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TALL STRUCTURE LIGHTNING INDUCED BY SPRITE-PRODUCING DISCHARGES

M. A. Stanley and M. J. Heavner
Space and Atmospheric Sciences, Los Alamos National Laboratory,

Los Alamos, New Mexico, U .S.A .

ABSTRACT: The large and rapid charge transfer of some +CGs can initiate upward positive
leaders from tall structures while simultaneously initiating downward positive streamers below
the base of the ionosphere in the form of sprites . Structures with >400 m height have a sig-

nificantly enhanced probability of launching upward positive leaders, the presence of which is
readily detected later if a dart leader propagates down the channel to ground, generating a -CG
return stroke. Such tall structures can be repeatedly struck if, as often happens, sprite-producing
+CGs repeatedly occur .

INTRODUCTION

Sprites are luminous electrical discharges which initiate near the base of the nighttime iono-

sphere at n-,75 km altitude [Stanley et al ., 1999; McHarg et al., 2002] and propagate primarily
downward under the influence of a strong quasi-electrostatic electric field from a lightning dis-

charge below 8 km altitude [Stanley, 2000] . The lightning discharges which produce sprites
are primarily positive cloud-to-grounds (+CGs) with unusually large charge moment changes
(charge transfer times height) [Boccippio et al ., 1995; Reising et al ., 1996; Cumrraer and Inan,

1997; Bell et al., 1998; Reising et al., 1999; Huang et al., 1999; Cummer and Stanley, 1999 ;
Stanley et al., 2000 ; Cummer and FulIekrug, 2001; Hu et al., 2002] . The charge moment change
associated with sprite initiation has been observed to be as low as 120 C•km, but is more typi-
ca11y >600 C•km [Hu et al., 2002] ; N30 times more than the -22 C•km of a typical -CG stroke

[Brook et al., 1962] . Analysis of the charge structure of sprite-producing flashes [Stanley, 2000]
and parent storms [Williams, 1998 ; Marshall et al ., 2001] indicates that charge transfer, not
height, is entirely responsible for the larger charge moments relative to average -CGs .

It has been known for over six decades that upward lightning can initiate from tall structures
[McEachron, 1939] . This phenomena can be understood as resulting from the combined effects

of electric field intensification at the top of a tall structure along with an applied field which
changes faster than what the shielding corona layer can compensate for [Brook et al., 1961 ;
Aleksandrov et al ., 2001] . One serious consequence of the large and rapid charge transfers of

sprite-producing discharges is that they may readily spawn upward leaders from tall structures .

In this paper, we will show a couple of sprite-producing discharges which apparently produced
upward lightning from the top of a tall tower . We will also show statistical data indicating that
there are several other probable examples of upward lightning following +CG occurrence.

EXPERIMENT

On June 22, 1997, several sprites were observed above a small mesoscale convective syste m
(MCS) near the Kennedy Space Center (KSC), Florida in association with horizontally exten-
sive +CG discharges [Stanley, 2000] . CG locations were obtained from the National Lightning
Detection Network [Cumrraaras et al., 1998] while the 3-dimensional discharge development was
mapped with the KSC Lightning Detection and Ranging (LDAR) instrument [Boccippio et al.,
2001] . The CG locations will be compared with that of tall structures .

Sensors of the Los Alamos Sferic Array (LASA) [Smith et al ., 2002] have been operational in
Florida since early 1999. Recorded LASA sferic waveforms can be post-processed to determine
type, polarity, and source location . The location accuracy is <2 km [Smith et al., 2002] in
central Florida . Several months of LASA -CG locations over central Florida will be compared
with that of tall structures.
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Figure 1 : a) The 1 :47:52 UT sprite-producing discharge with -CG stroke ( A), +CG stroke (+),
tower (X), and LDAR source (o) locations indicated . One of the -CG locations coincides with

that of a 457 m tower . b) The 1 :51:02 UT sprite-producer . All three of the -CG stroke locations
coincide with the same tower as before .

SPRITE-PRODUCING DISCHARGES ON JUNE 22, 199 7

At KSC on June 22, 1997, sprites were observed at close range (<100 km) above a com-
pact MCS near Orlando, Florida. A detailed analysis of the MCS, discharges, and sprites was
presented by Stanley [2000] . Here, we focus on the CGs associated with a couple of the sprite-

producing discharges .

Figure la shows the horizontal extent of the MCS's second sprite-producing discharge at
1:47:52 UT overlaid on CG and tower locations . The axis units correspond to cartesian coordi-
nates in kilometers relative to the observation site at KSC . The flash originated from a convective
storm core in the lower right, produced a 32 kA -CC at 1:47:51 .476 UT, and then propagated
into the stratiform region to the north-northwest (up and a bit left) . It is also possible that
the -CG originated from a separate flash immediately prior to that which propagated into the

stratiform region . A +CG was indicated less than a second later near this -CG, though the weak
10 kA peak current suggests that it might have actually been an intracloud [Cummins et at.,
1998]. An 84 kA +CG was produced at 1 :47:52.711 UT and was coincident with the sudden
appearance of sprites above the discharge . Unfortunately, no charge moment estimate could be
obtained for this +CG due to the lack of static electric field data .

At 1 :47:53.750 UT, a 49 kA -CG was indicated by the NLDN below the horizontally exten-
sive discharge in the stratiform region of the MCS while the discharge was still active . Curiously,
this was the first -CG of the MCS to occur in the stratiform region instead of the convective
region. What is particularly interesting about the -CG location is that it coincides with a 457 m
tall tower .

The next sprite-producing discharge at 1 :51 :02 UT (Figure lb) progressed in similar fash-
ion from a convective core into the stratiform region to the northwest. A 61 kA +CG at
1:51 :02.762 UT was coincident with the appearance of sprites in video. Electric field data ob-
tained at KSC indicated that the +CG had a charge moment change of •390 C•km in 4 ms . This
+CG was followed >300 ms later by multiple -CG strokes at 3.068 s (38 kA), 3.111 s (34 kA),
and 3.196 s (22 kA) . All of these -CG stroke locations coincided with the same 457 m tower as
before . It is likely that the sudden and rapid removal of charge by the +CG was sufficient to
launch an upwaxd positive leader from the tower and that this led to the lowering of negative

charge in the form of subsequent return strokes . This inferred sequence of development is very
similar to that documented for ordinary triggered lightning [Wang et at., 1999] .
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Figure 2 : a) The locations of 100-200 m(•), 200-400 m (o), and >400 m(O) tall structures in
Florida. Only CGs within the box region were analyzed . b) The percentages of events which
were located within 2 km of a tall structure within a height range . A>.3-fold enhancement is
clearly evident for post +CG -CGs near >400 m tall structures

LASA DATA FOR SUMMER OF 2001 AND 2002

A square region over central Florida, 27-29° N, 82 .3-81 .0° W, was chosen for this study.
The peak lightning months of June-August were analyzed for the years 2001 and 2002 . A total
of 240,037 -CGs and 4,007 +CGs were identified by LASA within this region and time period .
The +CGs were then used to locate possible -CGs which were spawned in a similar fashion to
those described in the previous section . A total of 405 distinct -CGs followed within 1 second
of a +CG and were within 40 km of the +CG.

Figure 2a shows the distribution of 100-200 m, 200-400 m, and >400 m tall structures in
Florida and the region of interest . A random distribution of 50,000 points was generated within
the region and the percentage of these points within 2 km (the LASA CG location error) of each
of the three structure height ranges was calculated . These percentages were also calculated for
all -CGs as well as the -CGs following +CGs . The results are shown in Figure 2b .

The percentage of -CGs correlated with tower positions is slightly higher than for a random
point distribution for all structure heights . The significance of this is not clear though, since it
might be due to a variation in the -CG density caused by a land-sea breeze convergence more
than due to a logical enhanced strike probability on ta11 structures . What is clear from Figure 2b
is that the -CGs which follow +CGs do not show a statistically enhanced probability of striking
structures less than 400 m tall, but do show a more than three fold enhanced probability of
striking >400 m tall structures . We speculate that this indicates a subset of +CGs with large
charge moments are spawning upward lightning from the tallest towers .

DISCUSSIO N

We have used the occurrence of -CGs to locate probable upward lightning events associated
with tall structures . However, upward positive leaders can be launched from tall structures
without producing -CGs in much the same way as triggered lightning has been documented . to
often produce only a continuing current without subsequent return strokes . Thus, it is likely
that the occurrence of upward lightning is more common than indicated in this study .

While it is we ll known that t all structures can more readily attract lightning, a particularly
insidious quality of large charge moment +CGs is that they draw charge from a large horizontal
region and often repeat . Thus, a tall tower can be repeatedly struck under these conditions, as
was shown in Figure 1 .

Florida tower locations

100-200 m 200-400m >400 m
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