition between fine-structure energy levels, A, J; — A}J), is given by

SO, N =Y S(AJM,, AJ,M])

My, M
= A || PO AL, (3.14)

where use has been made of eq. (3.13) and the fact that

Jo1 J{)2 ‘
> L) =1. (3.15)
Mt’q’Mi,;(—Mi qa M

This last result is obtained by noting that the summation over M, and ¢ yields
(2J/41)~", which is ultimately canceled by the summation over M. Of course,
in this case the statistical weights in eqs. (3.2) and (3.3) are g; = 2J; + 1 and
g; = 2J/ + L.

The procedure we have been discussing for obtaining the oscillator strength
employs the so-called length form, i.e. the line strength in eq. (3.5) involves the
matrix elements of the position vectors r;. Two other forms, called the velocity
form and the acceleration form, give results identical to those obtained with
the length form, if exact wave functions are used in the calculation. However,
these are generally not available. Since these two other forms depend more
sensitively on the wave functions for small r values, where the wave functions
are generally least accurately known, the length form is usually the most ac-
curate. This is also the form that occurs naturally in the expression for the
Coulomb-Bethe approximation of the very large angular momentum contri-
bution to the electron-impact excitation cross section for optically allowed
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transitions, as discussed in section 4.9.

3.1.83 Selection rules for optically allowed transitions

From the properties of the 3-j symbol appearing in eq. (3.13), one obtains the
familiar selection rule for allowed transitions

Jy—J =+lor0, (3.16)

but J, = J/ = 0 is forbidden. Also, since parity must be conserved and P
has odd parity, only transitions in which the parity changes are allowed. In
addition, there is the weak selection rule that only single-electron jumps occur.
However, as will be seen from the discussion in the next section, this rule is
strictly valid only when configuration mixing does not occur.

3.2 Detailed expressions for the line strength

Now we consider evaluation of the reduced matrix element (A,J, | P ||
ALJ]) appearing in eq. {3.14). As discussed in section 2.1, we obtain ap-
proximate wave functions by expanding them in terms of a set of single-
configuration state functions (SCSFs), as given by eq. (2.11). Then, using
more explicit notation, we have

DT | Y ALY = 37 07 (A, BB (A, 57)
B, 8,
x(Budy || PY | Bl (3.17)

where [, represents all quantum numbers in addition to J; and M; necessary to
specify the pure SCSF basis state 3;J; M, with corresponding mixing coefficient
b7t (A, B;). Of course, only states with the same parity, as well as total angular
momentum J;, mix because these are good quantum numbers. As usual, primes
on symbols indicate corresponding quantities in the final state, assumed to be
the higher energy state in determining the oscillator strength. The case of
no mixing will first be addressed, which requires only the pure-state, reduced
matrix element appearing in eq. (3.17). Some additional details concerning
the mixed case are provided at the end of this section.

Before proceeding, we provide a rather lengthy, explanatory note in order to
avoid possible confusion concerning the jargon that is used when referring to
SCSFs, states and fine-structure levels. Note that, in general, a complete de- -
scription of an SCSF basis state or magnetic sublevel requires the specification
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of a magnetic quantum number A, as provided in the description immedi-
ately following eq. (3.17). However, the reduce matrix elements and mixing
coefficients in eq. (3.17) are independent of the magnetic quantum numbers
associated with the particular SCSFs from which these quantities were de-
rived. In this case, it can be confusing when a magnetic quantum number
does not explicitly appear in a mathematical expression, but it does appear
in the subsequent discussion. When this situation occurs, it is understood that
the relevant quantity was determined from wave functions that depend on M,
but the quantity itself is independent of M. A related situation sometimes
occurs when reference is made to the initial and final “states” (denoted by
B Jy and 3,J]) or “levels” (denoted by A.J; and A}J]) of a particular process,
matrix element, etc. These states or levels can not be expressed in an explicit
mathematical form, although it is not uncommon to see expressions such as
\3:Je) or |A.Jy). A common occurrence of this type of notation is encoun-
tered when referring to matrix elements of the Hamiltonian in eq. (2.1). In
this case, the matrix elements in the SCSF basis are independent of M, so
it is convenient to refer to the energy associated with a state denoted by the
quantum numbers 3, J;. However, it is understood that this energy is actually
associated with each of the 2.J; + 1 (degenerate) sublevels that are described
by the additional quantum numbers /3, J;. As a different example, the con-
cept of states or levels typically arises when considering some sort of summing
or averaging process over quantities that depend on the more fundamental
SCSFs or magnetic sublevels (see, for example, eq. (3.14)). In this context,
we will sometimes refer to the initial and final “states” or “levels” as if they
can be described by an explicit wave function. Technically, this is not true,
but it is a convenient terminology when properly understood. Furthermore,
“states” are often referred to as SCSFs in this context, even though this us-
age is technically incorrect because the labeling of these “states” does not
include the requisite magnetic quantum number associated with any SCSF.
Once again, in this case, it is understood that we are referring to some quantity
that was derived from SCSFs, but that is ultimately found to be independent
of any magnetic quantum number. Thus, it is sufficient to simply specify the
appropriate “state” quantum numbers, without providing a specific magnetic
quantum number. When confusion may arise from these types of situations,
we have attempted to provide a cautionary remark and refer the reader to this
explanatory note.

Moving along to a consideration of the reduced matrix element, (3,.J, | P& ||
3,J7), we first discuss the case of ions with initially only empty or closed sub-
shells, in addition to the active subshell, which is designated by subscript a.
Since the orbital wave functions entering the SCSF basis states are orthog-
onal and normalized to unity, and PY s given by eq. (3.7), one sees that
non-vanishing matrix elements will occur only when the same electrons occur
initially and finally in each inactive, closed subshell. Of course, there will be
many terms of this kind resulting from permutations of the electrons between
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the different subshells due to the requirement of a completely antisymmetric
wave function, but the presence of these identical terms is exactly canceled by
the normalization factors in the SCSFs. Thus, the form of the results for the
matrix element is completely unaffected by the presence of closed subshells
of the inactive electrons. Hence, we hereafter ignore the inactive subshells,
except that, of course, they must be included in determining the central po-
tential appearing in egs. (2.9), (2.10) and (2.14) when calculating the radial
functions.

Now we consider the construction of the SCSFs, following closely the analogous
discussion in ref. [30]. It is well known that for two equivalent electrons an
antisymmetric wave function is given by

U[(ngloja)*JaMy | 2122) = Z C(Jajamame; J.M,)

my,ma
X/U’nalaja?nl (Zl)unalajanlz (x:z) b (318)

where z; stands for the coordinates, spatial and spin, of electron ¢. Although
eq. (3.18) appears to have the form of an unsymmetrized function, the Clebsch-
Gordan coefficients ensure antisymmetry. Analogously, for three equivalent
electrons an antisymmetrized wave function is given by

\Ij[(nalaja)gl]aﬂ/[a | x],CCQxB]
= Uah Yiada) Y. CljaMimg; JoM,)
J1 M'1,ma
X‘l’[(nala‘ja)zjlj\é{l I xlxg]unalahma (J"J3> N (319)

where W[(ngloja)?Ji My | x179] is given by eq. (3.18), with Jy M replacing
JoM,, and the (--- |}---) are coefficients of fractional parentage (CFP). Al-
though eq. (3.19) has the appearance of an unsymmetrized function, it is
actually completely antisymmetric in all three electrons due to the proper-
ties of the Clebsch-Gordan coefficients and the CFP. One can continue this
procedure for any number of equivalent electrons, w. Thus, the completely
antisymmetric wave function for w electrons in subshell ¢ can be written

\Ij[(nalaja)wa/aja]\/ja [ Ty .’Ew]
= Z (j;,u-laljl I}jg’QaJa) Z C(f]ljaﬂ/jl?’na@}aMa)

Ji,on Mg

X\If{(?’&afaja)wyl(lljlﬂ/fl ] TiZLg - xw,.l]un“lajamu (in) . (320)

where the electrons are in the definite increasing order 1,2,3,....w, but the
CFP and Clebsch-Gordan coefficients maintain complete antisymmetry. Here,
oy represents any additional quantum numbers, such as the seniority num-
bers, required to completely specify a state when there are several states
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arising from the j¥~! configuration, with the same J; value. An analogous
statement applies for a, and the 7 configuration. Of course, the functions
given by eq. (3.20) are assumed to be orthogonal and normalized to unity,
which requires the CFP to obey

S G oy MY aada) (G endy Vi el Ja) = Gagar, - (3.21)

J'[,(X[

Labeling the final upper (initially empty) subshell as n/, [} j!, one can write the

final completely antisymmetrized wave function in a form similar to eq. (3.20),
but with the following changes: (1) the CFP and summation over .J; and a;
is omitted, (2) an orbital wny j2m: replaces Un, i, j,m,, (3) one must include an
antisymmetrized sum over all the possible states with any of the w electrons
transitioning to the subshell n,l/j’ and, (4) in order to have a normalized

a G

function, one must multiply by the factor 1/y/w. The result is

oNw=1 Mg A gt
Ul(naleja)¥ ol J nploge di M| | 2129 - - 2]
'1 w
— WP Wl A o AT
=7 > (-1) S C(JLMIml,; JIM))
p=1 MY,
sNwe1 M At | , . <
XW(nalaga)” "0 Jy MY | x1ma - 2y 1 Tpiy - T |Untar jome, () 5 (3.22)
where the w — 1 electrons in U[(ngloje )" el JI M) | 2122 Tp1Zpr1 -+ * Tu)
are in the definite increasing order 1,2,3,..., w, with, of course, the value p
omitted.

Now we use eqgs. (3.20) and (3.22) as the initial and final states in the reduced
matrix element (3,J, || PV || B/J)). However, as noted previously, the addi-
tional filled subshells of inactive electrons make no contribution. Hence, in the
summation that appears in the expression for Py given by eq. (3.7), we can
replace N with w. Also, in eq. (3.20) the replacements .J, — J; and M, — M,
should be made. In addition, due to the orthogonality of the Dirac spinors,
denoted by u, only terms with the index ¢ in eq. (3.8) equal to the index p
in eq. (3.22) will contribute to the matrix element. As noted previously, even
though the initial wave function given by eq. (3.20) has all the electrons in
the definite increasing order 1, 2, ..., w, it is actually an antisymmetric function
due to the properties of the CFP and the Clebsch-Gordan coeflicients. Hence,
in evaluating (3,J, || PV || 8/J!), one can permute the coordinates in the ini-
tial ion wave function such that they are in the same positions as the final ion
wave function given by eq. (3.22) in determining the contribution of each term
in the summation over p. This procedure introduces a phase factor, (—1)" 7,
that exactly cancels the effect of the similar phase factor in eq. (3.22). Then,
the sum over p yields w contributions, all with the same value. Using eq. (3.8)
with N = w and ¢ = p, one obtains the result
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(B || PO BTy = Vw(nalaga | 7 | ngllds)
X Z (j:zﬂ_lal‘]l I}j:zuaa‘]a)
J1,a1

x (o Jijode | W || 5E el Y50 1) (3.23)

which separates into a product consisting of an angular part that can be
evaluated using irreducible tensor techniques, and a radial integral given by

<na a]a | r | na a]a>

nalu]a /l/ i/ (T) + Qnalaju. (T)Qnglgjé (T)]T d,r ‘ (324)

As mentioned earlier, J;, has been used in place of J, in the above angular
matrix element. However, the substitution has not been made in the CFP, for
reasons that will be made explicit below.

In order to evaluate the angular part of eq. (3.23), we use eq. (C.90) of Messiah
[7] to obtain

Getandijade | V|| e el J) G0 T,)

a

_ 5a1ag5J1JL’1’( 1)Jt+J1+jé+1[(2Jt + 1)(2J; + 1)]1/2
ja 1 .7:1 : (1) -/
A% hpue® i, (3.25)

where {---} represents a Wigner 6-j symbol and

G 1 €9 115 = (=i + i+ D2 (F g f) - s

o=

Applying eq. (3.25) to eq. (3.23), we obtain

(B || PO BT = Vw[(2J, + 1)(2J] + 1)]V3(=1) e+
ja 1 -71/1 cw—1Y 1 oqn W
x {J{ J;’ Jt } (]a aa‘]a |}.7a CVak]a)
X (o || CW || o) (nalada | 7 | iloda) - (3.27)

In writing the phase factor in eq. (3.27), we replaced (—1)7*! with (—1)7.
This choice is obviously valid when J, = J; £ 1. For the remaining case of
Jy = J| (see eq. (3.16)), a factor of (—1) remains, but it will not contribute to
the line strength, S, given by eq. (3.14) because it will lead to an overall factor
of (—=1)% = 1. Our reason for making this replacement is that our results then
take on a form very similar to that obtained in chapter 4 for electron-impact
excitation when the convenient factorization method of ref. [31] is used.
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Also, in addition to using J; = J, in eq. (3.27), we have used J' = J/, where
J}' is the final total angular momentum of the core, which, when coupled
to ji, gives JJ. For the present case of initially filled or empty subshells, in
addition to the active subshell, this choice is obviously valid. The reason we
used .J; in place of J,, and J; in place of J!, everywhere except in the CFP,
is that when one considers more complex cases of additional partially filled
subshells, the form of eq. (3.27) remains unchanged, except for inclusion of
additional angular factors that arise from the presence of these extra partially
filled subshells. Many of these angular factors were worked out in ref. [30] and
given in ref. [32]. However, eq. (3.27) is applicable for many of the transitions
of greatest interest.

We note that the weak selection rule mentioned in subsection 3.1.3 follows
from the derivation of eq. (3.27). Specifically, a non-zero value is obtained
only when the initial and final states are connected by a one-electron jump.
However, as is apparent from eq. (3.17), this rule is strictly valid only when
there is no mixing. A useful form of the line strength, when mixing becomes
necessary, is provided next.

In order to simplify the notation and make it similar to that used in chapter 4,
we let U = AyJy and U’ = ALJ] for the initial and final levels. Also, we let S =
B, J; to indicate a pure SCSF state contributing to U, while S" = 3,.J] indicates
a pure SCSF state contributing to U’. (The omission of the magnetic quantum
number in describing an SCSF is potentially confusing. See the explanatory
note following eq. (3.17).) Thus,

U=SbU,9)8), U =S bU,8)s", (3.28)
i 8/

where the b’s in eq. (3.28) are the mixing coefficients formerly referred to as
b (A, By) and b7 (A!, B)) in eq. (3.17). In addition, we let
FOWS, U'S"y = b(U, S)fI (S, SYH(U', S, (3.29)

where

FD(S,8) =[(2; + 1) (2] + 1)] 2 (— 1)+
B 1 o — .
8 {,jf; T ”3;}\/'55(3& L T v oada). (3.30)
For more complex cases, extra angular factors will enter eq. (3.30), as men-
tioned previously. Alternatively, we note that it was unnecessary for us to

work out the values of f(V)(S,S") for the most general case because we found
[33] that f*(S,S’) equals the quantity d},(S,S’) that is defined in ref. [34].
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Thus, these coefficients are readily available, in complete generality, from the
MCT module of the Grant code.

Applying eq. (3.29) to egs. (3.27) and (3.17) yields the expression

(A | PO A =(U | PV U

=" FOUS,U'S) L (nologa, nhll70) s (3.31)
5,57
where
L = (nalafa | 7 | n0050) (Ga || € || 72) (3.32)

in which (nglej, | 7 | nill5.) and (j, || C™V || 4.) are given by egs. (3.24) and
(3.26). (The “ps” superscript and “H” subscript denote a pseudo-hydrogenic
quantity that will be explained in more detail in the upcoming subsection 3.2.1.)
Applying eq. (3.31) to eq. (3.14) for the line strength, we obtain

S(U, Uy =S BY(WU,SS; U, S'SY)

S,8’
51,87
XL%S(nalaja7 n;l;]é)L%S(nal laljal ) niu l:ll-](/ll) ’ (333)
where
BY = FO(UsS U'SYFO(US,, ULS,). (3.34)

It is interesting to note that BY is a special case of the quantity B* (with
A = 1) that appears in the expression for the excitation collision strength to be
obtained in chapter 4. For the case of transitions between magnetic sublevels,
eq. (3.33) is easily generalized. In particular, the right-hand side of eq. (3.33)
must be multiplied by the factor

Jo1 J )2
: 3.35
<_Mt q Mt/ ( )

and it is understood that the state summation indices, as well as the level
indices U and U’, each contain a valid magnetic quantum number. As stated
previously, there is no need to include a summation over g, since its value is
fixed for given values of M, and M;. (See the discussion immediately following

eq. (3.13).)
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3.2.1 Special simple cases

Among the several cases for which there are no partially filled subshells, in
addition to the active one, in the initial state, so that no extra angular factors
enter into eq. (3.30), there are two of particular interest for which f() becomes
especially simple. These are: (1) the case in which the active subshell initially
contains a single electron, and (2) the case in which the active subshell is
initially filled. For case (1), which applies to hydrogenic ions and transitions
involving the valence electron outside of a closed shell, such as in Li-like and
Na-like ions, J = 0 and, consequently, the 6-j symbol in eq. (3.30) becomes

[7]

{ja 1 7;}#{% Ji O}: (_1)%‘”&1(5%%5-}{?& (3.36)
VAN N/S B /A A B O W AR S TGN 1 VER '

Also, since both w and the CFP are equal to one, f reduces to (—1)Jat3a*1,
Moreover, no mixing can occur for hydrogenic ions or for the alkali-like ions,
provided one considers mixing only among the states in a complex and only the
valence electron is active. Therefore, the quadruple sum in eq. (3.33) reduces
to a single term and the square of fV, which is equal to one, enters into the
final expression for the line strength. Consequently, the factor BV = 1 and
eq. (3.33) reduces to the expression for the pseudo-hydrogenic line strength

!

SE (naladas il gty = L (nalaja, nhld0)2 . (3.37)

The corresponding oscillator strength is given by

AE .
S— T W B TR U LA L 3.38
3(2](1 + 1) H (?’I J vna a]a) ( )

This last expression is precisely the form that one obtains when considering ra-
diative transitions in hydrogenic ions. Of course, for alkali-like ions, the radial
functions used in determining L} must be obtained from the approximate po-
tential displayed in eq. (2.18) that includes the electron-electron contribution,
rather than just the pure —2Z/r Coulomb potential due to the nucleus, which
applies to hydrogenic ions. That is why the superscript “ps” (for pseudo) has
been added to the quantity Ly.

Next, we consider the second case, which applies to He-like, Ne-like and Ni-
like ions. These ion stages are very important in plasma applications because
each one tends to be the dominant stage of ionization over a wide range of
temperatures. For this situation, the CFP is again unity. Also, J; = 0 so that
the 6-7 symbol in eq. (3.30) reduces to
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{J‘a 1 j&},{ﬁa gy 0}: (1) 8 0, 6 (3.39)
JooJPoof W1 g (207 + 1)(2j, + D)]V/2 B

Thus, eq. (3.30) becomes

?,Ul/2 . g o I Lt
O = g (1t 340

where the final form applies because w = 2j, + 1 for a filled subshell, and
Jo has been substituted for J)', according to eq. (3.39). One can ignore the
phase factor (—1)2’¢, which must be equal to one, because .J; = 1 due to
the selection rule in eq. (3.16). Similarly, since j, and j/ are half integers,
the phase factor (—1)2Ue*7a) is also equal to one. Finally, it is usually a good
approximation to omit mixing for these closed-shell ground states, specifically
for highly charged ions, so that there is mixing only among the upper states.
Hence, the line strength obtained from eqs. (3.33) and (3.34) becomes

S(UU) = Z U, SHBU', S7)
7.5
X LY (nglaja, npll g ) LY (nay Loy Jay s T, L, j;l). (3.41)

‘ayay

In the present case, the statistical weight g; in eq. (3.3) is 2J; + 1 = 1. Hence,
if mixing can also be ignored among the upper states, the corresponding os-
cillator strength could be put in the pseudo-hydrogenic form of eq. (3.38), but
multiplied by an additional factor of w = 27, 4+ 1. This result is precisely what
one would intuitively expect when the initial state contains only closed shells.

It may seem odd that different orbitals for the lower state enter into eq. (3.41),
when there is no mixing included in the lower level. However, this notation
takes into account the possibility that an electron jump may occur from dif-
ferent subshells in the ground-state wave function, depending on the amount
of mixing included among the upper states. As a simple illustration, when
considering n = 2 to 3 transitions from the ground state of Ne-like ions, it is
possible for orbital transitions of the type 2p;,» — 3s and 2p3/, — 3s to con-
tribute to a particular fine-structure transition, if mixing is included among
the 1s*25?2p, 92pj 535 and 1s*2s72p7 »2pj ,3s configurations. In these cases,
the particular lower orbital that appears in the argument of LY is fixed by
the upper orbital, in concert with the fixed .Ji-value of unity, plus the fixed
odd parity of the upper level.

3.2.2  Configuration-average case

For configuration-average transitions, we consider an electron jump from sub-
shell o of configuration ¢ to subshell 3 of configuration ¢. We write this
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transition in the symbolic form

(Mg )7 —
(naka)™ Hngrg)™ (nyr, )7 - . (3.42)

(naka)" (ngra)"*

The multitude of fine-structure transitions that can arise from eq. (3.42) is
sometimes referred to as a “transition array”. Analogous to the discussion in
section 2.6, the most general expression for the configuration-average oscillator
strength, or line strength, would include an average over all of the correspond-
ing fine-structure values that comprise the transition array. In this case, the
presence of mixing coefficients is not so problematic due to the existence of
powerful line-strength sum rules and, in theory, an expression could be ob-
tained in terms of more fundamental quantities when an arbitrary amount of
Cl is considered. (See, for example, pp. 423-424 of ref. [8].) However, here we
limit the discussion to the single-configuration approximation, which results
in the so-called “array oscillator strength”. It is most convenient to begin with
the line strength, rather than the oscillator strength, because the expression
for the line strength does not explicitly contain the transition energy. The pres-
ence of the transition energy, which can be different for each SCSF transition
that comprises the array, further complicates the averaging process.

Thus, we write the formal expression for the configuration-average line strength
between configurations ¢ and ¢ as

SC_CI = Z Z Si»j s (343)

ice jeof

where 5;_; is the line strength for the transition between two pure SCSFs
labeled 7 and j. Note that the outer and inner summations consider only
those SCSFs that arise from configurations ¢ and ¢, respectively. After some
manipulation eq. (3.43) can be simplified according to

y Wo gn — (wg — 1 . ,
LSc—c’ = Ge— —L——(_"ﬁ—lsgs(nalajm n/ﬂﬂ]ﬂ)
Ja 93
Wa (295 + 2 — wg)

~ 92 + 1) (205 + 1)

Sﬁs(na‘{ajaa n;@lﬁjﬁ) 3 (344)

where S is the pseudo-hydrogenic line strength given by eq. (3.37), g, =
27 + 1 is the statistical weight of subshell & (with a similar expression for gz)
and g. is the statistical weight of configuration c¢. A detailed expression for
this last quantity is given by

1] (2ja + 1)!
Je = Lo i1 —wa)lwg!

44

(3.45)
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where the product is over each open subshell «, which contains w, electrons.

In order to obtain an expression for the configuration-average oscillator strength,
we must make the additional approximation that the energy associated with
each SCSF transition in the transition array is approximately equal to the
configuration-average transition energy, AE,. o = E. — FE,., where the energy
associated with a particular configuration is given by eq. (2.33a). Then, with
the use of eq. (3.3), the configuration-average oscillator strength can be written
as

1
feeor = Z Z gifi—j/gc = 3—‘ Z Z AEi~jSi—j
ice ject 9e iee jeo
AEC-—-C' . AEC-—(;’

o~
~0

S Sy = S (3.46)

39‘0 i€e jec

Thus, the relationship between the configuration-average oscillator strength
and corresponding line strength is formally identical to the relationship be-
tween the fine-structure (or SCSF) quantities, as given by eq. (3.3). With
the use of eqs. (3.37), (3.38) and (3.44), the configuration-average oscillator
strength can be expressed in the useful form

Wa(273 + 2 — wa) ps
(275 + 1) "

fC_C/ = (n&l&ja, ?lgigjﬁ) R (3.47)

where fli° is the pseudo-hydrogenic oscillator strength given by eq. (3.38).
It is easily verified that, for hydrogenic ions (i.e. when w, = wz = 1),
the configuration-average oscillator strength reduces to the correct hydro-
genic expression. We also note that eq. (3.47) is the relativistic analog of
the configuration-average expression given by Peyrusse [28] and by Cowan in
eq. (14.97) of ref. [8].

3.8 Some comparisons of oscillator strengths

In table 3, a sample comparison, taken from ref. [1], is made between oscillator
strengths obtained in various ways for transitions from the ground level to
the n = 3 levels in Ne-like ions. The notation is the same as that used in
table 1 of section 2.4, which compared energies of excited levels relative to the
ground level in Ne-like uranium. However, there are a few additional symbols
in the oscillator strength table. The HBS values were obtained using the fairly
crude approximation of non-relativistic hydrogenic basis states. However, this
approximation is seen to give fairly good results for Z = 26. The R entries were
obtained by Reed [35] using the fully relativistic program of Hagelstein and
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Table 3

Comparison of oscillator strengths for transitions from the ground level to certain
excited levels in neon-like ions. The notation is as in table 1 of section 2.4, except
that HBS indicates results using hydrogenic basis states and R indicates results ob-
tained by Reed [35] using the relativistic program of Hagelstein and Jung [36]. Also
G, G* and G** are results obtained with the Grant code [6,11] without retardation,
with retardation, and with retardation plus the generalized Breit interaction, other
QED corrections and finite nuclear size, respectively.

Z =26
(2p3s)1  (2p*3s)1  (2p3d*)1  (2p3d)1  (2p*3d*)1  (2s3p*)1  (2s3p)1
gR 0.1093 0.0919 0.0097 0.6140 2.5325 0.0369 0.2875
R 0.1081 0.0922 0.0098 0.5900 2.5516 0.0358 0.2880
FR* 0.1102 0.0937 0.0099 0.6095 2.5514 0.0358 0.2868
G 0.1051 0.0890 0.0076 0.6049 2.3779 0.0342 0.2648
G* 0.1051 0.0888 0.0074 0.6036 2.3743 0.0343 0.2642
G** 0.1047 0.0896 0.0072 0.5900 2.3844 0.0337 0.2638
HFR 0.121 0.103 0.010 0.682 2.582 0.039 0.322
HBS 0.116 0.099 0.010 0.659 2.651 0.041 0.344
Z =47
(2p3s)1 (2p*3s)1  (2p3d*)1  (2p3d)1  (2p*3d*)1  (2s3p*)1  (2s3p)s
gR 0.1262 0.1010 0.0003 2.0531 1.5905 0.1214 0.3273
R 0.1239 0.0971 0.0001 2.0460 1.5797 0.1210 0.3253
FR* 0.1250 0.0978 0.0001 2.0557 1.5828 0.1207 0.3248
G 0.1223 0.0957 0.0003 2.0013 1.5491 0.1165 0.3132
* 0.1222 0.0947 0.0004 1.9839 1.5420 0.1166 0.3097
G** 0.1232 0.0947 0.0005 1.9897 1.5305 0.1166 0.3050
HFR 0.1238 0.1156 0.0005 2.0336 1.6826 0.1084 0.3647
Z =56
(2p3s)1 (2p*3s)1 (2p3d*)1  (2p3d)1  (2p*3d*)1  (2s3p*)1  (2s3ph
R 0.1304 0.0066 2.3117 0.0214 1.4733 0.1083 0.3268
R 0.1268 0.0057 2.2688 0.0534 1.4477 0.1128 0.3232
FR* 0.1278 0.0058 2.2798 0.0508 1.4511 0.1123 0.3229
G 0.1256 0.0065 2.2320 0.0457 1.4299 0.1086 0.3138
G* 0.1254 0.0073 2.2026 0.0452 1.4208 0.1088 0.3084
G** 0.1267 0.0083 2.1624 0.0897 1.4068 0.1114 0.3025
R 0.1369 0.0068 2.326 0.0564 1.475 0.1050 0.3121
HFR 0.1217 0.0079 2.2865 0.0000 1.6042 0.0867 0.3744
Z="T4
(2p3s)1 (2p*3s)1  (2p3d*)1  (2p3d)1  (2p*3d*)1  (2s3p*)1  (2s3phr
R 0.1527 0.0640 2.3918 0.0280 0.3962 1.0370 0.2899
R 0.1451 0.0599 2.3787 0.0266 0.4196 0.9725 0.2829
FR* 0.1460 0.0603 2.3847 0.0269 0.4186 0.9759 0.2826
G 0.1441 0.0611 2.3413 0.0269 0.4081 0.9726 0.2722
G* 0.1441 0.0648 2.2827 0.0260 0.4068 0.9600 0.2676
G** 0.1456 0.0704 2.2783 0.0256 0.4809 0.8756 0.2609
HFR  0.127 0.064 2.225 0.062 0.306 1.319 0.364
HBS 0.078 0.065 2.474 0.028 0.802 1.047 0.534
Z =92
(2p3s)1  (2p*3s)1  (2p3d*)1  (2p3d)1  (2p*3d*)1  (2s3p*)r  (2s3p)1
gR 0.2045 0.1297 2.3564 0.0306 0.2985 0.9947 0.2143
R 0.1893 0.1197 2.3393 0.0287 0.2768 0.9517 0.2041
FR* 0.1902 0.1202 2.3445 0.0289 0.2768 0.9535 0.2039
G 0.1878 0.1202 2.3087 0.0288 0.2725 0.9498 0.2012
G* 0.1886 0.1271 2.2143 0.0272 0.2725 0.9299 0.1882
G** 0.1895 0.1356 2.2020 0.0268 0.2775 0.9177 0.1834
HFR  0.1496 0.1167 2.0645 0.0928 0.1851 1.4323 0.3187

Jung [36]. This code includes the Breit interaction plus other QED corrections
and a finite nuclear size.

Also, some further clarification on the differences between the G, G* and G**
data is required. These values were all obtained using the “average level” ap-
proximation of the Grant code [6,11,25]. As mentioned previously, the G**
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values include the effects of the generalized Breit interaction, other QED cor-
rections and a finite nuclear size. When considering oscillator strengths, the
G* and G** entries also contain the effect of retardation, while the G entries do
not. Analogous to the previous description associated with the Breit interac-
tion, this effect takes into account the delay in the electromagnetic interaction
between the incident photon and the transitioning bound electron due to the
finite value of the speed of light. More precisely, we note that the correct form
of the photon interaction with the ith electron contains a factor of el®dx7i)
where k) is the photon wave vector. When the photon wavelength is much
larger than r;, this factor can be expanded in powers of (ky - r;), and retention
of the lowest-order surviving term produces the unretarded dipole oscillator
strength, which becomes less accurate for increasing values of Z. The reten-
tion of the complete exponential allows for a consideration of higher-order
multipole terms along with the effect of retardation [5,37]. A more detailed
discussion of retardation, as it applies to the oscillator strength, will be pro-
vided in the next section.

One sees that the effect of retardation is small in all cases covered by table 3,
but, as expected, it is generally seen to be more important for large values of 7.
All of the results in table 3 are generally in quite close agreement, except that
the HFR and HBS values differ appreciably from the other results for some
transitions where Z is very large. Presumably, this discrepancy is largely due to
the omission of the j dependence in the radial functions in those calculations.
Also, there is the noticeable trend among the QR, FR, FR* and G values
that the agreement between FR, FR* and G results improves with increasing
Z, while that between QR and FR results improves with decreasing Z. The
former is expected because the difference in the physics of the FR, FR* and
G calculations is solely in the treatment of the electron-electron contribution
Ve(r) to the central potential. Since V*(r) becomes smaller relative to the
nuclear contribution as Z increases, the effect on f values decreases as Z
increases. Of course, the quasi-relativistic approximations made in the QR
approach, discussed near the end of section 2.3, increase in significance as 7
increases and relativistic effects become more important. Thus, one expects
the difference between QR and FR results to increase with Z. Nevertheless,
one sees that, even for Z = 92, the QR results for oscillator strengths appear
to be quite good.

One case in which the G** values do differ appreciably from the other fully
relativistic values is for the weak transition to the (2p;/23s1/2)1 level where
Z = 56. When the upper level of a weak transition lies close in energy to
the upper level of one or more strong transitions with which it can mix, as in
this case, slight differences in the method of calculation can sufficiently affect
the mixing of the level to provide an appreciable change in the f value for
the weak transition. The principal reason for the difference in results for this
transition appears to be the inclusion of the generalized Breit interaction in
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the G** calculations.

3.4 Inclusion of the generalized Breit interaction and other corrections in
calculating oscillator strengths

The necessity to include the generalized Breit interaction (see section 2.5) in
order to obtain more accurate results for oscillator strengths of weak transi-
tions in high-Z ions became very clear when we considered the mmch more
complex case of F-like ions in ref. [38]. Before doing large-scale calculations
for a wide range of Z values, we generally do some preliminary checks. In
ref. [38], results for energies and f values for the n = 2 to n = 3 transitions for
F-like ions, with Z = 34 and 92, were compared with other work. For our FR
calculations, the mean configuration used in determining the central potential
described by egs. (2.18)-(2.20) was

182251/22p1/22p3;’2381/23p1/2 3/23(13/23(10/2 (3.48)

The agreement, associated with f values and energies, that was obtained by
comparing results determined from various relativistic codes and experiment
was generally very good for Z = 34. For Z = 92, we could only make compar-
isons with results obtained from the Grant code. In this case the G, G* and G**
values were obtained with the newer, more efficient version of the Grant code
called GRASP [25]. Good agreement was found between our FR results and
the G values, but somewhat worse agreement was found between our FR values
and the G** results for many of the weak transitions. Although inclusion of re-
tardation had some effect, much of the discrepancy was traced to the effect on
mixing coefficients due to inclusion of the generalized Breit interaction in the
G** results. This discrepancy provided the original motivation for including
the generalized Breit interaction plus other QED corrections, a finite nuclear
size and retardation effects in performing large-scale calculations for high-Z
ions. The implementation of all but the retardation correction was described
previously in section 2.5. In the context of computing oscillator strengths, the
finite nuclear size opt,lon produced very little effect on this quantity, but can
significantly alter the energy associated with a particular level for very high-Z
values.

As for retardation, we included this effect when calculating oscillator strengths
by computing results in the Babushkin gauge [37,39], which reduces to the
length form in the non-relativistic limit. Specifically, in order to include the
effect of retardation, the radial integral in eq. (3.24) should be replaced with

(Malaje | 7 | nglada) = B/ + [(ka — k) /2115 + 15}, (3.49)
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where k) is the wavenumber of the photon and

e o]

I = / [Pratae () Qi 51.(7) % Qs (1) Pz (Mo (kar) dr - (3.50a)

/ nalaje () Prott i (1) + Qnatesa (7)Quurrge (1)1 (kar) dr . (3.50b)
0

The function ji(k,r) is the spherical Bessel function of order L, which can be
expanded for small arguments according to

ZL

jL(z):m+--- , (3.51)

where !! denotes the double factorial, which contains products of only even, or
odd, positive integers. Using this expansion in eq. (3.49), and retaining only
the lowest-order term, which is of O(k,r), reproduces the unretarded integral
in eq. (3.24).

A comparison of oscillator strengths and transition energies that were calcu-
lated with the above improvements is presented in table 4 for F-like ions. The
notation used in labeling the levels can be found in ref. [38], along with a
more complete set of tables. With the inclusion of all these additions to our
program, we obtained very good agreement with the Grant code for oscillator
strengths for n = 2 to n = 3 transitions in F-like ions with Z = 92, as well
as 34. Also, the agreement for transition energies was typically within about
2 or 3 eV, except for transitions to n = 3 levels involving a 3s or 2s electron,
for which the discrepancies for Z = 92 were typically about 8 eV or 40 eV,
respectively. However, even in the worst cases, the discrepancy in transition
energies was only about 0.38%. As in the discussion of energies for neon-like
ions in section 2.4, we attribute these discrepancies for transitions involving
s orbitals to numerical imprecision, occurring at small values of r and due
to our use of a linear grid in solving for the radial functions. This behavior
can likely be eliminated by using a logarithmic grid. However, it appears that
this inaccuracy has a negligible effect on line strengths and collision strengths,
which was confirmed, for example, by the fact that we were able to reproduce
exactly Grant’s hydrogenic line strengths for Z = 90, even for the 1s-2p,/, and
1s-2p3/, transitions, to within 1%. On the other hand, for An = 0 transitions,
where the transition energy can be very small, and hence the percentage er-
ror larger, we have used energies provided by the Grant code. This approach
added little time to collision strength calculations because the atomic struc-
ture part of such calculations, even with the slower Grant code, required only
a small portion of the total run time.
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Table 4

Comparison of our DFS transition energies and oscillator strengths, computed with
various options, against those obtained with the Grant code (labeled “Grant”) for
selected transitions from the ground level (A1) in F-like ions with Z = 34 and 92.
The labeling for the excited states can be found in ref. [38]. The columns labeled
“17, “2” and “3” display our results computed with none of the new options, with
all of the new options, except inclusion of retardation in calculating the f values,
and with all the new options, respectively.

AE(eV)
Transition 1 2 Grant 1 2 3 Grant
Z =34
Al-D1 1519.5 1518.4 1516.6 0.0129 0.0128 0.0128 0.0124
Al-D2 1545.8 1543.8 1541.8 0.0125 0.0127 0.0127 0.0122
Al-D3 1604.1 1601.4 15995 0.0010 0.0011 0.0011 0.0011
Al -D4 1615.1 16134 1611.6 0.0022 0.0020 0.0020 0.0022
Al -D5 1623.2 1621.2 16194 0.0851 0.0847 0.0845 0.0818
Al -D7 1672.6 1669.6 1667.8 0.2031 0.2031 0.2028 0.1986
Al -E1 1505.6 1504.0 1501.9 0.0615 0.0619 0.0618 0.0599
Al -E2 1542.0 1540.0 1537.9 0.0159 0.0160 0.0160 0.0156
Al-E3 1556.8 1554.2 1552.1 0.0042 0.0040 0.0040 0.0039
Al - E4 1613.4 1611.8 1609.7 0.0002 0.0001 0.0001 0.0001
Al-E5 1626.9 1625.1 1623.0 0.1672 0.1751 0.1739 0.1719
Al - ET 1656.3 1653.9 1651.8 0.0130 0.0117 0.0117 0.0117
Al - E8 1663.4 1660.7 1658.7 0.0042 0.0031 0.0031 0.0033
Al-F1 1500.8 1499.2 14971 0.0093 0.0091 0.0091 0.0088
Al-F2 1555.4 1552.8 1550.7 0.0447 0.0450 0.0448 0.0440
Al-F3 1613.3 16114 1609.3 0.0002 0.0001 0.0001 0.0001
Al - F4 1630.4 16284 1626.3 0.3552 0.3703 0.3688 0.3646
Al-F5H 1638.5 1636.9 1634.8 0.2585 0.2402 0.2390 0.2316
Al - Fs¢ 1661.1 1658.5 16564 0.0979 0.1032 0.1030 0.1016
Al -F7 1662.7 1660.1 1658.0 0.2069 0.1977 0.1971 0.1957
Al -F8 1673.1 1670.1 1668.0 0.0319 0.0331 0.0329 0.0328
Z =92
Al-Di1 13134 13127 13136 0.0239 0.0240 0.0240 0.0236
Al-D2 14599 14599 14598 0.05620 0.0528 (.0545 0.0541
Al-D3 14859 14813 14811 0.1003 0.0994 0.0953 0.0942
Al -D4 17050 16986 16994 0.0053 0.0053 0.0050 0.0049
Al-D5 18008 17927 17890 0.0465 0.0478 0.0478 0.0467
Al-D7 18623 18527 18524 0.1569 0.1549 0.1518 0.1524
Al-E1 13075 13051 13059 0.0934 0.0939 0.0943 0.0925
Al -E2 14588 14553 14551 0.0080 0.0080 0.0083 0.0082
Al - E3 14666 14641 14639 0.0119 0.0120 0.0127 0.01206
Al-E4 14893 14846 14843 0.5381 0.5369 0.5143 0.5081
Al - E5 17036 16972 16980 0.0047 0.0045 0.0042 0.0041
Al - ET 17895 17811 17773 0.0338 0.0355 0.0355 0.0349
Al - E8 18011 17928 17890 0.0580 0.0580 0.0580 0.0568
Al - F1 13061 13036 13044 0.0234 0.0236 0.0237 0.0232
Al - F2 14598 14554 14552 0.0453 0.0491 0.0516 0.0512
Al -F3 14892 14845 14842 0.5780 0.6978 0.6686 0.6643
Al - F4 14931 14898 14896 0.5294 0.4051 0.3880 0.3836
Al-F5 17072 16991 16998 0.0145 0.0144 0.0136 0.0133
Al - F6 17902 17810 17771 0.1395 0.1414 0.1415 0.1388
Al-F7 18586 18499 18496 0.1258 0.1140 0.1116 0.1126
Al-F8 18629 18529 18526 0.3562 0.3618 0.3541 0.3535
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4 Electron-impact excitation cross sections and collision strengths

4.1  General features

Before going into the details of our relativistic distorted-wave approach that
was developed in ref. [40] for the rapid calculation of cross sections for exci-
tation of highly charged ions, we give some general features of the relativistic
distorted-wave method. It is convenient to express the cross section Qi — f)
(in units of a3) for a transition ¢ — f in terms of the (dimensionless) collision
strength Q(i — f) by the relation

T

k2g;

Qli—f)=7-Ui— /). (4.1)
Here, £ is the relativistic wavenumber of the impact electron and g; is the
statistical weight of the initial level of the N-electron ion. The relation between
k (in units of 1/aq) and the kinetic energy e of the impact electron is

a2

K = e[l + Ze] : (4.2)
where a is the fine-structure constant ¢*/(#ic) and € is in Rydbergs. As written,
eq. (4.1) is of a general form that applies to transitions between configurations,
states, fine-structure levels or magnetic sublevels. For most of this chapter, we
will be interested in fine-structure transitions of the type that were discussed
in chapter 3. Thus, we will consider here transitions from level i = A,J; to
level f = A}J;. The configuration-average case will be discussed at the end of
this chapter, while a treatment of transitions between magnetic sublevels is
reserved for chapter 9.

In any distorted-wave approach to collisional excitation, the cross section or
collision strength in eq. (4.1) is typically expressed in terms of matrix ele-
ments involving the initial and final wave functions that represent the (N +1)-
electron systems formed by the incident electron and the initial ion, and by
the scattered electron and the final ion. Appropriate expressions for the ion
wave functions were previously described in chapter 3. On the other hand, the
free-electron wave functions are represented as an expansion over an infinite
number of partial waves, which are coupled to the ion wave functions, in order
to describe the initial and final (N + 1)-electron systems. In the most general
case, the cross section or collision strength is often expressed in terms of the
transmission matrix, denoted by T'. For example, the collision strength can be
written in the nonspecific form
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Q=1 (2J+1) T, (4.3)

where T represents a particular element of the T matrix. The T matrix can
alternatively be expressed in terms of the reactance matrix, denoted by R,
which is commonly used in distorted-wave theory. For the highly charged
ions of interest in the present work, the reactance matrix elements associated
with these system wave functions are sufficiently small that unitarization is
unnecessary. In this case, the relation between T and R reduces to

—2iR

T=iar~

—2iR (4.4)

and the collision strength can be written as

Q=2>(2J+1)|RP. (4.5)

The precise form of the reactance matrix elements will be provided shortly.
For the moment, we consider a more specific form of eq. (4.5) that provides an
expression for the relativistic distorted-wave collision strength for a transition
between fine-structure levels,

N+l g 2
QA — ALT) =83 27 +1)Y <\1x > — \;uf> , (4.6)
7 g P9 "pg
p<q

which can be obtained, for example, from first-order time-dependent perturba-
tion theory. We first note that an extra factor of four appears in this formula,
relative to other expressions that one might encounter in the literature, such
as eq. (4.5), due to the use of Rydberg atomic units. With this choice of units,
distances are in units of the Bohr radius and energies in Rydbergs, so that the
electron-electron interaction is 2/r,,, analogous to 2/7;; in eq. (2.1).

As for the physical quantities in eq. (4.6), £ and &' are the initial and fi-
nal relativistic quantum numbers that represent the partial waves associated
with the incident and scattered electrons, respectively. We have employed the
customary practice of using unsubscripted quantum numbers to describe the
free electrons. Thus, « is related to the orbital and total angular momentum
quantum numbers [ and j for the incident free electron according to eq. (2.8).
Similarly, the quantum-number relations

K= j=U-3 =-U+1), j=U+; (4.7)

apply to the scattered free electron. The symbol J refers the total angular
momentum of the complete (N +1)-electron system that is formed by coupling
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Jy of the initial ion with j of the incident electron, or J; of the final ion with
4" of the scattered electron. The resulting value of J must be the same in both
cases in order for the matrix element in eq. (4.6) to be non-zero. The ¥; and
U; in eq. (4.6) are the initial and final antisymmetric wave functions for the
total (N + 1)-electron system consisting of the target ion plus a free electron.
For example,

1 N1
U= S (=D ST O Mo M
(NJrl)l/z;;( ) fvz;m (e )
Xg’AthMt (mgl)ueljm(xp) (48)

with an analogous expression applying for ¥y in which Ay, J{, M/, €, ', j' and
m' replace the corresponding unprimed quantities. Here, as in chapter 3, z,
designates the space and spin coordinates of electron p, while z; ! means the
space and spin coordinates of all N electrons other than p. The Wa, 4,1, and
WA zia; are the initial and final target-ion wave functions of the kind given
by eq. (2.11), and in more detail in chapter 3. Of course, A, J, M,, A}, J]
and M have the same meaning as in chapter 3. The ug;m, in eq. (4.8) is the
distorted-wave Dirac spinor or orbital for a free electron in a central potential
V(r) due to the target ion. In particular, analogous to eq. (2.6) for a bound
electron,

LT P(r)  Xum(0, ¢.0) }
iy = UgenlT) = — | . R , 4.9
lejm(x) Uerm () - LQm(T) Xerm(0,6,0)] (4.9)
where X.n are the usual spin-angular functions given by eq. (2.7), and the
large and small components F,,. and Q). satisfy the coupled Dirac equations

[+ 5] Pur) = S e - Vi) + 5]Qutr) (4.10)
[ = 210u(r) = =Sl - VInIPalr). (4.11)

These expressions are similar to egs. (2.9) and (2.10) for bound electrons,
except that ¢ is positive and is the kinetic energy of the electron in Rydbergs
when r — oco. The numerical procedures we use in solving these equations for
the radial functions will be discussed in detail in section 4.5.

As stated previously, the distorted-wave collision strength is often expressed
in terms of the reactance matrix elements, e.g.
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QA — AT =2 (20 + 1) Y [R(AWelj T; AU D12, (4.12)
J

v

which is an alternative form of eq. (4.6), and a more explicit form of eq. (4.5)
applied to transitions between fine-structure levels. In general, the initial and
final wave functions associated with the fine-structure levels of the ion are
each mixtures of the wave functions for pure SCSF states with the same total
angular momentum and parity, as in eq. (2.11). It is convenient to express the
reactance matrix in terms of a pure-state representation

R(AJelg Ty M TV Ty = 3 6™ (A, BB HALL B)
BB}
< R(BiJucljJ; BiJiel5'T) (4.13)

where the additional symbols have the same meanings as in chapter 3. (See,
for example, eq. (3.17).) The reactance matrix has a direct and an exchange
part

R=R‘- R°, (4.14)

for which the detailed matrix elements ean be written as

RYBueljJ; Bl T) =2 3 C(JujMym; JMYC(J5' Mim/; JM)
Mym
Mé,m,'

X /dxl /dfﬁz . '/d$N+1\I’gtJtlx»It(»’E;l)Uiz;‘m(%)
' N1 1
X [ Z —} \I}r@;‘};j\,ft/ (.’Ij;l>u€/l/jfm/(iﬂi) (415)
 Tai
ql#i) 9

and

R (BydieljJ; BJ el T) =2N Y C(JjMym; IM)YC(Jj' Mym'; JM)

X /d1?1 /diCQ s / d-TN-Hlp}itJtMt(xiwl)uz{jm(xé)
' | N+1 1
X[Z _‘—}\I/ﬁZJél\'f;'(xj_l)uf’i’j’m’(xj)a J#1i.(4.16)
g#i) "9
Actually, only the single term with ¢ = j can contribute to the exchange
contribution due to the orthogonality of the u spinors.

A word should be said about how eqgs. (4.12)-(4.16) follow from egs. (4.6)
and (4.8). In particular, one might question how the normalization factor
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(N +1)"Y2 in eq. (4.8), and the similar factor in the final (N + 1)-electron
wave function, Wy, were removed, and how the factor N in eq. (4.16) arises.
In evaluating eq. (4.6), one starts with the electrons ordered in the same way
in both the initial and final system wave functions, so that the phase factor
(=1)M*17P in eq. (4.8), and the identical one in the analogous expression for
U, cancel. Each permutation gives rise to non-vanishing matrix elements of
the same value. Altogether, there are N + 1 of these terms, which cancels
out the product of the two normalization factors (N + 1)7/2, and leads to
eq. (4.15). Furthermore, for each of the N non-vanishing matrix elements in
eq. (4.15), one could alternatively obtain a non-vanishing matrix element in
which there was a permutation between the electron in the final active orbital
and the electron in the final free (scattered) orbital. There are N such terms,
each with an extra factor of —1 due to the permutation of two electrons, which
leads to eq. (4.16) and the minus sign in eq. (4.14).

Now we turn to a discussion of our particular approach to electron-impact
excitation between fine-structure levels. Descriptions are provided for two ver-
sions of our collision strength program that contain the same physics, but the
angular portion of the calculations is performed in different ways. For treating
a single ion, with a definite Z value, there is usually little difference in the
speed in calculating the radial part by the two procedures. However, the sec-
ond version, which will be described in detail, requires less computing time in
the angular part of the calculation (especially for the An = 0 transitions), and
has an added advantage. Specifically, it can treat a given class of transitions
simultaneously for all of an iso-electronic sequence for which our method is
valid, i.e. for ions having a Z value of 92, down to a value that is a little less
than Z = 2N. Hence, the second procedure is the one we use for large-scale
production of atomic data. Having two different excitation programs that con-
tain the same physics, but in which the angular part is performed differently,
provides the additional benefit of a numerical check by using both methods
in test cases to help ensure that no numerical errors are being made in the
calculations.

4.2 Version 1 of our collision strength program. non-factorized method

From inspection, the ¥, given by eq. (4.8) has the same form as the wave func-
tion for an (N + 1)-electron ion with an N-electron core and a single electron
in a very high subshell. An analogous statement applies for ¥,. Thus, as far
as the angular part is concerned, the matrix elements appearing in eq. (4.6),
or more precisely those in eqs. (4.15) and (4.16), are of the same form as those
occurring in atomic structure calculations for an (N + 1)-electron ion when
determining the off-diagonal matrix elements of the electron-electron electro-
static interaction prior to diagonalization of the Hamiltonian. Therefore, in
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evaluating the right-hand side of eq. (4.6) we simply used the angular part
of the Grant code [6], except that a few modifications had to be made, such
as allowing the outer electron (free electron in our case) to have much larger
angular momenta than occur in ordinary atomic structure calculations. Also,
the radial part is similar to that of atomic structure calculations and takes the
form of Slater integrals similar to eq. (2.13). Specifically, there are “direct”
terms

D Mnglojaelsnillgiel's') =
[ [Pt 00) Py r4) + @t (1) @, (1)
0 0
AA

7 ‘ ,
Xgi_l[Pelj(TQ)Pe’l’j’("‘Q) -+ Qeu(TQ)Qe'z'jf(?“z)] dridrs (4'17)

and “exchange” terms

Pt

E*(nologacli: nlll e lg") =
//[Rzala]‘a(,’ﬂl)])&l’j, (7'1) + Qnaz().ju (7'1)6\2(1/1/]&/ (7‘1):[
0 0

By
,
X ?é; [Patj(r2) P o (ra) + Qe (ra) Quyir gz (r2)] dridr , (4.18)

where, as in chapter 3, r. (r.) is the lesser (greater) of r; and ro. We note
that these integrals also occur in version 2 of our program.

In the evaluation of eq. (4.6), or, equivalently, egs. (4.12)—(4.16), it is assumed
that all orbitals, bound and free, are orthogonal. This quality, and a com-
pletely consistent treatment of exchange between bound and free electrons,
are automatically achieved in the present approach because the central poten-
tial used in eqs. (4.10) and (4.11) is exactly the same as that used in egs. (2.9)
and (2.10) for the bound electrons. That is, we use the same Dirac-Fock-Slater
potential given by eqgs. (2.18)-(2.20), coupled with the use of a mean configu-
ration, such as that given by eq. (2.21) for neon-like ions, to obtain the radial
functions for both bound and free electrons. This approach, as well as the
numerical procedures we use to calculate the radial functions, is the same for
both versions of our collision strength program. These numerical procedures
will be described in detail in section 4.5.
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4.8 Version 2 of our collision strength program: the factorization method

Bar-Shalom, Klapisch and Oreg [31] showed how the relativistic distorted-
wave approach for highly charged ions could be expressed in a factorized form
(see eq. (4.31) below) and used this approach to simplify the angular part of
the calculations for complex cases. One such application is to the transitions
occurring between the excited levels of neon-like and nickel-like ions, where the
angular part of the calculation becomes very large in a conventional treatment.
In addition to that advantage of the factorization method, we realized (see
ref. [40]) that it is very convenient for calculating simultaneously the cross
sections for a given class of transitions for many members of an iso-electronic
sequence. In fact, we have used the method for all Z values within the expected
range of validity of our approach. A few years after the publication of ref. [40],
we published some details concerning the factorization method as it applies
to collisional excitation (and ionization) [32]. The derivation provided below
expands upon this later work. It provides an alternative derivation than the
one originally presented in ref. [31], including previously unpublished details
that might be of some use in various applications.

We start with egs. (4.12)-(4.16) and, as in section 3.2, treat, in detail, the
case of subshells that are initially filled or empty, in addition to the active
one labeled a. By similar arguments to those given in section 3.2, one sees
that filled inactive subshells make no contribution other than to the central
potential V(7). Hence, they can be ignored in the following derivation. Thus,
the symbol N appearing in egs. (4.15) and (4.16) can be replaced with w, the
initial occupation number of the active subshell. First we consider R? given
by eq. (4.15) and substitute the expressions given by eqs. (3.20) and (3.22) for
W, (27 1) and Wy s (271}, and choose coordinate z; = 4. The result
is

R By Juelg J; BLIELFT) =
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Of course, in this case J, = J, and M, = M;, which we used in writing the
third Clebsch-Gordan coefficient. One sees that, due to the orthogonality of
the u spinors, only the terms with ¢ = p can contribute. Analogous to the
discussion leading to eq. (3.23), we note that, although the electrons are all in
the definite increasing order 1,2, ...,w in the initial target-ion wave function,
it is an antisymmetric function due to the properties of the Clebsch-Gordan
coefficient and the CFP. Thus, in evaluating eq. (4.19) we can permute the
coordinates in the initial target-ion wave function so that they are in the same
positions as they are in the final target-ion wave function when determining the
contribution of each term in the summation over p. This reordering introduces
a phase factor, (—1)¥ 7, that exactly cancels the effect of the similar phase
factor in eq. (4.19). Then, the sum over p gives w contributions, all with the
same value. Hence, a simplified expression for R? is obtained from eq. (4.19)
with the sums over p and ¢ removed, the phase factor omitted, both p and ¢
set equal to w, and the result multiplied by a factor of w.

Since both the initial and final wave functions of the total system have the
electrons in the same order and with the same type of coupling, we can also
use irreducible tensor techniques to further simplify R%. In doing so, we use
the standard expansion given by eq. (2.12) with w and w + 1 replacing 1 and
2, respectively. The result is

RY (B Jielj J; BLT Uy T)
o0
- 2\/— Z o 10fld'Tl i}]a aat a Z 77 lajaflj; (Lal;]; Il,f)
J1 1 A
X (GO Yy Sy Ji g IM | CV (#, ) CHY(#yrr) | 52 a5 Tl TM)Y
(4.20)

where D is given by eq. (4.17), C™ is the renormalized spherical harmonic
of rank A\, and 7, and 7,,,; represent the angular coordinates of z,, and x4,
respectively. Using standard formulae given in ref. [8] or the Appendix of
ref. [7], one obtains

o™ e Jigades IM | €O () - COFwaa) | 37 0l I L5015 T M)
TIS7SS (/S N i
(-1 J+]+Jt{ ¢ } W
i AR N Kl B
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where (j, || C™ || 5) and {j || €™ || ) can be evaluated by applying the
general relation

Gul € I i) = (=121 + D+ D] (B ) ).
2

DO s

Thus, applying eqs. (4.21) and (4.22) to eq. (4.20) we have

RYByJieljJ; BTl T) = 2v/wliy " ey [Vid cae)
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Xa (| CMV GG ITCV 57, (4.2)

where, analogous to eq. (3.27) and the discussion below it, we have used the
fact that J, = J, and J = J/ to substitute for J, and J/ everywhere ex-
cept in the CFP. In this way, when one considers more complicated cases with
additional partially-filled subshells, the added complexity will only produce
extra angular factors that do not involve the free electron (in fact they are
the same factors as those that enter in the line strength formula for the corre-
sponding radiative transition), leaving eq. (4.24) otherwise unchanged. (These
same factors also enter the expression for R® in complex cases.)

Now we consider R, given by eq. (4.16), for the same situation. Once again,
we let N = w and choose z; = z,.4, along with setting x; = z,,. Only the
single term for which ¢ = w can contribute due to the orthogonality of the
spiniors. Thus, we obtain expressions similar to eqgs. (4.19) and (4.20), except
that E* replaces D* and in the final state wave function it is the orbital j!
that is a function of z,4; and orbital j' that is a function of z,,. However, in
order to use irreducible tensor techniques, the electrons in the final state must
be in the same order as they are in the initial state (1,2, ..., w,w + 1). Also,
the angular momentum coupling must be the same. Thus, we must recouple in
such a way that both the same coupling scheme and the same ordering of the
electrons occurs in the initial and final states. This objective is accomplished
by using the standard recoupling formula [7,§]

| G2l Tl gL TIMY = ST (= 1) e it (97, 1) (2] + 1)]Y/2
Ja
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Then we proceed in exactly the same manmner that was used to obtain eq. (4.24).
The result is
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where E* is given by eq. (4.18). Also, as with R?, we used the fact that in this
case J, = J; and J! = J! to substitute for J, and J everywhere, except in
the CFP. This choice was made for the same reasons as given in the discussion
following the expression for R? given in eq. (4.24).

In a conventional treatment, one would simply obtain the collision strength
by applying eqs. (4.24) and (4.26) to eqs. (4.12)—(4.14), except that one could
replace the product of the three 6-5 symbols in eq. (4.26) with a 9-j symbol
using the formula [41]

{ VA T A A B AW O N
__13y2J2 ; t ja i t J Ja J —
S (% ST e

J2
J T e
j(; 7 A g (4.27)
A

However, this 9- J symbol can be recast in terms of a different product of three
6-7 symbols that allows one to obtain the collision strength in the convenient
factorization form. Specifically, we use the formula [41]

Jt” Jt ja,

/
o3 A p=yerersn () T
J,f J 7 T
Ja T ]é Ja j/ A -
X{J; I Jt}{jj:; e (4.28)

where the factor (—1)*" can be ignored because 7 is an integer. Applying
eqs. {4.27) and (4.28) to eq. (4.26), and then substituting the resulting ex-
pression for R?, along with R? from eq. (4.24), into eq. (4.14) yields
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In expressing the exchange contribution, we used the fact that, since j' is a
half integer, (—1)%" = —1.

When eq. (4.29) is substituted in eqgs. (4.13) and (4.12), and the labeling \’
and 7 are interchanged so the results look more like those in ref. [31], one can
perform the summation over J using the standard formula [41]

. J C J;}{Jt c’ J;}_ docr
?”“{] J 55 7 ST st (4:30)

which is allowed because J;, J{, j and j" are all good quantum numbers. The
result is the factorized form for the collision strength. When the simplified
notation given by eq. (3.28) is used, the factorized form can be written as
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Here,
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The B> are analogous to, but more general than, the BY) given by eq. (3.34).
In particular,

BMU,SS; U, §'S)) = FMUS,U'S"YFNU S, U'SY) , (4.34)
where
FNUS,U'S"y = b(U, S)fMS, S, ) (4.35)

and, in the present case,

NS, S = [(2J, + 1)(2J) + 1)) (—1) i+
s U (1 ) . ‘a, )\ (,L .
X \/7“—0(](1. lag‘]a [}ja @aJa) { ‘?]t, Jt” :y]t } . (436)

For more complex cases with initially one or more partially filled subshells, in
addition to the active subshell, all that is required is to include extra angular
factors involving only quantum numbers of the target ion. These factors are
exactly the same as those that enter in the corresponding radiative transitions.
When implementing this approach in our computer programs, it was unneces-
sary to derive the relevant factors for the general case because, as noted at the
end of subsection 3.2.1, the f*(S,5') are equal to the quantities denoted by
d) (S, S"), which are available in complete generality from the MCT module
[34] of the Grant code [6,11,25].

By comparing eqs. (4.34)-(4.36) with egs. (3.29), (3.30) and (3.34), one sees
that the BY of eq. (3.34) is just a special case of B with A = 1. Also,
eq. (4.31) is very similar to, but more complex than, eq. (3.33) for the line
strength. However, in general, only a few values of A and 7 in the expressions
for the collision strength survive because of restrictions on them due to the
properties of the 6-j symbols appearing in egs. (4.33) and (4.36).

4.4 Improvements for computing the free-electron wave functions

In the previous two sections, we described some methods for making our col-
lision strength codes more efficient. Now we describe ways to improve the
accuracy of the data calculated with our codes. As noted in chapter 3, some
level energies calculated by our DFS structure code still differ from those pro-
duced by the Grant code by a few eV, even after we included the generalized
Breit interaction and other QED corrections. That discrepancy does not affect
line strength or collision strength results very much for An > 0 transitions, as
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the transition energies are usually large. However, for An = 0 transitions the
results could be affected significantly for those transitions with the initial and
final level energies close to each other. One way to correct this discrepancy is
to replace the energies obtained from our structure code with those calculated
by the Grant code, as was done in ref. [38] for F-like ions. With this approach,
it is important to recognize that different numerical procedures, such as our
using a linear radial grid versus the logarithmic grid in the Grant code, and
different physics, such as our DFS potential vs. the multi-configuration Dirac-
Fock (MCDF) potential in the Grant code, will not only affect the energies
obtained, but also the resulting mixing coefficients that form the fine-structure
wave functions. Different mixing coefficients could (and do) affect considerably
the collision strength results for some weak transitions. For this reason, we de-
cided [33] to include an option in our collision strength codes that would use
all of the relevant structure data obtained from the Grant code, including
level energies, mixing coefficients, radius-dependent nuclear charge Z(r), ra-
dial wave functions and line strengths. Here we note that line strengths are
used in the Coulomb-Bethe approximation for optically allowed transitions
to obtain high partial-wave contributions, as described later in section 4.9.
In addition to increasing the accuracy of collision strength results for high-Z
ions, use of the Grant structure data also extends the range of the validity of
our data from Z 2, 2N to Z 2 1.5N. This extension to lesser charged ions is
possible because the electron-electron interaction becomes more important to
the total potential, and the MCDF potential used in the Grant code should
be more accurate than the DFS potential used in our structure code.

As mentioned previously, the Grant code uses a logarithmic radial grid while
our collision codes use a linear grid. Therefore, in order to use Grant’s Z(r)
values and radial wave functions, they have to be transformed from the log-
arithmic grid to a linear grid. We use a procedure based on a four-point
Lagrange-polynomial interpolation scheme originally written by Moores [42]
for this purpose. Then we construct the potential V' (r) for use in solving the
Dirac equation, egs. (4.10) and (4.11), for the free-electron radial functions.
It is noted that, in using the Grant code, we typically use the “average level”
option [6], which employs a set of effective fractional occupation numbers.
However, if we were to construct a DFS potential to obtain the free-electron
wave functions using our original approach, then we would choose a set of
fractional occupation numbers for each class of transitions with the prescrip-
tion described in section 2.3. Obviously, the DFS potential constructed in this
way (based on eqgs. (2.18) (2.20)) will not be the same as the MCDF poten-
tial used in the Grant code to obtain the bound-state wave functions. Since
this difference in potentials no longer guarantees orthogonality between the
bound- and free-electron wave functions, we decided to use a new form of the
potential when calculating the continuum functions, which has been shown
to produce more accurate data. This new potential differs from our standard
DFS potential in that the exchange contribution is the so-called semiclassical



exchange (SCE) term of Riley and Truhlar [43]. The resulting potential was
employed extensively by Mann [44,45] and will be referred to as the Mann
potential, V(). The form of this potential is given by

Vu(r) =V(r) + Vi (r), (4.37)

where the direct part is the usual

Vi(r)=-— + Ve(r) (4.38)

and the exchange part is

i) = — [e(Ry) = V()] [(1+ 222~ 1] (4.39)

The classical potential, V.(r), in eq. (4.38) is given by eq. (2.19) and £(r) in
eq. (4.39) is defined by

2(0) — 4p(r)
T SfRy) VP A0

where p(r) is given by eq. (2.20). Of course, in evaluating egs. (2.19) and
(2.20), the bound wave functions from the Grant code (transformed on to a
linear grid) are used, along with a set of fractional occupation numbers wy,
that are chosen according to the prescription mentioned above.

In order to account for the lack of orthogonality that results from the use
of different bound and continuum potentials, we note that, in general, the
exchange integral E* given by eq. (4.18) should have an additional one-electron
exchange term that contains the overlap of the active bound orbital and a free-
electron orbital. In our version of the collision codes that uses the same DFS
potential in calculating wave functions for both the bound and free electrons,
this term vanishes due to orthogonality between the bound and free orbitals.
In the current option of using the structure data obtained from the Grant
code and the continuum wave functions computed with the Mann potential,
this term should be retained.

As pointed out in ref. [44], there are two forms of this overlap integral, the so-
called “prior” form that corresponds to an overlap between the initial bound
and final scattered orbitals, and the “post” form that corresponds to an overlap
between the final bound and initial impact orbitals. We use the post form in
our codes, which is given by
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where V/(r) is given by eq. (2.19). Here, the prime denotes that the occupa-
tion numbers to be used in eq. (2.19) are the same values that were used in
determining the potential for the final continuum wave functions. This distinc-
tion is important because, for the current approach under consideration, we
sometimes use two different sets of occupation numbers in order to determine
the potential for the initial and final continuum wave functions. Of course,
if our original fractional-occupation-number, mean-configuration approach is
being used (see, for example, eq. (2.21)), then the initial and final configura-
tion occupation numbers are always the same and V/(r) = V,(r). The integral
in eq. (4.41) is to be added to the right-hand side of eq. (4.18) when A = 0. It
should be mentioned that, as stated in ref. [45], it is a minor approximation
to use V/(r) above instead of V/(r) + V,£(r), which is more generally correct.

For completeness, we also provide an expression for the prior form of the

overlap integral, which is given by
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An option to use either form of the one-electron exchange integral is available,
for example, in the Los Alamos National Laboratory excitation code ACE [46].
Some numerical comparisons using the post and prior forms in non-relativistic
Coulomb-Born and distorted-wave calculations are available in ref. [44].

4.5 Numerics of the free-electron radial functions

In this section, we discuss our method for obtaining the radial portion of the
free-electron wave functions from egs. (4.10) and (4.11). One could proceed in
a manner similar to that described for the bound-electron case in section 2.2
by solving for Q.. in eq. (4.10) and substituting the result into eq. (4.11).
The result would be a second-order differential equation for P,., analogous to
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eq. (2.14). However, a more convenient approach is to follow Hagelstein and
Jung [36] by transforming P, according to

Fen(r) Y aP(’r)P\sr{.(r)? (443)
where

ap(r)=— {e -Vir)+ -3—2-} : (4.44)

The result is a second-order differential equation of the form

d2

s Faelr) + w0 (r) Funlr) = 0, (4.45)
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ao(r) = %{e — V(). (4.46b)

In writing the second term on the right-hand side of eq. (4.46a), use has been
made of the relation w(x + 1) = (I + 1), in order to facilitate the discus-
sion in the upcoming section 4.7 concerning the quasi-relativistic approach.
The advantage of solving eq. (4.45), rather than the analog of eq. (2.14) for
continuum electrons, is that w(r) does not depend on F,.(r), in contrast to
the effective potential in eq. (2.14), which does depend on P..(r). For bound
orbitals, use of eq. (2.14), rather than the analog of egs. (4.45)—(4.46b), does
not tend to increase the difficulty in obtaining a solution because the bound
orbitals also enter the Dirac-Fock-Slater potential given by eqgs. (2.18)-(2.20)
which, in any event, must be determined self-consistently with the solution of
eq. (2.14).

Similar to the discussion in section 2.2, we separate out the nuclear contribu-
tion to the central potential, —2Z/r, and evaluate its contribution to dV/dr
and d?V/dr? analytically. Additionally, the radial mesh is started with the
same spacing given in eq. (2.17), and then doubling of this spacing occurs
after every 40 points. The doubling is terminated for the largest value of Ar
that satisfies

[

Ar <

i (4.47)
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where €, is the largest incident energy (in Rydbergs) being considered in the
calculations. When this largest value of Ar is reached, the mesh is continued
with this fixed spacing, typically for a total of 1800 points. Although only
every fourth mesh point is used in calculating the radial integrals in eqs. {4.17)
and (4.18), the use of eq. (4.47) ensures that a sufficient number of points are
available to resolve the oscillatory nature of the radial functions at large values
of r. For details on the appropriate normalization of these radial functions,
the reader is referred to the appendix of ref. [40].

4.6 Procedures for minimizing the number of radial integrals

In this section, a description is provided for various numerical schemes that are
used to accelerate the calculation of collision strengths. For most cases the time
required to perform collision-strength calculations is principally determined by
the number of radial wave functions and radial matrix elements or integrals.
Therefore, it is important to keep the number of these quantities that are
explicitly calculated to a minimum.

In our approach, as described previously (see the discussion surrounding egs. (2.21)
and (2.22)), we use a single set of fractional occupation numbers for each cat-
egory of calculations which is usually determined by iso-electronic sequence
and the type of n — n/ transition. This choice results in the use of the same
potential for determining the orbitals of all the electrons, bound and free,
which in turn produces just one set of bound wave functions for a particular
type of transition. While greatly reducing the number of continuum orbitals
that need to be computed, this procedure also helps to minimize the number
of radial integrals, particularly when treating complex ions. More specifically,
one can take advantage of the fact that the bound-electron contribution to the
Coulomb integrals appearing in eqs. (4.17) and (4.18) (as well as to the inte-
grals in eqs. (4.78) and (4.79), when the generalized Breit interaction is also
considered) is the same for all transitions in which the same orbital transition
nalajo. —m, 1 j, enters. In contrast, in some multi-configuration treatments, the
bound-electron radial functions are different if they belong to different config-
urations, even if they are described by the same quantum numbers n,l,j, or
npllj.. Since the number of times that a particular n,l,j, — n,l,j, transition
occurs can be very large for complex ions, this sort of consideration can save
a considerable amount of computing time.

Also, unlike the bound-electron contribution, the free-clectron contribution to
eqs. (4.17) and (4.18) differs for each pair of impact and scattered energies.
This issue will impede the calculations for complex ions, for which many en-
ergy levels are typically present, and the resulting number of fine-structure
transitions can be quite large. However, this concern can be addressed by
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realizing that, in our approach, the radial matrix elements or integrals as-
sociated with a given nyl,j, — n,l,j, transition are smooth functions of the
free-electron energy. Therefore, in order to minimize the number of integrals to
be calculated, we implemented the following procedure: in considering a given
class of transitions, results are calculated for a fixed set of scattered energies
beginning from near zero and spanning the range needed to obtain accurate
collisional rate coefficients, which are discussed in section 4.14. For each of
these scattered energies, we calculate results for three impact energies span-
ning the range of fine-structure transition energies for the class of transitions
being considered. Then we interpolate on these three sets of results to obtain
the desired quantity at the specific transition energy for each fine-structure
transition.

In version 1 of our collisional excitation code, the interpolation is done on
the reactance matrix elements between the pure states that appear on the
right-hand side of eq. (4.13). It should be mentioned that the results would
be virtually the same if the interpolation were instead made on the direct and
exchange integrals appearing in eqs. (4.15) and (4.16), according to the proce-
dure described in ref. [40]. In version 2 of our excitation code, the interpolation
is instead made on the Q* appearing in eq. (4.32). The interpolation scheme
that we employed is a non-linear, Lagrange-polynomial interpolation scheme
taken from the semi-relativistic program of Bottcher [47]. This interpolation
procedure has been shown to work quite well in both versions of our codes and
leads to a significant reduction in the number of radial integrals to be calcu-
lated for a given type of n—n/ transition. However, we should mention that, in
the treatment of An = 0 transitions, we usually found it necessary to increase
the number of impact-electron energies for which results were calculated for
each scattered-electron energy to a number larger than three.

In principle, one could also apply the above interpolation scheme for a fixed set
of impact energies, rather than a fixed set of scattered energies. Such an option
is available in our codes, but no data have been published using this method
because it is typically impossible to determine a single, compact set of impact-
electron energies that can be used to calculate the rate coefficients for all of
the fine-structure transitions that arise from a given type of n — n’ transition.
Alternatively, we note that many authors calculate collision strengths for a
fixed set of impact energies in threshold units, rather than absolute encrgies.
With such an approach the problem of choosing a practical set of impact
energies for calculating the rate coefficients is obviated. However, most of the
above methods for accelerating the calculations can not be used with this
approach, and the evaluations become more lengthy.

Finally, we mention that the contribution to the collision strength from those

radial integrals or matrix elements that are characterized by large angular
momentum values, associated with the incident- and scattered-electron partial
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waves, can be significant. This statement is particularly relevant for optically
allowed transitions, and especially those with An = 0. Some approximate
procedures for calculating this contribution will be discussed in section 4.9.

4.7  The quasi-relativistic approach applied to continuum electrons

As mentioned in section 2.3, we also implemented a quasi-relativistic (QR)
option in our electron-impact excitation codes that is analogous to the QR
approach described for the atomic structure calculations. As in the structure
case, the small component of the continuum-electron wave functions is ignored
in all expressions and the large component is treated as the entire radial func-
tion. Thus, in this approach, the second term in each of the square brackets
appearing in the radial integrals of egs. (4.17) and (4.18) is omitted. Further-
more, the large component of the bound-electron wave functions is normalized
according to eq. (2.23), while the large component of the continuum electron
wave functions is normalized according to eq. (A23) in the appendix of ref. [40].

Similar to the reasoning provided in section 2.3, the above QR approach saves
about 10% in computing time relative to the fully relativistic approach, which
is not a terribly significant amount. However, a much larger reduction in com-
puting time can be obtained by introducing an additional approximation for
the continuum electrons. Specifically, one can replace the s value associated
with a continuum-electron wave function with its j-averaged value of —1, so
that the large component no longer depends on j. (However, the dependence
on [ is retained.) This additional approximation is implemented by simply
setting kK = —1 in eq. (4.46a). The appropriate normalization for the result-
ing radial wave functions is given by eq. (A24) or (A25) in the appendix of
ref. [40]. The benefit of this approximation is a reduction in the number of
radial functions to be computed by approximately a factor of two and the
number of radial integrals by a factor of four, which leads to a reduction in
the overall computing time by a factor of 2.5.

In ref. [40], numerical examples were provided that showed the QR approach
with kK = —1 to be quite accurate. The success of this approximation is not
unexpected if one realizes that the collision strength in eq. (4.12) contains a
sum over the initial and final continuum-electron quantum numbers j and j’.
Thus, replacing x and ' by their j-averaged value of —1 when computing the
continuum wave functions is analogous to removing the double sum over j and
J" in the expression for the collision strength and replacing the summand with
a suitably averaged value.
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4.8 The relatwvistic plane-wave-Born approximation

In anticipation of the upcoming discussion of the Kummer transformation in
subsection 4.9.3, we present here the relativistic plane-wave-Born (RPWB)
approximation for electron-impact excitation. The treatment closely follows
that given in ref. [48], which, in turn, is based strongly on the non-relativistic
approach of Cowan [8]. For clarity, we divide the discussion into two subsec-
tions, with the first describing an analytic approach and the second describing
a partial-wave decomposition. The expressions presented in this section are
written with all fundamental constants intact, except where noted, in order
to facilitate the discussion of terms that arise from a relativistic treatment.

4.8.1  An analytic approach to the plane-wave-Born approximation

The goal of this subsection is to produce an analytic expression for the RPWB
excitation cross section between two fine-structure levels. We begin by consid-
ering an excitation transition between an initial magnetic sublevel |A;J, M)
and final sublevel |A}J/M]) of an atom or ion with N bound electrons. This
sublevel notation is identical to that used in connection with the collision
strength for transitions between fine-structure levels in eq. (4.6). However,
when dealing with the approximation of representing the continuum electrons
as plane waves, we also ignore antisymmetrization of the continuum function
with the target in the (N + 1)-electron system wave function. The RPWB
matrix element that characterizes an excitation transition between these two
sublevels can then be written in the form

N2
Huyo = (a] Y ————|a'}, (4.48)
qgl |rq — 7| |
where
a = |AJ M) e*T m), o = |ALTIM) e T m!) (4.49)

are direct products between the appropriate magnetic sublevel and a Dirac
plane wave. The values k and k' represent the wave vectors of the incident
and scattered plane waves, respectively, and the values mg and m/ represent
the corresponding spin magnetic quantum numbers. The concept of spin arises
in a natural, formal way when considering solutions of the Dirac equation, but
does not occur when considering the non-relativistic case involving solutions to
the Schrodinger equation. Of course, it is possible to manually insert spin wave
functions into the non-relativistic theory (see, for example, eq. (7) of ref. [30]),
but such an approach does not provide a fully relativistic description of spin,
as described below.
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While the matrix element in eq. (4.48) is similar to that appearing in eq. (4.6),
there are some important differences. For example, the summation in eq. (4.48)
needs to be carried out over only the NV, bound-electron coordinates because we
are dealing with product wave functions. Another important difference is that
the plane waves in eq. (4.49) are written analytically, while those appearing
in eq. (4.6) represent a single component of the partial-wave expansion of the
complete distorted-wave continuum wave functions. A partial-wave analysis
of the RPWB approach will be considered in the next subsection, but here
we continue with the analytic representation, which can be expressed in a
convenient closed form.

Employing the relationship between the momentum and wave vector of a
continuum electron, p = kk, the Dirac plane waves can be written in the form

3]

s
g _ tker X iker
Vi, (1) = Uk, mg)e™ = Ny etk (4.50)

Co-p N
E + mc?

where o are the usual 2x2 Pauli matrices and x™ are the eigenvectors of
o, [3]. A value of Ny = \/(E+m02)/2E, where £ = \/(pc)2+ (me?)? is
the total energy of the incident electron, has been chosen such that the plane
waves are orthonormal according to d’;,mswk,m; =UT(k,ms)U(k,m}) = 8 oms.
More generally, when k' # k, the relativistic plane waves satisfy the more
comprehensive orthonormality condition

(e mle®™ T ml) = 27) U (k, m,)U (K, m)é(k — k), (4.51)

8

where

Xvni) Cz<0'-p X'mslo..pl Xm/9>

Uk, m)U (K, m}) = NNy, | (xX™ - :
(k, m)U (K, my) kN | (E +mdc)(E' + mc?)

(4.52)

Eq. (4.52) represents the scalar product between the 4-vector amplitudes of the
incident and scattered plane waves, which has no analog in the non-relativistic
case. The term on the far right that contains the two dot products results
from the small components of the incident and scattered plane waves. It is
well known that the small component differs from the large component by a
factor of O(v/c), where v = pc?/ E is the speed of the electron. Therefore, in
the non-relativistic limit, the term containing the dot products can be ignored,
the normalization constants Ny, and N can be approximated by one and the
scalar product in eq. {(4.52) can be set to one, provided that m) = m,, or to
zero if m) # ms.
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The PWB and RPWRB approaches were considered in detail by Bethe in a
series of seminal articles [49-51]. This paradigm eventually became known as
the Bethe high-energy theory and a comprehensive review of this approach has
been written by Inokuti [52]. In the high-energy limit considered by Bethe,
the scattering is strongly peaked in the forward direction for which k¥’ ~ k. In
this case, the scalar product above can also be set to one due to the orthonor-
malization condition, again provided that m! = m; (otherwise the result is
zero). If the spin polarization of the incident and scattered electrons is not of
interest, then the resulting scalar product obtained after performing the ap-
propriate averaging and sums over the spin quantum numbers (see discussion
below) can also be approximated as one in both the non-relativistic and high-
energy limits. Approximations of this latter type have been used, for example,
in eq. (52.23) of ref. [61] and eq. (13) of ref. [53].

In the present discussion, we are indeed interested in scattering by unpolarized
electrons, as mentioned above. (A discussion of excitation by polarized elec-
trons will be provided in chapter 9.) However, we do not introduce the Bethe
approximation, k' &~ k, as our goal is to obtain an exact expression for the
RPWB collision strength, analogous to the RDW expression given in eq. (4.6)
for a transition between fine-structure levels, denoted by A, J; — AlJ]. In order
to obtain such a quantity, one must square the matrix element in eq. (4.48),
then perform the appropriate sums and averages over the magnetic quantum
numbers associated with the continuum electrons and the magnetic sublevels,
and finally integrate over the angle of the scattered electron. The details of
this procedure are provided in ref. [48] and additional details are also supplied
in subsection 9.1.3 of the present work, which deals with transitions between
magnetic sublevels. The resulting RPWB collision strength can be expressed
(in Rydberg atomic units) in the closed form

i kﬁ(i 3 ’
SZRPWB(AtJt o A;th) = T-JQRPWB(At,]t e A;J}‘)

Kmax
8

T AE /Frel(K)gf(AtJt — Ay K)d(InK) . (4.53)

Kmin

As it is written, eq. (4.53) is formally identical to the usual non-relativistic
PWB collision strength (see, for example, eq. (18.157) of ref. [8]), except for the
appearance of the relativistic correction factor, Frq(K), which will be discussed
below. Specifically, g; = 2J, + 1 is the statistical weight of the initial level,
AF is the transition energy in Rydbergs, & is the wave number of the incident
electron in atomic units and A is the magnitude of the momentum transfer
vector K = k' — k. The quantity gf(---; K) is the generalized oscillator
strength (GOS) between the two levels and is given by
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9f (Al — AL K)
_AE

== (2y+1 Al E Ju (K1 )C | AL, (4.54)

g=1

where j, is the spherical Bessel function of order v and Cf;’) is the renormal-
ized spherical harmonic of rank v. In this case, the subscript ¢ indicates that
the angular variables associated with position vector r, are the arguments
of the renormalized spherical harmonic (g should not be confused with the
component of C*) in this instance). This expression for the GOS also agrees
formally with the corresponding non-relativistic formula, but when expanded
in detail, the reduced matrix element must also contain the small component
of the target wave functions. When describing an electric dipole allowed tran-
sition, eq. (4.54) has the desired property of reducing to the length form of the
relativistic g f value (i.e. eq. (3.4), with substitutions from eqgs. (3.3), (3.14),
(3.17) and (3.27)) in the limit K — 0.

The limits of integration are obtained from a consideration of the excitation
process using relativistic kinematics. As in the non-relativistic case, these lim-
its are found by taking the minimum and maximum allowed values of the
magnitude of the momentum transfer vector K. With the incident-electron
kinetic energy given by € = E—mc?, and a similar expression for the scattered-
electron kinetic energy €', the limits of integration can be written in the form

1
Kpnz=k—k = = {\/C(E + 2me?) - \/e’(e’ -+ chz)] (4.55a)

1
Kunex = k+k = = {\/e(e + 2me?) + \/6’(6’ + 2mc22)} ,  (4.55b)

where use has been made of eq. (4.2). Of course, € can always be eliminated in
favor of € in the above expression, as well as in any other formulae appearing
in the subsequent discussion, via the energy conservation relationship, € =
AFE + €.

Lastly, we come to a discussion of the relativistic correction factor, Fra(K).
This factor arises from a product of the appropriately averaged scalar product
in eq. (4.52) and an extra kinematic factor [52] that takes into account the
relativistic relationship between the velocity and momentum, v = pc?/E, for
the incident and scattered electrons. The result is

EFE'
m2ch

i) = ( E5 ) vve | (14 5o - ) +;—Z<pxp'>2}

(et 2me?) (e + 2mc?) [1 (he)?[k* + (K')* — K?)]
(e 4+ 2me?) (¢ + 2mc?)

4m2ct
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(he)* (kK)?
(e + 2mc?)%(e + 2mc?)?

, (4.56)

where D = (E + mc?)(E' + mc?). With a small amount of manipulation, it
is easy to show that the first line of eq. (4.56) reduces to one in the non-
relativistic limit, since both p and p’ <« mc in that case. Furthermore, in the
Bethe high-energy case, p’ — p, and the first line of eq. (4.56) can again be
greatly simplified. In particular, the factor arising from the scalar product can
be set to one (as mentioned earlier in this subsection) and the only factor that
survives is the extra kinematic piece EE'/m?c* ~ E?/m?c*, which appears
regularly in the Bethe high-energy theory. However, in the present work, no
such approximations are made. Eq. (4.53) represents an exact expression for
the RPWB collision strength for an arbitrary transition between two fine-
structure levels. All that is required to evaluate this expression are numerical
values for the relativistic GOS and the associated transition energy, both of
which are readily obtained from our atomic structure code, followed by a
numerical integration over the appropriate range of K values.

4.8.2 A partial-wave approach to the plane-wave-Born approzimation

In this subsection, we provide the details for calculating the RPWB collision
strength using a partial-wave decomposition. The treatment is essentially the
same as that used to compute RDW collision strengths in the earlier part of
this chapter. For example, eqs. (4.6) and (4.8) can also be used to describe
the partial-wave expansion of the RPWB collision strength, provided that
allowance is made for the use of product wave functions to describe the (N+1)-
electron system, rather than fully antisymmetrized wave functions, such as
the one appearing in eq. (4.8). The main difference between the RPWB and
RDW approaches resides in the choice of radial functions associated with each
partial wave. In the RPWB case, the radial functions can be expressed in an
analytic form, while the RDW radial functions must be solved for numerically.
This analyticity arises from the fact that the exponential in eq. (4.50) can be
expanded according to the well-known expression

etk — fj(zy +1) 1%, (kr)[C¥ (k) - V) (#)], (4.57)

v=0

where 7, is the spherical Bessel function of order v. Alternatively, this analytic
behavior could also have been deduced by setting the potential, V' (r), to zero in
eqs. (4.10) and (4.11). The resulting second-order differential equation for P,
or Q¢ is the radial equation that one obtains when the Helmholtz equation is
expressed in spherical coordinates. The solutions of this equation are precisely
the spherical Bessel functions. Thus, the Dirac spinors that appear in eq. (4.9)
have the same functional form for both the RPWB and RDW cases, but the
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RPWB functions can be written in the more explicit form

. 1 pm(T) Xrm 1 k”]l(kr) Xk
WRPWB oy . " , (4.58)

exm rl r . .
1Qek () X—rm E%%?SkaJZ'(kr) X ~rm

in accordance with eq. (5.12) of Rose [3]. In eq. (4.58) P, and Q. are the large
and small radial components of the RPWRB spinor,  is the usual relativistic
quantum number that represents a particular pair of [ and j values, S, = «/|&|
is the sign of x and the symbol [ = [ — S, differs from the value of [ by 1.

Combining the above results, a partial-wave expansion of the RPWB collision
strength can be evaluated in terms of the reactance matrix, according to the
relationship displayed in eq. (4.12). Therefore, the same computer code that
is used to calculate RDW collision strengths from a numerically determined
set of P, and Q.. functions can also be used to calculate RPWRB collision
strengths via eq. (4.58) provided that: (1) only the “direct” Slater integrals
are retained for the RPWB calculation and (2) the normalization for the plane
waves is chosen such that they are consistent with the asymptotic form of the
distorted waves. Condition (1) is necessary because, as mentioned previously,
the total (N + 1)-electron wave functions contain the plane-wave contribution
in product form, rather than antisymmetrized form. Thus, the direct Slater
integrals appearing in eq. (4.17) are retained, while the exchange integrals in
eq. (4.18) are ignored for the RPWB calculation. Condition (2) is required
so that the same mathematical expression for the collision strength can be
applied to both the RDW and RPWB calculations. For example, if the energy
normalization is chosen according to eq. (A1) of ref. [40], then the asymptotic
form of the continuum wave functions, given by eq. (A7) of that same reference,
determines the appropriate normalization for the corresponding plane waves.
The result is that the plane-wave spinor on the right-hand side of eq. (4.58)
must be multiplied by the factor

e\ 172
Cple) = (-) , (4.59)
where £ is in atomic units and € is in Rydbergs.

4.9 The top-up: approxtmate treatments of the large angular momentum,
partial-wave contribution

Upon choosing one of the previously described numerical procedures to com-
pute the reactance matrix, the collision strength is then obtained by evaluating
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the summations in eq. (4.12). However, the inner quadruple sum in this expres-
sion contains an infinite number of terms with different free-electron orbital
quantum numbers. Each term, denoted by a pair of [ and j values, is usually
called a partial-wave contribution. (It is not necessary to consider separately
the infinite pairs of I’ and j' associated with the scattered electron because
the allowed values are determined by selection rules imposed on them and
on [, 7, the expansion index A appearing in eq. (2.12), and the corresponding
quantum numbers associated with the active bound electrons.) Obviously, one
can not include all of the infinite number of partial-wave contributions in a
calculation. In practice, the summation is computed numerically up to some
finite maximum value for [ and j, and then a procedure must be adopted to
estimate the remaining high partial-wave contributions. This remaining con-
tribution, sometimes referred to as the “top-up” in the literature, can be a
significant portion of the total sum, especially for high impact energies and
for optically allowed transitions with An = 0. In this section, we describe the
methods that have been used in our collision codes to compute the top-up
contribution. These methods include the Coulomb-Bethe approximation, the
ratio approximation and the Kummer transformation.

4.9.1  Coulomb-Bethe approximation for optically allowed transitions

The Coulomb-Bethe (CBe) approximation [54] is widely used to obtain the
high partial-wave contribution for the optically allowed transitions. In this
method one makes the following approximations: (1) neglect exchange; (2)
approximate the electrostatic interaction between the active bound electron
and the free electron with the replacement

1 o o
RV - z/\: ?";\,i] CY(iy) - CV(#ns1)
r 2 ~
= (TNN])QCO)(TN) cCW (), (4.60)
+1

where N and N + 1 are used in this context to label the coordinates of the
active bound electron and the free electron, respectively; and (3) use pure

Coulomb wave functions to represent the free electron. These approximations
should be valid for large angular momenta of the free electron.

A detailed derivation of the relativistic Coulomb-Bethe (RCBe) approxima-
tion will be given in subsection 9.1.2, which deals with transitions between

magnetic sublevels. Here, we simply write down the form that is applicable
for transitions between fine-structure levels, i.e. eq. (14) in [55]

QR’CBe(AtJt _ A;,];) = %S(Atjs - A;J;)
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x 3 Pelg, V)G | CM | 5 (1.61)
zﬁj’
where S(A,J; — ALJ]) is the line strength given by eq. (3.14) and I is the
relativistic Coulomb integral

a0

1
1elj ety = [
0

r2

(Paj(r) Popir(r) + Qe (r)Qeye (r)] dr. (4.62)

In general, one evaluates the partial-wave contributions to the distorted-wave
collision strength, given by eq. (4.12), up to some reasonably large value
[ = lg — 1 (where ly typically ranges from 10-70, depending on the type of
transition and the impact energy), and designates the result as Qfp ™. Then,
the remaining high partial-wave contributions up to { = oo are evaluated in
one of two ways. Since eq. (4.61) can not be further reduced to a simpler
form, the first method involves making a further approximation by removing
the small component ¢ and the j dependence in eq. (4.62). Specifically, the
non-relativistic form of the Coulomb integral, I{el, €'l), is used, and the double
sum over j,j’ can be simplified according to

}_;U I CO ) =20 W 12, (1.63)
where
(LI eM || ry = ()17, (1.64)

Combining these results yields a collision strength given by

QPRCBO(ALJL o A,t‘]tf) - E‘GS(A{Jt - Alt']tl) ZZ> 12(€l7 C’l’), (465)

LI

which is identical in form to the well-known, non-relativistic version of the
CBe approximation [54]. However, in our case, the line strength is computed

in a fully relativistic manner, while the continuum electrons are treated in a
non-relativistic manner. Thus, we refer to eq. (4.65) as the partial-relativistic
Coulomb-Bethe (PRCBe) approximation in this work. The symbol [+, in eqs. (4.64)
and (4.65) is the greater of [ and I’, and the plus sign applies if [ = V' + 1,
while the minus sign applies if | =1’ — 1 in eq. (4.64). Combining results, the
complete RDW collision strength can be written as

QRDW  QRDW | PRCBe (4.66)
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PRCBe

oo 5 18 given by

where the top-up contribution, )

()PRCBe _ 5N, — AL o> L (el €l). (4.67)

lg,00
Il ==tk

The double summations in eq. (4.67) can be evaluated using the convenient
expression given by eq. (10) of Burgess [56], which, in the present notation,
becomes

> Z I, I?(el, €1 =

l=lg U/ =11

{[2(630,6;(10 . 1)) . I2(€(Zo _ 1)’6110” 1+ (kl()/z)l

bol(k/2)* — (K'/2)%)

(4.68)

where

z=7Z—-N, (4.69)

and k = /€ and K’ = /¢ are the non-relativistic wave numbers of the impact
and scattered electrons, respectively.

In most of our calculations of collision strengths, we have used eq. (4.66) to ob-
tain the complete RDW results. The data calculated should be quite accurate
for An > 0 transitions and for most transitions with An = 0. However, after
obtaining the more precise, fully relativistic expression in eq. (4.61), and us-
ing it to verify the total collision strengths obtained from eq. (4.66), we found
some non-trivial inaccuracies for certain optically allowed transitions. These
problematic cases typically occurred when the impact energies were very high,
especially for high-Z ions, for which relativistic effects were very important.

Therefore, we added an option to use a second method, which will be described
in more detail in subsection 9.1.2 when dealing with magnetic sublevel tran-
sitions, to obtain the top-up contribution for the total collision strength. In
this method, after obtaining the distorted-wave contributions up to [ = [y — 1,
higher partial-wave contributions from [ = [, to some very high value { = [§—1
are computed using the fully relativistic expression in eq. (4.61). This contri-
bution can be written as

RCBe __ 8¢ ] I
on,zg;—l - §5(A5Jt - At']t)
i5—1

x 3 Peg, el et . (4.70)

I=lg U.,7.5°
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With { sufficiently large, up to 200 in most cases, the ratio of successive
partial-wave contributions becomes very nearly constant. Assuming this ratio
is exactly constant, and equal to some value C for a given transition and
incident (or scattered) electron energy, the properties of the geometric series
can be invoked to obtain a closed form result. Under this assumption, the
contribution of all partial waves with [ > [} can be written as

gz?ATIO . QRCBE _._._,g__. (4 71 )

*

0190 16—1 1 o C 3

where Qg@f@ is the partial-wave, relativistic Coulomb-Bethe value evaluated
at { =[5 — 1 (with I, j and j taking on all allowed in eq. (4.70)). Hence, the
complete RDW collision strength computed with the second top-up method
is given by

QW = Q%) + QRGP + RO (4.72)
It is noted that values of the incident-electron orbital quantum number [
have been used to label the approximate top-up contributions in the above
equations. One could alternatively reformulate these equations such that the
relevant label was the scattered-electron orbital quantum number I”. For ex-
ample, the quadruple summation in eq. (4.70) can be reordered so that the
scattered-electron orbital quantum number [’ appears as the index of the out-
ermost sum. If an appropriate range of values is prescribed for I/, then the
numerical values of the RCBe top-up contribution computed in this way are
virtually the same as the results obtained from eq. (4.70). In fact, the latter
approach is used predominantly in our production calculations, since collision
strengths are computed for the final, or scattered, electron energies, instead
of the incident-electron energies.

4.9.2  Ratio approximation for forbidden transitions
For forbidden transitions, the partial-wave contributions rapidly decrease with
[ and j and the ratio
RDW /yRDW .
C =02 /7 (1.73)
becomes very small and almost constant. Similar to the second method in
the previous discussion, the top-up contribution can be written in closed form

according to the properties of the geometric series, and the complete collision
strength is approximated by
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i C
OV QFY + Y (4.74)

This method is usually called the ratio, or geometric progression, approxi-
mation. In using this method to obtain the complete collision strength, one
still needs to include the RDW partial-wave contributions up to some sufli-
ciently large value, ly — 1, especially for An = 0 transitions and high impact
cnergies, so that C is small and almost constant. It is noted that for some
transitions that can occur only through exchange processes, the partial-wave
contributions associated with large I values are negligible. In this case, the
ratio approximation is typically not required.

4.9.3 The Kummer transformation

A third method for obtaining the top-up contribution to the RDW collision
strength is to approximate this high-/ portion with the corresponding RPWB
result. This quantity is readily obtained from the expressions provided in sec-
tion 4.8. As in the previous two subsections, the distorted-wave contributions
to the RDW collision strength are summed up to a value of [ = Iy — 1. The
same type of summation can be carried out for the RPWB partial-wave ex-
pansion described in subsection 4.8.2 to obtain Q&g}\ﬁ’?. This latter quantity is
then subtracted from the analytic expression for the RPWB collision strength
given by eq. (4.53) of subsection 4.8.1 to obtain the RPWB top-up contribu-
tion. We refer to this top-up prescription as the Kummer transformation [57]
and the resulting RDW collision strength can be expressed in mathematical
form according to

QRDW  QRDW | (RPWB _ ORPWE) (4.75)

We note that this approach has several advantages over the two previously de-
scribed methods. For example, the Kummer transformation is not limited to a
specific type of transition, such as dipole allowed transitions. It can be applied
to any transition that is described by a non-zero RPWB collision strength.
Also, the Kummer transformation has the desirable property of producing
RDW collision strengths that naturally exhibit the correct RPWB behavior
as the incident-electron energy approaches the appropriate high-energy limit.
A disadvantage of this approach is that it provides a less accurate approxi-
mation for the top-up contribution at low impact energies. In this regime, the
nuclear and electrostatic interactions have a stronger effect on the continuum
electrons and, therefore, the high-I partial waves are more accurately repre-
sented by Coulomb waves rather than plane waves. This behavior suggests
that, at least for optically allowed transitions, a combined approach that em-
ploys either the PRCBE or RCBe approximation at low impact energies and
the Kummer transformation at higher energies would provide more accurate
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values for the top-up contribution.

To clarify the above discussion, we present in figure 1 various calculations of
the RDW collision strength for the (1s2s); — (1s2py/;); transition in He-
like iron. These results were originally presented in ref. [48] and provide a
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Fig. 1. RDW collision strengths obtained via different top-up methods as a func-
tion of impact energy for the (1s2s); — (1s2p;/3)1 transition in He-like iron; solid
curve: Kummer (KUM) top-up from eq. (4.75); dotted curve: partial-relativistic,
Coulomb-Bethe (PRCBe) top-up from eq. (4.66); dot-dashed curve: partial-rela-
tivistic, Kummer (PRKUM) top-up [58]. The RPWB collision strength (dashed
curve) obtained from eq. (4.53) is also provided for reference.

comparison between three separate methods for computing the top-up contri-
bution. The Kummer (KUM) and PRCBe approximations have been discussed
previously. The PRKUM curve represents a partial-relativistic Kummer ap-
proximation to calculating the top-up contribution. We have not discussed this
approach here, but it is described in ref. [58]. By analogy with the PRCBe
approach, the PRKUM approach is based on the fully relativistic Kummer
transformation described in this subsection, but the additional approximation
is made to treat the (plane-wave) continuum electrons in a non-relativistic
manner, while the bound electrons are handled in a fully relativistic manner.
(In ref. [48], the notation QRCBe and QRKUM appears in the legend of fig-
ure 1, instead of PRCBe and PRKUM. In the present work, we use “PR” rather
than “QR” to avoid confusion with the quasi-relativistic approach discussed
previously in chapters 3 and 4.) In the figure, one observes that the RDW
result computed with the Kummer top-up merges nicely with the RPWB
curve as the impact energy increases. On the other hand, there is a widening
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divergence between this Kummer result and the two partial-relativistic calcu-
lations that starts at an energy of ~5 eV. At the lower impact energies, the
RPWB collision strength is clearly too high due to the use of plane waves in
a region where the distortion potential plays an important role. As expected,
the KUM and PRKUM curves merge into each other as the impact energy
decreases because the relativistic effects on the continuum electrons become
less important. However, both of those curves are somewhat higher than the
PRCBe curve, which suggests that a Coulomb-Bethe approach to calculat-
ing the top-up contribution might be more appropriate at these lower impact
energies.

4.10  An option to include the generalized Breit interaction in the excitation
scattering matriz elements

As described in section 2.5, we included the generalized Breit interaction in
our structure calculations in order to improve the accuracy of our results for
high-Z ions. Similar considerations led us to also include this interaction in
our electron-impact excitation calculations, initially using the non-factorized
approach [59] and eventually developing the factorization approach [60]. A for-
mal derivation that includes this interaction in the scattering matrix elements
begins with the substitution

2 2 B (4.76)

Tqi Tqi

in the matrix elements appearing in eq. (4.6) and the radial integrals appear-
ing in eqgs. (4.15) and (4.16). Here, B(q,i) represents the generalized Breit
interaction given by eq. (2.27). In practice, an operator that is slightly more
complicated than B(g,i) is used in our approach to atomic structure and
electron-impact excitation. Instead of using B(g, ¢), we replace it by the sum
of two similar terms that differ only in their value of w. It is convenient to
describe this operator, denoted by the symbol By, by considering its matrix
element between pairs of Dirac spinors, i.e. the bound and continuum wave
functions appearing in egs. (2.6) and (4.9), respectively. If we let |aq) represent
the spinor |a) evaluated at coordinate ¢, then such a matrix element can be
written in the shorthand notation

(aghi| Byi

oty = (aghsl 5 Boea(0.9) + Bugy (@, i) Yeuds) (4.77)

where the wavenumbers w,, and wgy, denote the exchange of a virtual photon
between two different pairs of spinors. For example, wq, = |e. — €,|/2¢, where
¢ is the speed of light and e, €, are the one-electron energies (in Rydbergs)
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associated with spinors |¢), |a), respectively. The operator B, (g,%) is the same
as B(q,7) in eq. (2.27), with the w dependence stated explicitly.

The advantage in using By; is that it is valid for off-diagonal matrix elements as
well as diagonal elements. On the other hand, B(g, ) is valid only for diagonal
clements and is equivalent to By when we, = wyq. Mittleman [61] derived this
new operator by using a succession of contact transformations to decouple the
electron and radiation fields and it is claimed to be correct to O(a?) [19]. Use
of By will also take into account part of the fourth-order effects (two-photon
exchange) [21]. In this work, however, only single-photon exchange is included
in its entirety.

Upon implementing the substitutions that are implied by egs. (4.76) and
(4.77), the derivation proceeds in a manner very similar to that given for
the Coulomb interaction in section 4.2 (non-factorized method) or section 4.3
(factorization method). The next two subsections are devoted to the treatment
of these approaches.

4.10.1 Non-factorized method including the generalized Breit interaction

The non-factorized approach uses the angular package of McKenzie, Grant
and Norrington [11] when evaluating the Breit contribution to the right-hand
side of eq. (4.6), after the substitutions given by eqs. (4.76) and (4.77) have
been performed. There are also two types of direct radial integrals that arise,
analogous to the Slater integrals appearing in eq. (4.17). Using the notation of
Grant and Pyper [19] and Grant and McKenzie [20], we write these integrals
as

[o SREe »]
“(ac,bd) = //pm 1) [ Vo (r1, ros wae)
00

+Vo (r1, 723 wea) | pea(r2) dry dry (4.78)
and
oG oG
(ac, bd) //pac 1) [ Wit ke 1,6(71, 725 Wae)
00

Witk x(r1, T2 Wea ) ppa(r2) dry dre, (4.79)

where the density p..(r) is given by

pac(r) = Pa(T)QC(T) (480)
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with a similar expression for py(r). For the process of excitation considered
here, orbitals @ and ¢ represent bound electrons while orbitals b and d represent
free electrons. So, for example, a = nyl.j, and b = €lj, in the notation of
eq. (4.17). For the structure calculations discussed in section 2.5, all four
indices represent bound orbitals. A corresponding set of exchange integrals,
analogous to those appearing in eq. (4.18), can be obtained by making the
exchange ¢ < d in the above equations.

The wavenumbers appearing in eqs. (4.78) and (4.79) are given by w,, =
lez — €,|/2¢, where c is the speed of light, and e, and ¢, are the one-electron
spinor energies (in Rydbergs) associated with radial functions (P, @,) and
(P, Qy), respectively. The V and W functions are given by

Vi(ry, royw) = [Vwj (wro)n, (wrs) , r</rs = min /max(ry, ro) (4.81)

and

h—1ka1k (71,72 W)

. k 2, k-1
[kKlw k-1 (wri)nes (wre) + %;‘%@ L < T2 (4.82)
(Kjwng—1(wry) jey1 (wre), Ty > T2

where j, and n, are spherical Bessel functions of the first and second kind,
respectively, and [z] = (22 + 1) .

Note, however, that the integrals appearing in eqs. (4.78) and (4.79) have
no imaginary part, and yet the generalized Breit interaction in eq. (2.27) is
complex. In fact, there is an additional set of integrals, very similar to RY
and S*, to be considered. Expressions for these additional integrals can be
obtained by retaining all terms in eqgs. (4.81) and (4.82) that contain spherical
Bessel functions of the second kind, and then making the simple substitution
n, — —ij, in those terms. The explanation for this substitution becomes
apparent when considering the expansion [62]

%ng_:w = iw i}[’/] Jo(wro) [Julwrs) + iny,(wrs)]

<[CW(E) - CW(£2)]. (4.83)

In atomic structure calculations, this imaginary part of the interaction is usu-
ally ignored when calculating energies and is attributed to the lifetime of a
bound state [2]. However, the collision strength in eq. (4.6) allows for a scat-
tering interaction that is complex and, consequently, these additional integrals
should be considered for the process of excitation. The effect of this imagi-
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nary contribution on the collision strength is typically small, as demonstrated
below.

We are also interested in collision strengths that are computed with the origi-
nal Breit interaction, eq. (2.28), which is accurate up to intermediate-Z values,
but breaks down for sufficiently high-Z ions, as will be seen shortly. As men-
tioned in section 2.5, this interaction is the w — 0 limit of the generalized
Breit interaction. Therefore, the angular algebra is basically unchanged from
that described above, but the V and W functions must be modified according
to

V.(ri,mw) — ?“i/r;“ (4.84)
and

Wyt vpru(ry, roiw) — —;21-[1/} [Ty 1(r1,72) = Uppa(r1,72)), (4.85)
where

O s

The resulting radial integrals are considerably simpler than those associated
with the generalized Breit interaction and, therefore, require significantly less
computing time to evaluate. Also, the Breit interaction has the additional
simplification that it is independent of w and, consequently, does not need to
be split into two terms, as was done in eq. (4.77) for the generalized Breit
interaction.

As far as actual calculations are concerned, it appears that Walker was the
first person to compute detailed excitation cross sections that included the
Breit and Mgller interactions [63]. These results concerned hydrogenic ions and
comparisons of our RDW (Z*-scaled) cross sections with those provided by
Walker displayed excellent agreement between the two sets of calculations [59].
Subsequent to Walker, hydrogenic results that included the Mgller interaction
were also computed by Pindzola, Moores and coworkers [64,65], providing us
with additional opportunities to test our RDW calculations. Once again, the
agreement was found to be excellent when comparing collision strengths at
the appropriate impact energies [59].

However, the goal of our approach, with respect to the generalized Breit in-
teraction, was to produce a completely general capability that would include
this interaction in the excitation scattering matrix elements for an arbitrary
number of bound electrons. Therefore, we also provided collision strengths for
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Table 5

Collision strengths for the six n = 1 to n = 2 transitions from the ground state of
He-like ions with Z = 26, 54 and 92. The final scattered energies are 70 eV, 300 eV
and 1000 eV, respectively. z[y] = zx 10Y.

Transition C B GB GBI
Z=26
152 - (1s2s)g  7.687[-4] 8.102(-4] 8.101[-4] 8.101[-4]
1s? - (1s2s);  3.626[-4] 3.600[-4] 3.604[-4] 3.604[-4]
1s% - (1s2p*)o  2.267[-4] 2.108[-4] 2.108-4] 2.108[-4]
1s? - (1s2p*); 8.079[-4] 8.140[-4] 8.143[-4] 8.143[-4]
1s? - (1s2p);  2.122[-3] 2.077}-3] 2.077[-3] 2.077-3]
1s? - (1s2p),  1.065[-3] 1.082[-3] 1.083[-3] 1.083[-3]
Z =54
1s% - (1s2s)g  2.260[-4] 2.777[-4] 2.772[-4] 2.773[-4]
1s? - (1s2s);  9.931-5] 1.046[-4] 1.062]-4] 1.066[-4]
1s? - (1s2p*)o  6.211[-5] 4.468[-5] 4.474[5] 4.477[-5]
1s® - (1s2p*);  2.854[-4] 3.016[-4] 3.055[-4] 3.058[-4]
1s? - (1s2p);  4.113[-4] 3.769[-4] 3.798[-4] 3.804[-4]
1s? - (1s2p)s  2.332[-4] 2.548]-4] 2.579[-4] 2.580[-4]
Z=92

1s? - (1s2s)p  1.503[-4] 2.321[-
1s? - (1s2s);  5.531[-5]

1s? - (1s2p*)o  3.383[-5] 1.198]-
1s? - (1s2p*);  1.194]

1s? - (1s2p);  1.156[-4]

1s? - (1s2p)2  6.474[-5] 9.128]-

1.041[-4
1.009}-4

He-like and Li-like ions in ref. [59]. A sample of these results are provided in
table 5 for the six n = 1 to n = 2 collision strengths from the ground state of
He-like ions, with Z = 26, 54 and 92, and for near-threshold impact energies.
The levels appearing in this table are described with the same notation that
was used in table 1. The four columns of data in this table display collision
strengths that were calculated with the Coulomb interaction (labeled C), with
inclusion of the Breit interaction (labeled B), with inclusion of the real part
of the generalized Breit interaction (labeled GB) and with inclusion of the
real+imaginary parts of the generalized Breit interaction (labeled GBI).

The He-like data presented in table 5 exhibit the same trends that were ob-
served for the H-like and Li-like data that were also provided in ref. [59]. The
obvious main conclusion is that inclusion of the generalized Breit interaction
has a significant impact on the collision strengths and, as expected, the im-
portance of this interaction increases with Z. For example, the GBI results are
greater than the Coulomb-only results by more than 50% for Z = 92 for a ma-
jority of the transitions. Another important conclusion is that the imaginary
portion of the generalized Breit interaction does not produce a large contri-
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bution to the collision strength, even for high-Z ions. For example, neglect of
the imaginary part produces a maximum difference of 4.5% when comparing
the GB and GBI data for Z = 92. This finding is of practical importance
because the majority of the time required to calculate the collision strengths
is taken up by the evaluation of the Breit integrals. Exclusion of the imaginary
integrals reduces the total computing time by almost a factor of two. As for
collision strengths computed with the original Breit interaction, which results
from taking the w = 0 limit of the generalized Breit interaction, these results
are found to be accurate for ions with intermediate-Z values, such as Z = 54.
However, appreciable differences, on the order of 10%, are encountered when
comparing the Breit-interaction (B) data with the GB data for Z = 92.

An unexpected conclusion that resulted from this work was that the inclusion
of the generalized Breit interaction in the scattering matrix elements appeared
to have a somewhat larger effect on collision strengths associated with more
complex ions than for hydrogenic ions. For example, the near-threshold results
for the 1s-2p* and 1s-2p transitions in H-like ions with Z = 54 were found to
be affected by less than 1%. On the other hand, the collision strengths for one
“of the four analogous transitions in He-like ions with this same Z value was
decreased by 28% and those associated with the remaining transitions were
changed by +7% and 11%. Of course, as one would expect, results obtained
by summing these He-like data over the J values associated with the final
levels exhibited decreased sensitivity to the various forms of the Breit inter-
action, very similar to the observed behavior for the corresponding results for
hydrogenic ions. The explanation of this behavior is that the various forms of
the Breit interaction do affect certain individual matrix elements appreciably,
even for rather low-Z values, but the effect is largely canceled upon summa-
tion over a significant number of quantum numbers. For additional details
concerning the effect of the various forms of the Breit interaction on collision
strength calculations, the reader should consult ref. [59].

A comparison of our excitation data with experimental results for xenon
(Z = 54) ions is also available. A comparison between our calculated cross
sections and EBIT measurements performed at Lawrence Livermore National
Laboratory (LLNL) was carried out by Beiersdorfer’s group [66] for H-like
and He-like xenon ions. For this moderately heavy element, the generalized
Breit interaction was again found to exhibit a strong effect for certain transi-
tions. Here, we reproduce tabular data from ref. [66] as table 6, in which three
sets of distorted-wave results are compared with each other and against the
EBIT-measured values for an incident energy of 112 keV, which is considerably
greater than the energies considered in table 5. One set of the distorted-wave
calculations was made in the non-relativistic approximation (our structure and
collisional excitation codes include a non-relativistic option), while two of the
data sets represent our relativistic (RDW) calculations. Furthermore, one of
those relativistic calculations also included the generalized Breit interaction
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in obtaining the scattering matrix elements.

Table 6

Comparison between measured {ogg) and calculated electron-impact excitation
cross sections for H-like and He-like xenon ions at an excitation energy of 112 keV.
The calculated cross sections produced by our distorted-wave code are: non-
relativistic {denoted by onen-rel), relativistic {(denoted by oyel) and relativistic plus
the generalized Breit interaction {denoted by oggr). All cross sections are provided
in barns.

Line OEE Onon—rel  Orel  OGBI
Ly-c 86+ 15 8.256 8.109
Ly-ans 82+ 34 6.541 6.787

w 7.0 +£ 2.0 2164 1745 8.364
y 39+ 15 0.127 7313 3.842

z 1.08 £ 048 0123 0.172 0.152

In this table, cross sections are presented for three H-like transitions and three
He-like transitions for xenon ions. The three H-like transitions,

2p 2P3/2 — 1s or 2])3/2 - 181/2,
2p°Pijg — 1Is or 2pijs — lsiye,
2s 281/2 — 1s or 2815 — 1sya,

are denoted by Ly-ay, Ly-ay and Ly-ajz, respectively. (We note that the Ly-as
and Ly-«y lines appear as overlapping features in the EBIT experiment.) The
three He-like transitions,

2P, — 1'Sy or (1s2p); — (1s?)y,
2%P, — 1'Sy or (1s2p*); — (1s%)g,
278, — 1Sy or (1s2s); — (1s?),.

are typically referred to as the w, v and z lines, respectively. The importance
of relativistic effects for these cross sections is obvious when comparing the
non-relativistic and relativistic data. For example, the relativistic cross section
for the y line is more than a factor of 50 larger than the corresponding non-
relativistic value.

In addition, the combination of a large incident energy for the continuum
electron scattering off relativistic bound electrons produces a significant con-
tribution from the generalized Breit interaction for some of the transitions.
The relativistic cross section for the y line is reduced by about a factor of two
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in this case, bringing the calculated value in excellent agreement with the ex-
perimental value. A similar, dramatic improvement in the agreement between
theory and experiment is also observed for the w line when the cross sections
are computed with the generalized Breit interaction. We note that the gen-
eralized Breit interaction affects the cross sections for these two transitions
much more strongly for these conditions, in contrast to the trends observed
when comparing C versus GBI results for the same two transitions in table 5.
This difference underscores the sensitivity of the cross section to the general-
ized Breit interaction as a function of impact energy. In table 5, the incident
energy was very close to the threshold value for these n = 1 to n = 2 transi-
tions, while in table 6 the incident energy was approximately four times the
threshold value. Returning to the remaining transitions in table 6, all of the
calculations for the z cross section display rather poor agreement with ex-
periment, while both sets of relativistic calculations of the hydrogenic, Ly-«
data agree reasonably well with each other and with experiment. A possible
explanation for this discrepancy is due to the inclusion of cascade effects in
the experimental data. The z line is a result of emission from the lowest lying,
metastable n = 2 level, which is the most sensitive to cascade effects. As noted
in the previous analysis of the data in table 5, the hydrogenic cross sections in
table 6 display considerably less sensitivity to the generalized Breit interaction
than the He-like results.

4.10.2  Factorization method including the generalized Breit interaction

The motivation for adapting the factorization method described in section 4.3
to include the generalized Breit interaction was to further explore the effects
of this interaction in more complex ions. An increase in the number of bound
electrons in the target ion typically leads to a corresponding increase in the
amount of angular coupling that is required to describe the levels involved
in a given transition. Another motivation was that the factorization method
provides an efficient means to compute large amounts of collision-strength
data that are required for plasma modeling efforts.

The method for including the generalized Breit interaction in the factorization
method is relatively straightforward. The details have been provided in ref. [60]
and only a summary is given here. When the generalized Breit interaction is
included in the scattering matrix elements, the resulting collision strength can
be expressed in the same compact form given by eq. (4.31). The expression for
the B* coeflicients remains unchanged, but the expression for Q* in eq. (4.32)
must be replaced with

A PR 7T : Py
Q" (Naladas nolodes Narlay Jar Mg, Loy Joy)
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=" { Re[P(nolojacls; nl,ie 3]

n
53’

xRe[P Mngylay Jay €17 Wy, Lo, Ja, €1 7")]
+Im[PM(nglyjacliz:nlll 5 €15)]

(L aja

XImI P (ng, Loy Jay €ldsmly Lo, G0, €15}, (4.87)

where Re[- -] and Im][- - -] indicate that the real and imaginary parts of their
respective arguments are to be taken. In the following discussion, we consider
the complex interaction that appears in eq. (4.76). The generalization that is
necessary to consider the more complicated interaction in eq. (4.77) is straight-
forward. The real portion of P* can be written in a form that is very similar
to the Coulomb-only expression in eq. (4.33). Namely,

Re[P* (nglajaels; nhllgle'l i)
= (22 + )72 ENCVNR) GICW |17 (DY + DY + D)
+Z DM (2A+ 1)Y2 (G [|CT15) (11C7]42)

< {3‘% 5T } (E™ + BT + E), (4.88)
JoJa A

where the arguments of the D and F integrals have been suppressed for conve-
nience. The D* and E™ integrals are identical to those appearing in eq. (4.33)
for the Coulomb-only case (see eqgs. (4.17) and (4.18) for explicit expressions),
while the subscripted integrals arise from the generalized Breit interaction.
Here, we present expressions for all of the direct integrals (with their respec-
tive arguments) in a single, consistent notation according to

Dk(narcam;n ki K')
= / / dTldTQ 7‘% 'I"% [Ra’+1(T1)Raf’+1 (T'l) + Ra,—l(rl)Ra’,—— 1(7'1)]
00

A

X_A_f'_T[Rg,+1(T2)R€’,+1(T2) + Re—1(r2) Rer _1(12)], (4.89)

>

D (nakacr;nlklc K

A1
Z voa Y, (—BBVEY 4(Kakip; MK, K, V) EY 5 (K, &' Mk, &', V)
B.3=%1
X//d'l‘ld?'g rir? Vo(r1,r9;w) Ry g(r1) Rar,— (1) Re e (12) Rer e (12) (4.90)
)
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and

D3 (ngkeek; nik, € K)

ZW,\{ S (=BB) B (ke Ky NL(Kq, 5, A — 1)

B,3=+1
X EXEH(k, &'y NIk, & A + 1)

00 00
2 2 .
x//drldrg riry Waziapia (11, ro;w)
00

X Ra,ﬂ(Tl)Ra’,fﬂ(Tl)Re,ﬁ’(TZ)RE’,—L?’(TQ)
HOA+1) o (A= 1)]}. (4.91)

The corresponding exchange integrals are obtained by making the usual ex-
change of coordinates in the direct integrals, i.e.

E™ = E"(ngkeek;n. k€ k') = D™ (ngrqek; € K'nkl), (4.92)

with similar expressions for E] and E7.

In egs. (4.89)—(4.91), R, 3(r) is 1/r times the large (small) component of the
radial wave function of the bound orbital a = ng.l.j., if 8 = +1 (—1). A
similar statement holds for the continuum orbitals labeled € = €lj, where € is
the electron kinetic energy. The functions V and W contain the radial pieces
of the generalized Breit interaction and are given by eqgs. (4.81) and (4.82),
respectively. The remaining symbols, vux, wx, EY 5(Kq, Kq; A) and (K, K7, V)
are simple numerical factors, all of which can be found in ref. [19]. The notation
[(A+1) & (A—1)] in eq. (4.91) indicates that the entire summation to the left of
the preceding plus sign should be repeated with the A expressions exchanged.

All that remains is to define the imaginary part of P*. An expression for Im[P?]
is obtained by discarding D* and E” in eq. (4.88) and then replacing the
remaining Breit integrals with their imaginary counterparts. The imaginary
Breit integrals are identical to those given in egs. (4.90) and (4.91), except
that the following two modifications must be performed: (1) the second term
appearing in the first line of the expression for the W function in eq. (4.82),
which does not contain any Bessel functions, must be discarded and (2) the
substitution n, — —ij, must be made in all of the remaining terms that
appear in the V and W functions, in accord with the discussion surrounding
eq. (4.83) of the previous subsection.

As an application of the factorized form of the Breit interaction, we present
table 7, which contains collision strengths for the 36 n = 2 to n = 3 transitions
from the ground state of Ne-like uranium. These data were originally presented
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Table 7

Collision strengths for n = 2 to n = 3 transitions from the ground state of Ne-
like uranium. An explanation of the labels used for the levels appearing in each
transition is provided in ref. [60]. z[y] = 2 x 10¥.

¢/ =150 eV ¢’ = 30000 eV
Transition AFE(Ry) C GB GBI C GB GBI
Al - Bl 1047.8 2.568[-3)  2.705[-3]  2.705[-3] 3.196(-3]  3.295[-3]  3.295[-3]
Al - B2 1252.1 1.087[-3]  1.151[-3]  1.151[-3] 1.324[-3]  1.377[-3]  1.377[-3]
Al- B3 1286.5 1.184[-3)  1.264[-3]  1.264]-3] 1.539(-3)  1.603[-3]  1.603[-3]
Al-Cl1 960.5 1.4350-4)  1.2051-4]  1.206[-4] 3.815(-5] 3.439[-5]  3.439[-5)
Al - C2 1040.7 1.708[-4]  2.013[-4]  2014[4] 4.359[-5] 7.814[-5] 7.814[-5]
Al-C3 1246.7 1.301[-4] 1.413[-4] 1.413[4] 3.8420-5]  4.719[-5]  4.720[-5]
Al-C4 1282.6 1.033-4] 1121}  1.122[4) 2.800[-5]  3.672[-5]  3.673[-5)
Al-C5 1328.1 1.37714]  1.099[-4]  1.100[-4] 4.153[-5]  3.526[-5]  3.527]-5]
Al-C8 1395.3 1.0250-4]  9.760[-5] 9.761]-5] 2.6870-5]  2.803]-5]  2.803[-5]
Al - D1 960.5 3.5001-4] 3.690[-4] 3.690[-4] 3.902-4]  4.131[-4] 4.131[-4]
Al-D2 1041.9 1.986[4]  1.841[4] 1.842[-4] 2.100[-4]  2.152[-4]  2.152[-4]
Al-D3 1328.0 1.5661-4]  1.6820-4] 1.682-4] 1.030[-4]  1.140[4]  1.140[-4]
Al - D4 1395.6 3.975[4] 4.406[-4]  4.406[-4] 6.450(-4]  6.985-4]  6.985[-4]
Al-D5 1413.9 5.757[-4)  5.797(-4]  5.797[-4] 1.120[-3]  1.150[-3]  1.150{-3]
Al- El 1040.6 2.831[-4]  3.175[-4]  3.175[-4] 6.5751-5]  8.430[-5] 8.431(-3]
Al-E2 11125 2.201[-4]  2.408[-4]  2.407-4] 5.372[-5)  6.821[-5] 6.821[-3]
Al-F1 1056.2 1.5400-4]  1.214[-4] 1.214[-4] 3.3981-5]  2.542[-5] 2.542-5)
Al - F2 1231.6 21605 2.152}-5] 2.154]-5] 6.091[-6]  6.355[-6]  6.358]-6]
Al-F3 1208.7 2714[-5] 241135  2.413[-5) 7.605/-6]  6.067]-6]  6.070[-6]
Al-G1 945.5 2481[-4] 24184  2422[-4) 8.034[4] 7.814[-4] 7.819[-4]
Al - G2 1057.1 6.699[-4] 6.401[-4]  6.404[-4] 8.300[-4] 8.078[-4]  8.083[-4]
A1-G3 1078.3 6.175(-3]  5.777[-3]  5.782]-3) 1.326[-2)  1.2610-2] 1.261[-2]
Al- G4 1231.9 6.625[5] 8.194[-5]  8.207]-5] 8.365(-5) 0.395[-5]  9.404[-5)
Al - G5 1298.6 3.0070-4]  2.890[-4]  2.896[-4] 7.558-4]  7.199[-4]  7.208[-4]
Al-G6 1346.1 1.818[-3]  1.682[-3]  1.684[-3] 3.796[-3)  3.573[-3]  3.576[-3]
Al-GT 1379.8 7.075[-5]  7.986[-5]  8.029]-5] 2.803[-4]  2.907}-4] 2.914[4]
Al-H1 944.6 1.318[-4]  1.457]-4] 1.458[-4] 3.5791-5  4.285[5]  4.286[-5]
Al - H2 1057.9 2.350[-4] 2.097[-4] 2.097[-4] 3.921[-5]  3.605[-5]  3.605[-5)
Al- H3 1074.7 3.540[-4] 3.893[-4] 3.893[-4] 6.722[-5] 1.027[-4] 1.027[-4]
Al - H4 1344.1 17084 1.768-4]  1.768[-4] 3.7071-5]  4.464[-5]  4.464]-5)
Al-H5 1361.8 2.428[-4] 2.380[-4] 2.380[-4] 544705 5.096[-5]  5.996/-5]
Al-H6 1379.2 8.746[-5]  9.300[-5]  9.316[-5] 2.730-5)  3.154[-5]  3.135[-5]
Al-T1 1056.9 3.46314]  4.101[-4] 4.101[-4] 2.709(-4]  3.014[-4]  3.014[-4]
Al - 12 1075.7 2.211-4]  2171[-4]  2.171[-4] 1.7780-4]  1.8300-4]  1.830[-4]
Al-13 1362.0 1.828-4]  1.800[-4]  1.890[-4] 1.3500-4] 145714  1.457[4]
Al-J1 1073.9 4.490[-4]  A97204]  4.972]-4] 8.006[-5 1.018[-4] 1.018[-4]

in ref. [60] and the level labeling scheme can be found in Table I of that refer-
ence. The column headings have the same meanings as those used in table 5
of the previous subsection in order to facilitate comparisons between calcula-
tions that considered only the Coulomb interaction and those that included
various forms of the Breit interaction. The collision strengths are provided for
two different kinetic energies of the scattered electron; a value of ¢ = 150 eV
corresponds to the near-threshold region, while a value of ¢ = 30000 eV cor-
responds to an impact energy of about three times threshold.

First, we note that there is very little difference between the GB and GBI
results presented in table 7, reinforcing the notion that the imaginary part of
the generalized Breit interaction is not very important for obtaining accurate
values of the collision strengths, even for high-Z ions. Next, we note that, since
the transitions considered in table 7 refer to n = 2 to n = 3 transitions, the
bound and continuum energies involved are somewhat less than those encoun-
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tered for the n = 1 to n = 2 transitions for He-like uranium in the previous
subsection. Therefore, the effect of the generalized Breit interaction is also
expected to have less of an effect on the collision strengths. In fact, this trend
is observed for the strongest transitions that are listed in the table, for which
the GB results typically differ by, at most, a few percent from the Coulomb-
only data. However, for those collision strengths that are approximately two
orders of magnitude or more smaller than the largest values, the effect can
be quite large. For example, the GB results are enhanced by 79% and 53%
for the A1-C2 and A1-H3 transitions at ¢ = 30000 eV, and the interaction
has more than a 10% effect for nearly half of all transitions. However, since
the effect is strong only for such weak transitions, the importance to plasma
modeling is not expected to be significant when considering excitation pro-
cesses that involve n = 2 to n = 3 transitions. On the other hand, our results
presented in the previous subsection, along with our work in refs. [59] and [60],
indicate that the generalized Breit interaction should typically be included for
excitation from the 1s subshell for all but low-Z values.

4.11 A summary of completed fine-structure excitation calculations

In this section, we suminarize our production work that involved the calcula-
tion of collision strengths for various iso-electronic sequences. These calcula-
tions were performed by applying the fully relativistic distorted-wave methods
described in the previous sections. These results have been published in Atomic
Data and Nuclear Data Tables and include:

(1) 88 transitions from the ground level to n = 3 and n = 4 levels in 71
Ne-like ions with 22 < Z < 92 [67];

(2) 3 transitions among n = 2 levels and 63 transitions from these levels to
n=3,n=4and n =75 levels in 85 Li-like ions with 8 < Z < 92 [68];

(3) 10 transitions among n = 3 levels and 80 transitions from these levels to
n =4 and n =5 levels in 71 Na-like ions with 22 < Z < 92 [69];

(4) 21 transitions among n = 4 levels and 63 transitions from these levels to
n =5 levels in 33 Cu-like ions with 60 < Z < 92 [70];

(5) 3 transitions among n = 2 levels and 327 transitions from these levels to
n = 3 levels in 71 F-like ions with 22 < Z <92 [38];

(6) 248 transitions from the ground level to n = 4 and n = 5 levels in 33
Ni-like ions with 60 < Z < 92 [71];

(7) 45 An = 0 transitions with n = 2 in 85 Be-like ions with 8 < Z < 92
[72];

(8) 105 An = 0 transitions with n = 2 in 85 B-like ions with 8 < Z < 92
[73];

(9) Approximately 1650 n = 2 — 3 transitions in 85 B-like ions with 8 < Z <
92 (only results for Z = 14, 26, 42 and 64 were published explicitly; all
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data were made available in electronic format) [74];

(10) 185 An = 0 transitions with n = 2 in 46 C-like ions with 9 < 7 < 54
(only results for 32 Z values were published explicitly; all data were made
available in electronic format) [75];

(11) Approximately 4000 n = 2 — 3 transitions in 46 C-like ions with 9 < Z <
54 (only results for Z = 12, 26 and 54 were published explicitly; all data
were made available in electronic format) [76];

(12) 105 An = 0 transitions with n = 2 in 81 N-like ions with 12 < Z < 92
[77);

(13) 45 An = 0 transitions with » = 2 in 79 O-like ions with 14 < Z < 92
[78].

We will refer to these publications according to the serial numbers listed above.
For example, Paper 1 refers to the first publication on Ne-like ions [67]. The
calculations were usually made for six scattered electron energies, in units of
ZZ% Rydbergs, with

Zg =2 — (5/6)(N — 1), (4.93)

where N is the number of the bound electrons per ion. For example, in Pa-
pers 1, 2 and 5, for Ne-, Li- and F-like ions, respectively, the six energies
were

¢ = 0.008, 0.04, 0.1, 0.21, 0.41 and 0.75, (4.94)

and in Papers 7, 8, 10, 12 and 13, for the An = 0 transitions in Be-, B-) C-,
N- and O-like ions, respectively, the energies were

¢ =0.03, 0.08, 0.2, 0.42, 0.80 and 1.40. (4.95)

For the six energies used in other publications, please see the corresponding
references.

The procedures used in all of these large-scale calculations are very similar,
with a few variations that are described below. In the earliest publications
(Papers 1-6) we used our fully relativistic structure code, as described in chap-
ter 2, to obtain bound orbital wave functions, level energies, mixing coefficients
and line strengths or oscillator strengths. The potential used in obtaining the
radial functions is the Dirac-Fock-Slater potential, given by eqgs. (2.18)-(2.20).
As stated previously, this potential is determined from a different set of frac-
tional occupation numbers for each class of transitions. For the set, or sets, of
fractional occupation numbers used in these calculations, the reader is referred
to the respective publications. Since the same potential is used in determining
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the radial functions for all bound and free electrons associated with a particu-
lar class of transitions, the resulting set of orbitals is automatically orthogonal
and exchange can be handled in a simple, consistent manner. In the latter two
of these earliest publications (Papers 5 and 6), the structure calculations also
included the generalized Breit interaction and other corrections described in
section 2.5.

As mentioned in Paper 7, and chapter 3 of the present work, our structure
code introduced some slight numerical error in treating transitions involving s
orbitals in ions with very large Z values. This discrepancy appeared to have a
negligible effect on most oscillator strengths and collision strengths presented
in Papers 1-6. A notable exception occurred in some An = 0 transitions in
Papers 2-4, for which the transition energies differed significantly from those
computed with the Grant code [6]. For this reason, energies calculated with
the Grant code were used for the An = 0 transitions considered in Paper 5.
Also for this reason, in Papers 7-13 we used the improvements described in
section 4.4. That is, we used the Grant code with the “average level” option to
obtain bound wave functions, level energies, mixing coefficients and oscillator
strengths. Then we used Mann’s potential, eqs. (4.37)—(4.40), in solving the
Dirac equation for the free-electron orbitals. However, these later calculations
are similar to the earlier ones, described in Papers 1-6, in that they contin-
ued to employ a set of fractional occupation numbers in order to obtain the
electron density, and the resulting potential, for calculating free-electron wave
functions. (Again, the reader is referred to the specific publication for a list
of the fractional occupation numbers that were employed.) As pointed out in
section 4.4, the continuum orbitals are no longer orthogonal to those of the
bound electrons in this situation and an extra term had to be introduced in
the appropriate exchange integral. The “post” form of this term, eq. (4.41),
was used in Papers 7-13.

There was also some variation in the fitting procedure used to obtain values
of Q* for the factorization method described in section 4.3. In most of our
production calculations, in Papers 1-11 more specifically, in order to speed
up the calculations, we made fits of Q* as a function of Z. As mentioned in
Paper 1, Z2Q" is a very slowly varying function of the nuclear charge, Z, and
the number of bound electrons per ion, N. Therefore, we performed detailed
relativistic distorted-wave calculations for six or eight values of Z, for each of
the six scattered electron energies mentioned above. In each case, values of
Q* were calculated for three incident-electron energies given by € = ¢ + AE;,
where j = 1-3 and values of AE; are chosen such that they span the range of
fine-structure transition energies. Then, each value of Q* was fit to a power
series in Z. For example, in Papers 1 and 5 concerning Ne-like and F-like ions,
respectively, detailed calculations were made for the six Z values
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7 =22, 30, 42, 56, 74 and 92. (4.96)

Then, a power series of the form

220 = 2% + a2+ asZ +au+ as 27 + agZ7? (4.97)

was used to obtain a set of fit parameters for each occurrence of Q* from the
detailed results computed at the six Z vlaues. A different set of fit parameters,
a;, was determined for each Q* that can arise for a particular class of transi-
tions (see eq. (4.32)). Then, we obtained the values of Q* at the exact energy
associated with a given fine-structure transition by Lagrangian interpolation,
as mentioned in section 4.6. However, in Papers 12 and 13 concerning N-like
and O-like ions, we performed detailed calculations for every Z value consid-
ered in those respective publications, since the available computing power at
that time was much greater than previously accessible. In this case, for a given
value of Z, we still obtained the values of @* at the exact transition energies
via Lagrange interpolation on the values that were explicitly calculated at the
three representative impact energies.

Finally, we mention the methods used to obtain the top-up contribution for
the collision strengths. For optically allowed transitions, we used the partial-
relativistic Coulomb-Bethe (PRCBe) approximation as described in section 4.9.1
to obtain the high partial-wave contribution. For forbidden transitions, the ra-
tio approximation described in section 4.9.2 was used.

In addition to collisional excitation data, the above works also contain electric
dipole oscillator strengths for optically allowed transitions. In Papers 1-6 our
structure code was used to calculate oscillator strengths using the procedure
described in chapter 3. In these early calculations, retardation effects were
neglected. As mentioned in Papers 2 and 3, such an omission is acceptable
for transitions involving orbitals with principal quantum number n > 1, since
retardation effects are small in these cases, as confirmed by the comparisons
provided in those publications. In the more recent Papers 7-13, as mentioned
above, we used the Grant code for the structure calculations, which automat-
ically included retardation in the oscillator-strength calculations.

4.12  Spectal simple cases

Similar to the situation for photoexcitation that was discussed in subsec-
tion 3.2.1, among the several cases for which there are initially no partially-
filled subshells, in addition to the active one, there are two simple cases that
are of particular interest for which the quantity f* in eq. (4.35) can be ex-
pressed in an especially simple form. These are: (1) the case in which the

88



active subshell initially contains a single electron, and (2) the case in which
the active subshell is initially filled. The absence of partially-filled subshells,
in addition to the active one, means that no extra angular factors enter in
eq. (4.36).

As discussed in subsection 3.2.1, the first case is usually referred to as the
pseudo-hydrogenic case. It applies to hydrogenic ions, as well as to the case
in which transitions involve the valence electron outside of a closed-shell core,
such as in Li-like and Na-like ions, provided that mixing is neglected between
states belonging to different complexes. (There can be no mixing among ini-
tial, or final, states within the same complex if only the valence electron is
considered to be active for a pseudo-hydrogenic ion.) This situation is a special
case of the simple scenario considered in section 4.3, where initially there are
only filled or empty subshells, in addition to the active one labeled a. In this
special case, the CFP and w occupation number in eq. (4.36) are both unity.
Also, J; = 0 so that the 6-j symbol in eq. (4.36) becomes

J, 0 U JogloA [(2J, + 1)(2J] + 1)]1/2° ’

Thus, f* reduces to (—1)7++%a* which is equal to +1 since j, and 5’ are half
integers and ) is an integer. Consequently, B* =1 for all values of A because
the square of this phase factor is one and the relevant mixing coefficients in
eq. (4.35) are all unity. Then, the collision strength takes the very simple form

QU — U") = 0 (nalafo, ni470)
e Z Q)\ (nalajaa n’:}l;j;; n“laja’ n;l;"?;)
A

=833 PMnalajuelis nll joe'l's)? (4.99)
A s 7
by
where the superscript “ps” and the subscript “H” indicate a pseudo-hydrogenic
quantity, as in egs. (3.37) and (3.38).

The second case applies to excitation from the ground state of systems such
as He-like, Ne-like and Ni-like ions, which are very important in plasma ap-
plications, as stated in subsection 3.2.1. In this case, we assume no mixing
between the ground configuration and any excited configurations, so that the
ground state is pure and the CFP is again unity. Also, J; = 0 so that the 6-j
symbol in eq. (4.36) reduces to

{ g jé}_{ja Ty 0}~ (L% Oy (4.100)
JoJr 0 LN g [0 D (20, + D2 ‘
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Thus, eq. (4.36) becomes

w2

b - 2 J{+Fatig) —

— __l Nt 05; _.(5." 4.101
f (Zja + 1)1/2( ) JiA Jix ( )
where the final expression results because w = 2j, -+ 1 for a filled subshell, and
Jo + ji and J] are both integers. In this case, if we omit mixing in the ground
state, then only mixing among the upper states needs to be considered. Hence,

the collision strength obtained from eqs. (4.31) and (4.34) simplifies to

WU -U) =83 U, SH(U', )
s

A==J! : BTN : A T
XQ T (aladas Nolyy; Narlay Jay s g Uy Jay ) - (4.102)
4.13  Configuration-average cross sections for electron-impact excitation

When considering configuration-average quantities for electron-impact excita-
tion, it is convenient to follow a similar approach to that used for photoexci-
tation in section 3.2.2. In particular, we begin with the collision strength and
consider the single-configuration approximation by averaging over all possi-
ble SCSF transitions that can arise for a transition of the type displayed in
eq. (3.42). Thus, the configuration-average collision strength between two con-
figurations ¢ and ¢ is given by

Q(;_Ci = Z Z S?@J s (4103)

icc jec!

where €2;_; is the collision strength between two pure SCSFs labeled ¢ and
j. In order to reduce this expression to a useful form, one must introduce
the additional approximation that the transition energy is the same for all
SCSF transitions in the above summation so that the incident and scattered
free-electron wave functions are also the same. In practice, it is convenient
to assume that this transition energy can be accurately approximated by the
configuration-average transition energy, AFE._ .. The result is that each SCSF
collision strength in eq. (4.103) is described by a scattered electron with kinetic
energy € = ¢ — AFK,_., where AE, . = E, — E,.. This type of assumption
was not necessary when considering the line strength in section 3.2.2 because
that quantity involved only bound-electron wave functions. With this approx-
imation, the collision strength can be reduced to the simple form

wa(2js + 2 — wg)
(Qja + l)@jﬁ + 1)

Qo = ge O (nalojo, nslsgs) . (4.104)
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where the pseudo-hydrogenic collision strength, Q| is given by eq. (4.99). We
note that eq. (4.104) has the nice property that it is in exactly the same form
as that given for the configuration-average line strength in eq. (3.44). As a
point of reference, we also note that eq. (4.104) is the relativistic analog of
eq. (15) given by Peyrusse [28].

Moving on to a consideration of the excitation cross section, we again assume
that the transition energy between each pair of SCSFs can be approximated by
the configuration-average transition energy, AE,_ . Then, the configuration-
average excitation cross section can be expressed according to

Qc—c’ = Z Z giQi—j/QC - Z‘Z{_ Z Z Qz’—j = k_;;g_‘ﬂcmc’ y (4105>

i€c jec “Ge 1€c jed

where g. is the statistical weight of the initial configuration, given by eq. (3.45).
Thus, the relationship between the configuration-average excitation cross sec-
tion and corresponding collision strength is formally identical to the relation-
ship between the fine-structure (or SCSF) quantities, as given by eq. (4.1).
With the use of eq. (4.104), the configuration-average excitation cross section
can be expressed in the useful form

Q» L= wa(zjﬂ +2 - wﬁ) ps
SCITES

(nalcx};a: nﬁlﬁjﬁ) ’ (4106)

where the pseudo-hydrogenic excitation cross section is defined as

. . w s : .
QR (Nalaja, nslgjs) = En O (nalajar nalsis) (4.107)

o

with g, = 2j, + 1 being the statistical weight of subshell «. It is easily verified
that all of the configuration-average quantities listed above reduce to the cor-
responding hydrogenic expressions for the case of hydrogenic ions (i.e. when
Wy = Wg = 1)

4.14 Rate coefficients for electron-impact excitation

In this section, we provide useful expressions for two quantities associated
with electron-impact excitation: the rate coefficient and the effective collision
strength. These quantities are temperature-dependent and are convenient for
computing the collisional-excitation contribution to the rate equations that
determine the atomic populations in plasma kinetics modeling. While no nu-
merical results will be presented here, the expressions provided in this section
will be applied in chapters 5, 7 and 8.
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As in the description at the beginning of this chapter, we again consider a
generic excitation transition, denoted by ¢ — f, that could refer to a transition
between configurations, states, fine-structure levels or magnetic sublevels. The
expressions provided in this section are completely general in that they apply
to any of these types of transitions. Then, for a transition ¢ — f that is caused
by electron-impact excitation, the rate coefficient, Cjy, is given by the average
of the product of the electron speed, v, and the corresponding cross section,
over the electron distribution function. For non-degenerate, Maxwellian elec-
trons the result is given by

N,h3

Po

Ciy = Nie/n@(p)vcz(@—f)dp: 8%—"?/ ~< @R 200 (i — f)dp, (4.108)
"po

where k7T is the temperature expressed in the appropriate energy units, N, is
the electron number density and n.(p) dp is the number of electrons per unit
volume that exist within a range of momenta between p and p+ dp The lower
bound of the integral, py, is the momentum corresponding to the threshold of
the transition, e(py) = Eijf = Fy — E;, with E; and E; being the initial and
final energies of the configurations, states, etc., and the quantity 7 satisfies

o0

8
¢ = 7\5323 / e~ B/ 2 4y (4.109)

which provides the appropriate normalization for the electron distribution
function. The evaluation of the integral in eq. (4.109) can be expressed in terms
of a known function or, alternatively, as a series expansion [79,80]. Specifically,

87 /mec\> e 2
= —K 2emkT)*? X | 4.110

‘ N(h>a2(a) N k) (4.110)
where a = mc?/kT, K,(a) is the modified Bessel function of order 2 and the
relativistic correction X is given by

15 105 . 315 . 1039
X =1 - —l el —2 o -3 —4
T T s T 1ot T 3omes”

(4.111)

The series expansion is valid when a > 1 (or, equivalently, when kT < mc?),
which holds true for a wide range of cases that might be of practical interest.

When computing numerical data for large amounts of collisional excitation
processes, it is often convenient to provide the effective collision strength, T,
which varies more smoothly with temperature than the rate coeflicient, Cj;.
The effective collision strength for direct excitation is defined by
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Y= f Qi — f)e</*Td(e /kT), (4.112)
0

where € = € — E;f is the final, or scattered, electron kinetic energy.

From eqgs. (4.108), (4.110) and (4.112), and the standard relationship between
the cross section and the collision strength given by eq. (4.1), the connection
between the rate coefficient and the effective collision strength is found to be

h? — B /kT
Cr = @mmprGIx ¢ Y (4-113)
or, inserting numerical values,
8.629 x 107% _ .
Cif = T e"Bu/ATY o em?)s, (4.114)

where T is the temperature in Kelvin and X is given by eq. (4.111). This
relationship is particularly useful because it is valid not only for the process of
direct electron-impact excitation treated in this chapter, but also for resonance
contributions to the total excitation rate coefficient described in section 7.4.
This relationship is also valid for the total excitation rate coefficient itself,

provided that the total effective collision strength is supplied on the right-
hand side. .

The expressions given in this section can also be easily applied to collisional
de-excitation [81]. Rather than recompute the various de-excitation quantities
from the analogous excitation equations given above, it is possible to obtain
directly the desired results from the previously calculated excitation data.
Specifically, if we consider the de-excitation transition f — 4, with transition
energy Fs = — Ly = E;— FEy < 0, then the corresponding rate coefficient can
be determined from the detailed-balance relation

Cp = LBk, (4.115)
gf
Inserting numerical values, and using the convenient property that the effective
collision strength is symmetric (i.e. T¢ = T;y), the analog of eq. (4.114) can
be written in the form

8,629 x 10°°

O = 0y em®/s. 4.116
[ o TVZX §ocm’/s ( )

As with excitation transitions, this last expression holds for both the direct
and resonance contributions to the de-excitation rate coefficient.
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5 Electron-impact ionization

Our basic approach for obtaining expressions for the electron-impact ionization
cross sections follows in a straightforward manner from the electron-impact ex-
citation theory described in the previous chapter. One must take into account
the fact that the final bound electron in the excitation process is replaced
by an ejected continuum electron, which shares the available energy with the
scattered continuum electron in the form of kinetic energy. Consequently, the
final ion is an (N — 1)-electron system, rather than an N-electron system. The
details of this approach have been described in ref. [82] for the non-factorized
method and in ref. [32] for the factorized method. A summary of these two
methods is provided in the next two subsections for transitions between fine-
structure levels. Additional commentary is provided on the inclusion of the
generalized Breit interaction, a method for obtaining convenient fit formulae
for the ionization cross section, and the configuration-average approximation
applied to collisional ionization. A treatment of transitions between magnetic
sublevels is reserved for chapter 9.

5.1 The non-factorized approach to computing ionization cross sections

As described in ref. [82], five steps are required to extend the expression for
the collisional excitation cross section, given by eq. (4.1) in the previous chap-
ter, to the case of ionization. As mentioned previously, eq. (4.1) is valid for
excitation transitions of any type. Here, we will consider transitions between
fine-structure levels, for which eq. (4.6) applies in the case of excitation. Thus,
the first step in obtaining the ionization cross section is to alter the final sys-
tem wave function in eq. (4.6), Uy, so that it represents an (N + 1)-electron
system comprised of an (N — 1)-electron ion and two continuum electrons.
For convenience, we first provide an explicit expression for W as it applies to
collisional excitation. Such an expression can be written in a manner similar
to that used for the initial system wave function in eq. (4.8), and is given by

1 N+1
V= —)NH C(Jy' Mm'; JM)
f (f\§+ 1)1/2 I;( Mf{?n’ 2 t

XW A1 g (xgl)uawm’(xp) - (5.1)

The first required modification can be accomplished by replacing ¥, M{{(a;;'l)
in eq. (5.1) with an antisymmetrized wave function for an N-electron system
corresponding to the final (V — 1)-electron ion plus an ejected electron. The
appropriate expression is given by
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where War v is the antisymmetrized wave function that corresponds to the
final (N — 1)-electron ion with total angular momentum J{', and wer o jrms (24)
is a Dirac spinor that represents the ejected electron. This spinor is analogous
to the wjm spinor that represents the incident electron defined by egs. (4.9)-
(4.11). An important consequence of this last statement, when considered in
concert with the specific form of eq. (5.2), is that the bound-clectron radial
tunctions, Py and Qpr i, that appear in the direct and exchange radial
integrals for excitation, given by egs. (4.17) and (4.18), are simply replaced
with Py and Qv when calculating the corresponding radial integrals
for the ionization cross section.

The second required step is to sum eq. (4.6) over all possible values of Jj,
which represents the total angular momentum of the N-electron system con-
sisting of the final (N — 1)-electron ion with total angular momentum J;
plus the ejected electron with total angular momentum j”. The third step is
to also sum eq. (4.6) over all possible partial waves of the ejected electron,
which are represented by &’ or, equivalently, 7/ and [”. The fourth step is
to integrate eq. (4.6) over the appropriate range of the kinetic energy of the
ejected electron, €”. This range is obtained from a consideration of standard
energy-conservation arguments and is found to be 0 to (¢ — I)/2, where
is the ionization energy and e is the kinetic energy of the incident electron.
The fifth, and final, step is to divide eq. (4.6) by a factor of 7 in order to
take into account the fact that a final, bound-electron radial function with
normalization

g

[P (1) + Qpy ey (r)] dr = 1 (5.3)

o

has been replaced with a continuum ejected electron radial function with nor-
malization

/ R”h” m m( ) —+— Qéu /1( )Qémnm(’l')] d?" = ’1'('5(6” — EHI) . (54)
0

Combining these steps vields the relativistic distorted-wave ionization cross
section for transitions between fine-structure levels,

Q(At(]t Ailjff —
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with W; given by eq. (4.8) and Wy given by egs. (5.1) and (5.2).

Most of the practical issues that need to be considered when numerically eval-
uating the various pieces that comprise eq. (5.5) are similar to those described
for excitation in chapter 4. For example, the continuum radial functions that
represent the scattered and ejected electrons are determined from the same
algorithm that is described in section 4.5. Also, some of the procedures that
were described in section 4.6 also carry over to the case of collisional ioniza-
tion. For example, a single mean configuration (which may contain fractional
occupation numbers for certain subshells) is chosen to determine an appropri-
ate central potential (see egs. (2.18) (2.20) in section 2.3) for a given class of
transitions. In the case of ionization, a given class of transitions is typically
denoted by the n,l,j, value of the active (ionized) electron. A method for
determining the mean configuration that is analogous to the approached used
for excitation is to split the occupation number of the active electron between
the initial and final subshells. In the case of ionization, the final subshell is
actually the ejected electron and, in order to mock up the effect of this ejected
electron, we assume an occupation number of 0.5 for a very high-lying, bound
subshell. As a specific example, we might consider the ionization of the 2s
electron in the ground state of Li-like ions, for which we would choose a mean
configuration of the form

1s*2s%%6dy 5, . : (5.6)

An alternative approach that we often employed is to simply use the integer
occupation numbers associated with the initial configuration of the target ion.
For example, when considering either inner-shell ionization or ionization of
the valence electron of Li-like ions in the ground level, the configuration 1s22s
was used in determining the DFS central potential. Similarly, for ionization of
the 2p* electron in Li-like ions the configuration 1s?2p* was chosen.

Another important consideration from section 4.6 is the method for reducing
the number of radial integrals that need to be calculated. For complex cases in
which mixing among the initial or final bound states is strong, the set of radial
integrals associated with a particular active orbital, denoted by n,l,7., will be
used in different fine-structure transitions. The only difference between these
integrals is that they must be evaluated with a different ionization energy for
each fine-structure transition. However, the radial integrals vary smoothly as
a function of the ionization energy and so we typically compute a set of radial
integrals, for a given n,l,j, orbital, at three particular energies that span
the range of actual, fine-structure ionization energies. Then we interpolate on
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these three sets of results to obtain the radial integrals at a specific ionization
energy of interest.

A consideration that applies to collisional ionization, but not collisional ex-
citation, is that the relative phase of the scattered and ejected electrons is
unknown when the central field approximation is employed in determining
the wave functions that represent these electrons. The choice of phase used in
our approach is sometimes referred to as the “natural”-phase approximation
(see eq. (10) of ref. [83]). This choice corresponds to the Z — oo limit in
the non-relativistic case. Therefore, one might expect this choice to be a good
approximation for highly charged ions.

As a numerical example, we provide in table 8 a portion of the comparisons
that were originally presented in ref. [82] between our RDW ionization cross
sections and results obtained from relativistic calculations performed by other
researchers. The entries from ref. [84] were calculated with the RDW program
that was used to compute the direct ionization contribution in ref. [85], as
opposed to the indirect excitation-autoionization contribution computed in
ref. [86]. This approach also uses the natural-phase approximation, but dif-
fers from our RDW approach only in that the bound and continuum radial
functions are computed in a Dirac-Fock potential [6], rather than the more
approximate Dirac-Fock-Slater potential used in our approach. For the highly
charged ions considered here, this difference in potential typically makes very
little difference because the nuclear potential dominates the electron-electron
interaction. This statement is verified by noting the excellent agreement be-
tween our RDW results and those from refs. [84] and [85].

The results from refs. [87] and [88] were obtained in a manner very similar to
that used in refs. [84] and [85], except that the “maximum-interference”-phase
approximation (see eq. (11) of ref. [83]) was employed. The latter approxi-
mation yields smaller cross sections than the natural-phase approximation.
Because of this difference, one can see from table 8 that the present RDW
results are always larger than those from refs. [87] and [88]. Nevertheless, the
agreement is still quite good when comparing with these results.

Finally, the results of ref. [83] differ from all of the others in two ways. First,
these results were computed with the full lowest-order QED interaction for
electrons scattering with a bound electron. In this case, the interaction was
written in the Lorentz gauge and so the Mgller interaction was used in these
calculations (see eq. (2.29) and the surrounding discussion for details). The
second difference in the data from ref. [83] is that the exchange and interference
terms were excluded from the scattering matrix elements. This omission was
expected to have no more than a 15% effect on the cross section. (However,
this expectation was eventually shown to be false, as will be demonstrated
in section 5.3, which concerns the generalized Breit interaction.) Thus, when
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comparing with these results, the corresponding terms were also omitted from
our RDW calculations. The agreement between the two data sets is also very
good in this case, which is somewhat surprising since the generalized Breit
and Mpgller interactions were eventually shown to cause a substantial (~50%)
increase in this cross section when all terms were properly included in the
scattering matrix elements.

5.2 Use of the factorization method to obtain simple expressions for the ion-
1zation cross section

The factorized expression for the collisional ionization cross section can also
be obtained from the corresponding excitation cross section via the five steps
described in the previous section, and also described in ref. [32]. The fac-
torized form of the collisional excitation cross section is easily obtained by
substituting the collision strength in eq. (4.31) into eq. (4.1). Then, following
the prescription in the previous section, the factorized form of the collisional
ionization cross section is given by

QU -U") = (QH_WZZ >

Jw' {4’/ ]/I S SN

it
51,5

¢ Z B/\ U SSl, (U!/[”]//]l) (Sflgf!}fl ]l)(s!ll/l HJIH

(t /2
x / de” Qk(nalaja} eﬁgﬂjUQ T,y la1 jm > 6;;5;sz1> . (57)
i

The quantities B* and Q* have the same basic definitions as those provided
in section 4.3, except that the arguments have been modified appropriately
for the case of ionization. The overall notation has been slightly modified to
be consistent with that introduced in the previous section. In particular, the
final ion level with total angular momentum J; is now denoted by U” rather
than U’. Similarly, the sums over the states S’ and S| have been replaced with
sums over S” and S7. The meaning of these symbols is completely analogous
to their excitation counterparts, i.e. S” and S7 are states with total angular
momentum J;' that contribute to the mixing of the final ion level U” with
corresponding mixing coefficients b(U”, S”) and b(U”, S{). Also, for the case
of ionization, both of the substitutions n,[j; — €"l"j" and n[ I j, — €'l"j"
are required. These substitutions appear explicitly in the argument of @* and
are understood in the corresponding expressions that comprise B* (i.e. in
egs. (4.35) and (4.36) for F* and f*, respectively). Thus, the appearance of
I"4"J] in the last three arguments of B* serves to emphasize the notion that
each of those arguments refers to an N-electron system comprised of an ion in
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the appropriate (N — 1)-electron level, or state, that is coupled to the ejected
electron, and described by total angular momentum J;.

Those two substitutions that concern the ejected electron, denoted by €"1”5",
result in certain simplifications [32] that do not arise for the excitation case.
For illustrative purposes, we consider the same case that was treated in detail
in section 4.3 for excitation, i.e. the case for which all subshells, apart from the
active one labeled a, are initially filled or empty in the target ion. In this case,
eq. (4.36) applies for the quantity f*. The phase factor in that expression,
(—1)%*% '+ will not contribute to the ionization cross section because j/ is
replaced by j” and J] is obtained by coupling j” and J;’, which represents the
total angular momentum of the final ion with one less electron than the initial
ion. Thus, J/+J}'+ 7" is an integer and, because the square of this phase factor
appears in the cross section, the factor does not contribute. Additionally, the
summation over J; in eq. (5.7) can be evaluated using an alternative form of
eq. (4.30) given by

. A i . A N7 5. .
27 Ja J } {]al J }: dajay _
sSersols w a1y »outeats (5:8)

A

Note that this result removes the dependence of f* (and, cbnsequently, B*)
on the index A.

A further simplification results when one considers the fact that only bound
states of the same parity can mix with each other. This statement applies
to both the initial and final levels of the ion. In order for both this latter
statement and eq. (5.8) to be simultaneously satisfied, it must also be true
that l,, = l,. Taking this result into account, we can define a k”-summed
version of @* according to

QA(7lana1 laja; fﬂ) '
= Z QA(ﬂ,alaja, €I/lllj//; na1 laljal , 6//l/lj/!)

n// L4

= > Pnolajuely; €'1"5"€ V5V P na, Lo juely; €1 5715 . (5.9)

l,l’,l”
IR

This quantity can be combined with the simplifications described above to
express the factorized version of the ionization cross section in the simplified
form

QU —U") = —3 = 3" B(U,S5;U", §"SY)

(2ot DR &

sy,8Y
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(c-1)/2
X / de"ZQ’\(nanalla]’a;e”), (5.10)

O A
where
B(U,SS; U, S”S{’) = F(US,U"S"YF(US;, u"syy, (5.11)
FUS, U”S") =b(U, S)f(S, S")b(U", S”) , (5.12)
and
f(S,8") = Vw(Gy g gy Vi ewds) - (5.13)

Here, egs. (5.10)-(5.12) apply to the general case, but eq. (5.13) is valid only
for the present case under consideration for which all subshells, except the
active one, are initially filled or empty. For more complex ions, eq. (5.13)
must be multiplied by the appropriate factor, as discussed in subsection 3.2.1
and section 4.3, and also in ref. [32] where analytic expressions are provided.
Alternatively, the value of f(S,S”) that applies to an arbitrarily complex
transition can be determined from the MCT package [34] of the Grant code.
However, the relationship is not as straightforward as that provided for the
case of photoexcitation (see the discussion following eq. (3.30)).

While it may seem odd that a factor of 25,41, rather than 2.J,+1, now appears
in the denominator of eq. (5.10), this choice is intentional as it lends itself to a
particularly simple expression when mixing is limited to states that lie within
the same complex. Up to this point, we have been considering the most general
case for which the levels that describe the initial and final ions are allowed to
include mixing of states that reside outside of a single complex. If mixing is
limited to states within a complex, which is often a good approximation for
highly charged ions, then there is only a single set of n values to describe the
active electron so that n,, = n,. We first consider the simplest possible case
of this type, i.e. ionization of a hydrogenic ion with no mixing. In this case,
the quadruple sum in eq. (5.10) reduces to a single term, with the surviving
B coefficient replaced by one because the relevant mixing coefficients and the
sole f coefficient all have a value of one. Then, the hydrogenic cross section
for ionization can be written as

(e~1)/2

8 / de” > Q*(nulojas €”) (5.14)
O A

Qu(nalaja) = 2.+ DR

with
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Next we consider an arbitrarily complex ion, but with mixing limited to states
that reside within the same complex. Once again, the relationship ng, = n, is
valid and eq. (5.10) can be rearranged into the convenient form

QU —U"y= 3" B(U,SS;U",58"S])Q% (nalaja) (5.16)
S.S”
51,87

where QY is a pseudo-hydrogenic ionization cross section of the same form as
eq. (5.14). When evaluating Q}7, the ionization energy I in eq. (5.14) is chosen
to be the actual value associated with the fine-structure transition in question
and the radial wave functions to be used in the integrals that comprise the
P> values are calculated from the central potential that is appropriate for the
complex ion under consideration.

The convenient form of eq. (5.16) can also be extended to the case when mixing
is considered outside of a complex. Specifically, eq. (5.10) can be rewritten as

QU -U" = " BU,SS,;U",8"S)Q% (nana, lajs) , (5.17)
8,8
81,5

where QF (nana,laje) is the same as Q¥ (n4loja), except that Q*(nuluja; €”) in
eq. (5.14) should be replaced with Q*(n,n,, laja; €”) defined in eq. (5.9). Thus,

(e=1}/2
ps 8

b (nang lojs) = 75— / de’ 3" QM ngna, lojai €”) - (5.18)
aitaJa (Qja+ 1)]\,2 0 /\ aftaq

The expressions provided in eqs. (5.16) and (5.17) are the main results of this
section. The former is to be used when mixing is limited to states within a
complex, while the latter is to be used when mixing outside of a complex is
considered. These two formulae are particularly compact and very useful in
computing RDW ionization cross sections for transitions involving arbitrarily
complex ions. For completeness, we mention that additional commentary is
provided in ref. [32] for computing the factorized ionization cross section in
the LS-coupling scheme. In that case, an expression similar to that given in
eq. (5.16) is obtained. See eq. (40) in ref. [32] and the surrounding discussion
for further details.

As a numerical example, we provide in table 9 a portion of the comparisons
that were originally presented in ref. [32] between our RDW ionization cross
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sections computed with the factorization method and those obtained from
relativistic calculations performed by Moores and Pindzola [85]. The mean

Table 9

Comparison of ionization cross sections (in units of 1072* cm?) for U+ ions. The
present RDW results are labeled SZ, while those of Moores and Pindzola [85] are
labeled MP. The symbol 2p in table II of ref. [32] has been changed to the present
notation 2p*.

Threshold energy Cross section

(keV) at 2 th. units?
Transition SZ MP S7Z MP
2p*22p(3/2) — 2p*2(0)° 26.59  26.59 302 314
2p*22p(3/2) — 2p*2p(1) 30.57  30.57 6.8 174
2p*22p(3/2) — 2p*2p(2) 30.59  30.59 28.0  29.1
2p*2p?(3/2) — 2p*2p(1) 26.63  26.63 453  47.0
2p*2p?(3/2) — 2p*2p(2) 26.65  26.65 151  15.7
2p*2p%(5/2) — 2p*2p(1) 26.61  26.61 7.6 7.8
2p*2p?(5/2) — 2p*2p(2) 26.63  26.63 52.8  54.8
2p*2p?(1/2) — 2p*2p(1) 26.53  26.53 22.7 235
2p*2p2(1/2) — 2p*2p(2) 26.55  26.55 379  39.1
2p*2p%(3/2) — 2p%(2) 30.69  30.69 223  23.2
2p*2p%(5/2) — 2p2(2) 30.67  30.67 223 23.2
2p*2p?(1/2) — 2p?(0) 30.68  30.68 223 23.2
2p3(3/2) — 2p2(2) 26.63 26.63 755  78.0
2p3(3/2) — 2p?(0) 26.72 26.72 151  15.6

& “th. units” stands for threshold units, i.e. the incident energy divided by the
threshold energy.
b The quantity in parentheses is the total angular momentum of the ion.

configuration used in determining the DFS central potential for these N-like
uranium calculations was

15225%2p**%32p1678£05 , (5.19)

Numerical studies showed that the resulting cross sections are relatively in-
sensitive to how the number of electrons was distributed among the subshells
in the n = 2 shell. The results were also found to be insensitive to the precise
high subshell that was chosen to mock up the effect of the ejected electron. For
example, replacement of 8f%% with 6f%5 or 10f% had no effect on the results
presented in table 9. As in the previous section, the calculations of Moores
and Pindzola included the lowest-order QED effect in the scattering matrix
elements, whereas this correction was not included in our RDW calculations.
Although the agreement between the two data sets is generally quite good, the
differences that occur at the higher of the two impact energies are probably
due to this distinction in treating the QED effects. Our approach to including
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QED effects in the ionization scattering matrix elements is discussed in the
next section.

5.8  An option to include the generalized Breit interaction in the ionization
scattering matriz elements

The initial decision to develop an option to include the generalized Breit in-
teraction in our electron-impact ionization program was motivated by a desire
to produce better agreement with (then-recent) EBIT measurements of ion-
ization cross sections for the 1s electron in H-like and He-like uranium [89].
The measured results exceeded those produced by our non-factorized approach
[82], described previously in section 5.1, by about 50%. Since the distorted-
wave approach is expected to produce accurate results for such highly charged
systems, it was postulated that QED effects might be responsible for the
discrepancy between theory and experiment. An earlier theoretical study of
collisional ionization of U+ and U%* ions, performed by Pindzola et al. [83],
did not display a very strong effect on the ionization cross sections when the
Mgller interaction was included in the scattering matrix elements. However,
that study employed the “no-exchange” approximation in which the exchange
and interference terms were excluded from the cross section calculation. A
subsequent study by Pindzola et al. [64] displayed a very similar plot of the
various no-exchange, U%* cross sections. However, that work also included a
statement to the effect that an additional calculation, which did include the
full exchange and interference terms, had been performed at a single impact
energy (222 keV) and the resulting cross section increased by almost 50%.
Therefore, it was desirable to perform a more complete study of the first-
order QED correction to the Coulomb interaction between the bound and
free electrons, i.e. the generalized Breit interaction (in the Coulomb gauge)
or the Mgller interaction (in the Lorentz gauge), at the EBIT experimental
conditions.

In our case, we implemented logic in our collisional ionization program to in-
clude the generalized Breit interaction in the scattering matrix elements. The
necessary modifications were made to the factorized version of the code de-
scribed in section 5.2 and, as mentioned in ref. [90], the changes were relatively
straightforward. Basically, the same changes that were described in subsec-
tion 4.10.2, regarding the addition of the generalized Breit interaction to the
scattering matrix elements for collisional excitation, also apply to collisional
ionization, with minor alterations. In brief, the two direct, Breit integrals given
by eqgs. (4.90) and (4.91) must be added to the standard Coulomb integral
given by eq. (4.89). The same type of statement applies to the corresponding
exchange integrals (see eq. (4.92) and the surrounding discussion). In order to
apply these integrals to the case of ionization, the only change that needs to
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be made is that the radial functions that represent the final (bound) excited
electron must be replaced everywhere by radial functions that represent the
continuum ejected electron. This change is easily accomplished by performing
the substitution n,l/j; — €”l”5” in all of the excitation expressions.

Upon completion of these modifications, our ionization program contained a
general capability for including the generalized Breit interaction in RDW cal-
culations of the ionization cross section for transitions between fine-structure
levels in arbitrarily complex ions. Calculations were subsequently performed
of the 1s ionization cross section for UM+ and U™ ions [90]. These results are
reproduced in table 10, along with the corresponding EBIT measurements.
The notation used to describe the various theoretical calculations is the same

Table 10

Comparison of electron-impact ionization cross sections (in units of 10724 em?) for
an electron in the 1s subshell of U?** and U®* ions. The incident-electron energy
is 198 keV for both ion stages.

Theory Experiment
Ton C GB GBI

U2+ 195 290 294 2.82 4 0.35
U 093 138 1.40 1.55 + 0.27

as that used in subsections 4.10.1 and 4.10.2. Hence, the label C refers to cal-
culations that were performed with only the Coulomb interaction included in
the scattering matrix elements, the GB-labeled results also included the real
part of the generalized Breit interaction and the GBI-labeled results included
both the real+imaginary parts of the generalized Breit interaction (labeled
GBI). As was observed in the case of collisional excitation, the GB and GBI
results agree to within a couple of percent, underscoring the lack of impor-
tance of the imaginary part of the generalized Breit interaction in these types
of calculations. More importantly, the GB and GBI results display a signif-
icant (~50%) increase over the Coulomb-only cross sections for both U™
and U”7 ions, and excellent agreement is observed when comparing the QED
calculations with the EBIT measurements. Calculations that considered the
Mgller interaction, rather than the generalized Breit interaction, in comput-
ing the ionization cross section for U®'* ions were concurrently performed by
Moores and Reed [91]. These Maller results were very similar to the U™ cross
sections computed by our RDW code, providing a fundamental test of gauge
invariance and additional support of the excellent agreement between theory
and experiment.
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5.4 General results for ionization from any subshell withn < 5

In the discussions that occur near the end of refs. [32] and [82], a method was
outlined for producing reduced ionization cross sections from detailed RDW
results and then fitting these reduced quantities to a particular functional
form. The resulting fit parameters would make possible very rapid calculations
that accurately reproduced detailed RDW results for fine-structure transitions
in arbitrarily complex ions. A procedure of this type was previously imple-
mented, for example, with respect to non-relativistic Coulomb-Born-exchange
cross sections (see refs. [92-94] and the references therein).

Research of this type for RDW calculations was reported in three publications
[95,96,79] that were organized according to the principal quantum number of
the subshell in which the active electron resides. Transitions in highly charged
ions involving active electrons with n = 3, 4 and 5 were first considered in
ref. [95]. Tonization of electrons in these subshells were the simplest to consider
because the reduced cross sections were relatively independent of Z and N,
where N is the number of bound electrons in the target ion. Ionization of a
1s electron was next considered [96], followed by ionization of n = 2 electrons
[79]. These last two cases exhibited strong dependence on Z and N, and the
1s-electron case also required special consideration due to the significant effect
of the generalized Breit interaction on the shape of the reduced cross section.

The development of this fit procedure begins with a consideration of the sim-
ple, factorized form of the ionization cross section that appears in eq. (5.16),
which is repeated here for convenience,

QU -U") = > B(USS;;U",5"S))Q% (nlj). (5.20)
5,87
81,57

The subscript “a”, which denotes the active subshell, has also been omitted
for convenience. The B coefficients depend only on the ion properties such
as mixing coefficients and angular momenta, and can be rapidly computed.
As mentioned previously, the pseudo-hydrogenic cross section, QY (nl7), has
exactly the same form as the cross section for collisional ionization from sub-
shell nlj in a hydrogenic ion, but is calculated with bound and continuum
radial functions determined from the appropriate potential of the actual ion
under consideration. For relatively low values of Z, for which LS coupling is
appropriate, the dependence of Q% (nlj) on j can generally be neglected so
that

Qi (nlg) — Qi (nl),  Z <30. (5.21)
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The basic concept that underlies the fit procedure is to design a simple, fast
method for determining Q' (nlj) for an arbitrary transition in any ion. The
first step in achieving this goal is accomplished by defining a suitable reduced
cross section. Such a quantity was defined for the non-relativistic, Coulomb-
Born approach to collisional ionization of hydrogenic ions by taking advantage
of the fact that the cross section scales perfectly as 1/7? in the Z — oo limit,
where [ is the ionization energy of the bound electron. This relationship was
then extended to ionization in non-relativistic, complex ions (see, for example,
refs. [92-94] and the references therein). An important quality exhibited by
those reduced cross sections associated with ionization of an electron from a
particular nl subshell is that they are approximately independent of the Z
value and number of bound electrons, N, that describe the target ion.

5.4.1 Fitston = 3, 4 and 5 wonzation cross sections

In applying this approach to RDW ionization cross sections, we consider the
same type of scaling and define a (dimensionless) reduced ionization cross
section, (g, according to

w(nlj) = W@g(nlj, u), (5.22)

where I(Ry) is the ionization energy in Rydbergs and u = ¢/ is the incident-
electron kinetic energy in threshold units. In order to test the utility of such
a reduced cross section for RDW calculations, we first considered ionization
of electrons residing in subshells having principal quantum numbers n = 3,
4 and 5. The process of collisional ionization of clectrons in these shells is
expected to be less affected by relativistic effects, relative to ionization of the
more tightly bound electrons residing in the n = 1 and 2 shells. Therefore,
it was hoped that the previously mentioned approach, which was successfully
applied to non-relativistic Coulomb-Born cross sections, would also work well
for these electrons within an RDW framework.

To this end, we computed values of Qg(nlj,u) for a large number of cases
involving the ionization of electrons residing in the n = 3, 4 and 5 shells [95].
A subset of these results is displayed in table 11 for the n = 4 values. The
additional n = 3 and n = 5 data are available in ref. [95], along with a detailed
description of how these reduced cross sections were calculated. From table 11
and ref. [95], one observes that the reduced cross section for ionization from
a given subshell nlj is almost independent of Z, N and j for n > 3, despite
the fact that the ionization energy, and hence the pseudo-hydrogenic cross
section Qi (nlj), differ greatly as a function of these quantities. Moreover, the
reduced cross sections are reasonably close to the non-relativistic Coulomb-
Born-exchange values for hydrogenic ions, except that the RDW values tend to
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Table 11
Comparison of values for the reduced ionization cross section Qg for electrons re-
siding in the n = 4 shell.

Active u=c¢/l
subshel Z N I{Ry) 1125 1250 1.500 2250 4.000 6.000
4s 12 0359 0580 0.807 0.937 0.800 0.651

79 1 421.16 0.3624 0.5869 0.8276 0.9600 0.8447 0.6951
26 11 1874 0.3360 0.5473 0.7733 0.9020 0.7703 0.6203
79 35 189.48 03276 0.5368 0.7668 0.9096 0.7821 0.6355
79 45 144.28 0.3101 0.5099 0.7325 0.8858 0.7721 0.6286

4p* 1% 0394 0.640 0901 1.057 0.882 0.702
79 1 421.08 03771 0.6145 08740 1.0421 0.9184 0.7518
26 11 17.79 0.3570 0.5812 0.8223 0.9756 0.8492 0.6835
79 35 18140 0.3502 0.5703 0.8059 0.9469 0.8339 0.6810
79 45 136.05 0.3439 0.5616 0.7975 0.9394 0.8133 0.6782

4p 12 0394 0640 0.901 1.057 0.882 0.702
79 1 400.65 0.3965 0.6448 0.9139 1.0913 0.9542 0.7758
26. 11  17.71 0.3582 0.5823 0.8218 0.9786 0.8512 0.6856
79 356 171.26 0.3665 0.5968 0.8429 0.9984 0.8800 0.7218
79 45 127.23 0.3607 0.5880 0.8349 0.9890 0.8644 0.7160

4d* 12 0488 0785 1.083 1205 0963 0.755
79 1 40065 04945 07981 1.1084 1.2534 1.0367 0.8328
26 11 1646 04712 0.7617 1.0606 1.2061 0.9882 0.7805
79 35 15869 0.4549 0.7430 1.0501 1.2303 1.0356 0.8395
79 45 113.85 0.4327 0.7105 1.0175 1.2226 1.0496 0.8601

4d 12 0.488 0785 1.083 1.205 0963 0.755
79 1 394.84 04977 0.8021 1.1102 1.2560 1.0358 0.8316
26 11 16.46 04710 0.7609 1.0576 1.2057 0.9871 0.7801
79 35 15648 0.4585 0.7480 1.0544 1.2335 1.0339 0.8338
79 45 112.01 04364 0.7162 1.0237 1.2271 1.0499 0.8492

4f* 12 0.538 0.864 1.187 1326 1.057 0.820
79 1 394.84 0.5518 0.8856 1.2202 1.3794 1.1263 0.8936
26 11 1580 0.5362 0.8617 1.1857 1.3428 1.0799 (.8366
79 35 142.00 0.5637 0.9096 1.2596 1.4394 1.1783 0.9263
79 45  95.92 0.5797 0.9404 1.3126 1.5183 1.2638 1.0059

af 1# 0.538 0.864 1.187 1326 1.057 0.820
79 1 39205 0.5514 0.8849 1.2187 1.3787 1.1261 0.8925
26 11 1580 0.5359 0.8613 1.1846 1.3426 1.0796 0.8364
79 35 141.34 0.5632 0.9086 1.2577 14374 1.1758 0.9238
79 45 9540 0.5792 0.9395 1.3109 1.5161 1.2613 1.0030

2 Non-relativistic Coulomb-Born-exchange values for hydrogenic ions from refs. [92-
94). These values are independent of Z.

exceed the non-relativistic results for the higher values of Z and u, as expected.
This separation is due to the RDW potential being somewhat different from
a pure Coulomb potential and also due to the relativistic effects that are
included in our RDW calculations.

Equipped with a reduced cross section that possesses the desired lack of de-
pendence on Z and N {as well as ), we next considered fitting the reduced
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cross section, for a given subshell nij, to a functional form that is the same as
that used for the non-relativistic case. Specifically, we considered

u

. {c(nlj) N d(nl:f’)} (1 _ l) } (5.23)

u u? U

where, as mentioned previously, the dependence on j was found to be small
and can be neglected. The reasons for choosing this particular fit formula are
discussed in more detail in subsection 5.4.4. The coefficients A, D, ¢ and d
are fit parameters to be determined from the computed values of the reduced
cross sections discussed above. Once the fit parameters are determined, the
cross section in eq. (5.20) for ionization between fine-structure levels can be
approximated by

N S LAWY T 7SS, U ST fit(o15 o =
QU -U") Ty 2_; B(U,SS1; U", 8"S))Q% (nlj,u), (5.24)

s qlt
81 ’Sl

where [ is the actual ionization energy for the fine-structure transition denoted
by U — U".

Returning to the reduced cross sections in table 11 (and the corresponding
n =3 and n = 5 results from ref. [95]), we considered the results for Br-like
gold (N = 35 and Z = 79) to be a representative data set. These values of
Qg were then fit to the functional form given by eq. (5.23). In doing so, for
subshells with { > 1, fits were made to the mean values

Qr(nl,u) = 3[Qr(nlj =1 —3,u) + Qr(nlj = 1 + 3, u)] (5.25)

since, as previously mentioned, the reduced cross sections do not exhibit a
strong dependence on the j quantum number in this case. Of course, more
accurate fits would result if each nlj reduced cross section had been considered
individually. The resulting fit parameters are provided in ref. [95] and are
reproduced here in table 12. These parameters fit the Br-like gold data set to
within 2%, with the agreement typically much better than that.

A numerical example, which will not be reproduced here, was provided in
ref. [95] to demonstrate the application of these parameters. Specifically, the
fit parameters were used to compute fine-structure, inner-shell ionization cross
sections from the ground state of Cu-like (N = 29) gold ions to various final
levels with J = 1 in the Ni-like stage. The resulting fit data were compared
with the actual RDW results and a maximum discrepancy of 6% was obtained

109



Table 12

Values for the parameters in the fits to the reduced cross sections Qg(nl,u) ob-
tained from Br-like gold results. These parameters are to be used in eq. (5.23) and
eq. (5.39).

nl  A(nl) D{nl) c(nl) d(nl) nl  A(nl) D(nl) c(nl) d{nl)
3s  0.848 3.67 024 270 4f 0187 682 267 3.04
3p 0711  5.06 0.03 3.02 53 0.584  3.87 038 2.56
3d 0342 731 090 4.16 5p 0.570 4.09 095 231
4s  0.68  3.38 122  1.45 5d 0468 523 081 297
dp 0.640 417 049 2.64 5f  0.288 595 247 266
4d  0.474  5.48 1,78 2.48 5g 0101 664 3.17 263

for strong and moderately strong transitions when comparing the two data
sets. The reader is referred to ref. [95] for further details.

5.4.2 Fits to n = 2 ionization cross sections

Fits to n = 2 ionization cross sections were considered in ref. [79]. This study
included a large number of calculations of n = 2 cross sections to get an idea
of what sort of fit formulae and parameters would be required to accurately re-
produce the associated reduced cross sections. A preliminary goal of this study
was to determine the range of conditions under which the generalized Breit
interaction had a significant effect on cross sections that represent ionization
from the n = 2 subshells. It was found that this interaction became important
for Z 2 42 and had a maximum effect of only 13% on the cross sections at the
highest Z value of 92. Moreover, these tests indicated a maximum contribu-
tion of only 0.1% from the imaginary part of this interaction. Thus, only the
real part of the generalized Breit interaction was included when computing
the actual reduced cross sections that were used in the fit procedure described
below.

The determination of an accurate fit formula and corresponding parameters is
somewhat more complicated for ionization from the n = 2 subshells than for
the n = 3-5 subshells described in the previous subsection. The complications
arise from two separate considerations. First, the relativistic effects (and, to
a lesser extent, the effects of the generalized Breit interaction) on Qg become
much stronger for n = 2 ionization as Z increases. From inspection, the rela-
tivistic effects start to become important for Z 2 30, which provides a dividing
line for consideration of those effects. The second complication concerns the
low-Z region for which the relativistic effects are not important. In this region,
the ionization cross sections are of interest for a relatively large range of N
values (about 1 to 12). This consideration introduces a strong N dependence
into the reduced cross sections for low-Z ions, which requires some additional
attention.
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Based on this information, we chose Z = 30 as the approximate boundary for
deciding whether weak/strong N dependence and relativistic effects must be
considered. For Z > 30 the fits were somewhat simpler since they displayed
only a weak dependence on N and so we begin with a discussion of those
results. There is considerable discussion and detail provided in ref. [79], which
will be summarized presently. An inspection of the various calculations for
Z > 30 indicated that the weak N dependence could be split into two regions:
1 £ N £7and 8 < N < 12. Data for the former region can be accurately
represented by fitting reduced cross sections that were computed for N = 4,
while the latter region is well represented by fitting N = 10 results. Next, a
function F(Z) must be chosen such that a modified reduced cross section, Q.
defined by

Qr(20j,u) = Qu(2lj,u)/F(Z), (5.26)

is independent of Z for low incident-electron energies. The choices

[66 + (Z/30)%2*]/67  for 2s
F(Z) =< [150 + (Z/30)%5]/151 for 2p* (5.27)
[76 + (Z/30)%%]/77  for 2p

were found to work well for the N = 4 case, while the choices

[13.75 + (Z/30)'3]/14.75  for 2s
F(Z)y= < [79+ (Z/30)%/80 for 2p* ‘ (5.28)
[49 + (Z/30)?]/50 for 2p

worked well for the N = 10 case. Then, for Z = 30, where (), = (g, the
calculated results were fit to the form

Q' (20j,u) = {Am(u) D (1 _ é)z ey (1 - é)‘i

1
+ EJF%} (1 - %)} (5.20)

where D, C, ¢ and d are free fit parameters and A is the known constant that
reproduces the non-relativistic Bethe high-energy limit for hydrogenic ions.
A comparison of eq. (5.29) with eq. (5.23) used in the previous subsection
reveals an extra term containing the C' parameter. This extra term provides
additional flexibility in fitting the n = 2 reduced cross sections at high impact
energies. It was originally introduced to better fit the high-energy behavior
displayed by 1s ionization cross sections and will be discussed in more detail
in the next subsection. The resulting fit parameters for the present case of
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Table 13

Fit parameters for n = 2 ionization to be used in eq. (5.29) and eq. (5.43) when
Z > 30. See also eqgs. (5.30)—(5.32) for a prescription of how the C and D coeflicients
should be modified as a function of Z.

Subshell Z N A D c d C
2s 30 4  0.82300 3.29272 1.29228 0.97231 0.12297
10 0.82300 3.42429 0.74161 1.30061 0.10748

2p* 30 4  0.53000 4.70251 221302 1.39644 0.15751
10 0.53000 5.08482 1.73067 1.75431 0.16469

2p 30 4 0.53000 4.69802 2.24186 1.38246 0.15499
10 0.53000 5.08759 1.75208 1.75654 0.16191

Z = 30 and N = 4 are displayed in table 13. The previous procedure was also
repeated for Z = 30 and N = 10, and the resulting fit parameters are also
displayed in table 13.

In order to extend these fits beyond Z = 30, so that accurate reduced cross
sections would be obtained, it was necessary to allow for some of the fit pa-
rameters to depend on Z. For the case of N = 4 the values of A, ¢ and d
were held fixed at their values for Z = 30 given in table 13. However, C was
allowed to vary with Z, while D was fixed at its Z = 30 value over the range
30 < Z < 50 and then allowed to vary with Z beyond this range. The choices
used to represent this Z dependence were

0.12297 + [(Z — 30)/122]*%%  for 2s
C(Z) =13 0.15751 + [(Z — 30)/90]**  for 2p* (5.30)
0.15499 + [(Z — 30)/124]*%  for 2p

3.29272 + [(Z — 50)/95])* for 2s
D(Z) = { 470251 + (Z — 50)/100  for 2p". (5.31)
4.69802 + (Z — 50)/170  for 2p

For N = 10, the values of A, ¢ and d were also held fixed at their values for
Z = 30. No improvement was obtained when the D parameter was allowed to
depend on Z, and so that parameter was also held fixed at its Z = 30 value.
Thus, only the C parameter was allowed to vary with Z when N = 10 and
the functional form was chosen to be

0.10748 + [(Z — 30)/91.6]>° for 25
C(Z) = { 0.16469 + [(Z — 30)/79]>*  for 2p", (5.32)
0.16191 + [(Z — 30)/96]*5  for 2p

For Z < 30 we did not consider any explicit Z dependence in the fit formulae
or parameters. Therefore, F(Z) = 1 and no Z dependence is included in the
C and D parameters. However, the strong N dependence must be taken into
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Table 14

Fit parameters for n = 2 ionization to be used in eq. (5.29) and eq. (5.43) when
Z < 30. These results are to be used in conjunction with the information listed in
tables 15 and 16.

Subshell fitlabel 2 N A D ¢ d C

2s m 20 2 0.82300 3.25608 1.39689 0.90728 0.10312
n 14 3  0.82300 3.19030 1.26373 0.92092 0.09837

0 20 7 0.82300 3.40125 0.74015 1.28843 0.08671
p 23 10 0.82300 3.47502 0.42973 1.47638 (.09090
q 20 10 0.82300 3.49865 0.19704 1.61284 0.08620
T 10 6 0.82300 3.25615 0.24498 1.42340 0.10526
S 14 9 0.82300 3.37995 —0.16761 1.67916 0.10495
t 16 12 0.82300 3.47813 —0.60240 1.90515 0.11514
2p u 20 3 0.53000 4.63025 2.25094 1.33408 0.13207
v 9 4 0.53000 5.11279 1.58909 1.88921 0.10317
W 9 5 0.53000 5.49331 1.00456 2.34350 0.11167
X 18 10 0.53000 5.46097 0.96675 2.13802 0.17920
v 12 8 0.53000 5.33521 0.87126 1.95646 0.25035
Z 16 12 0.53000 5.41330 0.41832 2.08234 0.30398

account, particularly for large values of N and small values of u. To address
this issue, we found it necessary to compute a number of different sets of fit
parameters in order to accurately represent all of the relevant regimes of Z and
N. In computing these sets of fit parameters, use was made of the observation
that the Qg values are approximately a function of Z/N when the dependence
on N is strong. Hence, a single set of fit parameters can be used for all cases
with nearly the same Z/N value.

In the first part of table 14, the recommended fit parameters to be used for
2s lonization, when 7 < 30, are given. A lowercase letter is used to label each
set of fit parameters and the corresponding values of Z and N denote from
which explicitly calculated set of Qr data the parameters were determined.
Using these labels, the range of Z and N values for which each of these fits
can be applied is indicated in table 15.

The lower part of table 14 contains the analogous fit parameters for ionization
of a 2p electron when Z < 30. In this low-Z region, values of Qg for the 2p* and
2p orbitals agree to within 0.5% and so the same fit parameters apply to both
orbitals. The corresponding ranges of Z and N for which these parameters are
to be applied are provided in table 16.

A nice summary that describes how to use the various sets of n = 2 fit pa-
rameters is provided in table A of ref. [79]. Some useful discussions of certain
numerical comparisons are also provided in that reference.
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Table 15
Regions of N and Z for which each set of 2s fit parameters given in table 14 applies.

N
1 2 3 4 5 6 7 8 9 10 11 12

41 m

5| m

6 !m n

7/m n o

S'm n o q

9Im n o p q
100im n o o q r
11fm n n o q r s
12'm m n o p q r 8

Z 13'm m n o p gq r 1 t

4/ m m n n o p gq r s ¢t
15'm m n n o p p r s t ¢
166 m m n n o o p g r s t ¢
7 m m n n o o p q r s s t
18 m m n n o o p g r r T 8
199  m m n n n o o p q r ror
20lm m n o n o o p p g g r
2lflm m m n n n o p p q q r
22! m m m n n n o o p p g (¢
2l m m m n n n o o p p p g
24'm m m n n n o0 0o O p p g
2!m m m n n n o o O p p p
200lm m m m n n n o O p P P
27/m m m m n n n o0 O© O p P
226 m m m m n non o0 O O O P
2/m m m m n n n o 0o © © P
30|lm m m m n n n n o o O O

5.4.83 Fits to 1s ionization cross sections

Our investigation into the fitting of ionization cross sections for a 1s electron
[96] proceeded in a manner very similar to that described in the previous
subsection for ions in the n = 2 shell. In fact, as mentioned earlier, our study
of the 1s electron was actually performed before the n = 2 work. The first
part of this study focused on determining the effect of the generalized Breit
interaction on the 1s ionization cross section. Cross sections are displayed in
table 17 for 1s ionization in a variety of hydrogenic ions with Z ranging from
10-92. Results are presented for Coulomb-only calculations and calculations
that also included the real part of the generalized Breit interaction. As in
previous calculations, the imaginary part of the generalized Breit interaction
was found to make only a small contribution to the cross section, even at the
highest Z value of 92. In that case, the contribution of the imaginary part was
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Table 16
Regions of N and Z for which each set of 2p fit parameters given in table 14 applies.

N

1 2 3 4 5 6 7 8 9 10 11 12

4 u

5l u

6|l u u

T7lu u u

8lu u u v

9/iu u u v w
0 u v v v w x
1Tlu uw v v w x ¥y
12{u u u v v w x vy

VA Blu v u v v w w X ¥y

4iu v uw uw v w w X ¥ zZ
I5ju v v v v v w X y z 7
66ju v« v v v v W X Yy ¥V 7 %
17lu v v uw v v w w X Vv y 2
I8lu u v u v vV vV w W X V¥
9 v 4« uw uw v v v w w X X X
20lu v v v v v v W w W X X
20l uw v u v v v W w W w X
22|11 1 1w u v v vV W W W W X
221 uw u u VvV V V W W W W W
24|lu uw u u VvV VvV V V W W W W
2/lu u u u VvV Vv VvV V W W W W
26lu u w u Vv VvV Vv V V W W W
27/u 4 U 4 v v Vv vV V W W W
2200 u u u v VvV V V V W W W
29lu uw uw u v v v Vv VvV wW W W
30|y u uw v v v v vV Vv VvV W W

only 1.6% for incident energies near threshold. The real part of the generalized
Breit interaction, on the other hand, has a very significant effect. As expected,
the effect increases with Z and incident energy, u, up to a maximum of 60%
for Z = 92. For Z = 30, the effect dwindles to only a few percent and was
omitted for Z = 10 and 20 because it was negligible.

The next step was to investigate the reduced 1s cross section for a range of ions
in order to determine the best approach to fitting those results. The results
used for this purpose are presented in table 18. In this table, results for H-like
and He-like ions are presented for fine-structure transitions, while the results
for Li-like and Be-like ions are based on the pseudo-hydrogenic cross section
with the orbital binding energy chosen for the ionization energy. Exceptions
to this latter description occur at Z = 10 for which results are also presented
for fine-structure transitions when the final level is listed. From inspection
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Table 17

Comparison of results for 1s ionization cross sections (in units of 10724 cm?) for
hydrogenic ions for various incident electron energies u (in threshold units) and
nuclear charge Z. Upper entries are values calculated with only the Coulomb inter-
action included, while lower entries are values calculated with the generalized Breit
interaction also included.

Z
u 10 20 30 42 a0 66 79 92
1.125 2490 1557 30.8 804 4.01 1.327 0.649 0.355
31.2 833 427 1535 0.831 0.516

1.250 4219 264.0 523 13.65 6.82 2259 1.106 0.605
53.1 1421 729 2636 1.432 0.889

1.500 6374 3993 79.2 20.74 1037 3.453 1.695 0.926
80.6 21.71 11.19 4.081 2227 1.381

2.250 8624 5425 108.3 2867 1446 4.897 2429 1.331
110.9 3032 15.82 5910 3.268 2.029

4.000 8453 538.9 1099 30.03 1551 5.503 2.815 1.569
113.1 3216 17.28 6.823 3.894 2.450

6.000 7266 471.2 98.6 2796 14.83 5.512 2903 1.647
102.0 30.31 16.80 7.009 4.126 2.639

of these results, we chose Z = 20 to be the approximate value above which
relativistic effects become significant. It is also noted that the N dependence
is rather weak above this Z value, and so it was decided that the reduced cross
sections for hydrogenic ions with Z = 20 would be used in determining the
fit parameters for Z > 20. We will return to a discussion of ions with Z < 20
near the end of this subsection.

The final concern with choosing an appropriate fit formula for the 1s reduced
cross section was the fact that the cross section does not fall off with the usual
In(u)/u dependence, which is the non-relativistic, Bethe high-energy limit. In-
stead, as demonstrated by the results in figure 2, the 1s cross section is roughly
constant for the higher impact energies. This behavior is not unexpected be-
cause the standard In(w)/u limit is not valid for such relativistic energies. In
fact, Bethe’s original formula, which was written in terms of velocities, is valid
for both relativistic and non-relativistic energies. A more appropriate form of
the relativistic Bethe formula is given by In(3%+G) /3%, where /3 has the usual
definition of 8 = v/c and G is a constant. It is easily verified that this last
expression approaches a constant value for very high energies due to the fact
that the velocity v of the incident electron is bounded by the speed of light.
This expression is expected to describe the limiting behavior when only the
Coulomb interaction is considered in the scattering matrix elements. If any
of the various forms of the Breit interaction are also considered, then there
is a predicted “relativistic rise” in the cross section that occurs at sufficiently
high incident energies. In this case, extra terms, which grow with increasing
impact energy, must be added to the standard Bethe formula. When specifi-
cally considering the original Breit interaction, a limiting behavior of the form
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Table 18

Reduced cross sections Qgr(1ls, u) and ionization energies I(Ry) for ions in the ground

state with various N and Z values. z[y] = =< 10Y.

Final u=c¢/l
Z N level I(Ry) 1.125  1.250  1.500  2.250  4.000  6.000
10 1 1. 0013[2] 0.2837 0.4807 0.7264 09828 0.9632 0.8280
2 87797[1] 0.2714 0.4580 0.7038 0.9682 0.9669 0.8396
3 8.4376[1] 0.2636 0.4557 0.6951 0.9694 0.9768 0.8495
3 (1s2s) 8.4793[1] 0.2647 0.4577 0.6982 0.9744 0.9819 0.8539
3 (1s2s); 8.4007[1] 0.2626 0.4539 0.6923 0.9650 0.9721 (.8455
4 8. 0893[ } 0.2587 0.4434 0.6824 0.9600 09790 0.8574
4 (18282)1f2 8.0795[1] 0.2584 0.4430 0.6816 0.9588 0.9777 0.8563
20 1 4.0205[2] 0.2861 0.4851 0.7337 0.9968 0.9901 0.8657
2 3.7688[2] 0.2793 04743 0.7217 0.9882 0.9896 (.8682
3 3.6975[2] 0.2774 0.4722 0.7196 09886 0.9942 0.8733
4 3.6213[2] 0.2730 0.4679 0.7142 0.9862 0.9960 0.8766
23 1 5.3261[2] 0.2873 0.4871 0.7369 1.0030 1.0017 0.8822
30 1 9.1063[2] 0.2943 0.5003 0.7602 1.0450 1.0659 0.9610
42 1 1. 8062[3] 0.3091 0.5269 0.8051 1.1244 1.1927 1.1240
50 1 2.5869(3] 0.3245 0.5545 0.8509 1.2030 1.3143 1.2779
2 2.5181[3] 0.3198 0.5469 0.8407 1.1904 1.3012 1.2642
3 2.5036[3] 0.3192 0.5461 0.8400 1.1907 1.3027 1.2655
4 2.4825[3] 0.3173 0.5432 (.8361 1.1869 1.2995 1.2623
66 1 4.6373[3] 0.3751 0.6444 0.9976 1.4447 1.6678 1.7134
2 4.5389[3] 0.3702 0.6352 0.9850 1.4270 1.6468 1.6905
79 1 6.8591[3] 0.4446 07660 1.1912 1.7477 2.0825 2.2067
2 6. 7311[3} 0.4383 0.7b54 1.1754 1.7248 2.0546 2.1764
92 1 9.7078[3] 0.5531 0.9522 1.4798 2.1740 2.6247 2.8273
2 9. 5422[3] 0.5455 0.9391 1.4599 2.1451 2.5903 2.7942
3 9.5407[3] 0.5459 0.9394 1.4614 2.1481 2.5950 2.8024
4 9.4934[3] 0.5431 0.9394 14545 2.1389 2.5845 2.7890

{n[6?/(1 - 5°)]

— 3% + G}/3% is obtained [97]. One can see from the data

in figure 2 and table 17 that the results which include the generalized Breit
interaction are increasing slightly faster than the Coulomb-only data as the
incident energy and Z value increase. This behavior is an indication that the
cross sections are approaching the region in which the relativistic rise occurs.
Due to the numerical difficulties associated with obtaining converged cross
sections for energies beyond u = 6, the highest energy for which detailed cross
sections were calculated, we were not able to further explore this behavior.
In any event, we do not expect our fits to be reliable for u values that are
appreciably greater than 6, which is sufficiently large for most practical appli-
cations.
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Fig. 2. Ionization cross sections for the 1s electron in hydrogenic ions as a function of
incident energy in threshold units. Results are provided for Z = 66, 79 and 92. The
dashed lines represent results calculated with only the Coulomb interaction included
in the scattering matrix elements. The solid lines represent results calculated with
both the Coulomb interaction and the real part of the generalized Breit interaction.

After taking these issues into account, the fitting procedure can proceed as
described in the previous subsection. First, we define a modified reduced cross
section

Q,R(lsau) = QR(lSau)/ﬁj(Z)a (533)

where F(Z) is chosen such that Qf(1s,u) is independent of Z for low incident-
electron energies (i.e. u = 1). The choice

F(Z) = [140 + (Z/20)*?)/141 (5.34)
accomplishes this independence to within 1% for the explicitly calculated val-

ues of Qr. Then, for 7 = 20, where ), = Qr, we fit the calculated results for
N =1 to the form

Qr(ls,u) = %{Aln(u) + D (1 —_ %)2 +Cu (1 _ /_1_)4
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+ L%+ ?‘% (1 - %) } (5.35)

where A = 1.13 is the known constant that reproduces the non-relativistic,
Bethe high-energy limit and D, C, ¢ and d are free fit parameters. As stated
in the previous subsection, the term that contains the C' parameter was added
to the standard fit formula in order to more accurately capture the (nearly
constant) high-energy behavior of the 1s cross section for very high-Z ions.
The fit parameters that resulted from this procedure are listed in the second
row of table 19. '

Table 19

Fit parameters for 1s ionization obtained from hydrogenic ions with Z = 20 and He-
like ions with Z = 10. These parameters are to be used in eq. (5.35) and eq. (5.43).
The first row of data should be used for ions with Z < 20 and the second row of
data should be used for ions with Z > 20. The latter results should be used in
conjunction with egs. (5.36)-(5.38).

4 N A D c d C

10 2 1.1300 3.82652 —0.80414 2.32431 0.14424
20 1 1.1300 3.70590 -0.28394 1.95270 0.20594

For Z > 20, we first attempted to use eq. (5.35) with the coefficients A, D,
¢ and d fixed at the same values as for Z = 20, but allowed C to be a free
parameter in determining the best fits at each of the remaining test Z values.
This approach led to fits that were accurate to within 2.4% or better at each
of the test Z values. We then used these best values of C to express C as a
function of Z. The resulting functions, which preserve the accuracy to within
2.4% at the test Z values, are given by

C(Z)=[(Z - 20)/50.5)"" + C(Z = 20), 20 < Z < 66 (5.36)
and
C(Z)=[(Z —20)/53]"™ + C(Z =20), 67 < Z <92 (5.37)

Furthermore, the single formula

C(Z)=[(Z - 20)/55]"% + C(Z =20), 20< Z < 92 (5.38)
gives only slightly worse accuracy over the entire range of Z values.

Although the Z = 20 fit parameters obtained from the above procedure also
produce a fairly good reproduction of Qg(1s,u) for Z < 20, further numerical
studies showed that fitting the He-like, Z = 10 results with eq. (5.35) gives an
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improved overall accuracy for the low-Z region. In this region, there is no need
to define a quantity like Q% (i.e. F(Z) = 1), or to express C as a function of
Z, because there is essentially no Z dependence exhibited by the reduced cross
sections in this region. The fit parameters that resulted from this procedure
are listed in the first row of table 19. Thus, we recommend that the first row
of table 19 should be used for ions with Z < 20 and the second row should
be used for ions with Z > 20. The latter set of parameters should be used in
conjunction with egs. (5.36)—(5.38).

5.4.4  The form of the fit formulae and 1onization rate coefficients

As mentioned in refs. [92-94], which deal with the fitting of non-relativistic
ionization cross sections, the particular fit formula appearing in eq. (5.23) was
chosen for two reasons. First, it reproduces the appropriate physical behav-
ior in the various incident-electron energy regimes. For example, the 4 co-
efficient multiplies the In(u)/u term, which represents the well-known Bethe
high-energy limit of the ionization cross section for non-relativistic electrons.
Second, eq. {5.23) can be readily integrated over a Maxwellian distribution
function, representing the velocity distribution of the continuum electrons at
a temperature T', to obtain the ionization rate coefficient in terms of exponen-
tial integrals. The expression for the collisional excitation rate coefficient that
corresponds to cross section (i — f) was previously provided in eq. (4.108).
This same expression holds for the ionization rate coefficient, provided that
the excitation cross section is replaced with the ionization cross section.

For ionization of n = 3, 4 and 5 electrons, it is sufficient to consider the
Maxwellian distribution in its non-relativistic form, as opposed to the rela-
tivistic approach taken in chapter 4. With this choice, the rate coeflicient for
ionization that corresponds to the cross section in eq. (5.24) is given (in regular
units, rather than Rydberg atomic units) by

O — U kT) = (

wm

8KT\ /2 Wa;z) 7 Qi QY
) TaypY 3 BU.SS: U 8"S))

x{D(nlj)e™ —yd(nlj)Es(y)
+[A(nlj) + ye(nlj) — 2y D(nlj)] E1(y)
+y[D(nlj) + d(nlj) — c(nlj)]Ea(y)},  (5.39)

where m is the electron mass, / is the ionization energy of the actual fine-
structure transition denoted by U — U”,

y=1/kT (5.40)
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with k being Boltzmann’s constant, and E,(y) represents the exponential in-
tegrals

En(y) :/ o
1

dz . (5.41)

Additional discussion is provided in ref. [95] concerning the application of
contimium lowering to eq. (5.39). The details are relatively straightforward
and, under such considerations, eq. (5.39) becomes eq. (9) of ref. [95].

The fit formula that was applied to the ionization of electrons residing in the
n =1 and n = 2 shells, eq. (5.29) or eq. (5.35), can also be integrated over
a Maxwellian to obtain the associated rate coefficient in terms of exponential
integrals. Recall that egs. (5.29) and (5.35) differ from eq. (5.23) only in that
they contain an extra term in order to better represent the high-energy be-
havior of the reduced cross section. This extra term requires some additional,
but straightforward, work in determining the corresponding rate coefficient.
Since the ionization of » = 1 and n = 2 electrons is potentially influenced
by relativistic effects, we consider here the relativistic form of the Maxwellian
that is described in chapter 4. Applying eq. (5.20) to eq. (4.108), we obtain
the rate coefficient in the form

CU—-U"KT)= 3 B(U,8S,;U", S§"S})CE (nlj; kT), (5.42)
S,SN
51.8Y

where the pseudo-hydrogenic ionization rate coefficient forann=1orn =2
electron is given (again in regular units) by

CH(nlj; kT) .
_ % H[ (D —3C) +Cfyle™
+[A+y(c— 2D + 6C)Er(y)

(D= 4C +d = ) Ealy) +9(C ~ DEsly)}
+9;—21(Ry){[(c — D +3C)+ g(A + D -2C)+2C/y*le?
Hy(D+d—c—40) + A/YIEN) +y(C ~ DE)}] . (5.49)
Some of the symbols in eq. (5.43) have already been previously defined. For
example, y is given by eq. (5.40), and the E, are the exponential integrals

from eq. (5.41). The symbol Iy = 1 Ry is the ionization energy of the hy-
drogen atomic, h is Planck’s constant and « = 1/137.036 is the fine-structure
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constant. The entire term containing o2 can typically be ignored for ions with
Z < 26. Finally, N, is the electron number density and the inverse of the ex-
ponential e~”7, which is a normalization factor for the relativistic Maxwellian
distribution, is provided in eq. (4.109). It should be noted that useful examples
for n = 1 and n = 2 ionization have been provided in refs. [96] and [79].re-
garding certain simple cases for which the quadruple sum in eq. (5.42) reduces
to a single B factor.

5.5  Configuration-average cross sections for electron-impact ionization

An expression for the configuration-average cross section for electron-impact
ionization is determined in exactly the same manner as described in sec-

tion 4.13 for the case of electron-impact excitation. Thus, we define the configuration-
average ionization cross section between two configurations ¢ and ¢ as

Qcmc” = Z Z giinj/gce ‘ (544)

i€c jee!t

where (2;_; is the cross section between two pure SCSFs labeled ¢ and j, and
9. is the statistical weight of the initial configuration given by eq. (3.45). For
ionization, the final configuration is denoted as ¢ instead of ¢/ to emphasize
the fact that the final configuration has one fewer electron than the initial
configuration. As in section 4.13, we again make the approximation that the
ionization energy associated with each of the SCSF transitions can be ac-
curately represented by the configuration-average transition energy, AF, ..
The result is that each SCSF cross section in eq. (5.44) is described by a
scattered and ejected electron with kinetic energies that satisfy the relation
€ +¢ = €~ AE._., where AE,_, = E. — E,. With this assumption,
eq. (5.44) can be rewritten in the very simple form

Qc---c’ = ?UaQ%s (nalaja> > (545)

where the form of the pseudo-hydrogenic ionization cross section is given by
eq. (5.14). As usual, the pseudo-hydrogenic cross section should be computed
with energies and radial wave functions that are appropriate to the particular
ion under consideration.

For comparison, we note that, if eq. (5.45) were to be recast in the form of
a collisional ionization strength, the result would be the relativistic analog
of eq. (16) given by Peyrusse [28]. As a check, we note that it is trivial to
verify that eq. (5.45) reduces to the correct hydrogenic expression for the
case of hydrogenic ions (w, = 1). We also note that the form of eq. (5.45) is
very similar to the analogous expression for excitation in eq. (4.106), except
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that the leading statistical factor is simpler for the case of ionization. This
simplification is due to the fact that, for the case of ionization, the active
bound electron residing in subshell ny,l,j, is ionized to become a continuum
electron that resides in an orbital denoted by the quantum numbers {” ;" with
an occupancy that is always one. Setting wg = 1 in eq. (4.106) produces the
simplified statistical factor that appears in eq. (5.45) above.

6 Photoionization

Photoionization (PI) cross sections of atoms and ions are crucial in the mod-
eling of astrophysical and laboratory plasmas in the presence of an external
radiation field, or that are not optically thin. Among the many applications,
the most extensive is perhaps the calculation of the opacity of the plasma un-
der both local thermodynamic equilibrium (LTE) and non-LTE conditions. As
in the case of electron-impact ionization, both the non-factorized and factor-
ized methods for calculating fine-structure photoionization cross sections are
described in this chapter. In addition, expressions are also provided for the
configuration-average case. We note that the expressions for the cross section
provided in this section are in the length form (see subsection 3.1.2) and with
the effect of retardation (see sections 3.3 and 3.4) omitted.

6.1 General expressions for photoionization cross sections

In writing an expression for the relativistic photoionization cross section, we
adopt the method that was outlined in ref. [98], which employs the generalized
line strength. Thus, for a transition from a fine-structure level denoted by the
quantum numbers A, J; in a given ion stage to a level denoted by AYJ; in the
adjacent ion stage with one less electron, the photoionization cross section is
given by

dralks,

. _A// 1 —
QP‘(A‘ Jo = AT 322, + 1),

SO S(AT, ALIIEVT T, (6.1)

7jlw]!

where E, is the photon energy in Rydbergs and ¢ is the ejected-electron kinetic
energy related to £, and the ionization energy AE by

¢ = E, — AE(AJ, — AVJ"Y . (6.2)

The symbol S represents the generalized oscillator strength, which is a gener-
alization of the line strength in eq. (3.14), and is given by
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S(A Ty, ATV T = (A, || PYD Y ALV T (6.3)

Here, the symbol J' represents the total angular momentum of the final system
formed by the final ion in level AY.J/ and the free (ionized) electron composed
of partial waves that are denoted by the usual notation €'l'j’. By analogy with
eq. (3.17), the reduced matrix element can be written as

(Do || PO ALTIEUGT) = 37 b7 (A, B0 (AT, 87)
Be.37
< (BeJy | PV || B IIETSTY,  (6.4)

where (3, represents all quantum numbers in addition to J, that are necessary
to specify the pure SCSF basis state 8,.J, with corresponding mixing coefficient
b (A, ;). (The omission of the magnetic quantum number in describing an
SCSF is potentially confusing. See the explanatory note following eq. (3.17).)
Double primes on symbols indicate corresponding quantities in the final state.
Due to the presence of the reduced matrix element in eq. (6.4), the summation
in eq. (6.1) spans all of the free-electron quantum numbers and values of the
total angular momentum of the final system .J' that are permitted by the
selection rules provided in subsection 3.1.3 for an electric dipole transition. In
particular, the relation

Jy—J =+£1, or 0 (6.5)

must be satisfied, but J; = J' = 0 is not permitted. Also, the parity must
change between the initial state, denoted by 3,.J;, and the final system, denoted
by B/ J/ el J .

In order to evaluate the reduced matrix element appearing on the right-hand
side of eq. (6.4), we mirror the approach described in section 3.2 and first
consider the case for which the target ion is in a state comprised of only
empty or closed subshells, in addition to the active subshell designated by the
subscript a. The completely antisymmetric wave function for w electrons in
subshell a of the initial state is then given by eq. (3.20). The corresponding
wave function for the final system of ion plus free electron can be obtained from
eq. (3.22) by substituting free-electron quantities for the final, active-electron
quantities in the appropriate places. The result is

Ul(ngleje) el J/EVG T M | 2130 -+ 7)) =
1 w
— > (=D > O Mm'; I M)
w ; Ml m! ¢ ¢

XW[(nglajo)” ol JIMY | 2120+ Tp1Tps1 Lo |Uertrjrmy (2) . (6.6)
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Then, performing manipulations similar to those described in section 3.2, we
obtain

(G | PO || LIV ) = V(2 + 1)(27 + )21y
a 1 3 W=l 0
8 {}; J i }( to g | Yig oada)
X<j“ H U H J ><n0 a]a [ r l Gll/ ,> (67)

where the radial matrix element is given by

(nalaia |71 €15 _
/ nala]a P{l[ ’( ‘) + Qnaza‘?a(?ﬂ)Qéll’jl(T)]rd”r N (6‘8)
0

We note that in eq. (6.7), for the present case of ions with initially only empty
or closed subshells, in addition to the active subshell, the relationships J = .J;"
and J, = J; are valid.

For more complex cases of additional partially filled subshells, the form of
eq. (6.7) remains unchanged, except for inclusion of additional angular factors
that arise from the presence of these extra partially filled subshells. The appro-
priate references for obtaining these extra factors are provided in section 3.2.
Alternatively, as noted at the end of subsection 3.2.1, for the general case, one
can also use the MCT module of the Grant code [34] to obtain the angular
coefficient for the generalized line strength. In order to write an expression
for the photoionization cross section for a general transition in terms of the
MCT coefficients, we again follow the approach in section 3.2. Specifically, we
use the simplified notation U = A,J; and U” = AY.J} for the initial and final
levels. Also, we let S = f,.J, indicate a pure SCSF state contributing to U,
while S” = 8/ J]’ indicates a pure SCSF state contributing to U”. (The omis-
sion of the magnetic quantum number in describing an SCSF is potentially
confusing. See the explanatory note following eq. (3.17).) With this notation

5v>7 UII — Z b(UH, Sh’) tsh’> , (69)
S

U =Y bU,S)
S

where the b’s are the mixing coefficients formerly called b%(A,, ;) and b7 (A?, 3
in eq. (6.4). After some manipulation, we arrive at the expression

Ay | PO ALV Ty = (U || PO || UL T
=" b(U, S)b(U", S"dN(S, S"'5' T

8,87
Cgis(nalajaa Elz,j/) ) (6.10)
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where dP) (- - ) is the angular coefficient obtained from Grant’s MCT package
for the electric dipole operator and

C%S(nﬂ,l()/.jﬂ7 E,l/j,) - <In’alaj(l l r I Ell,‘j/> <](1 H C(l) H ]’) (611)

is the pseudo-hydrogenic electric dipole matrix element for the transition be-
tween the bound orbital n,l,j, and the orbital €'I’j" associated with the pho-
toionized continuum electron.

Finally, applying egs. (6.10) and (6.3) to eq. (6.1), the photoionization cross
section between levels U and U” can be written as

47TCXEP Z Z b(U, S)b(UH, S”>

QP[(U - U”) = AT T TN
3(2:]1‘, + 1) l’,jl,J, S?SN

2
xdW (S, 8"'§' JVLY (nalaja, €157)| . (6.12)

This non-factorized expression was implemented in a computer program to
compute RDW photoionization cross sections [98]. The motivation for this
work was to calculate high-energy photoionization cross sections to comple-
ment results computed at lower photon energies by members of the Opacity
Project (OP) [99] using the close-coupling R-matrix method. As an illustra-
tion of this work, we note that RDW and R-matrix total PI cross sections for
Be-like ions in the ground term 15?2s% 'S with Z = 4-20 and 26 were presented
in ref. [100]. The R-matrix results presented in this reference were computed
with a more extensive target expansion than previously considered, and were
compared with data computed from the present RDW approach and with R-
mtarix data computed by Tully et al. [101], under the OP [99], when available.
It was shown [100] that discernible differences in the background contribution
to the cross section for neutral Be consistently decreased as one considered
more highly charged Be-like ions. For example, in the case of neutral Be, the
difference between the RDW cross sections and the R-matrix cross sections
was around 18% at 5 Ry. However, for C 11 the difference was around 3% at
15 Ry. At energies above the inner-shell threshold, the difference between the
results was consistently around 10% for the various ions under investigation.
Comparisons for ions with Z = 16-20 and 26 are reproduced here in figure 3.

6.2 Factorized expressions for photoionization cross sections

As in the case of electron-impact ionization, the expression for the photoion-
ization cross section can be written in a convenient factorized form. In fact, as
will be shown, the form of such an expression is very similar to that provided
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Fig. 3. Total photoionization cross sections for Be-like ions with Z = 16-20 and
26: — R-matrix results, --- RDW results, — — — OP results of Tully et al. [101]
augmented with 1/(£,)® extrapolation at high energies.

for collisional ionization in eq. (5.17). In order to produce the factorized ex-
pression for photoionization, we again consider the case where the initial level
of the target ion contains only empty or closed subshells, in addition to the
active subshell a. With this assumption, the summation in eq. (6.1) can be
expanded according to egs. (6.3), (6.4), (6.7) and (6.11) to yield

1
S A ,A”J” fl,"l 4
2J£+1ZI§J/ ( LJtV t te ]J)
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= e, S| S U S S | P BT
Z Z B, SV, ST, S" )W/ (2T + 1)
(A0 A ‘S“F

X(Ja - ZJ”I}J”"G Ja) o e, o Ve 0, Ja)

X{ja 1 ]}{Jm 1 j’}
AN A A O U (I [
XL (nglyfas €1 FVER (ng, Ly, Jay, €17 . (6.13)

Using the property of the 6-7 symbol given by

jo 1 37 IR Ojuga
ool b5 E D e
;( ] + ) J! Jt” Jt !]/ Jt” ‘]t 2]0 + 1 (6 1 )
and the fact that |, = l,,, since j, = j,, and only states with the same parity
can mix, we obtain

l Z S At ]g,A”J” IZI]IJI)

QJL + l 1/ 57 ]r
= Y (U, S)bU", S"b(U, S1)bU", S7)Vwy/wy
S,S’/

o 1
59, ‘al

(;u -1 /I]I!]}j Qy ﬂ)( ;“ 1 1; JII {}.}wlaal )

2] 1 Z['H Nalaja, € g i)‘cu (nm aJas ,Z!jl)~ (6.15)

This expression can be used to recast the photoionization cross section in a
factorized form that is very similar to that given for collisional ionization in
eq. (5.17). Specifically,

Qe(U—U") =S BYW,85,;U",8"SHQM (nanalaja) (6.16)

8,81
5 ,si'

where B depends only on quantities related to the atomic structure of the
initial and final ions and is given by

BY(U,8S,;U", 88"y = FO(US, U"S"YFO(US,, U'SY), (6.17)

with
FOWS,U"S"y = bU,S)fV(S, SMbU", 8. (6.18)
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The radial quantity QY appearing in eq. (6.16) depends only on the active,
bound-electron and free-electron orbitals, and is given by

drak; . . :
—L N L (aloa, €U FVER (Mo, lade, €15 ,(6.19

Q(l} (nanm laja) =
which is the analog of the pseudo-hydrogenic quantity given in eq. (5.18) for
collisional ionization. As discussed in more detail in the next section, eq. (6.19)
reduces to the pseudo-hydrogenic cross section for photoionization when mix-
ing is limited to states within a complex.

In the present special case,

FS,8") = Vw(ia ™ e Jy [V ) (6.20)

which is exactly the same expression as the result given in eq. (5.13) for the
case of electron-impact ionization applied to the similar situation of an initial
target ion in a level that is described by only empty or closed subshells, in
addition to the active subshell. In fact, for more complex ions, f(S,S")
will be identical to the corresponding value obtained for the same transition
in the case of collisional ionization. Furthermore, the A = 1 dependence can
technically be removed in eq. (6.20) because the result is independent of A, as
shown for the case of collisional ionization (see the comment after eq. (5.8)).
As usual, for these more complex cases that involve additional partially filled
subshells, the form of eq. (6.16) remains unchanged, except for the inclusion
in eq. (6.20) of additional angular factors that arise from the presence of these
extra partially filled subshells. Alternatively, for these more complex cases, one
can obtain numerical values of f((S,5") from the MCT package in Grant’s
atomic structure code [34], as discussed after eq. (3.30).

While no published results are available for photoionization cross sections
computed with this factorization approach, it has been benchmarked and used

extensively in creating massive data sets for large-scale plasma modeling (e.g.
refs. [102] and [103]).

6.3 Pseudo-hydrogenic and configuration-average expressions for photoion-
1zation

The previous section dealt with the general case for which mixing between
states outside of an n-complex was allowed. When mixing is limited to states
within the same complex, the cross section in eq. (6.19) is transformed into
the pseudo-hydrogenic cross section for photoionization. Specifically, when n,,
is set equal to n, in eq. (6.19), we obtain
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dral
B (Nalafa) = =P 5™ SB (Ralaar €17) (6.21)

3(2ja + 1) v

with the generalized line strength for the pseudo-hydrogenic case given by

S (nalaja, €17 =| LY (naleja, €17) | . (6.22)

Eq. (6.21) represents the exact expression for the cross section when consider-
ing hydrogenic ions. As usual, for more complex ions, the pseudo-hydrogenic
cross section should be computed with energies and radial wave functions that
are appropriate to the ion under consideration.

Next, we consider the configuration-average case for photoionization. Using
an equation analogous to eq. (3.43), the configuration-average, generalized line
strength for a transition between initial configuration ¢ and final configuration
¢’ is defined according to

Scfc”(ell/j/) = Z Z S(S, S”e'l’j')

SGC SHECN

=" 3 > 8(8,87€5 T, (6.23)

Sec Sec” J’

where §(S, S”€¢'l'j') is the J'-summed, generalized line strength for the transi-
tion between two pure SCSFs labeled S and 5”. As in section 5.5 concerning
collisional ionization, we denote the final configuration, ¢”, with two primes
to emphasize that the final configuration has one fewer electron than the ini-
tial configuration. Eq. (6.23) can be simplified in a manner very similar to
that used in arriving at eq. (3.44) for photoexcitation. Taking note of the fact
that the final subshell for photoionization actually represents a free electron
residing in the [’j’ orbital with an occupation number that is always one, the
configuration-average, generalized line strength can be written in the compact
form

Wy

Sc—c” /l/ ') = T a~N
(€17) =g o+ 1)

S (nolada, €17') . (6.24)

(See the discussion following eq. (5.45) concerning the configuration-average
collisional ionization cross section for more details.) In writing the above ex-
pression, we have made the usual assumption that the ionization energy AF
associated with each SCSF transition in the transition array is approximately
equal to the configuration-average ionization energy AFE,. . = E,» — E,. This
approximation allows for the same value of ¢ = E,—AFE,._. to be used for the
photoionized electron that occurs in all SCSF transitions within the transition
array.
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With the result from eq. (6.24) in hand, obtaining a useful expression for the
configuration-average photoionization cross section is straightforward. Analo-
gous to the definition in eq. (5.44) for collisional ionization, the configuration-
average photoionization cross section can be written as

4 E,
Qrile, ) =3 S gsQn(S.5") /g =~ 23" S 3 S(5.8"S)
Sec §ec 3.]L See Stec! 1.5
drak
=3, PN S or(€15) = waQB M (nalada) , (6.25)
C ll ;1

where the final result follows from eqs. (6.21) and (6.24). As expected, the
final result in eq. (6.25) has the same fundamental form as the corresponding
configuration-average expression displayed in eq. (5.45) for collisional ioniza-
tion. As a point of comparison, we note that the final result in eq. (6.25) is
the relativistic analog of eq. (19) given by Peyrusse [28].

7 Resonances and dielectronic recombination

Resonances can be very important when considering the processes of electron-
impact excitation and ionization, photoionization and photorecombination.
As an alternative to the R-matrix close-coupling method in which resonances
are included automatically, Cowan [104] developed an approximate method
that considered resonances to be the result of a two-step process, with each
process being calculated independent of the other. The first step consists of
the creation of a doubly excited level by electron capture, photoexcitation or
electron-impact excitation. The second step consists of autoionization or radia~
tive decay to the desired final level. We have used this two-step approximation
in our RDW work to obtain resonance contributions to electron-impact excita-
tion and ionization, photoionization and photorecombination. The resonance
contribution to this last process is also commonly referred to as dielectronic
recombination. In this chapter, we first provide the relevant equations for elec-
tron capture and its inverse process, autoionization, as derived in ref. [105].
Then these expressions are considered for different applications.

7.1  Electron capture and autoionization

The collision strength for electron capture from an ion in an initial level 7 to
form a doubly excited level d can be expressed in the form

(‘ap Qcap5(€ - Ezd,) s (71)
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where the delta function indicates that the captured-electron kinetic energy,
¢, must be equal to the transition energy Eiy. The electron-capture collision
strength, Q5P is explicitly distinguished from the quantity €2;;", which can
be obtained by modifying the expression for the electron-impact excitation
collision strength given in eq. (4.6). Specifically, the summation over J is
eliminated and J is set equal to the total angular momentum of the doubly
excited level, .J;, while the summation over ' is omitted since there is no

outgoing free electron. The result is

g (7.2)

N-+1 2

pa Tpg
p<yg

QPP (AT, — Agdy) =220+ 1) S

®

(0[5 2

where W, is given by eq. (4.8) and the wave function for the doubly excited
level, ¥y, is of the general form given by eq. (2.11). An extra factor of 7 enters
the above expression due to the different normalization for bound- and free-
electron wave functions. This expression can be rewritten, as in section 4.1
for the electron-impact excitation collision strength, in terms of the reactance
matrix R as

QP (A, — Agdy) = 20205+ 1) Y |R(AJeelj Ja, Dady)]. (7.3)

l,j

In general, the initial level and the doubly excited level are each comprised
of mixtures of pure SCSF states, having the same total angular momentum
and parity, as in eq. (2.11). Therefore, we can express the reactance matrix in
terms of the pure-state basis according to

R(A el T, Dady) = > b7 (D, B (Ag, Ba)
Be.Ba
X R(3,Jielj g, Bala) (7.4)

where the additional symbols have the same meanings as described in chap-
ter 3, (see eq. (3.17), for example).

As in version 1 of our collision strength code described in section 4.2, the an-
gular part of the reactance matrix elements can be evaluated with the MCP
module of the Grant code [6]. The radial part of the reactance matrix elements
is very similar to that for the excitation collision strength given in section 4.2,
except that one of the free electrons is replaced with a bound electron. Specif-
ically, the “direct” terms are given by

TR

D)\(TlalanGZj; n;la.}anb b]{’;) =
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>

and the “exchange” terms are given b
4 Yy

EA(nala]aﬂlJ na ajanbl;)jll))
/ / et () Prg (1) @t ) Qg )]

A
X,,:il (Peij(r2) Parp i (r2) + Quj(r2)Qnypr g (r2)] dridra, (7.6)
>

where a indicates the active electron in the initial level 7, and o’ and ¥ indicate
the active electrons in the doubly excited level d.

We next obtain the rate coefficients for electron capture and its inverse, au-

toionization. For the process of electron capture, the cross section, Q?Sp, is
related to the collision strength, 5", according to the usual expression

ca; &3 caj T Xee
Qe = g QP = g (e — Esq) . (7.7)

Substituting eq. (7.7) into eq. (4.108), and using the usual relativistic re-
lationships between the electron kinetic energy, e, the velocity, v, and the
momentum, p, we obtain the electron-capture rate coefficient

ca 2 —{n+E; )
CMP — A]Vehgie (4 de)/kTQidP ’ (7.8)

where the quantity Q%P is given by eq. (7.2) or (7.3). The rate coefficient in
eq. (7.8) can be written in the alternative form

h? .
cay —E4/kT (ycap
Cu” = g:(2rmkT )32 X © L (7.9)

where use has been made of eq. (4.110) and X is given by eq. (4.111). If the
temperature is sufficiently small (k7" < mc?), then X — 1 and the standard
non-relativistic expression is recovered.

The rate for the inverse process of autoionization, A%, can be obtained from
the principle of detailed balance, which can be expressed mathematically as
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or, inserting numerical values,

2.071 x 10718 gﬁe’

S .
Zd T3/ X G

EalkT g3 em? /s (7.11)
with the temperature 7" in Kelvin. Comparing eqgs. (7.8) and (7.10), we obtain

2

hgq

&

di

i (7.12)

which, with the use of eq. (7.2) and gy = 2J3 + 1, can be expanded to obtain

2 ™2 P2y, 2
=3 (0 X = [wa)] =5 1] Vi | ), (7.13)
K e Tpg K

p<q

where Vi, represents the clectrostatic interaction between the electrons. We
note that eq. (7.13) is in a form that is very similar to Cowan’s eq. (18.65) [8],
except for a factor of 7, which is due to different normalization conventions
used for the free-electron wave function (see section 18.3 in ref. [8]).

7.2 Pseudo-hydrogenic and configuration-average expressions for electron cap-
ture and autoionization

In deriving an expression for the pseudo-hydrogenic electron-capture collision
strength, we consider the specific case for which the initial system is a pseudo-
hydrogenic ion in a state described by a configuration with a filled core plus
an electron denoted by the quantum numbers n,l,j,. The final, doubly excited
state shall be described by a configuration with the same filled core plus two
additional electrons denoted by the quantum numbers n.l!j. and nylij;. As
usual, for this situation, the total angular momentum of the initial level is
Ji = jJu, where j, is the total angular momentum of the active electron. How-
ever, the total angular momentum of the final, doubly excited level, J;, can
take on multiple values due to coupling among the two electrons denoted by
n,ll gt and nplyj;. In this case, we perform a sum over all possible values of Jy
to obtain the appropriate expression for the pseudo-hydrogenic, capture colli-
sion strength. If, in addition to this last consideration, mixing can be omitted
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for the initial and final levels, then the capture collision strength can be ob-
tained in a manner similar to that used previously in section 4.12 to derive
the pseudo-hydrogenic, excitation collision strength. Specifically, the electron-
capture collision strength can be obtained from eq. (4.99) by replacing ¢'l'j’
with njlji and multiplying by a factor of 7 to account for the different nor-
malizations used for the free-electron and bound-electron wave functions. The
resulting expression for the pseudo-hydrogenic version of the quantity QP is

Q;zli}{(nazaja aiizjclz lbjb)

= 8m(1 — 36as)D Y P nalojoely; nilLjinyliss)?, (7.14)
Al

where the factor (1 — du) takes into account the situation where @’ and ¥
represent equivalent electrons. In the present case, the P are given by

P/\(nfLZGJGEZ.} nal(LJ(Lnbleb)
= (22 + 1)7Y* DM (nalujacly; n l;JLnL bip)Ga I C™ [ 3G I €™ )

+Z A+t 2/\+1)1/2{jf ;z ;}

X E'(nalajacly; nhlljoanilyio) (o | CO |l g G 1 CY || 4L),  (7.15)

which is identical to eq. (4. 33) provided the €l’j’ free-electron quantum num-
bers are replaced by the njl, 7, bound-electron quantum numbers in that earlier
expression.

As demonstrated previously for all of the other fundamental processes, the
configuration-average expression for a particular quantity can typically be
expressed in a useful form in terms of the corresponding pseudo-hydrogenic
quantity. A similar statement holds true for autoionization as well. In this case,
the configuration-average autoionization rate can be expressed in terms of the
pseudo-hydrogenic collision strength quantity in eq. (7.14). For definiteness we
consider an autoionizing transition that involves the removal of an electron
from subshells o and & in configuration ¢y. The result is described by a
configuration ¢; that contains an extra electron in subshell o, along with a
corresponding free electron. In the spirit of eq. (3.42), we represent this type
of transition in the symbolic form ‘

(na’ia)wa—l(n;fﬂ;)w& (nii/{/ﬁ)wb(nv’{'r)ww' B

(naKJO) (ﬂthfx>w:x‘l(nbﬁb>wé—l(n7h""{)w7 e te. (716)

The formal definition of the configuration-average autoionization rate, valid
for transitions between arbitrarily complex configurations ¢y and ¢;, is
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Adimes = 22 2 9aA5/ 9es (7.17)

dEcg 1€¢;

where A3, is a fine-structure autoionization rate of the type given by eq. (7.13)
and g, is the statistical weight of the autoionizing configuration ¢4 If the
fine-structure rate, and corresponding sums, in eq. (7.17) are limited to only
pure SCSF states, then the configuration-average approach described in sub-
section 3.2.2 and sections 4.13, 5.5 and 6.3 can be similarly applied to the
process of autoionization. The resulting expression exhibits the typical form,
ie. it contains a statistical factor multiplying a pseudo-hydrogenic quantity, -
and is given by

48 _ 2( w, ) (Wi —darg) (200 +1) — (wq — 1)
caci g 250 +1 (2723 + 1 - 6(1/6/) 2o +1
XQ;zliI-I (nalaja - ”&lﬁﬂénlglbjfs) . (7‘18>

As mentioned above, o’ and 3’ are the labels of the active subshells of the
doubly excited configuration, ¢4, « is the label of the active subshell of the
final configuration, ¢;, and the presence of the Kronecker delta symbols takes
into account the case of equivalent electrons (o' = (). For comparison, we
note that eq. (7.18) is the relativistic analog of eq. (17) in ref. [28].

As with the configuration-average expressions that were previously presented
for the other atomic processes, eq. (7.18) reduces to the correct hydrogenic
expression when dealing with autoionization from a He-like ion to form a
hydrogenic ion. In order to verify this statement, it must be shown that the
appropriate form of eq. (7.12) is satisfied, i.e.

b e ™ h; QP (nglajo — nolndanslsis) (7.19)
cd
or, equivalently,
)/ wy — Oar 240 + 1)~ (wy — 1 1
2:}& +1 (2.]/3 +1- 60&’[3') 2.7oc +1 ey ‘

In order to show that eq. (7.20) is satisfied for the hydrogenic case, we first
note that w, is always one in this situation, which reduces the last term on
the left-hand side of eq. (7.20) to one. Next, we must consider separately
the two cases for which the active electrons in configuration ¢z are either
equivalent or non-equivalent. For the equivalent-electron case, there are two
electrons occupying the same subshell in the doubly excited configuration so
that w, = wj = 2 and subshell o/ = 3’ in general. Also, we note that the
statistical weight of such a He-like configuration is given by the formula (see
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eq. (3.45)) g., = (245, + 1)24./2 = g.(¢9), — 1)/2, where we have assumed that
the sole active subshell in the doubly excited configuration is denoted by «'.
Making the appropriate substitutions in the left-hand side of eq. (7.20) yields
the expression 2/[(2j/ +1)27, ], which is precisely the desired value of 1/g,,. For
non-equivalent electrons, w;, = wy = 1 (but a # 3) and the statistical weight
of the doubly excited configuration is simply the product of the statistical
weights of the individual subshells, i.e. g,, = g,g; Making the appropriate
substitutions in the left-hand side of eq. (7.20) yields the expression 1/(g,gj)
which, again, is the desired value of 1/g,,.

7.3 Approximate methods for electron capture and autoionization

In this section, we summarize two approximate methods presented in ref. [105]
for calculating electron-capture collision strengths and autoionization rates.
We consider electron capture for the transition

I‘]t> +e— H,( t”n,a];.};)]t'n;)l;)jé]fd> ) (721)

where we assume that n,l,j, describes the active electron in the fine-structure
level |J;), and |J}") represents an inactive core.

As described in section 7.1, eq. (4.6) or (4.12), which apply to the process
of collisional excitation, can be modified to obtain a general expression for
the capture collision strength. The necessary changes are to replace €'l'j’ by
nyly7y, eliminate the sum over &', eliminate the sum over J and let J = Jg,
resulting in eq. (7.2) or (7.3). However, with the first approximate method
described in ref. [105], the capture collision strength could instead be obtained
by modifying the factorized expression for the excitation collision strength
given in eq. (4.31). In this method, it is assumed that: 1) we are not interested
in the total angular momentum of the final, doubly excited level (J = Jy)
and therefore continue to sum over J as in eq. (4.6) or (4.12); 2) we neglect
configuration mixing involving different values for njl; j; so that j; is considered
to be a ‘good’ quantum number; 3) J] is also assumed to be a ‘good’ quantum
number. As seen from eq. (7.21), J; is now the angular momentum obtained
by coupling the total angular momentum of the inactive core J; to j, the
total angular momentum of the lower excited orbital of the doubly excited,
final level. The autoionizing transition relevant to this approximate method
can be written symbolically as

[ Jo) + e = [(I ngloda) imaluds) - (7.22)

In this case, eq. (4.30) applies, provided that j' is replaced by j;, and the
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capture collision strength quantity QP can be expressed in the factorized
form

Q2P(U — U'nylyjo) =8 Y. S BMU,SS,; U, §'Sy)
8,87 A
51,59

Xbe(ﬂ laja» alaja’nﬂ‘llmjaﬂ allgljal)v (723>

where exactly the same expressions given by eqs. (4.34)-(4.36) still apply for
B*. However, in this case,

Qb’ (’n la]m a[a]m nallal 7(11 s 71(11[;1ja1)
=7y PMnglojeelg; nllljinylhis)

ly

XP (nal loq 7(116[] ”m l;1j01 nblb?b) (724)
where the P* are given by eq. (7.15). In eq. (7.23), U = |.J,} is the initial level
and U" = |J]) has the form of an excited level of an ion with total angular
momentum J; and the same number of electrons as contained in the initial level
U. This approximate method is usually applicable to cases where the nj, orbital
is sufficiently high-lying so that levels of the form |[(J]'r, 1,7} ) siml5t) 5,) With
different Jy values will be described by energies that are close to each other
and can therefore be regarded as degenerate. For example, such conditions are
valid for the levels that arise from the Li-like configuration in transitions of
the form

(1&}2)0 4 (182}33/2)17(15/2 :

The second approximate method corresponds to going one step further and
performing an additional summation over J;. In general, transitions of this
type can be written in the symbolic form

|y + e — [(Jng L ga)myludy)

for which a specific example might be

(132)0 +e — 182p3/7dss .

In (onjunction with this choice, configuration mixing among different values
of n I 7, 1s neglected, so that j! is considered to be a ‘good’ quantum number.
In addmon? J!' is also assumed to be a ‘good’ quantum number. Thus, the
only mixing allowed for the final state is that occurring within the core state
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U" = |J/'). With these approximations, the 6-j symbol in eq. (4.36) can be
eliminated using an alternative form of eq. (4.30) given by

7 Jo AT, } {jal A J;} _ 6jaja1 =
> (2] + 1 r = 7.2
7 ( Jz‘, + ) { Jé J;; ) ]t Jt, J;f Jt 2}.& +1 ( O)

Then, the capture collision strength quantity 2P can be expressed in the
simple form

2J, + 1
25, + 1

Aycap I 2R TN L A

Q (U b na, ajanbzb.?b) - Z
S,S”
5115,{

B(U,S88,;U", 88"

X QX b (Nalada — nplhdimplit) . (7.26)

a

where @fpzﬁH(nalaja —npllginyli7l) is given by eq. (7.14). This approximate

method is applicable when both the n;, and nj values are sufficiently high.

For completeness, we mention that an expression analogous to eq. (7.26) has
also been derived for the appropriate type of collisional-excitation transition
in ref. [106]. The reader is referred to that reference for additional details.

7.4 Resonance contributions to electron-impact excitation

As in ref. [104], we treat the resonance contribution to electron-impact ex-
citation as the two-step process of electron capture by an ion in the initial
level |i), forming a doubly excited level |d), followed by autoionization to the
final level of interest, denoted by |f). Through the use of a branching ratio,
account is taken of the possibility that the doubly excited level autoionizes or
radiatively decays to a final level other than |f). These various processes can
be written symbolically as

Lipe
i) + e — |d) — |m') + ¢’ (7.27)

™ |k) + hv,

where ¢ and f represent the initial and final levels of the collisional excitation
transition, d represents a doubly excited level resulting from capture of a
free electron by level i, m’ indicates other levels (besides f) to which d can
autoionize, and k represents the levels to which d can radiatively decay. The
total collision strength for the transition i — f can be written as
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where €;; is the usual background (or direct) collision strength given, for
example, by eq. (4.6), and the resonance contribution can be written as

AP =3 0" By = Y Qi Bydle — Eia) (7.29)
d d

In the above expression, By is the branching ratio for excitation,

By = i : 7.30
R T A 730

in which the autoionization rate Aj; is given by eq. (7.12), Ay, is the radiative
decay rate for the transition d — & (see eq. (3.2)), and m indicates all levels
to which d can autoionize, including f. In order to delineate the resonance
contribution when plotting the total collision strength, we typically replace
the delta function in eq. (7.29) with a Lorentz profile. Hence,

~ ra+1m)/27
res .. QqapB ( d d ) 7.31
if g wd df(e—Eid)‘*’—%( a/24+1%/2)2° (7.31)
where the quantities %} and I'; are given by
Ta=hY A%, and u=hY Ay (7.32)
k3 k

Also, each value of E;; indicates the position of an individual resonance profile
and (% + I'y) is its width.

Similar to eq. (7.28), the total, effective collision strength can be separated
into a direct and resonance contribution

Ti}?tal _ Tif -+ ;;s ) (7'33)

where T;; is the direct contribution, given by eq. (4.112), and Ti¥ is the
resonance contribution. An expression for T,y was previously provided in
eq. (4.112). The resonance contribution can be obtained from an integral that
is identical to that listed in eq. (4.112), except that the resonance collision
strength from eq. (7.29) must be used in place of €);;. The resulting expres-
sion for the resonance contribution to the effective collision strength is
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For completeness, we note that the total rate coefficient for electron-impact
excitation, Cf‘f’tal, can also be written as a sum of the direct and resonance
contributions. An expression that is valid for each of these contributions was
provided earlier in eq. (4.114), provided that the appropriate expression for the
effective collision strength is used in each case. A useful, alternative expression

for the resonance contribution to the total rate coefficient is given by

ir =2 Cid By, (7.35)
d

where the capture rate coefficient Cy,;* is given by eq. (7.9) or (7.10).

Previously unpublished RDW results concerning the resonance contribution to
electron-impact excitation were performed in support of the Atomic Data and
Analysis Structure (ADAS) Project [107]. Specifically, calculations were per-
formed that considered the resonance contributions to excitation rate coeffi-
cients for transitions from the (1s%) ground level to the six n = 2 fine-structure
levels arising from the 152! configurations in He-like ions with 4 < Z < 54.
Resonance contributions from the doubly excited levels of the 183130’ complex
were calculated using the procedure described above with the capture rate
coefficients and autoionization rates obtained using the detailed method de-
scribed in section 7.1. For resonance contributions from the 1s3{n’l’ complexes
with n’ = 4,5 and 6, capture rates and autoionization rates were obtained
using the first approximate method described in section 7.3. Then the entire
contribution from the 1s3in/l’ complexes with 7 < n’ < oo was obtained from
the 18316/’ contribution by applying a standard 1/(n’)* scaling approximation
[108]. We also note that the contributions from lsnin’l’ complexes with n > 4
are negligible for this case and are not included. The rate coeflicients and
effective collision strengths needed to evaluate these resonance contributions
were calculated for nine temperatures given by

T(K)/Z* = 400, 600, 900, 1350, 2000, 3000, 4500, 6700 and 10000,

where Z is the nuclear charge of the appropriate ion. These values are expected
to cover the temperature ranges of interest for plasmas containing the various
He-like ions mentioned above. [t should be mentioned that our RDW results
have been compared with those in ref. [81] and the agreement was found to
be quite good. In table 20, a sample of these unpublished results is presented
for He-like iron in the form of effective collision strengths.

One can also make comparisons of our RDW results with those calculated
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Table 20

Effective collision strengths, computed from only the resonance contributions, as
a function of temperature for electron-impact excitation in He-like iron. Results
are presented for transitions from the (1s?)g ground level to the six n = 2 fine-
structure levels arising from the the 1s2{ configurations. The numbers that appear
immediately below the level labels are the transition energies in Ry. z[y] = x x 10Y.

(1s28)o  (1s2s); (1s2p™)o (1s2p*); (1s2p); (1s2p)s
T(K)/Z® 490.69 488.44  490.45 490.73  493.18 491.83

400 5.54[-5) 1.05[-4] 3.33}5] 9.33[-5] 8.84]-5] 1.65[-4]
600  4.91[-5] 8.99[-5] 2.95[-5] 8255 7.54[-5] 1.45[-4]
900  4.01[-5] 7.16[-5] 241[5] 6.71[-5 5.98[-5] 1.18[-4]
1350  3.07}-5] 5.40[-5] 1.87[-5] 5.14[-5] 4.50[-5] 9.00[-5]
2000  2.28[-5] 3.96[-5] 1.37[-5] 3.80[-5] 3.29[-5] 6.65[-5]
3000  1.62[-5] 2.80[-5] 9.73[-6] 2.70[-5] 2.32[-5] 4.73[-5]
4500  1.13[-5] 1.94[5] 6.78[-6] 1.88[-5] 1.61[-5] 3.29]-5]
6700  7.81[-6] 1.34[-5] 4.69[-6] 1.30[-5] 1.11[-5] 2.27[-5]
10000 5.34[-6] 9.11[-6] 3.20[-6] 8.89[-6] 7.56[-6] 1.55[-5]

with the Breit-Pauli R-matrix (BPRM) codes [109,110]. In figure 4, a com-
parison is made of collision strengths, including both the direct and resonance
contributions, for four transitions,

118y — 238, or (1s?)y — (1s29);,
1'Sy — 23P; or (1s%)y — (1s2p*);,
2%S, — 2'P;  or (1s2s), — (1s2p);,
2°P, — 2P, or (1s2p*); — (1s2p);,

in He-like iron. In the BPRM calculations, radiation damping was not in-
cluded, resulting in some higher peaks in the resonance profiles. However,
interference effects between the resonances were included, which are not con-
sidered in our RDW calculations. These interference effects produce small
dips below the background contribution for some energies. Despite these dif-
ferences, the BPRM and RDW results typically agree quite well.

7.5 Contributions of autoionization to electron-impact ionization

Autoionization rates calculated via the RDW approach can also be used to
obtain the autoionization contribution to total ionization cross sections or rate
coeflicients. Similar to the previous section, this contribution is again obtained
by a two-step process which, in this case, consists of innershell excitation
followed by autoionization. This two-step process is typically referred to as
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Fig. 4. Collision strengths as a function of impact energy for RDW (left panels)
and BPRM (right panels) calculations. Results are presented for four transitions,
as specified, in He-like iron.

excitation-autoionization. Cowan and Mann [111] investigated this approach
and found that, for plasma temperatures at which Na-like iron is abundant,
the autoionization contribution was twice as large as the direct collisional
ionization. It is noted that Griffin et al. [112] used a similar method to obtain
excitation-autoionization cross sections for Na-like Ti, Cr, Fe and Ni. Although
we have not published any RDW data for this process, we describe this method
briefly for completeness.
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The excitation-autoionization process, with radiative decay taken into ac-
count, can be written symbolically as

/If>+e/+e//

i) +e—|d)+€& — |m')+e +e” (7.36)

\|k>+e’+hy,

where ¢ and f are the initial and final levels of the collisional ionization transi-
tion under consideration, d is the doubly excited level resulting from innershell
excitation of level ¢, m’ indicates all levels (other than f) to which level d can
autoionize, and k represents the levels to which level d can radiatively decay.
The total ionization cross section from the initial level ¢ to the final level f,
which includes both the direct ionization cross section Qd“ (see eq. (5.5)) and
the excitation-autoionization contribution, can be written as

total d1r 4 Z Qechdf ) (737)

Here, Q53¢ is an excitation cross section of the type displayed in eq. (4.1) for
the transition ¢ — d, and Bg is the branching ratio for ionization given by

By= T, (7.38)

In this last expression, the autoionization rates A* can be obtained from
eq. (7.12), A%, is the radiative decay rate for the transition d — k (see eq. (3.2))
and the index m indicates all levels to which level d can autoionize, including

level f.

One is often interested in the total ionization cross section from the initial level
i to all possible final levels, instead of a specific final level f, as considered in
refs. [111] and [112]. In this case, the total cross section from level i is given
by

ngtal Z ler 4 Z Qechd 7 (739)

where the branching ratio B, is given by

> A,
ZAZm + zk:Agk .

By = (7.40)
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As pointed out by Cowan [104], the excitation-autoionization contribution
does not produce obvious resonance structures in the ionization cross section
because the only restriction placed on the incident-electron kinetic energy is
that it be equal to or greater than the excitation energy required to create
a doubly excited level d. In contrast, for the case of resonance contributions
to excitation discussed in the previous section, the electron energy must be
equal to the precise energy difference E;; = E; — F;. Therefore, in the case
of excitation-autoionization, when the kinetic energy of the incident electron
surpasses the excitation energy required to form a doubly excited level d,
this level will contribute to indirect ionization for all subsequent energies,
producing a step-function increase in the total ionization cross section.

7.6 Resonance contributions to photoionization

Many authors in the Opacity Project have calculated photoionization cross
sections using the close-coupling R-matrix method and demonstrated the im-
portance of resonance contributions to this process (e.g. ref. [113]; see table 2
therein). In those calculations, resonances are generated automatically. In our
RDW approach, one can obtain the resonance contribution to photoionization
by again using Cowan’s two-step approach [104]. In this method, an atom or
ion in a level k£ absorbs a photon, making a transition to a doubly excited level
d. This level then autoionizes to a level i, producing a resonance contribution
to the total photoionization transition & — i. Of course, the doubly excited
level could also radiatively decay to compete with autoionization. This com-
peting process is often referred to as radiation damping of the resonances. The
resonance contribution to photoionization described above, with allowance for
radiative decay, can be written symbolically as

y li) +e
kY + he — |d) — |m/) + ¢ (7.41)

N |KY + ',

where m’ represents all levels (other than ) to which level d can autoionize
and k' represents all levels to which level d can radiatively decay.

In ref. [114], our RDW approach was used to obtain resonance contributions
to photoionization and its inverse process, photorecombination, in order to
compare with Breit-Pauli R-matrix results. In that study, the photoexcitation
cross section from a level k to a doubly excited level d is obtained from the
absorption radiative rate A}, or the radiative width
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It = hAL,. (7.42)

The photoexcitation (PE) cross section is given by

472
Qre(k —d) = — i O(Fp — Ekq) (7.43)

o?(Ep)?
where E,, and Eyq = E; — Ej are the photon energy and transition energy,
respectively, and « is the fine-structure constant. The delta function indicates
that the photon energy FE, must be equal to the transition energy Ey4 in order
for the photoexcitation transition to occur. The doubly excited level d then
has two channels for stabilization, as mentioned previously. Taking these two
possibilities into account, the resonance cross section is given by

res . 47-[-2 r
pr(k—1) = 2 (E) Zd: TyaBai 6(Ep — Exa) , (7.44)

where By; is the branching ratio for PI and is given by

By = di : 7.45
Y A, Y A )

Here, the index m includes all levels (including i) to which level d can au-
tolonize and the index &’ includes all levels that are accessible from level d via
radiative decay.

We forgo the presentation of numerical examples in this section, since our
calculations concerning the resonance contribution to photoionization have
been used primarily to obtain the resonance contribution to the inverse process
of photorecombination. Our two methods for computing this type of resonance
contribution are discussed in the next section.

7.7 Resonance contributions to photorecombination—dielectronic recombina-
tion

As mentioned in the previous section, the process of photorecombination (PR)
is the inverse of photoionization. This process can be considered as the capture
of a free electron by a target ion in level ¢ to form a new ion in level k, with
one more electron, and an accompanying photon. The resonance contribution
to photorecombination is typically referred to as dielectronic recombination
(DR). The DR process can be very important in non-local thermodynamic
equilibrium plasmas, as demonstrated by the multitude of references in the
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literature. Among these, Seaton and Storey [115] and Hahn and LaGattuta
[116] give detailed reviews of the history, theoretical developments and applica-
tions of DR. In our RDW approach, we use two different methods to compute
the resonance contribution to photorecombination, as described below.

The first calculational method that we used to obtain DR cross sections is
based on Cowan’s two-step paradigm [8,104]. This approach was used, for
example, in performing most of the calculations in ref. [105]. The two-step
process can be written symbolically as

. k) + hv
iy +e— |d) — |m') + (7.46)

\ i) + €.

In this case, the capture of an electron by the ion in level ¢ to form a doubly
excited level d is followed by radiative decay to the final level k. Through the
use of a branching ratio, account is taken of the possibility that the doubly
excited level d autoionizes to a level 7', or radiatively decays to a final level m’
that is different from level k.

Using egs. (7.7) and (7.12), the electron-capture cross section for the transition
¢ — d can be written as

2
Ca w a
Q" = Wkgg'gdﬁ’Adi 0(e — Eiq) . (7.47)

Applying the appropriate branching ratio yields the DR cross section

’7F2

QDI{(i — /C) = ZQfsdek = Z mgdhAgink, (S(E o Ewg) . (748)
d d J1

This branching ratio for DR is given by

By, = ak ﬂ 7.49
k Z;AZ}Z-;+%A§,CM (7.49)

where index 7' includes all levels to which d can autoionize and index k' in-
cludes all levels that are accessible for radiative decay, including level k. The
corresponding rate coefficient for DR is given by

Cpr(i — k) =>_ C5® Ba, (7.50)
d
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where C{;P can be obtained from eq. (7.10).

We now present some numerical results, originally published in ref. [105], for
the process of DR that were computed with this first method. Specifically,
egs. (7.50) and (7.49) were used to obtain DR rate coefficients. The results
that we present here are the contributions from two different n complexes,
ny = 5 and 7, to the total DR rate coefficients of the (1s?)y ground level in
He-like ions. More specifically, we considered processes of the type

(18*)0 + e — (1s20,55) mplygy, — (1 )omplyjs + b,

where the total angular momentum of both the doubly excited levels and
the final recombined levels have been purposefully omitted. This choice was
made in order to calculate the required capture rate coeflicients using the first
approximate method described in section 7.3 (referred to as “Approx” below),
in addition to the detailed method described in section 7.1 (referred to as
“Full DW” below). In this way, we can also assess the accuracy of the former
method.

We note that, in this case, the final configuration for the process of dielectronic
recombination was chosen to always be of the form 1s?njl;j;. That is, we
assumed that it is the 2l’j/ = 2p* or 2p electron that radiatively decays
from the autoionizing level, which is the most probable outcome. However,
it is also possible for the more highly excited electron to decay, which we
have neglected in the present calculations. When performing detailed plasma
kinetics calculations, these additional cascading transitions can be taken into
account in a straightforward manner according to the method described above.

Under the above assumption, eq. (7.50) reduces to the simpler form

AT
CDR(i — k‘) =~ Z Ccap dk

id Aa L At - (7.51)
d T A%+ A,

The results for these calculations are given in table 21 for iron, molybdenum
and gold, with nuclear charges Z = 26, 42 and 79, respectively. In each case,
the results are given for a temperature near that for which the dielectronic
recombination rate is a maximum, but additional calculations indicate that
the accuracy of the “Approx” entries appears to be nearly independent of
temperature. It is understood that the values for each nylyj; entry represent the
partial sum associated with the 152l 5/ nil;j; contributions from all possible
doubly excited levels that arise from the two allowed choices for 2/ 5. The row
labeled “Sum” indicates values of the DR rate coefficients that were obtained
by adding the appropriate partial sums. Thus, these summed rate coefficients

take into account all of the processes described above that radiatively decay
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Table 21

A comparison of contributions to the dielectronic recombination rate coefficient,

Cpr (in units of cm3/s), due to electron capture by He-like ions in the ground level
; . g

(1s?)g to form doubly excited levels arising from the 1521/, j/,n;[} j; configurations of

Li-like ions, followed by radiative stabilization to levels arising from the 1s?njllj|

configurations. zfy] = z x 10Y.
Z=26, T=3x10" K Z=42, T=1.5%x10° K Z=79, T=5x10% K

nylyjy  Approx  Full DW Approx  Full DW Approx Full DW
55 9.82(-16] 1.98}-15]  3.19[-16] 7.71[-16] 7.081-17]  2.21]-16]
5p*  2.880-15] 3.58115]  8.73[16]  1.15[-15] 1.27116]  2.11[-16]
5p 6.75[15] 7.651-15]  2.02015]  2.68[-15] 2.58[-16]  3.77[-16]
50 249[15] 1.48}-15]  7.51[16]  1.30[-15] 0.711-17]  1.52[-16]
5 376[-15) 592015  1.08-15]  1.51]-15] 1.11[-16] 2.27[-16]
5 36116 3.78]-16]  1.10[-16] 2.29-16] 1.13[17]  3.36[-17]
5 472[16] 8.13[16]  1.37[-16] 2.79-16] 1.15[-17]  2.13[-17]
e*  1.16[-17] 1.87117]  3.15-18]  4.36[-18] 3.35[-19] 4.07[-19]
5g  1.42[17] 27917  3.60[-18]  1.03[-17] 3.32-19]  3.74[-19]
Sum  1.77[14] 219}-14]  5.29[-15] &.02[-15] 6.88]-16] 1.24[-15]
7s  3.28[16] 1.120-15]  1.08[16] 2.10[-16] 2.33[-17]  7.23[-17]
70" 9.80[16] 1.12}-15]  3.02}-16] 4.23[-16] 431[17]  6.05[-17)
70 233[15] 2.50115]  6.98[16] 8.82[-16] 8.92[-17] 1.38[-16]
7d*  9.04[16] 5.19116]  2.80[-16] 4.19[-16] 3.60[-17]  9.13[-17]
7d 137015 191}15]  4.02-16]  6.55-16] 4.14[17]  5.51[17]
7t 1.63-16] 1.720-16]  5.07[17] 7.87[-17] 5.31[-18] 6.57[-18]
7t 213(16] 2.52-16)  6.34[17]  1.30[-16) 5.43[-18] 1.07[-17]
7t 9.76[18] 1.50[17]  281[-18]  3.46[-18] 2.88[-19] 3.38[-19]
7¢  120117] 202}17]  3.29}18] 5.72}-18] 2.86[-19]  3.22[-19]
Tht 226119] 5.12010]  6.89[20]  7.44]-20] 6.35[-21] 5.10[-21]
Th 267-19) 4.18[19]  7.85[-20]  9.76[-20] 6.17-21]  5.04]-21]
7 199211 1571200  1.06[-21]  3.46[-22] 4.42[-23) 5.23[-23]
7i 220021 249121  1.19[21]  4.02(-22] 4.22(-23] 5.11[-23]
Sum  6.31[-15] 7.62}-15]  1.91}15] 2.82}-15] 2.44[-16]  4.35[-16]

into any of the levels arising from configurations of the form 1s?njl,j; (n} =5
or 7).

One observes that the “Approx” values underestimate the “Full DW” values
in nearly all cases. Furthermore, on a percentage basis, this underestimation
is roughly the same when considering the summed rate coefficients associated
with ny = 5 versus 7 for a particular value of Z. Specifically, the sum of the
“Approx” entries are about 0.82, 0.67 and 0.56 times the corresponding “Full
DW?” values for Z = 26, 42 and 79, respectively. Calculations were also made
in which configuration mixing was completely omitted in obtaining both “Ap-
prox” and “Full DW” results. The agreement between the results obtained
from these latter two calculations, and also the “Approx” values given in the
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table, was almost perfect. This agreement indicates that: (1) mixing between
the (1s2p*); and (1s2p); levels, which is the only mixing included in obtaining
the “Approx” entries in the table, has little effect on the Cpr values and (2)
the individual single-configuration (i.e. no mixing) rate coefficients produced
by the “Approx” and “Full DW” calculations, which are based on completely
different angular formulations, are consistent (as verified by detailed inspec-
tion). This type of test provides a good check that no errors were made in
either of the two computational approaches.

The principal reason for the differences between the “Approx” and “Full
DW?” results in the table is that only doubly excited levels corresponding to
(1s2p*)inyly s and (1s2p)ynglyj; can contribute to the “Approx” results. How-
ever, due to mixing of these levels with (1s2p)onyly, gy, (182p)angly,jr, and
(1s28)0.1mlh, 7, levels having the same parity and total angular momentum,
one obtains contributions from many more doubly excited levels in the “Full
DW?” results. In general, for lower Z values, where the value of A%, in the
denominator of eq. (7.51) tends to be significantly larger than the correspond-
ing value of Aj;, these extra contributions that arise from mixing are rather
small since they are comprised primarily of radiative decay rates rather than
autoionizing rates. However, as Z increases, the radiative rates A7, increase
rapidly and eventually tend to dominate the sum over the autoionization rates

2; even for very weak radiative transitions. Thus, for very large values of Z

Conli — k) — S 5P, (7.52)
d

where the summation over d includes essentially all doubly excited levels for
which there exists a non-zero value of AY,. This property results in a summa-
tion that includes many more doubly excited levels in the case of the “Full
DW?” calculations.

Our second calculational method for obtaining DR cross sections was moti-
vated by a desire to compare with then-recent Breit-Pauli R-matrix (BPRM)
results produced by Pradhan and Zhang [114]. This BPRM work used an
approach that was based on earlier R-matrix work by Nahar and Pradhan
[117], in which total photorecombination cross sections, which include both
the direct photorecombination and resonance DR contributions, were obtained
from photoionization cross sections using the detailed-balance (Milne relation)
method.

In this second RDW method, we also use the detailed-balance approach, but
only to obtain the DR contribution to the total PR cross section, rather than
to obtain the total PR cross section, as in the BPRM work mentioned above.
Specifically, we consider the DR process to be the inverse of the resonance
contribution to photoionization displayed in eq. (7.41). The resonance contri-
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bution to the photoionization cross section is computed with eq. (7.44) and
then the result is used in the detailed-balance method to obtain DR cross
sections. In this case, the Milne detailed-balance relation can be written in
relativistic form and Rydberg atomic units as

e gL’ 124 E )2 res N
-1 = 2 o), (759
?

where « is the fine-structure constant, 7, is the photon energy, and k is the
wavenumber related to the free-electron kinetic energy, €, by eq. (4.2). Using
eq. (7.44), we obtain

Qk’ff

pr(i — k) = erdgdz (Ep — Era) (7.54)

where Bg; is the branching ratio given by eq. (7.45). The right-hand side of
eq. (7.54) can be shown to be identical to that of eq. (7.48) by noting eq. (7.42)
and the additional relationships

kAL = 9aAy, = gA”
Ey—Epg =€+ Eyy— Eyg=€— By
A% Bar = Ay B -
In order to delineate the resonance contributions when plotting the total PR

cross section, we replace the delta function in eq. (7.54), first with the equiv-
alent expression §(e — Ejy), then with a Lorentz profile. Hence,

(T2 +1%)/2n
— Eyq)? + (T3/2 + T/2)?

. 7T
ree (i — k) = 2% zr Ba, (7.55)

where
m k' k7

As written, eq. (7.55) includes the effect of radiation damping of the reso-
nances. A number of methods have also been developed which take into ac-
count this effect when computing photorecombination cross sections within
the R-matrix framework [114,118,119]. However, for light elements that are
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not too highly charged, the error that results from neglecting radiation damp-
ing is small since the radiative rates are much smaller than the autoionization
rates for those systems [120]. Nevertheless, it is possible to modify eq. (7.55)
in order to perform calculations that can be used to determine the relative
importance of radiation damping, and also to compare with BPRM calcula-
tions that did not take this effect into account. The modifications require that
all values of A" be set to zero in both the branching ratio By and the Lorentz
profile in eq. (7.55) to obtain

res gk?r 3:’/271—
; T L 7.56
RO = SO )

Eqgs. (7.55) and (7.56) have been used to compute resonance contributions,
with and without inclusion of radiation damping, to the total PR cross sec-
tions for recombination of He-like ions and compared with BPRM results in
refs. [114] and [120]. Good overall agreement was obtained in these compar-
isons and, to illustrate this behavior, we reproduce figure 1 from ref. [114]
as figure 5 in the present work. In this figure, a comparison is provided be-
tween RDW and BPRM total photorecombination cross scctions that were
computed with and without radiation damping for the n = 2 (KLL) group of
the Fe XXV recombination. As stated above, the agreement is observed to be
very good.

8 Hyperfine-structure transitions

Our work on collision strengths for hyperfine-structure transitions was moti-
vated by a remark [121] that the 3.071 mm hyperfine line of Li-like 5"Fe is
of interest in the study of cooling flows in clusters of galaxies, and that rate
coefficients were needed to investigate the role of electron-impact excitation
as a mechanism for populating the upper, F' = 1 hyperfine-structure level of
this transition. Also, Syunyaev and Churazov [122] considered the possible

astrophysical interest in this hyperfine line, as well as hyperfine transitions in
other ions, such as Li-like Na, Mg, Al and Si, and H-like C and N.

In order to calculate collision strengths and effective collision strengths for
transitions between hyperfine-structure levels, our relativistic distorted-wave
approach described in chapter 4 was expanded and applied to these Li-like
and H-like ions [123,124]. Since resonance contributions to the total collision
strengths and effective collision strengths are expected to be important, we also
developed the theory and corresponding computer code [125] for calculating
electron-capture rate coeflicients to form a doubly excited hyperfine-structure
level, as well as for calculating rates for the inverse process of autoionization.
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Fig. 5. Comparison of the n = 2 (KLL) group of resonances in photorecombination
of Fe XXV: Breit-Pauli R-matrix (BPRM) cross sections without (a) and with (b)
radiation damping; relativistic distorted-wave (RDW) cross sections without (c¢) and
with (d) radiation damping.

These capabilities can then be applied to obtain resonance contributions to
the total collision strengths and effective collision strengths. Our RDW ap-
proach for including the resonance contributions to hyperfine transitions in
this manner has been applied to a variety of H-like and Li-like systems of
astrophysical interest [125,126].

8.1 The background contribution to hyperfine-structure collision strengths

The calculation of collision strengths for transitions between hyperfine-structure
levels follows the factorization method described in section 4.3. We consider a
hyperfine-structure transition of the form
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U-U =| AJIF)— | AV ITFY,
tt

where [ is the nuclear spin, and F' and F’ are the total angular momenta
for the initial and final hyperfine-structure levels, respectively. (The mean-
ing of the A4, J, and A}, J] quantum numbers associated with the initial and
final fine-structure levels, respectively, is identical to that provided in chap-
ters 3 and 4.) The hyperfine interaction can be treated perturbatively in this
application because it is extremely weak relative to the nuclear and electron-
electron potentials. Hence, the interaction has no effect on the radial part of
the wave function and the only substantive effect is on the angular portion of
the scattering matrix elements.

In order to derive a factorized form for the collision strength in this case, we
start, as in section 4.3, by treating in detail the case of subshells that are
initially filled or empty, in addition to the active one labeled a. By analogy
with eq. (4.20), we write the direct part of the reactance matrix element in
this case as

RYBJIFeljJ; B JIF' V5 T)
o0
=2vw > (¥ any [}l eada) Y DMnalojaelys npll jie'l'5") (8.1)

J1,00 A=0
) (0 o o I FGIM | CV () - CN (#yry) | 55 Yl T 5 JITF' ' TMY

where all of the symbols for the quantum numbers, except I and F', have been
previously specified in sections 3.2 and 4.3. In eq. (8.1), the angular matrix
element is now given by

GE e Jija R IFFIM | CV(#,) - CV (Fyyr) | 52l T30 T T M)
= Gayan Oy go(—1)7FI T IR LR AE IR )

X[(2F + 1)(2F + 1)(2J, + 1)(2J; + 1)]*/?

X{F A F"}{Jt A Jt’}{ja A j,’)}
0 GIVE T ROV g
(o | CH GG HCH 117, (8.2)

which is the analog of eqs. (4.21) and (4.22). The exchange matrix element R°
can be written as

RE(Gy J I FeljJ; B IF' €l J)

= 2\/E z (jg}"laf’l*]l l}jg,aa(}a) Z Ek(”alajadj; négéjéﬁil,j;> (83}
Jye A=0

) (Y Yy J1Jo W IF§IM | ™ (#) - O () | 52l TG0 JITF§ T M)®
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where, as seen from the description preceding eq. (4.25), electrons in the wave
function represented by the ket | -+ )¢ are in the order 1,2,...,w + 1, w. This
ordering corresponds to electrons w + 1 and w being in orbitals j/ and j/,
respectively, and we indicate this convention by adding a superscript “e” to
the ket that represents the final state above. In order to use irreducible tensor
techniques to manipulate this matrix element, we must first recouple the final
system wave function according to the same argument that precedes eq. (4.25).
The result is

| G2 e T e T T T M)
- Z Z Z(_].)Q(I’!'jé%j'@ )+ d )+ Fp+ F +~12(2FI/ + 1)
P Fa o
x[(2J] + 1)(2F5 + D)(2F 4 1)(2J, + 1)]*/?

J” I FII F/f jl Fg
X af e ? i 7
JIi o . L
X { };E; I f,"v//} I yc{tu lag‘]c/z/]"]2ll"2.7(,ﬁ]M> ’ (84)
where the electrons in the wave function represented by the ket on the right-
hand side are now in the standard order 1,2, ..., w,w + 1. If eq. (8.4) is sub-
stituted into eq. (8.3), the angular factor involving the recoupled final state
appears in the resulting expression. This factor can be written in a form that
is very similar to eq. (8.2) and is given by

(GO Yo Dy ga I FFIM | CV(#,) - OV (#y41) | J2 Il Tyl Fagl J M)
1)J+3‘+]"+J(;’+I+2(192+Jt+)\)

= alag(SJlJ[{(_
X[(2F + 1)(2Fy + 1)(2J; + 1)(2J, + 1))/

X{F A E?}{Ji A Jg}{ja A j’}
j; J j E I F Jo J;’[ Ji
X {jo | CV U G | C™ | 5 - (8.5)

The exchange matrix element in eq. (8.3) can now be written as a rather
lengthy expression that contains a product of the angular factor in eq. (8.5)
and the triple summation plus angular factors that precede the ket on the
right-hand side of eq. (8.4). This cumbersome result can be greatly simplified
using the properties of the 6-j symbol (see ref. [123] for more detail) to produce
a compact form for the exchange matrix element R¢. This new result for R* is
then combined with the expression for R in eq. (8.2), according to eq. (4.14),
to yield an expression for the reactance matrix elements for transitions between
pure hyperfine-structure states in the form

R(BJIFeljJ; BLIIF L T)
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At this point, eq. (8.6) can be substituted into expressions similar to egs. (4.13)
and (4.12) to obtain the collision strength for the hyperfine transition U — U’
in non-factorized form. Since the effect of the hyperfine interaction on the mix-
ing coefficients is neglected, those quantities remain unchanged in eq. (4.13).
Thus, the non-factorized form of the collision strength can be written as a
combination of the two equations

QAJIF — ALJIF)
=2 Z 2J +1) Z \R(AJIFeljJ; ALJIFEVS )| (8.7)

L,j
U5

and

R(AJIFeljJ; ALJIFEU )

= > M (A, BV (AL B)R(BJ I FeljJ; B IF' €V T).  (8.8)
B, 5,

In order to obtain the collision strength in factorized form, we proceed accord-
ing to the discussion presented after eq. (4.29). Specifically, we interchange
the labeling A" and 7 in eq. (8.6) above so that the result looks more like the
expression for P* given by eq. (4.33). Since F, F’, j and j' are all ‘good’
quantum numbers, the summation over J in eq. (8.7) can be performed using
the formula [41]

F C FY(F ¢ F Scor
2J +1 . . - . .
ZJ:(J+ ){] J J}{J’ J ]} 20 + 1 (8.9)

From this result, one sees that the factorized form of the collision strength,

156



given by egs. (4.31)-(4.35), is also applicable to hyperfine-structure transitions
U — U’ provided that the following substitution

FNS, 8= fA(S, 81, F F')
= [2F + )(2F + 1)(2J; + 1)(2J] + 1)]¥/*
X (=) P T S (G Yo I (L o)

Joo N T\ [de A T
X{F’ I F}{J;’ I Jt} (8.10)

is made for the expression appearing in eq. (4.36). The above equation can
be written in a more compact form by noting that, since the effect of the
hyperfine interaction on mixing coefficients is neglected, J, and J/ can be
considered to be ‘good’ quantum numbers and an extra ‘hyperfine-structure
corrective’ (hfsc) factor of the form

_F_J y JoooX ]
P = (COMIE@E R g (8.11)

can be separated out. The remaining piece is simply the fine-structure expres-
sion for f* given by eq. (4.36), which allows us to write

NS, S I F F) = fy. x fAS,8). (8.12)

An alternative factorized expression can be obtained if eq. (8.12) is substituted
into eq. (4.35) and then eq. (4.34) is evaluated to obtain the B* coefficients.
Since J; + [ — F and J; — J| are integers, the square of the resulting phase
factors can be ignored. The final result is that the factorized expression for
the hyperfine-structure collision strength can be obtained from the full set of
fine-structure eqs. (4.31)—(4.36), provided that a corrective factor

B, = (2F + )(2F" + 1) { S A }2 (8.13)
hfsc F I F -t
is applied to the B coefficients so that
BMNU,SS8;U',8'S)) — BMU,88,;U", 'S} I, F, F')
= By x BMU,S85,;U',§8'S}) (8.14)

ineq. (4.34).

We emphasize that eq. (8.10) applies only for the case of filled, and closed,
spectator subshells. However, as discussed in section 4.3, all that is required
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to describe more complex cases is to include some extra angular factors. The
correction factor for hyperfine transitions, given by eq. (8.11) or (8.13), is not
affected and the MCT module in the Grant code [6,11] can still be used to
calculate f* values for the relevant fine-structure transition. Then, one simply
multiplies by the appropriate correction factor, fiy. or Bj., to produce the
f* or B* values, respectively, that are necessary to compute the hyperfine-
structure result.

Once the collision strength has been obtained for a particular hyperfine-
structure transition according to the above description, other quantities of
interest are readily computed. For example, the cross section can be obtained
from eq. (4.1), the effective collision strength from eq. (4.112) and the rate co-
efficient from eq. (4.114), with the statistical weight now given by ¢; = 2F + 1.

As a numerical example, collision strengths and effective collision strengths
have been calculated for the ions with the properties listed in table 22. In this

Table 22

Tons to be considered and their hyperfine-structure properties: the isotope abun-
dance A (relative to one for 'H), the nuclear magnetic moment z, the nuclear spin
I, the initial and final total angular momentum quantum numbers F' and F’, the
hyperfine-structure corrective factor Bl/l\fsc? the wavelength A and the transition en-
ergy AE. Values of A, i, I and A for all isotopes are taken from ref. [122].

Ion Ax108 u I F F B A (mm) AE (Ry)x10°

hfsc

1835+ 3.3 07024 1/2 0 1 0500  3.87 2.35
NG+ 91.0 04036 1 1/2 3/2 0889  5.64 1.62
BNa¥ 1.8 22180 3/2 1 2 1250  3.11 2.93
BMe®t 26 08553 5/2 3 2 1944  6.71 1.36
WA+ 95 3.6414 5/2 2 3 1944 121 7.53
26+ 16 -05553 1/2 1 0 0500  3.74 2.44
SRt .88 0.0907 1/2 0 1 0500  3.07 2.97

case, we are considering transitions between hyperfine levels belonging to the
fine-structure ground level of each ion. Thus, J, = J/ = 1/2 in all cases. We
note that a negative value for the nuclear magnetic moment, g, indicates a
transition for which F' > F’, so that the initial level is actually described by
the larger quantum number in those cases.

The corresponding collision strengths, €1, are presented as a function of scat-
tered electron energy ¢ (Ry) in table 23, while the effective collision strengths,
T, are presented as a function of electron temperature T in degrees Kelvin in
table 24. The latter results are expected to cover the complete range of tem-
peratures of interest. We note that it is generally expected that the collision
strength, or the effective collision strength, for a given transition will decrease
with Z when mixing effects are small or non-existent. However, in the present
case, these quantities for either the H-like or Li-like ions differ for different
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isotopes by the factor Bp, given in table 22. When this point is taken into
account, the results in tables 23 and 24 are seen to vary with Z in the expected
manner.

Table 23

Collision strengths, €2, for the hyperfine excitation transition F' — F' (see table 22)
given as a function of scattered electron energy € (Ry) for various ions.

Qx10? f1x10%
é'(Ry) 1305+ 14n6+ 23N p8+ 25 Mgg+ 27 A0+ 29g;il+ 6’(Ry) 57 pp23+
0.15 4.836 6.327 7.948 9.933 8.153 1.751 1.0 4.187
0.75 4.727 6.222 7.544 9.520 7.870 1.700 5.0 3.986
3.0 4.350 5.850 6.284 3.187 6.936 1.527 25.0 3.181
7.0 3.784 5.268 4.730 6.445 5.656 1.281 60.0 2.276
15.0 2.944 4.340 2.984 4.324 3.994 0.944 125.0 1.398
30.0 1.975 3.159 1.576 2.441 2.392 0.595 240.0 0.734
55.0 1.175 2.045 0.753 1.235 1.277 0.334 450.0 0.330
90.0 0.671 1.260 0.372 0.634 0.680 0.185 800.0 0.139
140.0 0.374 0.746 0.160 0.296 0.338 0.096 1400.0 0.054
210.0 0.174 0.367 0.035 0.110 0.137 0.040
300.0 0.112 0.245 0.029 0.060 0.076 0.024

8.2 Resonance contributions to hyperfine-structure collision strengths

It is expected that, for the hyperfine-structure transitions considered in the
previous section, the resonance contribution would be important, since these
are forbidden transitions. In this section, we provide the relevant equations
for electron-capture collision strengths from a hyperfine-structure level to fine-
structure levels, along with equations for the inverse autoionization rates from
a fine-structure level to a hyperfine-structure level. These results are then
applied in obtaining resonance contributions to the collision strengths and
effective collision strengths.

Resonance contributions to the total collision strength for a hyperfine-structure

Table 24
Effective collision strengths, T, for the hyperfine excitation transition F — F' (see
table 22) given as a function of temperature T(K) for various ions.

T x10? T x10%

T(K)!IOS 1305+ 14 N6+ 28N a8+ 25Mg9+ 27 A 110+ 209114+ T(Kj;’loﬁ 57 3+
1.0 4.747 6.241 7.625 . 9.600 7.924 1.708 1.0 3.934
1.5 4.694 6.189 7.443 9.409 7.791 1.685 L5 3.807
2.5 4.592 6.087 7.111 9.055 7.541 1.639 . 2.5 3.585
4.0 4.449 5.943 6.681 8.589 7.206 L.575 4.0 3.309
6.0 4.278 5.765 6.205 8.058 6.818 1.501 6.0 3.017
10.0 3.982 5,450 5.471 7.216 6.186 1377 10.0 2.589
15.0 3.680 5.115 4.805 6.429 5,578 1.255 15.0 2.221
25.0 3.219 4.582 3.917 5.341 4.713 1.076 25.0 1.755
40.0 2.739 3.997 3.113 4.322 3.876 0.898 40.0 1.356
60.0 2.307 3.444 2.474 3.486 3.171 0.744 60.0 1.053
100.0 1.781 2.737 1.780 2.553 2.361 0.563 100.0 0.737

150.0 1.403 2.204 1.330 1.933 1.810 0.436
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transition can again be treated as the same two-step process that is symboli-
cally represented by eq. (7.27). Of course, in the present case, i and f represent
hyperfine-structure levels. From a practical perspective, it is possible to ob-
tain the desired hyperfine quantities from the corresponding fine-structure
results. For example, as shown in the Appendix of ref. [125], the capture col-
lision strength for a transition from a hyperfine-structure level i = |J,F) to
a doubly excited fine-structure level d = |J;) can be obtained from the cap-
ture collision strength for the fine-structure transition of the type |J;) — |J)
according to the relationship

(3Ca uF*i‘ 1~ ca, =
Qe (F — Ja) = Zths (F— Fy) = 2+ 1Qf5p(Jt — Ja) . (8.15)

This result can be combined with the relevant equations in section 7.1 to obtain
similar relationships for capture cross sections, capture rate coefficients and
autoionization rates.

For the capture cross section, one obtains

cap B s 2F + 1 = cap . o
th&, ( d) - (QF + 1)14"2 2J, + 1Q (Jt ']d)o(é Ezd)

= QP (T, — Ta) (8.16)

with a similar expression for the capture rate coefficient given by

Che (F = Ja) = CEP(J, — Ja). (8.17)

For autoionization, we first note that, for the present case involving transitions
between hyperfine-structure levels, the statistical weight for the doubly excited
fine-structure level is given by

ga= (2F;+1) = (2Js+ 1)(2 +1). (8.18)
Fy

From egs. (7.12) and (8.15) we obtain

‘ 22F + 1)
Ape(Jg — F Jp— J
bl Ja = F) = }(2}g+l)(21+1)(2jé+1) o (e = Ja)
(2F + 1)
= e(da— Ji). 8.19
@+ Dl 1) B (8.19)
The resonance contribution to the transition from i = [F) to f = |[JF')
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can then be obtained in the usual manner (see eq. (7.35)), and is expressed
according to

Chis(F — F') ZCE?S" (F — Jo)Byss(Ja — F'), (8.20)
where the branching ratio is

Abgs(Ja = JIF)

But(Jq — F') = -
hf d ZA +§Adk

(8.21)

In this last expression, the quantities without the subscript “hfs” refer to fine-
structure transitions and are written with the same notation as in chapter 7.
Using an expression for the autoionization rate associated with the transition
|Js) — |J{F') that is analogous to eq. (8.19), and employing eq. (7.30), one
obtains the relationship

(2F" +1)
(2J] +1)(21 + 1)

Bhfs(Jd — F’) = Bf(,(Jd — Jt/) (822)

between the hyperfine-structure and fine-structure branching ratios, where By
is a fine-structure branching ratio of the type displayed in eq. (7.30). Thus, the
relationship between the hyperfine-structure and fine-structure expressions for

the resonance contribution to the impact-excitation rate coefficient is found
to be

(2F +1)
@7+ 1)(21 + 1)

TR (F — F) = C (e = J0) (8.23)

where Cff° is the quantity C}f in eq. (7.35). Similarly, the relationship for the
resonanco contribution to the effective collision strength is found to be

QF +1)  (2F +1)

S(F— F'Y = V (g — Jy 8.24
and to the total collision strength is given by
2F +1 2F" +1 .
B 0 S| N Cr)

2L+1)2J]+1)(2] +1)

In the above expression, T{* is given by the quantity T[¥ in eq. (7.34), and
;> 1s given by the quantity (7" in eq. (7.29), respectively. Hence, in order to
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obtain the hyperfine-structure resonance contributions to these various quan-
tities, it is only necessary to calculate the corresponding fine-structure quan-
tities and then multiply by the extra angular factors appearing in eq. (8.19)
and egs. (8.23)—(8.25).

As a numerical example, we reproduce some of the results from ref. [125]. In
particular, we present effective collision strengths for Li-like ®"Fe and H-like
N ions in their fine-structure ground levels. In these cases, the hyperfine-
structure transition energies, Ejf, are so small that the quantity E;;/kT in
the exponent of eq. (7.34) can be neglected.

First, we consider Li-like %" Fe for the transition described by F =0, F' =1
and J, = J] =1 = 1/2. Applying these values to egs. (8.24) and (8.25) yields

res __ 3-~rres res __ 3 (yres
hfs — §Tfs s € his ™ gngs . (826)

Only contributions from the 1snin’l’ doubly excited levels with n = 2 and 3
are significant in this example. Based on energy considerations, for n = 2, only
levels with n’ > 11 can contribute, while for n = 3 contributions, all levels
with n’ > 3 are energetically possible. For 3 < n’ < 6, a full distorted-wave
treatment was used, while results were computed with the rapid, first approx-
imation method described in section 7.3 to obtain accurate contributions for
n’ > 6 up to some prescribed value of n’ for the two possible values of n. The
contributions for n’ > 20 when n = 2, and for n’ > 10 when n = 3, were
then estimated by assuming that they scaled as 1/(n’)® for large values of n’
[108]. In the discussion below, the background or “direct” contributions are
indicated by BG or by adding “dir” as a superscript.

Values for the total effective collision strength, Yt = T4r 4 Yres are shown
in figure 6. The direct contribution to this quantity, labeled BG in the figure,
was taken from table 24. The resonance contributions from the 1s?2/n’l’ and
1823[n’l' doubly excited levels are indicated by 2in/l’ and 3ln'l', respectively.
One indeed observes that the resonance contributions are important over the
entire temperature range of interest. The dashed lines in figure 6 are results
when radiative decay is neglected. One also observes that inclusion of radiative
decay is not highly important, but does have nearly a 10% effect on the total
effective collision strength at the highest temperatures.

Next, we consider H-like *N ions in the fine-structure ground level that un-
dergo a hyperfine transition described by the quantum numbers F' = 1/2,
F'=3/2, I =1 and again J; = J; = 1/2. In this case, eqs. (8.24) and (8.25)
give

res ___ 27yres res __ 2yres
hfs ™ ngS ' his — §Qib . (827)
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Fig. 6. Effective collision strengths, T, as a function of temperature, T{10°K), for
the transition (15%2s); o F — (1s*2s),/5F’, with F = 0 and F" = 1, in Li-like 57Fe.
The dashed and solid lines represent the results with radiative decay neglected and
included, respectively. The curve labeled BG represents the background contribution
and the curves labeled Total represent the sum of the background and resonance
contributions.

Furthermore, only contributions from the 2in’l’ doubly excited levels are signif-
icant. For 2 < n’ < 6, a full distorted-wave treatment was used, for 6 < n’ < 10
the first approximate method of section 7.3 was again used, and for n’ > 10
results were estimated by assuming a 1/(n’)? dependence. Due to the fact that
the initial free electron must have a rather large energy in order to excite the
1s electron to the n = 2 shell when forming a doubly excited level during the
capture process, resonances contribute only at quite high energies. Hence, they
are significant only for high temperatures. Even then, the resonances are not
highly important as can be seen from the effective collision strengths listed as
a function of T(K) in table 25. In this case, the background (BG) contribu-
tion was taken from table 24. One observes that, at the highest temperature
considered in the present work, the resonance contribution to T*%! has risen
to only 17%. The entries labeled as “NRD” and “RD” in the table correspond
to neglect and inclusion, respectively, of the effect of radiative decay. In this
case, the maximum effect of radiative decay on T*' is only about 2%.

In addition to the numerical examples provided above, resonance contribu-
tions were also considered for the case of electron-impact excitation to the
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Table 25

Effective collision strengths as a function of temperature, T(K), for the transition
18y /9F — 181 o F', with F = 1/2 and F' = 3/2, in H-like "*N. Results are presented for
the background (BG) values, the resonance contributions from the 2in'l’ levels, and
the total collision strengths. The entries labeled NRD and RD are results calculated
with radiative decay neglected and included, respectively.

n = 2 Resonances Total
T(K) BG NRD RD NRD RD

1.0E405 6.24E-02 1.75E-19 1.73E-19 6.24E-02  6.24E-02
1.5E405 6.19E-02 1.53E-13 1.51E-13 6.19E-02  6.19E-02
2.5E4+05 6.09E-02 7.53E-09 7.44E-09 6.09E-02  6.09E-02
4.0E+05 5.94E-02 2.92E-06 2.87E-06 5.94E-02 5.94E-02
6.0E+05 5.77E-02 745E-05 7.24E-05 577E-02 5.77E-02
1.0E+06 5.45E-02 8.97E-04 8.54E-04 5.54E-02  5.54E-02
1.5E4+06 5.12E-02 2.79E-03 2.62E-03 5.39E-02 5.38E-02
2.5E4+06 4.58E-02 587E-03 5.44E-03 5.17E-02  5.13E-02
4.0E+06 4.00E-02 7.51E-03 6.89E-03 4.75E-02  4.69E-02
6.0E+06 3.44E-02 747E-03 6.82E-03 4.19E-02 4.13E-02
1.0E4+07 2.74E-02 6.19E-03 5.62E-03 3.36E-02  3.30E-02
1.5E4+07 2.20E-02 4.84E-03 4.39E-03 2.69E-02 2.64E-02

upper hyperfine-structure levels associated with the ground level of H-like 13C
and Li-like #*Na, Mg, *"Al and #Si ions, and the resulting effective colli-
sion strengths were provided in ref. [126]. In that work, it was found that
the resonance contributions were very important for the Li-like ions, consid-
erably more so than for the Li-like 5"Fe example shown in figure 6, while the
contributions for H-like *C ions were found to be rather unimportant.

9 Transitions between magnetic sublevels due to impact with an
electron beam

In this chapter, we discuss our work concerning transitions between magnetic
sublevels caused by an electron beam. The chapter is organized into two sec-
tions. The first section deals with collisional excitation while the second deals
with collisional ionization.

9.1  Transitions between magnetic sublevels due to electron-impact excitation

It is well known that the radiation emitted from ions excited by a directed
electron beam can be strongly polarized. In order to predict the polarization
of the emitted radiation, one must know the values of the cross sections for
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transitions between specific magnetic sublevels of the ion. Another motivation
concerning our interest in obtaining electron-impact excitation cross sections
for magnetic sublevel transitions was to compare our results with the EBIT
experiments at LLNL [127]. Often, these experiments involved highly charged
ions of heavy elements, such as Ba, for which a fully relativistic description
is necessary. In this section, the pertinent equations for these cross sections
or collision strengths, obtained in ref. [128], are given. Additional discussion
is provided concerning the calculation of the top-up contribution, an option
for including the generalized Breit interaction and the calculation of the res-
onance contribution to electron-impact excitation. Numerical examples, and
comparisons with results computed by other workers, are provided through-
out. Comparisons with experimentally determined values are also provided for
the specific application of the magnetic sublevel cross sections in determining
the polarization of the emitted radiation.

9.1.1 General formulae for electron-impact excitation between magnetic sub-
levels

The procedure we use for calculating cross sections for excitation by an elec-
tron beam has been given in ref. [128] and is summarized here. The relativis-
tic amplitude, B;ff, for scattering an incident electron with spin magnetic
quantum number m,, wavenumber k, and direction k into direction I;:/ with
wavenumber k" and final spin magnetic quantum number m, accompanied by
a change in the magnetic sublevel of the target ion from A, M, to ALJ[M],
can be written [3,129]

B™ (A J, M, — ALJIM))

’
v

2T RN . £ /3 ~ 1
=— Z it expli(dx + 5&’)]}/zml(k))/z'm;(k )
Limg . jom
l’,yn;g,j’,m’
xC(lsmymg; jm)C (U smiml; 7'm/)T (e, &), (9.1)
where
o= AJ Mkljm, o = AJME ™. (9.2)

As usual, the symbol Y denotes spherical harmonics, C' denotes Clebsch-
Gordan coefficients and the quantum numbers (I, my, j, m) and (I';, mj, j/,
m') refer to the angular momenta of the incident and scattered free electrons.
The appearance of £ and k" in eq. (9.2), rather than the energies € and € that
appear in previous chapters, is merely a reminder that we are also concerned
with the direction of the incident and scattered electrons for the current case
of transitions between magnetic sublevels. The & quantities are the relativistic
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distorted-wave phase shifts of the incident and scattered free electrons de-
scribed by eq. (A1) of ref. [128]. For highly charged ions, these shifts differ
from the corresponding relativistic Coulomb phase shifts by a small correction,
as described in the appendix of ref. [128]. The quantum numbers J; and M,
represent the total angular momentum and corresponding z-component asso-
ciated with the initial sublevel, while A, represents all additional quantum
numbers required to specify the initial sublevel of the ion. Analogous primed
quantities apply to the final sublevel of the ion. The quantity T(c, o) repre-
sents specific elements of the transmission matrix, T, that was mentioned in
section 4.1.

Before considering an expression for the excitation cross section, we note that
the scattering amplitude in eq. (9.1) was derived for the specific case in which
the spin of the incident electron can be in the positive or negative z direc-
tion, with a similar statement applying to the spin of the scattered electron.
This choice results from using plane waves of the type given in eq. (4.50) or
eq. (4.58) when describing the asymptotic form of the incident- and scattered-
electron wave functions in order to obtain the scattering amplitude. Those
4-vector plane waves contain the 2-component Pauli spinors, x™*, which cor-
responds to the electron spin being in one of the two possible directions +2.
However, an expression for the scattering amplitude that applies to the situa-
tion in which the spins of the incident and scattered electrons are in arbitrary
directions can be handled in a straightforward manner. For this general case,
the 2-component spinors in eq. (4.50) or eq. (4.58) are to be replaced with an
arbitrary linear combination of those spinors [3,129], i.e.

=1.  (9.3)

Mes s

C1/2

A similar expression, in which all appropriate quantities are primed, applies
to the 2-component spinors appearing in the wave function associated with
the scattered electron. Then, the scattering amplitude in eq. (9.1) takes on
the more general form [129]

B — (X)) Bx = Crmy Cor Bt (9.4)

14
ms
]lSV :;

where B is the 2 x 2 matrix given by

By By’
B:( N (9.5)
B~1/2 —1/2

In our work, we choose to use the amplitude in eq. (9.1) because that form is
more convenient when deriving an expression for the excitation cross section
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for the case of an unpolarized beam of electrons [129]. Also, eq. (9.1) can be
used to derive an expression for the cross section when a beam is composed of
electrons with a specific spin polarization, such as the case of longitudinally
polarized electrons, which is discussed next.

Thus, assuming that one is not interested in the z-component of the spin of
the scattered electron, the excitation cross section is given by

O (A M, — N JIM) = / dk' | BT 2. (9.6)

In evaluating eq. (9.6), we choose k to be in the direction of the z axis so that
m; = 0 (as a consequence m = my) and

1\ Y
Yim (k) = Yio(k) —> (?‘l i l) - (9.7)
dr

Choosing k to be in the direction of the z axis corresponds to an electron that
is longitudinally polarized because the spin and direction of the electron are
cither parallel or anti-parallel. After squaring eq. (9.1) and substituting the
result in eq. (9.6), the integration over the scattered-electron direction yields
a factor of the form

7

~1 ~t ~
/dk Y;i;:m; (k )YZ’mg(k ) - 5l’1£’5mg my (98)
Ly 1

Additional quantum numbers with a subscript “1” have been introduced here
in order to distinguish the various sets of summation indices that arise from
taking the square of eq. (9.1). After performing the summation over mj and
I}, another simplification,

> CUEmiml; jimi )C (U smyml; §'m’) = 61560 | (9.9)

! ’
mi,my

occurs due to the properties of the Clebsch-Gordan coeflicients. This last re-
sult eliminates the dependence on the final phase shifts denoted by d,,. Also,
we express the T matrix in terms of the reactance matrix, R, according to
eq. (4.4). Combining these last several results, we obtain an expression for the
cross section for excitation between magnetic sublevels, due to collisions with
a longitudinally polarized beam of electrons, that can be written in the form

Qm, (A My — AT M)



_47r

== STt 4+ D)2l + 1))

L.
ll,j/,m/

x expli(6, — 5N1)]C(Z%Oms; jm)C(h%Oms;jlm)
< R(0, /) R(on o), (9.10)

where «; differs from o in that /; and j, replace | and j, respectively. In writ-
ing eq. (9.10), the summation over m was eliminated because, as mentioned
previously, m = m,. This restriction is made explicit by the fact that the
Clebsch-Gordan coeficients can only be non-zero if m = my.

Finally, it is sometimes convenient to consider reactance matrix elements in
the coupled representation denoted by

v = ALklj JM and ~ = ALK JM (9.11)

because the matrix elements are independent of M in this coupling scheme.
Therefore, the corresponding equations provided in sections 4.1-4.2 for fine-
structure levels can be immediately applied to the present case. The transfor-
mation between matrix elements in the uncoupled and the coupled represen-
tations is given by

Rle, oy =Y C(JjMym; IM)C(J3'M{m'; IM)R(~,~") (9.12)

JM

and

R(()/,l’ C\/,/) = Z C(thlz’%tml; J]Afl)C(Jfljlj\ftlnll, lewl)R(")/l, ")/1) s (913)

J1, M

where 7, differs from ~ in that Ji, /1 and j; replace J, [ and j, respectively,
while ] differs from + in that only J; replaces J. Due to the lack of dependence
on M mentioned above, we note that R(+,7') in eq. (9.12) is identical to the
left-hand side of eq. (4.13), which applies to fine-structure levels. As with
eq. (9.2), the use of k and &', instead of € and €, in eq. (9.11) is an intentional
choice to denote the consideration of directional electrons in the present case.

Using eqgs. (9.12) and (9.13) in eq. (9.10), we obtain

O (Bl Mo = A T M;)
=5 ¥ X i@+ nen+

LIy gg1 JJy M

vl
X eXp[i(5ﬁ - 5&1 )]C’(lé—(}qm% ]m)CUl %Omm ]1m)
XC(JL?A’{{(TLJ J[)Mr)C(Jt?] Mt’fﬂ; JlM)
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xC(J/ 3" Mm'; IM)C(J}§'M]m'; J,M)
xR(y, ¥ ) R(71: ) - (9.14)

In writing eq. (9.14), the summation over M, was eliminated due to the fact
that M, = M because both quantum numbers must be simultaneously equal
to M; + my (recall that m = m; = m, in this case), as well as M, +m’, if the
Clebsch-Gordan coefficients are to be non-zero.

In practice, it is computationally more efficient to first obtain the R matrix
elements in the uncoupled representation using egs. (9.12) and (9.13), and
then to calculate the cross section via eq. (9.10), rather than using eq. (9.14)
directly. However, obtaining the cross section directly from eq. (9.14) can be
used as a convenient check on the former procedure.

While egs. (9.10) and (9.14) give the cross section between magnetic sublevels
when the electron beam is longitudinally polarized, one is often interested
in impact excitation by an unpolarized electron beam. In that case, the ini-
tial spin orientations must be averaged over and the cross section of interest
becomes '

QA M, — ALTIM!) = lZQm (AWM, — ALTIM)) . (9.15)

Additionally, in most applications the target ions are randomly oriented so the
cross section of interest is given by averaging eq. (9.10) or eq. (9.14) over initial
sublevels. Therefore, the cross section for a transition from a fine-structure
level to a magnetic sublevel is given by

Qum,(Ady — AL M) =

th 11 ZQmS Ag ]tA/[t A;J;ﬂ’f;) (916)

when the incident beam is comprised of longitudinally polarized electrons, and
by

L A gt )
ST T O Ak M= MM (917)
’ me, My

QA — A My) =
when the beam is unpolarized. Of course, substituting eq. (9.14) into eq. (9.17)
and summing over M| leads to the standard expression for the excitation cross
section for transitions between fine-structure levels (see egs. (4.1) and (4.12)),
which provides a useful check on our equations.

The RDW formalism described above has been used to compute excitation
cross sections for transitions to specific magnetic sublevels for a variety of
applications. For example, Inal et al. have used the appropriate RDW cross
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sections to predict the degree of polarization for various spectral lines emit-
ted by different ions. These calculations include a prediction of the circular
polarization of lines from He-like iron excited by longitudinally polarized, di-
rectional electrons [130] and a study of the effects of the hyperfine interaction
on the circular polarization of various x-ray lines from Sc xx [131]. As a spe-
cific numerical application of eq. (9.10) or eq. (9.14), we consider here the
collisional data for excitation to magnetic sublevels by impact with an unpo-
larized electron beam that were presented in ref. [128]. In that work, collision
strengths were presented for He-like, Li-like and Ne-like iron, as well as for
Ne-like molybdenum. Comparisons were also provided with results from other
works when available. We note that for magnetic sublevel transitions, the usual
relationship holds between the collision strength, §2, and the cross section, @,
(see, specifically, eq. (4.1), or eq. (9.18) in the next subsection). However, the
statistical weight associated with the initial sublevel, g;, is always one in this
case.

In table 26, we present a sample of those results from ref. [128]. In this table,
our results for collision strengths for excitation from the ground level to the
magnetic sublevels M, of the 1s2p levels in He-like iron are compared with two
different sets of semi-relativistic results produced by Inal and Dubau [132] and
the Los Alamos excitation code ACE [46]. As can be seen from the table, the
agreement between the three sets of calculations is very good. Therefore, the
relativistic effects are not particularly significant for iron ions and a semi-
relativistic treatment is adequate.

9.1.2  The relativistic Coulomb-Bethe approzimation

As pointed out in section 4.9, when considering optically allowed An = 0 tran-
sitions, which generally have small transition energies, very large values of the
angular momentum quantum numbers { and [’ that are associated with the
incident and scattered electrons, respectively, can contribute significantly to
the excitation collision strength. In subsection 4.9.1, we briefly described the
partial-relativistic Coulomb-Bethe (PRCBe) and relativistic Coulomb-Bethe
(RCBe) approximations as a way to estimate the top-up contribution in or-
der to obtain converged collision strengths for fine-structure transitions. How-
ever, those formulations of the PRCBe and RCBe approximations can not
be directly applied to collision strengths associated with transitions between
magnetic sublevels. For example, the presence of the Coulomb phase shifts
associated with the continuum partial waves must be considered explicitly.
Also, a useful form of the PRCBe method can not be readily obtained for
magnetic sublevel transitions because one is not allowed to perform a sum
over the magnetic quantum numbers associated with the initial and final tar-
get states. Furthermore, for moderate and high values of the nuclear charge 7,
a relativistic treatment should be used, especially since more detailed (i.e. less
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Table 26

Comparison of collision strengths for excitation from the ground level to the mag-
netic sublevels M of various 1s2p levels in He-like iron. In each case, upper entries
represent our fully relativistic (RDW) values, second entries are from the code of
ref. [46], and third entries are from ref. [132]. The results from ref. [132] were all
computed with the same transition energy AF = 493 Ry. Also, as discussed in
ref. [128], for most transitions, the present RDW results were calculated at slightly
different values of the incident-electron energy, €, than those listed in the table.
zly] = zx10v.

Excited ¢ (Ry)

Level M! AE(Ry) 550 700 900 1200 2000

1s2p 1Py 0 4932  1.69[3] 237}-3 3.09[3] 3.85}-3] 4.94-3]

or 4930  1.69[3] 2.39[-3] 3.07}-3] 3.7613] 4.68[-3]

(151/22P3/2)1 1.691-3] 2.38[-3 3.06[-3] 3.761-3] 4.69[-3]
1 4191-4] 6.121-4] 8.84[-4] 1.30-3] 2.32[-3]

418[-4] 6.20[-4] 8.98[-4] 1.31[-3] 2.30[-3]
4.06[-4] 5.84[4] 8.87[-4] 1.35[-3] 2.39[-3]

1s2p 3P, 0 4907  208[-4] 2.42(4] 2.85[-4] 3.37}4] 4.2014]
or 4906 2.19[-4] 2.55[-4] 2.9914] 3.47[4] 4.16[-4]
(1s1/22p1 /21

1 2.65[-4] 2.09[-4] 1.76[-4] 1.69[-4] 2.16[-4]

2.66[-4] 2.09[-4] 1.781-4] 1.72[4] 2.20[-4]

152p 3Py 0 4919  291[-4] 1.98}4] 1.27}-4] 7.35-5 2.50[-5]
or 4917 3.08]-4] 2.10[-4] 1350-4] 7.76[-5] 2.63[-5]
(181/22p3/2)2

1 2.371-4] 1.61}-4] 1.04[-4] 6.04[5 2.12[-5]

5
2.50-4] 1.70[-4] 1.10[-4] 6.36[-5 2.23[-5]
2.45[-4] 1.65[-4) 1.05[4] 6.05[-5] 2.10[-5]

2 7.46[-5] 5.00[-5] 3.32[-5] 2.11[}-5] 9.70[-6]
7.63[-5] 5.13[-5] 3.42[5] 2.19[-5] 1.02[-5]
7.55(-5] 4.96[-5] 3.28[-5] 2.00[-5] 9.74[-6]

averaged) collision strengths, such as those associated with transitions be-
tween maguetic sublevels, tend to be more sensitive to any approximation
made. Based on these considerations, we provide in this section some of the
details associated with the RCBe approximation and its application to ob-
taining the top-up contribution to collision strengths that describe transitions
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between magnetic sublevels produced by impact with directional electrons. A
more detailed description of this approach is provided in ref. [55].

For values of the angular momentum quantum numbers [ or I’ > [y, where [
is some suitably large number, the continuum partial waves can be accurately
described by relativistic Coulomb functions and the RCBe approximation be-
comes valid. That is, the Coulomb interaction between the active bound elec-
tron, with coordinate label N, and the free electron, with coordinate label
N + 1, can be approximated by eq. (4.60). In addition, exchange is neglected
in the R matrix elements and relativistic Coulomb functions are used to rep-
resent the free electrons. These approximations can be applied directly to the
cross section that describes a transition between magnetic sublevels that ap-
pears in eq. (9.10) or eq. (9.14). Here, we choose to apply these approximations
to the collision strength, which is related to the cross section in the usual way,
ie.

QA M, — N, JIM!) = %s‘z(mwt — ALJIM)) (9.18)

In the present case, the statistical weight of the initial sublevel that would
normally appear in the denominator of the right-hand side of eq. (9.18) is
always one. We note that this expression is also valid for the quantities @,,, and
2., which apply to excitation by a beam of longitudinally polarized electrons.
Applying the previous approximations to the cross section in eq. (9.10) and
using the appropriate version of eq. (9.18), the corresponding RCBe collision
strength can be written in the form

QREBe(A T, M, — AT M)
=16 S(AJ,, ALT)) =020 + 1) (20, + 1)]?

Li1,7,01
l’,j’,m’

X expli(ue — O1,0)]C(130my; jm)C (1 50my; jim)
X (=172 [(elg €5) Ielyg, €1'5)
(G CO NG eD | 5

i1 j’)(;‘l 1 j’)(% 1 Ji)"‘
Xg(ﬂm qg m -m q m —-M, ¢ M| (9.19)

where the reduced matrix elements of the form (j, || C™ || j.) are given by
eq. (3.26) and the (---) are Wigner 3-j symbols. The I symbols represent rel-
ativistic Coulomb integrals given by eq. (4.62), 4, is the relativistic Coulomb
phase shift given by eq. (A2) in ref. [128] and S is the fine-structure line
strength given by eq. (3.14). As mentioned in the previous subsection, one is
often interested in impact excitation by an unpolarized beam. In that case,
the appropriate RCBe collision strength is given by
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QRCBG(AtJtMt A J A{ =5 ZQRC’BG Ay S M — A; ;ﬁ\’ft/) . (920)

g
ms

We note that, if eq. (9.19) is summed over the magnetic quantum numbers
M, and M, associated with the initial and final sublevels, and also averaged
over the two possible spin polarizations of the incident electron represented
by my, then one should obtain the RCBe expression for the fine-structure
collision strength given by eq. (4.61) in subsection 4.9.1. This outcome is
relatively straightforward to verify, as follows. The double summation over M;
and M| eliminates the squared 3-j symbol and replaces it with a value of %
The summations over ¢ and m’ can next be performed, which eliminates the
remaining two 3-j symbols and replaces them with a factor of §;;, /(27 + 1).
Next, the summation over m, (recall that m = m for the case of longitudinally
polarized electrons) removes the two Clebsch-Gordan coefficients and replaces
them with a value of 4y, [(2j + 1)/(20 + 1)]. The factor of £ that remains from
taking the average over my is combined with the factor of 16 to yield 8, the
remaining three phase factors can be set to one for obvious reasons, and the
final result is

QRCBB(AVL _ A;JZ) == %S(Au]t - A;Jﬁ,)
x 3 P(elj 1) 1OV 15 (9:21)

1%
l’,j’

which is precisely the expression in eq. (4.61).

The procedure we follow in order to calculate the complete collision strength
between magnetic sublevels is similar to the second method described in sub-
section 4.9.1 for transitions between fine-structure levels, except that it is
more convenient to make the final summation over the final orbital quantum
number !, rather than {. As noted in the last paragraph of subsection 4.9.1,
the outcome is the same as what would be obtained if the final summation
were performed over [. In the present illustration, we consider the case of an
unpolarized electron beam, but the same basic logic can also be applied to the
polarized case. We begin with eq. (9.18), along with egs. (9.15) and (9.14),
to calculate the relativistic distorted-wave collision strength up to some large
value of I" = [y — 1. This contribution is denoted by QRDW where the argu-
ment that denotes the magnetic sublevel transition from eq. (9.18) has been
omitted here and in the subsequent discussion for brevity. ‘

Next, we employ the RCBe collision strength given by eq. (9.20), along with
eq. (9.19), to approximate the contribution from {’ = [, up to some much higher
value [§ — 1, usually chosen to be the maximum value that can be attained
before encountering numerical difficulties on a given computer platform. This

contribution is denoted by Q{“g?ﬁl Finally, as noted in subsection 4.9.1, for
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sufficiently large values of ', the ratio of successive partial-wave contributions
becomes very nearly constant. Assuming this ratio is exactly constant when
' =1;—1, and equal to the specific value C for a given transition and incident
(or scattered) electron energy, then the contribution of all partial waves with
I' > [ is given by

(ORATIO _ RCBe c (9.22)

FAEN -
15,00

bt 1
where SZ{%@}?e is the partial-wave RCBe value for I’ = [j—1. Hence, the complete

collision strength for transitions between magnetic sublevels is given by

RDW __ yRDW RCB RATIO

Q ~ Q(},l()—l + QZQJE‘EI + Ql(’;.oo ’ (923>
which is identical in form to the expression given by eq. (4.72) in subsec-
tion 4.9.1 that applies to fine-structure transitions.

As a numerical example of the application of eq. (9.23), we consider the results
presented in ref. [55]. In that work, we calculated and presented results for
transitions from the sublevels of (1s2s); to the sublevels of (1s2p*)g, (1s2p*),
(1s2p); and (1s2p), for He-like neon, iron, barium and gold. Here, we reproduce
a portion of those barium data in table 27. The atomic structure data used
in those calculations were obtained from our DFS structure code described in
chapter 2, with the improvements described in section 2.5 also included. As
described in ref. [55], results between some sublevels are not presented because
they can be obtained from the symmetry relation

QAT M, — AL M) = QA (—M,) — A JI(=M)) . (9.24)

The ¥ entries that appear in the table represent the collision strengths associ-
ated with the corresponding fine-structure-level transitions. These results are
obtained by summing over all possible pairs of M; and M]. We also list the
values of /p and [ that were used in the top-up calculations for each of the
three scattered-electron energies.

9.1.3 The Kummer transformation applied to transitions between magnetic
sublevels

Recent attempts to obtain a more accurate approximation of the top-up contri-
bution for excitation between magnetic sublevels [133] have involved an exten-
sion of the relativistic plane-wave-Born (RPWB) approach, or Kummer trans-
formation, described in subsection 4.9.3 for transitions between fine-structure
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Table 27

Collision strengths for An = 0 optically allowed transitions between magnetic sub-
levels with n = 2 in He-like barium. Results are presented for three scattered en-
ergies, €, along with the corresponding values of Iy and [ used in eq. (9.23). The
transition energy, AFE, is also provided for each transition. zly] = =z x 10%.

€' (eV) (V)

My M| 1000 4500 22000 M M| 1000 4500 22000

o =123 33 58 Iy == 23 33 58

=50 100 190 IF=50 100 190

{1s2s) - {1s2p* )1, AE = 82.0 eV {1s2s8)1 - {1s2p)1, AE = 575 ¢V

1 -1 910[3]  6.57[-3] 2.23[-3] 1 -1 3.a1[3] 28203 22303
-1 0 5633 1.04[-2 1.59[-2] 1 0 17003] 25003 4.42[}-3]
-1 1 52608 5.500-8] 2.95[-8] -1 1 473f5] 4415 2.29]-3]
0 -1 56503 1.04[-2) 1.59[-2) 0 -1 16203 24503 44203
0 0 B.98[-5 6.23-5] 1.78[-5] 0 0 1.75[4] 1.08-4]  2.03-5]
T 4082  5.50[-2] 6.80[-2] T 13142 15742 2.221-2)

levels. The basic concept associated with the Kummer transformation is sym-
bolized by eq. (4.75). In order to implement this approach, one must obtain
an analytic expression for the RPWB collision strength, QF'WE (or the corre-
sponding cross section). Then the appropriate partial-wave, RPWB collision
strength is subtracted from the analytic expression to obtain the top-up con-
tribution, which is to be added to the corresponding partial-wave, RDW value
of the collision strength.

A partial-wave approach to computing the RPWB collision strength for tran-
sitions between magnetic sublevels is relatively straightforward and follows
directly from the RDW prescription in subsection 4.8.2. Specifically, for mag-
netic sublevel transitions, a partial-wave, RPWB calculation can be performed
with the same computer code that is used for the corresponding RDW calcula-
tion. The main difference is that the radial wave functions associated with the
partial waves of the incident and scattered electrons in the RDW calculation
must be replaced with the appropriate spherical Bessel functions implied by
eq. (4.58). Also, only the direct Slater integrals are retained when computing
the reactance matrix elements, due to the use of product wave functions in the
RPWB approach. Additionally, the normalization of the plane waves is chosen
according to eq. (4.59), in order to be consistent with the normalization of the
RDW radial wave functions. Thus, taking these considerations into account,
egs. (9.10) and (9.14) can also be used to compute the RPWB excitation cross
section for transitions between magnetic sublevels when the beam of impact
electrons is longitudinally polarized. Alternatively, eq. (9.15) can be used if
the beam of electrons is unpolarized.

The remaining task is to determine an analytic expression for the RPWB

excitation cross section for magnetic sublevel transitions. As stated in subsec-
tion 4.8.1, the excitation cross section depends on the square of the RPWB
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matrix clement in eq. (4.48). By analogy with the scattering amplitude in
eq. (9.1), we consider a magnetic sublevel transition, denoted by A;J;M; —
AL J; M|, that is caused by relativistic plane waves, rather than distorted waves.
The incident plane wave is characterized by momentum k and spin magnetic
quantum number myg, while the scattered electron is characterized by momen-
tum k' and spin magnetic quantum number m/. If one is not interested in
the spin polarization of the scattered électron, then eq. (9.6) applies and the
RPWB form of the excitation cross section can be written as

, . ARPWE|2
QRPWB(A S M, — ALIIM) =S / ak’ \[Br] " (9.25)
where the scattering amplitude is given by
m,|RPWE 1 EE"N K
1B (AT M, ~ AT = = (m204) 7 Hoo (9.26)

and the matrix element H, is given by eq. (4.48). The factor EE'/(m?%c?t),
which is written in standard units for clarity, is the extra kinematic factor (see
ref. [52]) that was mentioned in subsection 4.8.1. This factor takes into account
the relativistic relationship between the velocity and momentum, v = pc?/E,
for the incident and scattered electrons. Aside from this extra factor, eq. (9.26)
is identical in form to the standard non-relativistic expression (see eq. (18.154)
of Cowan [8]).

However, as discussed in subsection 4.8.1, the matrix element H,. also con-
tains an extra factor that does not appear in the non-relativistic case. In
particular, this matrix element factors into two pieces: a scalar product be-
tween the 4-vector amplitudes of the incident and scattered plane waves, given
by eq. (4.52), and another matrix element that has exactly the same form as
the corresponding non-relativistic RPWB matrix element (see eq. (18.140) of
Cowan [8]). Thus, we write the square of eq. (4.48) as

6472
K4
(AT M| e ALTIMY)

q

2

‘Haa’P =

U (ke o) U (K7, )
\

X ) (9.27)

where K = k' — k is the momentum transfer. As stated above, the matrix
element containing the initial and final sublevels has exactly the same form as
the result that is encountered in the non-relativistic case, but it is understood
that the wave functions are represented as 4-vector quantities. For the case of
transitions between magnetic sublevels currently under consideration, this ma-
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trix element can be expanded according to well-established techniques, which
are summarized below when considering the generalized oscillator strength.

In order to reduce eq. (9.27) to a more useful form, we first focus on the square
of the scalar-product factor, UTU, which contains the entire dependence on the
spin magnetic quantum numbers, m, and m/, associated with the incident and
scattered electrons. Thus, we can apply the 32, that appears in eq. (9.25)
to this factor. Expanding the square of the scalar product, as it appears in
eq. (4.52), and repeatedly applying the relationship

(o-p)e-p’) =pp' +ic-(pXp), (9.28)

we obtain

2

> |Ut (k)UK m))

= (NeNy)?

o2 2 5
1+—p-p — ok :
(1450 #) + galox o). (9.29)

where D = (E + mc?)(E' + mc?). An expression for the normalization factor
associated with the incident plane wave, N, is presented in the text after
eq. (4.50), with a similar expression valid for the scattered-electron factor, NVj.
Eq. (9.29) is a particularly useful result because its derivation does not require
any assumption about the direction of the incident or scattered electrons,
and it is independent of the spin magnetic quantum number associated with
the incident electron, m,. This latter characteristic is a consequence of the
use of product, rather than antisymmetrized, wave functions in the RPWB
approach. Thus, eq. (9.29) applies equally well to excitation caused by a beam
that contains either spin-polarized or unpolarized electrons. Furthermore, in
the case of a spin-polarized beam, there is no constraint between the direction
of the spin of the incident electron, s, and the direction of the incident or
scattered electrons, k or IAc,, respectively.

Before proceeding with a discussion of the RPWB excitation cross section in
eq. (9.25), we next define the generalized oscillator strength (GOS) for the case
of transitions between magnetic sublevels. An expression that is appropriate
for magnetic sublevels can be defined in a manner analogous to the GOS
presented in eq. (4.54) for fine-structure levels in subsection 4.8.1. The details
for obtaining this quantity are provided in ref. [133] and are only summarized
here.

As usual, the derivation of an expression for the GOS begins with the matrix
element containing the magnetic sublevels on the right-hand side of eq. (9.27),
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which can be reduced to a more useful form according to standard irreducible-
tensor techniques (see eq. (18.144) of Cowan [8]). The square of this expres-
sion is subsequently expanded and further simplifications ensue. An important
difference that occurs in expressing the GOS for magnetic sublevels versus
fine-structure levels is a dependence on the direction of the wvector momen-
tum transfer, K, rather than a dependence on the magnitude of the momen-
tum transfer, K. Specifically, the GOS for the magnetic sublevel transition
Ay J M, — AT M), with transition energy AF, can be written in the form

F(AT M, — A;,JM/QE K)
_AFE
T K2

2AF :
S Y N CER YR

ol

2

(AT M| S e | ALT M)
q

(v~2!}even

x S P (cos i) P (cos )

Jyoov J Jy v Tl )

x (—Mt 5 M{) (—Mt M (9.30)
N N

<AL 5 (BKr) CY AT AT S G (Kry )OOl ALT]),
g=1 g'=1

with
_ 1 N2 gr2 12
cos by = STR (k") — K* = k2. (9.31)

In eq. (9.30), the symbols appearing in the reduced matrix elements have the
same meaning as those appearing in eq. (4.54) for the fine-structure GOS.
For example, 7, is the spherical Bessel function of order v and Céj’) is the
renormalized spherical harmonic of rank v. The dependence on the direction
of K appearing in the argument of the magnetic sublevel GOS is contained
within the expression cos 6k, where 6y defines the angle between K and k, and
is measured with respect to the direction of the incident beam, k. Here, cos 0y
appears as the argument of the normalized associated Legendre functions of
degree v and order 7, which are denoted by P{7 [134]. The origin of the
relationship expressed in eq. (9.31) can be more easily understood by applying
the law of cosines to the triangle formed by the vectors —k, k' and K to obtain
the standard relationships

(K2 = K? + k* = 2kK cos(m — Og) = K? + k* + 2kK cos f. (9.32)

Similar to eq. (3.13), which represents the line strength for a transition between
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magnetic sublevels, we note that the summations over 7 and 7’ in eq. (9.30) are
unnecessary because of the properties of the 3-5 symbols. For fized values of M,
and M|, which is the case currently under consideration, the 3-j symbols are
non-zero only when 7 = 7" = (M, —M]). However, this more general expression
of the GOS is useful when performing certain reductions, as illustrated in the
next paragraph. We also note that, unlike the fine-structure GOS that appears
in eq. (4.54), the GOS in eq. (9.30) does not contain the statistical weight
symbol g because, as stated previously, the statistical weight of any magnetic
sublevel is one.

As a check on eq. (9.30), we can show that it reduces to the correct fine-
structure result in eq. (4.54). The reduction is performed in the standard way
[8], i.e. by summing over the initial and final magnetic quantum numbers M,
and M, but there is a slight difference in this case due to the presence of the
normalized associated Legendre functions. Proceeding in the usual way, we
note that the summations over M; and M, act only on the product of the 3-j
symbols; which can be reduced according to

']L v JZ ) ( Jt 174 Jt, ) 5:/:/’57'7"
t ¢ 7 = " 933
M%\:/I; ( My ™ M| M, 1 M 2w+ 1 (9.33)

This result can be used to greatly simplify eq. (9.30), which can be rewritten
as

Z F(A M, — DM K)
M, M|

QAE 'r) al . {1} 12 :
— o L LIP cos ) (ALY (KO AT (034

g=1

The 3. of the square of the normalized associated Legendre functions can
be performed for arbitrary values of v. The result can be expressed in the
compact form

- g 2 1
> [P (cos i)t = 2, (9.35)

which conveniently removes the dependence of the fine-structure GOS on the
direction of K. This last relation readily follows from the well-known sum rule
for the spherical harmonics [8]

Z Y (8, 6)|2 J;l (9.36)

i —{
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and the fact that the spherical harmonics can be expressed in terms of the
normalized associated Legendre functions according to [134]

(-1
Vr

If eq. (9.35) is then substituted into eq. (9.34), we obtain

Yim (6, 6) = P (cos§) ™. (9.37)

ST f(AJM, - ATMK)
M, M!
-———AE ¢ - ; () 12
=~ 2 (2v+ DA ju(Kr)CPI AT, (9.38)

g=1
which is precisely the expression for the fine-structure GOS given by eq. (4.54).

With the GOS defined as in eq. {9.30), the determination of a useful, ana-
lytic expression for the RPWB excitation cross section for transitions between
magnetic sublevels proceeds in a manner very similar to that presented for
the fine-structure case. Returning to eq. (9.25), the integration over k' can be
performed in the standard way. Specifically, the polar axis is chosen to be in
the direction of the unit vector k (which is not required to be in the direction
of the z axis for this application) and the integration is carried out over all

angles 8" and ¢’ that describe k' in this coordinate system. The integral over
@' is trivial, producing a factor of 27, because the integrand has azimuthal
symmetry about the k direction. The remaining integral over 8’ can be con-
verted into an integral over the magnitude of the momentum transfer, K, in
the standard way [8]. At this point, it is convenient to substitute egs. (9.26),
(9.27), (9.29) and (9.30) into eq. (9.25). After various manipulations, the re-
sulting cross section can be used to obtain an expression for the corresponding
collision strength according to

QEPWB(A T, M, — AT M)
k2

= QR (AM, — ATM)
8 Kmax
" AE / Fra(K) (A JiMy = AT MG K d(InK ) (9.39)
I\,min

We note that eq. (9.39) is almost identical in form to the collision strength
in eq. (4.53), which applies to fine-structure transitions. As stated previously,
the statistical weight associated with the initial sublevel, g;, has been omitted
above because it has a value of one for any magnetic sublevel. Additionally,
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the quantity f(---; K) represents the GOS for magnetic sublevels given by
eq. (9.30). Aside from these two differences, the expressions for the magnetic
sublevel and fine-structure RPWB collision strengths are identical. Hence, the
quantity Fiq(K), which represents the relativistic correction factor that was
previously discussed for the case of transitions between fine-structure levels,
is again given by eq. (4.56). Also, the limits of integration are still given by
eqs. (4.55a) and (4.55b).

Thus, the integral in eq. {9.39) can be evaluated with the same numerical
techniques that were used in the fine-structure case. However, when consid-
ering the K — 0 limit of the magnetic sublevel GOS, the dependence on the
direction of K does require some additional attention. In the fine-structure
case, this limit is unambiguous and readily produces the corresponding dipole
oscillator strength, as mentioned in the discussion following eq. (4.54). In the
case of transitions between magnetic sublevels, the situation is more compli-
cated due to the dependence of the GOS on K. A discussion of this issue is
provided in ref. [133] and the reader is referred to that work for further details.

As written, the subscript m; in eq. (9.39) denotes that the collision strength
is valid for the case of excitation between magnetic sublevels due to collisions
with a beam of spin-polarized electrons. More precisely, this expression is valid
for arbitrary orientations between the electron spin, s, and the direction of
the incident beam, k, not just for the case of longitudinally polarized elec-
trons in which s and k are parallel. This general outcome is obtained because
the derivation above did not require the specification of a particular direc-
tion for k. Furthermore, because the final expression on the right-hand side
of eq. (9.39) is independent of the spin magnetic quantum m; (see the dis-
cussion following eq. (9.29)), this result also applies to the case of excitation
caused by impact with a beam of unpolarized electrons. Thus, eq. (9.39) can
be used to obtain the top-up contribution for transitions between magnetic
sublevels, via eq. (4.75), for either an arbitrarily polarized beam of electrons
or an unpolarized beam.

As a gpecific numerical example, we consider the case of excitation between
magnetic sublevels caused by a beam of unpolarized electrons. In table 28,
we reproduce results from ref. [133] for certain magnetic sublevel transitions
associated with the (1s*)y — (1s2p*); fine-structure transition in He-like ions
for Z = 10, 26, 56 and 79. Collision strengths for all possible magnetic sublevel
transitions arising from this fine-structure transition were previously presented
in table 27 for Ba®** ions. Those results were calculated using the RCBe top-up
approach presented in eq. (9.23). (As mentioned previously, some transitions
were omitted from table 27 due to symmetry arguments. See eq. (9.24). Also,
slight differences between those results and the RCBe collision strengths pre-
sented in table 28 are due to calculations having been performed on different
computing platforms.) In table 28, results are presented for only two of the
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possible nine magnetic sublevel transitions in order to illustrate the differences
that can arise when the top-up contribution is computed with the Kummer
transformation in eq. (4.75) versus the RCBe approach. In particular, the ini-
tial magnetic quantum number is fixed at a value of M, = —1, while two
values of the final magnetic quantum, M, = —1 and 0, are considered. The
behavior observed for these two transitions was indicative of the entire set.

For both magnetic sublevel transitions under consideration, the Kummer re-
sults are lower than the RCBe results for all of the ions considered when
examining the lowest few energies. The differences range from approximately
2-10%. This behavior indicates that the Kummer results are inaccurate due
to the use of plane waves, rather than Coulomb waves, at these energies. For
slightly higher energies, the two sets of data become comparable and then
the Kummer results start to exceed the RCBe values, particularly for the
heavier Ba®"* and Au’"* ions. For the highest energies, the Kummer results
are greater than the RCBe results for both transitions and for all ions. The
discrepancies for the (M, = —1) — (M] = —1) transition are particularly
sensitive to the method used to compute the top-up contribution, while the
(M; = —1) — (M] = 0) transition is not quite so strongly affected. For exam-
ple, the Au”"* values differ by more than a factor of 40 at the highest energy
for the M] = —1 transition, but display a more benign, yet still significant,
60% difference for the M, = 0 transition. Similar trends are observed for Ba®*
ions. The discrepancies in this high-energy region are due to convergence prob-
lems associated with the RCBe approach. It can be numerically challenging
to compute the RCBe contributions up to a sufficiently high value of I} when
evaluating eq. (9.23). If the value of I} is too small, then the ratio approxi-
mation does not provide an accurate estimate of the remaining partial-wave
contribution. On the other hand, the Kummer transformation is designed to
automatically reproduce the correct RPWB behavior in the collision strength
at such high energies, as illustrated in figure 1 for the (1s2s); — (1s2p*),
fine-structure transition in He-like iron.

9.1.4 Comparisons with EBIT experiments at LLNL

The degree of polarization associated with the emission of a particular line
can be obtained from the magnetic sublevel excitation cross sections described
in the previous subsections. For example, comparisons of polarization results
obtained from cross sections produced by our codes and data obtained from
EBIT measurements have been made by Beiersdorfer and coworkers at LLNL.
Generally, the agreement between theory and experiment was found to be good
in those cases [135,136]. As a specific example, we include comparisons between
measured and calculated values of the polarization in tables 29 and 30. These
results were taken from refs. [137] and [138], and expressions for computing
the polarization from the magnetic sublevel cross sections are provided, for
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example, in ref. [137]. Table 29 displays polarization results for He-like iron
for the w, vy and z lines described in subsection 4.10.1, as well as the x line,
which represents the transition '

23132 — 1 ng or (152{))2 s {182>0 .

Values labeled “Shlyaptseva and coworkers” are predictions based on Coulomb-
Born calculations from refs. [139] and [140]. The values labeled “Inal and
Dubau” are based on excitation calculations using the semi-relativistic distorted-
wave programs of refs. [132] and [141]. The values labeled “Present calcula-
tions” are based on calculations from our RDW excitation code. One sees
that there is very good agreement between theory and measurements with
the exception of the Coulomb-Born calculations. Table 30 gives similar com-
parisons of the predicted polarization based on calculations from our RDW
excitation code and the EBIT experiments for titanium. In this case, results
for the Li-like line 1s2s2p ?Py/e — 15225 2S5 (called q) are also provided. The
agreement is again very good, with the exception of a larger discrepancy for
the w line.

Table 29

Comparison of calculated and measured values of the polarization of lines w, x, y
and z at an excitation energy of 6800 ¢V. Results are for He-like iron.

Shlyaptseva  Inal and Present

Line and coworkers Dubau  calculations Measurements

Py +0.82 +0.584 +0.599 +0.5670 08

by —-0.75 —0.518 ~0.515 —0.5370-05

ry —-0.23  -0.196  —0.192 —0.227005

P, (no cascades) 0.000 0.000 0.000

P, (with cascades) —0.078  —0.074 —0.07670 007
Table 30

Intensities (adjusted for the spectrometer response function) and inferred linear
polarization of the helium-like lines w, x, v and z, and of the lithium-like line q
for titanium measured with Si(220) and Si(111) crystals. Theoretical (predicted)
polarization values, computed with our RDW code, are given for comparison.

Si(220)  Si(111)  Predicted  Measured
Line Ion  (counts) {counts) polarization polarization

w  Ti® 18976 1820  1+0.608  +0.43*01

X Ti%+ 3628 185 —0.519 —0.487508
y T+ 4468 268 ~0.339  —0.3373:97
z Ti?* 6511 470 —0.106 ~0.10173973
q Ti'% 5999 569 +0.341 +0.407315
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9.1.5 Inclusion of the generalized Breit interaction in excitation between mag-
netic sublevels

The need to include the generalized Breit interaction in calculating excitation
cross sections between magnetic sublevels was motivated by possible EBIT ex-
periments to be performed on highly charged ions of heavy elements at LLNL.
As discussed previously in subsection 4.10.1, the generalized Breit interaction
was (unexpectedly) found to provide a stronger effect on excitation cross sec-
tions between fine-structure levels for more complex ions. Here, we are specifi-
cally referring to complexity as a measure of how much fine-structure splitting
occurs among the various levels under consideration. For example, the effect of
the generalized Breit interaction on the n = 1 to 2 excitation cross sections for
hydrogenic xenon ions was shown to be less than 1% for near-threshold impact
energies. On the other hand, the effect was observed to be as large as 28%
in the corresponding transitions for He-like xenon ions. Summing the He-like
cross sections in the appropriate way to obtain hydrogenic-type results pro-
duced results that displayed a much smaller sensitivity to the generalized Breit
interaction, on a par with the true hydrogenic results. This behavior suggested
that the additional splitting associated with magnetic sublevels might result
in cross sections that displayed an even stronger sensitivity to the generalized
Breit interaction, relative to cross sections associated with the corresponding
fine-structure transitions.

As described near the beginning of section 4.10, the generalized Breit interac-
tion can be included in electron-impact excitation processes by replacing the
standard Coulomb interaction with an appropriate expression for the more
complete interaction. This replacement is described by egs. (4.76) and (4.77)
and, in the present case of excitation between magnetic sublevels, must be
applied to the cross section in eq. (9.10) (or eq. (9.14)). As usual, the replace-
ment is specifically performed in the reactance matrix elements of eq. (9.10).
However, because the expression for the generalized Breit interaction has
an imaginary part, the product of reactance matrix elements displayed in
eq. (9.10), R(a, o')R(ay, ), must be replaced with the more general result
R, o) R*(0n, '), so that the complex conjugate of the second element is
taken. In the discussion to follow, we write these complex matrix elements
using the abbreviations

R(a,a') - R = R, + iR, (9.40)

and

R* (&1, Oz’) - RI = er - iRli R (941)

where the subscripts r and i denote the real and imaginary parts of the appro-
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priate matrix element. An evaluation of the real matrix elements involves the
usual Slater integrals given in egs. (4.17) and (4.18), plus the Breit integrals
given in eqs. (4.78)—(4.82). The imaginary matrix elements involve only Breit
integrals, and are obtained by the prescription that precedes eq. (4.83).

In order to obtain an expression for the cross section that is convenient and
efficient to evaluate numerically, it is useful to consider the remaining complex
quantities that appear in eq. (9.10). The phase factor i~ is actually a real
quantity because [ — [y is always an even integer due to restrictions on the
allowed values of the impact-electron orbital angular momenta [ and ;. Thus,
the only remaining complex quantity to consider is the phase factor exp[i(d, —
3k, )], which shall be abbreviated as exp(iD). The product of this phase factor
with the two reactance matrix elements can be rearranged as

expli(dy — dx, )] R, & YR (a1, &)
— [cos D + 1 sin D|[R; +1 Ri][ Ry, — 1 Ry
= (COS D)(Rrer + R R11> -+ (Sin D)(Rar - Rier)
+i[(8hl D)(RrRk + RiRli> - (COS D)(RrRh — Rier)] . (9.42)

Since the cross section is a real quantity, the contribution of the imaginary part
contained within the square brackets of the final term in eq. (9.42) must be
zero. In fact, we have verified numerically that this statement is true. There-
fore, the expression that we use for including the generalized Breit interac-
tion in the excitation cross section for transitions between magnetic sublevels,
caused by collisions with a beam of longitudinally polarized electrons, has the
explicit form

Q. (A M, — ALTIM)

= f]g ST oih2r+ )2 + 1)]?
Li1,g:01
V3 ml
xC(lloms; jm)C’(llé()m,; Jim)
X{(,Ob( s )[R (cy a) H(a, @) + Rile, ) Ri(ag, )]
+ sin(4 w ) [Rr(a, ) Ri(en, o) — Ri(or, o) Re(ay, )]} . (9.43)

Again, we stress that the subscripts r and i refer to the real and imaginary parts
of the appropriate reactance matrix element, with the real parts containing
both Coulomb and Breit radial integrals, while the imaginary parts contain
only Breit radial integrals.

As a numerical application of eq. (9.43), we consider the case in which the
electron beam is unpolarized, so that %st is applied to eq. (9.43), as in
eq. (9.15). In table 31, we reproduce a portion of the results of this type that
were originally presented in ref. [142]. The data presented in the table are ac-
tually collision strengths, which are related to the corresponding cross sections
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in the usual way (e.g. eq. (9.18)). These collision strengths pertain to transi-
tions starting from the ground state of He-like xenon ions to specific magnetic
sublevels that contain an n = 2 electron. Results are presented for five impact
energies ranging from near-threshold to about 4.5 times the ionization energy
of a given transition. As in all of the previous studies involving the general-
ized Breit interaction, we observe the usual behavior that the imaginary part
of this interaction does not contribute much to the collision strengths. The
largest effect is a few-percent change in the near-threshold collision strength
for a couple of the transitions. Therefore, the imaginary part of the interaction
can typically be ignored, which amounts to almost a factor of two reduction
in the computing time for these types of calculations.

Further investigation of table 31 indicates the expected trend of an increase in
the importance of the generalized Breit interaction with increasing impact en-
ergy. In the near-threshold region, the change associated with this interaction
ranges from about 5-20%, signifying a relatively modest effect. On the other
hand, for the largest impact energy, the collision strengths associated with the
weaker transitions display enhancements that are greater than a factor of two.
Even the stronger J = 1 collision strengths exhibit relatively large changes of
30-40%. We note that the effect of the generalized Breit interaction for these
strong J = 1 transitions is to increase or decrease the collision strength for
the corresponding magnetic sublevel transitions. Finally, as postulated at the
beginning of this subsection, the collision strengths associated with the cor-
responding fine-structure transitions, obtained by summing the appropriate
values over M, and denoted by % in table 31, show a decreased sensitivity to
the generalized Breit interaction.

9.1.6 Resonance contributions to magnetic sublevel collision strengths

In chapter 7, we stressed the importance of resonances and described a pro-
cedure for including those contributions when considering various processes.
In this subsection, we are concerned with resonances for excitation transitions
between magnetic sublevels caused by impact with directional electrons. We
again treat the resonance contribution as the two-step process of electron cap-
ture followed by autoionization, as symbolized in eq. (7.27). Thus, we consider
electron capture by an N-electron ion, in an initial magnetic sublevel i, fol-
lowed by autoionization occurring in an (N +1)-electron ion. The intermediate
autoionizing sublevel is denoted by d and the final sublevel is denoted by f.
The pertinent equations for this two-step process have been derived for mag-
netic sublevel transitions in ref. [143] and we now summarize those results in
this subsection.

The notation used in this subsection is similar to that used in chapter 7.
Specifically, the quantities pertaining to the initial sublevel ¢ will be unprimed,
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Table 31

Comparison of collision strengths for excitation of He-like xenon ions from the
ground level to specific magnetic sublevels M| for various incident-electron ener-
gies €. Values of the transition energy, AFE, are also provided for each transition.
The % entries are the total collision strengths obtained from summing the contri-
bution from all possible values of MJ. In each case, the upper, middle and lower
entries represent data computed with inclusion of only the Coulomb interaction, the
Coulomb plus real part of the generalized Breit interaction and the Coulomb plus
the full generalized Breit interaction, respectively. z[y] = zx 10V,

Excited e(Ry)

Level M| AE(Ry) 2400 3006 4000 6000 10000
1525 %8, 0 2214.6  3.084[-5] 2.425]-5] 1.716[-5] 9.917[-8] 4.553[-6]
or 3.312[-5] 2.718[-5] 2.070[-5] 1.384[-5] 8.356[-6]
{18y /228120 3.308[-5]  2.713[-5]  2.066[-5] 1.3821-5]  8.345[-6]
1 3.085[-5]  2.428[-5] 1.720[-5]  9.969[-6]  4.612{-6]
3.358-5]  2.7771-5]  2.140[-5]  1.4731-5]  9.866[-6]
3.376]-5]  2.791[-5]  2.150(-5]  1.478[-5]  0.886[-6]
by 9.255[-5]  7.280[-5]  5.157[-B]  2.986[-5]  1.378[-5]
1.003[-4]  8.272[-5] 6.350{-5] 4.331[-5]  2.809[-5]
1.006[-4]  8.296[-5] 6.366[-5] 4.339[-5]  2.812[-5]
1s2p %P3 0 22204 1.309[-4]  L.767[-4]  2.426]-4]  3.436[-4] 4.877[-4]
or 1.245[-4]  1.584[-4]  2.027[-4]  2.568]-4]  3.016[-4]
(1s1/22p1 201 1.238[-4]  1.571[-4]  2.007]-4]  2.5461-4]  2.995[-4|
1 8.201[—5] 8.168[-5]  9.230[-5]  1.310(-4]  2.266[-4]
9.394[-5]  9.645[-5]  1.141{-4} 1.737[-4]  3.278[-4]
9.447[-5]  9.730[-5]  1.153[-4] 1.751[-4]  3.292[-4]
> 2.949)-4]  3.400[-4] 4.272[-4]  6.056]-4]  9.410[-4]
3.124[-4] 3.513[-4] 4.310[-4]  6.042[-4] 0.573[-4]
3.1270-4]  3.517[-4]  4.314-4]  6.047-4]  9.579[-4]
1s2p 1Py 0 2251.5  2.7851-4] 3.9261-4]  5.5401-4]  7.946[-4]  1.136[-3]
or 2.588-4]  3.585[-4] 4.897[-4] 6.550[- ] 8.123[-4]
(1s1,22p3,001 2.545{-4]  3.520[-4] 4.820[-4] 6.474[-4] 8.047[-4]
1 8.419[-5]  1.0961-4]  1.589 2.690[-4]  5.012[-4]
7.7371-5]  1.069]-4]  1.668]- 3.106[-4]  6.425]-4]
. . 1 6.470]-4]

b 4.469-4]  6.119[-4] 8.717[-4] 1.333[-3]  2.138[-3]

41350-4)  5.723[-4]  8.233[-4]  1.276[-3]  2.007[-3]

4.142[-4] 5.731[-4] 8.241[-4] 1.277[-3]  2.099[-3]

1s2p 3Py 0 22489  6.709[-5] 4.724[-5] 2.874[-5] 1.317[-5]  4.392[-6]
or 8.316[-5]  6.155[-5]  4.058-5]  2.161[-5]  9.421[-6]
(181/22p3/2)2 8.248[-5]  6.108[-5]  4.031[-5]  2.150[-5]  9.386[-6]
1 5.507(-5]  3.876[-5] 2.364[-5]  1.096[-5] 3.777[-6]

5.873[-5] 4.272[-5] 2.755[-5]  1.446[-5]  6.836[-6]

5.841[-5]  4.250(-5] 2.743[-5] 1.442(-5]  6.827[-6]

2 1.8661-5]  1.298]-5] 8.078-6] 4.180[-6] 1.867[-6]

1.936[-5]  1.409-5] 9.604[-6] 6.242[-6]  4.986[-6]

2.007[-5]  1.458[-5] 9.879[-6] 6.352[-6]  5.015[-6]

b 2.146{-4] 1.507]-4] 0.219[-5] 4.345[-5]  1.568-5]

2.393[-4] 1.752[-4] 1.149]-4] 6.302[-5]  3.307[-5]

2.394[-4] 1.752]-4] 1.149]-4] 6.304[-5] 3.307]-5]
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or denoted with a subscript ¢, those pertaining to the doubly excited sublevel
d will have a subscript d, and those pertaining to the final sublevel f will be
primed, or primed with a subscript £. First we treat the capture of an electron
from a directional beam. In doing so, we start with the scattering amplitude
for electron capture (see eq. (2.1) in ref. [143]),

B _ 27,'3/2

> it exp(ids Ylml(I})C’(l-é—nzlms;jrra)‘l’(a,Ozd), (9.44)

i,my,7,m

which was obtained by modifying the scattering amplitude for electron-impact
excitation, i.e. eq. (9.1) of the present work. (See ref. [143] for more detail.) In

eq. (9.44), k is the direction of the incident electron, and « and ay are given
by

0 = AtJﬂWthjm, g = Adc]dﬁ’{é . (945)

As in subsection 9.1.1, we choose k to be in the direction of the z axis so
that eq. (9.7) applies. Also, we express the T" matrix in terms of the R matrix
using eq. (4.4). Then we transform the R matrix elements from the uncoupled
representation to the coupled representation according to

R(a, aq) = C(Jyg Mym; JuMg)R(7y, va), (9.46)

where v and 4 are given by

v = Ay JekljJg My, Vi = Qg (9.47)
(We note that in eq. (9.46), unlike eq. (9.12) or eq. (9.13), there is no summa-

tion required because J; and M, are fixed in the sense that electron capture
to a specific doubly excited sublevel is being considered.) Thus, we obtain

2 .
B™ = % >TiH20 + 1) exp(i6,) C(130my; jm)

{,7,m

xC(Joj Myms; JaMa) R(7v, va), (9.48)
where m = m, because m; = 0.

The capture cross section for a beam of unpolarized electrons is given by
QP (AT My — AgdyMy)
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o2
TN iR+ )@ + 1))V

= T2
k iy,

J.dp.ms

x BXp[i(&K — by, )]C(]%Omm Jm)C(l %OmSQ Jim)
x C'(Joj Mymy; JgMyg)C(Jp gy My, JgMy)

XR(’)/, ’)’d) R(’)/l, ")/d)é(€ — E—gd) s (949)

where ~; differs from + only in that [; and j; replace [ and j, € is the kinetic
energy of the incident electron and FE;y is the transition energy.

As a check on eq. (9.49), we use eq. (C.13¢) of Messiah [7],

C(JigMym; JgMy)

‘ 1/2
= (— 1) M (W) C(JyJy =M My;gm), (9.50)
27 +1

along with the analogous expression applied to C(J,j; M,m; J;My). Then, we
operate with 1/(2J; + 1) s, ar, o0 eq. (9.49), keeping in mind that the R
matrix elements expressed in the coupled representation are independent of M,
and My; that is, we average over initial magnetic sublevels and sum over final
magnetic sublevels, which eliminates the last two Clebsch-Gordan coeflicients
and gives a factor of 4,5, (2J; + 1)/{(2J; + 1)(2j + 1)]. Then, after summing
over j;, we apply eq. (C.13b) of Messiah to the remaining two Clebsch-Gordan
coefficients and perform the sum over m, = m. This procedure eliminates those
two Clebsch-Gordan coefficients and yields a factor of [(2j + 1)/(2] + 1)]dy, -
Finally, after summing over Iy, we obtain an expression for the capture cross
section associated with a transition between fine-structure levels,

o2r? 27d+1

QA — AgJy) = T

Z (v, va)|? 8(e — Ei) . (9.51)
1]

This result is seen to be equivalent to the expression given by eqgs. (7.1) and
(7.3), after taking into account the relationship between the electron-capture
cross section and collision strength given hy eq. (7.7).

We next consider an appropriate expression for the autoionization rate for
the sublevel transition denoted by d — f. As usual, this rate is related to
the capture collision strength for the inverse process via the appropriate form
of eq. (7.12). We emphasize here that eq. (9.49) applies to the capture of
directional electrons. It does not apply to the capture of randomly oriented
electrons because the impact electron need not be moving in the z direction.
Thus, eq. (9.49) can not be used to obtain autoionization rates for the case in
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which ejected electrons are randomly oriented. For capture or autoionization
involving randomly oriented electrons, a different treatment is required. We
first consider the cross section for the electron-capture transition f — d and
subsequently obtain an expression for the autoionization rate for the inverse
transition d — f.

Thus, we begin by considering an amplitude that is analogous to the expression
given in eq. (9.44), but for the specific sublevel transition A} J/M] — AgJaMy.
In this case, an expression that is analogous to eq. (9.7) for I’ and mj can not
be used because m; = 0 is not always true. Using the relation between the
T and R matrices given in eq. (4.4), and making a similar transformation on
the R matrix elements from the uncoupled representation, R(¢/; ag), to the
coupled representation, R(y',v4), where

o = ALJIMIKT'm! (9.52)

and

’}’; = A;']ékll/j,.]d,e’wd, (953)

we obtain the scattering amplitude

m’ 4?T3f2 N N N ~ 1 1 ;o
B™ = —3 i exp(i0,) Yy (K )C(Uymymy; j'm’)

2
l’,m; gfm!

xC(Jj" M{im'; ;MR va)- (9.54)

For capture of randomly oriented electrons, one must average over the electron
o1

direction k. Specifically, the amplitude above should be substituted in the

first expression for the cross section that appears in eq. (9.49) and then an

- ! . . - .
integration over k combined with a division by 4 is performed. The resulting
expression for the capture cross section is

1 ‘ -
Q™ (MM, = DadaM) = = 3 / 1B™2dk' 5(¢ — Eq) . (9.55)
Using the orthonormality relation
1 « ~t ~t ~7
= ] Vi (R )Yy (B) Q&' = 8,00 Gy /4. (9.56)

and performing the summations over m; and [}, we have
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QP (AT M| — Ay JyMy)

— (2;; Y expli(dy — )]

l',m;, 3t m!

‘

'
1Ms

ipam
xC(Usmjm; i'm!)C (U tmjml; jim))
xC(J{5' M{m's JuMy)C(J 71 M{m; JaMy)

XR(Y', va) R(m, 72)0(€ — Efa) , (9.57)

where ] differs from ' only in that jj replaces j' and similarly «] differs
from " only in that j| replaces j'. Next, the summations over mj and m/, are
performed using

> CUgmpml; j'mYC U smyml; jim]) = 651 St

I ]
my,m;

Then the summations over mj and jj are performed to obtain the final result

QP(ALIIM] — Ay JyM,)

2 ) .
:(_k;? SOOI MM JaMy)? |R(Y . va)|?6(€ — Epq) . (9.58)
l!‘)ji,m‘l

Using eq. (7.7), with the label ¢ replaced by f, € and k replaced by the corre-
sponding primed values, and noting that g; = 1 for any magnetic sublevel, we
obtain an expression for the collision strength quantity QeeP associated with
the capture of randomly oriented electrons that can be written as

QP (ALTIM, — Ay JyMy)
=21 > C(J7'Mm; JiMy)* |R(Y, va)|*- (9.59)

. m!

As a check on eq. (9.59), one can perform additional summations over M, and
M to see if the correct expression for the fine-structure expression is obtained.
In this case, the sums over m’ and M| can be used to eliminate the square of
the Clebsch-Gordan coefficient, and then the sum over M, yields a factor of
(2J4 + 1). The resulting expression,

QPN — Agdy) = > QEP(ALIM] — AgJaMy)

M! My

=2m(2Ja+1) > [R(Y' va)l* (9.60)

) I’?j/

applies to the collision strength for transitions between fine-structure levels,
which is identical in form to eq. (7.3).
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In order to obtain the autoionization rate for the transition d — f, eq. (7.12)
can be applied to the present case of transitions between magnetic sublevels.
Using eq. (9.59), which describes the inverse process of electron capture, and
also recalling that the statistical weight g; = 1 for the case of magnetic sub-
levels, we obtain an expression for the autoionization rate according to

I f ¢ 2 7 f 7 7 ] » !
A AgJyMy — ALJIM]) = — Z C(J.3' M{m'; JaM? R, va) 2. (9.61)

gt m!

The above discussion provides all of the pieces that are necessary to obtain
the resonance contribution to the total cross section for excitation between
magnetic sublevels. The process can again be symbolically represented by
eq. (7.27), except that all labels representing fine-structure levels in that ex-
pression now denote magnetic sublevels. The total cross section, in analogy to
eq. (7.28) for the collision strength, can be written as

7= Qi + QiF, (9.62)

where Q);; is the usual background (or direct) excitation cross section, given
by eq. (9.15) for an unpolarized beam, or by eq. (9.14) for a longitudinally
polarized electron beam, and the resonance contribution can be written as

T =Y Q" By (9.63)
d

The branching ratio is given by (see eq. (7.30))

By = =T -, (9.64)
Z Al + Z Ak
m %

where the denominator takes into account the possibility that, instead of au-
tolonizing to the final magnetic sublevel f of the transition under considera-
tion, the doubly excited sublevel d autoionizes or radiatively decays to some
other sublevel. In applying eq. (9.64) to eq. (9.63), the autoionization rates
A% and A, are given by the appropriate form of eq. (9.61). However, the
summation of the A2 values in the denominator of eq. (9.64) can be further
simplified. Since the summation of A3 implicitly includes a summation over
M, that summation plus the explicit summation over the ejected-electron
quantum number m’ can be used to eliminate the Clebsch-Gordan coeflicient
that appears in eq. (9.61). Therefore, in this case, one can replace the sum
of magnetic sublevel autoionization rates with the corresponding sum of fine-
structure autoionization rates because
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1
2J;4+1
2 ‘
= }'i Z I‘R(ﬁf vﬁ}’d)12

Ly
= 3" AMAgJaMy — AT M) (9.65)
M

A Agdy — ALVTY)

1

S AN AT My — ALTMY)
Mg, M|

Here, the second line is just the standard fine-structure expression of the form
given in eq. (7.13), while the connection between the second and third lines
becomes evident after summing eq. (9.61) over M, to eliminate the Clebsch-
Gordan coefficient, as mentioned above. Thus, we have shown that the extra
summation over My in the formal definition on the right-hand side of eq. (9.65)
simply produces a factor of (2J;+ 1), which cancels the (2.J;+1)7! factor. (A
corollary of this relationship is that the values of A* on the right-hand side
of the equation must be independent of the quantum number AMj.) Similar
results apply for the summation of the A}, values in eq. (9.64), and so only
radiative decay rates between fine-structure levels need to be considered in
this particular application.

In ref. [143], some calculated results were presented in graphical form for the
total collision strengths, which included both the background and resonance
contributions, for He-like and Be-like oxygen and iron. In making those plots,
the d(e — E;q) factor in eq. (9.49) was replaced with a Lorentz profile, as in
eq. (7.31). This work dealt with spin-change transitions for which the res-
onance contributions are generally more important. Here, we provide total
collision strengths involving transitions from the ground level of He-like iron
in figure 7, which is a reproduction of fig. 5 from ref. [143]. In this case, res-
onance contributions from the doubly excited levels arising from the 1s3/30
configurations are included for transitions between the magnetic sublevels as-
sociated with the two transitions

1 ISQ — 2381 or (182)0 - (1528)1

and

1185 —2°P; or (1s%) — (1s2p*); .

As another numerical example, we provide in table 32 a comparison of our
RDW excitation rate coefficients with the semi-relativistic results computed
by Inal and Dubau [141] for certain transitions from the ground level of He-like
iron. As mentioned in section 4.14, the expression used to compute the rate
coefficient for a general transition denoted by ¢ — f has the general form
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Fig. 7. Total RDW collision strengths as a function of impact energy for transitions
between the magnetic sublevels of the 1Sy — 23S or (1s?)g — (1s2s); transition
(the left panels) and the 11Sy — 23P; or (1s?)y — (1s2p*); transition (the right
panels), in He-like iron. Only the resonances associated with the doubly excited
levels involving the 1s3/3l' configurations are included for the impact-electron energy
range considered.

In order to obtain RDW results similar to those provided in ref. [141], we aver-
aged the collision strength for both the background (or direct) and resonance
contributions over the resonance region, assuming a free-electron energy dis-
tribution that was uniform over the 18313l resonance region, and zero outside
of this region. For Z < 26 the use of non-relativistic relations between the
quantities v, k and € is a good approximation. Making this choice, in combi-
nation with inserting numerical values for the physical constants and using a
mean value for the electron energy in the narrow resonance region, vields a
practical expression for the rate coefficient for these transitions of interest in
He-like iron. The result is
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Table 32

Comparison of direct and resonance contributions, (g, and Ches, respectively, to
the rate coefficients (in units of 10~ **cm?/s) for excitation from the ground level
to magnetic sublevels of the n = 2 levels in He-like iron. Superseripts RDW and 1D
indicate present RDW results and semi-relativistic results from ref. [141], respec-
tively. The free-electron energy distribution was assumed to be constant over the
18313l' resonance region, and zero otherwise.

118y — 23P, 118y - 2P, 118y —23P, 115, — 238,
M/ =1M=2 M=0M=1 M=0M=1 M=0M=1
CRDW 92922 0.707 127 3.19 .72 241 0.985 0.985
c 231  0.726 12,7 3.21 170 2.39 0.959  0.959
CRDW 951 1.107 271  1.67 215  1.94 2.888  2.905
cb 226 0.987 282 142 1.77  1.86 2.851 2.864
8.493710 .
Cip = T<QU> cm®/s | (9.67)
3
where
17
() = / iy de. (9.68)
€5 — € b

Here, €, — €, covers the 183/3!' resonance region, and g; = 1 for the He-like
ground level currently under consideration.

The data listed in table 32 provide a comparison of our results (labeled RDW)
with those from table IV of ref. [141], computed by Inal and Dubau (labeled
ID). Results are presented for both the direct contribution, Cy;,, and the 1s313!’
resonance contribution, C., to the rate coefficient for excitation from the
1s? 1Sy ground level of He-like iron to various magnetic sublevels. One sees that
the agreement is generally good for the direct contribution, but is somewhat
worse for the resonance contribution. The largest discrepancies are 21% and
18% for excitation to the M, = 0 sublevel of the 2P, level and excitation to
the M] =1 sublevel of the 2P level, respectively.

9.2 Transitions between magnetic sublevels due to electron-impact tonization

In this section, the fully relativistic treatment of electron-impact excitation
that was described in section 9.1 is extended to the case of ionization. loniza-
tion between specific magnetic sublevels by impact with either a longitudinally
polarized or unpolarized electron beam, as described in ref. [144], is considered.
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We consider an ionizing transition from the magnetic sublevel M, of the level
A.J; to the magnetic sublevel M, of the level A}J;. By analogy with the
scattering amplitude for excitation displayed in eq. (9.1), we can define an

ionization scattering amplitude BJ/7 . for the scattering of an electron with

spin magnetic quantum number m,, wave number k and direction k into
direction k with wave number A’ and final spin magnetic quantum number
m}. This scattering is accompanied by a change in the magnetic sublevel of
the target ion from A, J, M, to A}J/M,; with one less bound electron, which
has been ejected into direction k" with wave number A" and spin magnetic

quantum number m. The scattering amplitude for this process can be written
as

27T1/2 1
::'Sfxz” - k Z il-l B er[ (6 + 5%’ + 54%"”

i,mi .j,m,

i, 'ml glm!

1 1!&;'( J/I mf

~ ~ 1 ~ 1
XY, (R) Yy (B )Yy ()
xC’(llmmz‘,;jm)C(l’lmlms,; m')
xC(U"smim?; 7'm"\T (o, &), (9.69)

where the quantity

ot

Yy (K yi " exp(i8) C(I"5mymy; j"m”)
pertains to the ejected electron, and the extra factor of 7~1/? relative to
eq. (9.1) is due to the different normalization of the extra (ejected) free elec-
tron (see eq. (5.4) for the continuum normalization), which has replaced the
final active bound electron. The notation for the uncoupled states o and « is
given by

a= AJMkljm, o = AT ME;"m"Kj'm’, (9.70)
which is very similar to eq. (9.2) for excitation.
The integrated cross section for ionization from one specific sublevel to a final

specific sublevel by directional electrons with spin magnetic quantum number
mg can be obtained from the scattering amplitude according to the relation

Q"LS(AtJtMt_ A;’J{’]\”f” _ Z / dt‘”/dk /dk [ m’m" 2’ (9.71)

m ST
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assuming one is not interested in the values of m/, and m] associated with the
scattered and ejected electrons, respectively. In the above expression, ¢ and €’
are the kinetic energies of the incident and ejected electrons, respectively, and
I is the ionization energy. In evaluating eq. (9.71), we again choose k to be in
the z direction (i.e. longitudinal polarization), as in subsection 9.1.1, so that
eqs. (9.7)-(9.9) apply. Expressions similar to eqgs. (9.8) and (9.9) also apply
to the analogous double-primed quantities that describe the ejected electron.
Then, using eq. (4.4) and making similar manipulations as in section 9.1, we
obtain an expression for the ionization cross section in terms of the reactance
matrix elements according to

QM (AT M, — AV J M)

4 .

=75 2 I+ 1)L+ 1] expli(ds — b))
Ligadidt

l!ll :;ui:;u

xC(130mg; jm)C (1150my; jim)
{e-I}/2
X / de" R(a, o')R(en, o) , (9.72)
0
where a; differs from « in that I, and j, replace [ and j, respectively, and m =
m, due to one of the standard properties of the Clebsch-Gordan coefficient.

The matrix elements in the uncoupled representation in eq. (9.72) can be
written in terms of the matrix elements in the fully coupled representation by
performing a transformation analogous to eq. (9.12), i.e.

Rla, )= > C(JgMm; IM)C(J,5' Mym'; JM)
JM, I M}
xC(J 3" M'm"; TM)R(v, ), (9.73)

where v and 4 are given by

v = Akl JM and = ALJIKT T TR IM . (9.74)

One could express the cross section in eq. (9.72) in terms of matrix ele-
ments in the fully coupled representation by applying the appropriate forms of
eq. (9.73). However, as noted in subsection 9.1.1, it is computationally more ef-
ficient to calculate reactance matrix elements in the uncoupled representation,
using eq. (9.73) in the present case, and then using eq. (9.72) to calculate the
cross section for ionization by impact with a beam of longitudinally polarized
electrons. In fact, the efficiency is greater for the present case of ionization
because there are many more matrix elements to evaluate and many more
summations to perform than in the case of excitation.
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In most applications, the target ions are initially randomly oriented so the
cross section of interest is given by averaging eq. (9.72) over initial target-ion
sublevels. The corresponding cross section is given by

Qﬂls (A&Jt o A;’JL"A' Ll/) —

1 ,
YA Z Q" (AW My — Afjg'ﬂ/ft”) . (9.75)
My

If the ionization is also due to impact with unpolarized directional electrons,
then the cross section of interest is

1 e i 74 m
> QAWM — AYJM). (9.76)

AJ'— //‘//A/,!f —
QAL — AV I M) 2(2J, + 1), 55,

Finally, if one is not interested in a particular, final magnetic sublevel M),
then the ionization cross section for transitions between fine-structure levels
is obtained by further summing eq. (9.76) over the final ion sublevels M)’ and
is given by

1
oy My A Jﬁf - AII']II W” . 977
T T ms,g{;M;I Q" (A J M, Py M) ( )

QA — ALJ) =
It is easily verified that, by applying eq. (9.73) to eq. (9.72) and using the
properties of the Clebsch-Gordan coefficients, eq. (9.77) can be expressed in
the form

QA — AT
(e~1)/2
- (27 + 1) / de’ |R(v, /)2, (9.78
~ P S0 T [ e RG A 01

NI
;/’;//'ju 0

One sees that eq. (9.78) agrees with the expression for the ionization cross sec-
tion associated with transitions between fine-structure levels given by eq. (5.5),
which provides an important check on the fundamental expression displayed
in eq. (9.72).

As with the excitation cross sections described in the previous section, ion-
ization cross sections computed with the RDW formalism described in this
section have been used for a variety of applications. For example, Inal et al.
have applied cross sections for ionization to specific magnetic sublevels, which
were computed with the procedures described herein, to study the effect of
ionization on the degree of polarization for various spectral lines from different
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ions. Examples of this type include predictions of the degree of linear polariza-
tion of Ne-like Se lines [144] and a study of the effect of inner-shell ionization
on the circular polarization of the Fe?!* (1s2s); — 1s? line produced by col-
lisions with a longitudinally polarized electron beam [145]. The latter study
also provides numerical examples for which the generalized Breit interaction
was included when computing excitation cross sections for magnetic sublevel
transitions, as previously discussed in subsection 9.1.5. The reader is referred
to the respective publications for further details.

10 Concluding remarks

A complete review has been provided of the fully relativistic methods and pro-
cedures that we have developed and published over the past two decades. The
ultimate goal of this work has been to provide high quality atomic physics
data for applications in plasma modeling. Many of the methods described
above have been implemented within the relativistic capabilities of the Los
Alamos suite of atomic physics codes and applied to a variety of plasma mod-
eling applications (e.g. refs. [102] and [103]). We hope that this review will
offer some useful assistance to future research efforts in fundamental atomic
physics, astrophysics, fusion energy, the modeling of high-temperature plasmas
and other related fields.
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