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The deformation of crystal-bar zirconium was investigated as a function of strain and
strain rate through electron back-scattered diffraction (EBSD) characterization. The
resultant data provided spatially resolved information on microstructure and texture
evolution, individual twin system activity, and subsequent strain partitioning between
twinned volume and parent grains. A range of deformation conditions was represented
through quasi-static compression, 4-point beam bend tests at room and cryogenic
temperature, and Taylor cylinder impact experiments. Effects from the interplay between
slip'and twinning deformation modes on anisotropic plasticity are considered in order to
address the apparent trend toward isotropy at high rates. The role of various length scales
on deformation behavior will be considered, along with the implications of these length
scales on the assumptions typically invoked for plasticity modeling.
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Introduction

¢ Deformation modes at room and cryogenic temps.
— Prismatic slip {1070}<T1270>
— {1012}<1011> Tensile (// c-axis) twin
— {1122}<1123> Compressive twin
— {1121}<1126> Tensile twin

o Zr good hep candidate for study == ductility combined
with manageable number of slip and twin systems.

o Texture evolution and resultant Plastic anisotropy affected
by twin reorientation.

¢ EBSD provides mesoscale perspective with twin system
characterization.

¢ Previous work by Reed-Hill, Tenckhoff, Salinas Rodriguez.
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Zr Samples as (&)

* Quasi-static (1023 s
- Tension
-~ Wire-Drawn
- Compression
» Hopkinson Bar (2-3 x 10° s7)
— Tension
- Compression
+ Taylor Cylinder Impact (~ 104 s°1)
- 243 m/s
- 101 m/s

— Goal: Explain anomalous plastic response in Taylor
cylinder samples.
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Initial Texture

» Clock-rolled and recrystallized crystal-bar Zr plate
e In-plane samples
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Profiles of r-0 Plane in Compression as f(g)

Quasi-static 298K

Through-thickness
=1.59

In-planc
r=112

Hopkinson Bar
B £~3x103 S'

298K Through-thickness
r=1.05

298K In-plane
r=192

Taylor Cylinder

03~

=0 Quadratic Lit of VISC Average
=L Compression Testy
=0 Laylor Tesls
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In-Plane Tension at QS and HB Rates
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Quasi-static, 9% Compression

B (10123<1001> T
I (1122)<1123>C
B (1131)<1126> T
prer—y=—r Beurtory bick: 187 S
40.00 pm = 100 stapa  (PF {010] 40.00 jom = 100 wlepy 1Q0..163.6
= TN = 1,308
340
2660 . . . . . .
2005 * Very little twin fraction, little reorientation

* Slip accommodates majority of deformation
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Quasi-static, 13% Compression

Twin Bdy Map
BEy Twin Bdy Key
S (1012}<10T1>T
I (1122<1BsC

T {1171)<1136> T

mmmmisigna | Bouniay ks 15"

ADDOYM < IO wtapa  1PF [rm] R

Crystal Direction Map
wit CA

* Although favorably oriented for slip,
fine tensile twins prevalent.
* Modest reorientation

o i

m—— Boundary loveh |
4900¢m=T0etepa IPF {100

ND = Radial Dir.
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Taylor Factor Map

oy
4000 pm e 70stupa 10K (01

i

LN R
49.00 pra = 70 sleps  TF 17.4857.,.44.3183

Low

) High
(Soft) -

(Hard)
Taylor Factor Scale

» Taylor factor map contrasts regions by relative resistance to yield by prismatic slip,
as a function of orientation and strain path.
o Initial tensile twins reoricnt into less favorable deformation by slip.
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Tensile, Quasi-static, 298K

1970

m.xm 1Q0..2048

HE (1012)<10T1>T
0001 210 _{1[22}<1153>C
B (1021<t126> T

e Boundary levels:
.00 pm = G0 stops JDF [001)

« <10T0> // tensile axis texture
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« Little twin activity, no compressive twins

e
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Tensile, Quasi-static, 76K

e 46.60m = 70 staps 1QD..244.9

[BEEM (1072)<10T1>T
. BRI (1122}<1173>C
tont ¥TTo _{]121}<112_6>T
fen= 4,731
2 -
P e « <1010> // tensile axis texture

o {1122} compressive twins active
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Wire-drawn, ¢ = 21%, 40%
£e=21% £ =40%

——
36004+ @eups 100..3883

r
0e0d

» Curly microstructure analogous to bce

* Deformation intensified near boundaries
to accommodate compatibility

« Insignificant twinning

ND = Axial
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Taylor Cylinder r-values

* Dramatic difference in anisotropy in r-0 plane
with axial position for 101 m/s sample.

L

. s 243 /s shiot ]

3’5~ ® 101 m/s shot 1

3 L .

2.5 |- m

10 2:— -
i ——

1.5 |- ]

3

1 p

0.5 ]

[ YL SIS SPRESTYSY EPERUOYON RPN EETIPR I R R NS,

0 0.08 0.1 0.15 0.2 0.25 0.3 035
101 m/s 243 m/s Log Strain (Minor)
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243 mls, Near Tail

High

Low e

m‘- 100 laps (00,2054
KRS (1072)<10T1> T (Soft) (Hard)
iR (1152)<1123>C Taylor Factor Scale

gl 4 “
HREE (1171)<1136> T

apu)

1090

« Significant reorientation has extended to tail
end of cylinder.
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243 mils, 5 mm from tail

Boundary fevels: 15
IPF [010}

[ e e
35,00 jim * 70 uteps

———
35.00 ¢im = 70 stops 01 65.8,..300.6
1070

High

) (1072)<10T1> T (Hard)
ﬁ,, _{,; W (1122}<1123>C Taylor Factor Scale
i Bl (1120)<1126> T

» Stable orientation, <0001> ~20° from CA,
nearly established only 5 mm from tail.

» Subsequent deformation occurs in reoriented
structure.
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243 mis, z = 5 mm

Cram Boundary lavela: 18°
15.00 uin = 60 sleps

Bourdar RO = g0 steps 00,4062 Low High
e - (Soft) ' (Hard)
E= 8?%%%2?;; E Taylor Factor Scale

B (1121)<1126> T
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Micrographs from 101 m/s Zr Taylor

» Twin activily cvident at very small strains
* Monotonic increase in twin activity
with axial position

20 pm
Los Alamog ———————

YMS_tp_00

Micrographs from 101 m/s Zr Taylor

¢ Difficult to resolve twins at larger strains
» Some grains appear to be devoid of twins

20 pm
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101 m/s, z = 36 mm

NS

" )
Eoundary levals: 16° 40,00 jm = BOatops 110..331.4

AR
40,00 um =80 stops IPF (010)

ot g (1012)<10T1>T Low High
p“ i (1122} <1 12:3> (.3 (Soft) (Hard)
- ) R (1121}<1126>1 Taylor Factor Scale

« Twins present at strains on order of 1%.
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101 mls, z = 35 mm

LI ey
Boundary tavels:

-
00 pm = S0slepo PR 010 26.60 ym = 50 eteps  1Q 48,6...417.6 .
o il (1012} <1011>T Low High
EREE (1122)<1123>C (Soft) (Hard)
ESEW (11213<1136- T Taylor Factor Scale

000

g Inax= 0.273
(]

* Twinning progresses rapidly by ~ 2% strain.
* {1012} tensile twin dominant,

L.os Alamos
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Deformation Twin Strain Contribution

K2, K2

AN/

Plane of Shear

Twin Shear = Shear displacement = y =2 cot6
7 Twin width

g::V-}/.lu

V = Volume fraction twinned
p = Schmid factor

« Twinning contribution to deformation relatively smail compared to slip
» Ilowever, may be important at small strains
Need information on volume fraction twinned

e.g. [f V ="50%and y averages 0.4 {or the activated twins, twinning can
completely account for following e:

System ¥ &%
{1012}<1011>7T 0.167 33
{11223<1123>C 0.225 4.5
{1121}<1126>T 0.63 12.6

Los Alamos
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101 m/s, z =22 mm

D g
45.00 yr = 45 sleps 10 0..420.8

) . i Low m High
omont o W (i
oy (1151 1<l126> T Taylor Factor Scale
S Aaxs 5661
L B « At ~7% strain, tensile twins begin to noticeably
o B affect texture.
B « Texture evolution at quasi-static rates and
"B comparable strains much less due to less twinning,
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Reorientation from {1012} Tensile Twins

* 85° reorientation of basal pole
* Subsequent growth and deformation produce

massive globular twinned regions, accelerated
texture evolution,

« {1012} shows large tolerance for incoherent growth.
N RS P
2153

ND = Axial
RD = Major Radial Axis
TD = Minor Radial Axis

Los Alamos

TMS, 39p.00

Reorientation from {1012} Tensile Twins

0001
. 7 ~.
S y N\ Vs AN
/ e)\\ S N / \
1 3 i
( o (,, ¥ K_lip st \/m
\ J vord e
\ N N
TRG R5
NI = Axial
R = Major Radial Axis
TI> = Minor Radial Axis
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101 m/s, z = 14 mm

e N R e 100, 3001
o BHEE (1012)<10T1> T
Pt ittt
(1323 2T

g M= 4740

Low sl High
(Soft) (Hard)
Taylor Factor Scale
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Bl {1012} <10T1> T
g (1122)<1133>C
T (1131} <1765 T

g max= 4432
il 0.450
§ 2600
2108
164

Taylor Factor Scale

L.os Alamos

TME Sp00

13



101 mls, z = 8 mm

2000 m S0 eleps 1003503

g (1012)<10T1>T Low High
B (1122)<1123>C (Soft) (Hard)
R (1121)<1126>T Taylor Factor Scale

» Compressive twin activity begins, reorients
grains to more favorable slip position.

Los Alamos —
101 m/s Taylor, Transition Region
4 mm from 2 mm from

Impact interface Impact interface
r=21 r=15

Low-r Transition Region

i C——— oy
Boundary levels: 18° BO.00 jxn = 80 stope  (PF (001]

Bourdary kvels: 16° ——————;
70.00 pm = 70 steps  1AF [001]

IPF [001)

it g
0004m = B0eteme 10698..3768

. T —
TR A
70,00 g = 70steps 10 63.3..979.1 ¥0.00 im * 70 etopo 12 63.3..363.2
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101 m/s, z = 4 mm

wesesmanan  Uoind, e m—r) )
30.004n =8 uteps IPF (001] 36,00 pm = B0 ¢icps 1003132

131

| (1072}<10T1> T

B (1121}<1126> T
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TMS, $p_00
101 mls, 2 =4 mm
R
80.00 ym =80 steps  1Q2 61.6...379.1
IR
SN RERREN  Boundary levels: 15°
80.00 pm = 8O steps  1PF [001] rate

l_os Alamos e ep— | i——

M 8p 00
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101 mi/s, z = 2 mm

m‘.;‘ fl“:'{‘é';?{‘“" m:lapl 120..370.6 Low rg ngll
- N (Soft) L (Hard)
&R {1012} <10T1>T Taylor Factor Scale
BB (1122)<1123>C
o BERE (1171)<1126> T

* Some regions show massive {1012} twins,
* r-value transitioned to that observed throughout
243 m/s sample by this position.

Los Alamos

TS, tip_00

101 m/s, z=2 mm

[ o ]
60.00 pm = 60 steps  1Q1 63.7...359.8

EaMmansimeas  Boundary levels: 15°
60.00 ym = 60 steps  |PF [001)

B0t i

Los Alamog ==
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101 m/s, z =1 mm

bt E
3000 um =80 waps 7 000 m = Goslesa 00,3606

1eTp

- . Low High

‘ B} (10T2}<1001>T (Soft (Hod)
o e (1122)<1123>C Tavior Fastor Soul
o081 2170 m {1|il}<1 l§6> T aylor Factor Scale

« Texture now nearly fiber about axial direction.
« Results in little r-0 anisotropy.
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101 m/s, z =100 um

BEE] (1072)<10T1>T
BEREH (1122)<1123>C ‘
p A Wl (131)<1126> T Taylor Factor Scale
AT

» Slip deformation has obliterated misorientation
relationship for many twin boundaries.

Los Alamos

TS 5p_bo
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Basal Pole Distribution vs. Preferred Deformation Mode

101 m/s, z= 36 mm

{10T2) 1011>T
Ry (1122}<133>C
_ {121}<11d6>T
(USSR Prismatic slip

highly stresses system

Times Random

0.5

0 P e e —

Angle [degrees]

0 10 20 30 40 50 &0 70 80 90

Clhwin T Twin Pr Sl

T T'win

0° 45° 90”

Angle between CA and <0001>
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101 mis Basal Pole Distribution

4

5? “\ /\w

Z -‘— Z]l mm

Times Random

\m-\/'“\/

10 20 30 40 50 60 70 80 90
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n
\2

o
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T Twin
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Tees Random

== Random

Tim:

101 m/s Basal Pole Distribution

07 0 g s
—— 8 ] .
o / z =8 mm ) \ z =4 mm Y z =72 mm
B L
4 »""\ 1 \‘ 2
N \ o . .
: N, P N ] \\
o4 0T
0 10 20 30 40 S0 60 0 80 B0 0 10 20 30 4D S0 62 V0 B0 90 0 10 20 30 40 50 BO Y0 B0 90
10 C Twin T Twi Pr Sli
, s w05
o z=1mm )
N AY
=, .
? *\,,«w;__u__ T Twin
F e o o el el S S B SO St S SO atey S

0 10 20 30 40 5 6t 70 BO 90

Schmid factor of most
highiy stresses system

o

<>

0° 45° 90°
Angle between CA and <0001>
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243 m/s Basal Pole Distribution

af' v
B
L ; N

0 10 2 0 40 W 0 B0 80 e
a8 0 16 B W 4 s B 0 B0 80

Near Tail 5 mm in from tail

Times Randon
o

oW

10

10 AN
1Y jf\
| N

Temes Rangom
Times Random

\.
2 \/\

R T]

0 10 220 N 4 S0 o0 0 80 W 0 10 20 30 40 50 60 70O 60 80

7= 5 mm 7z =72 mm
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Conclusions

« Compressive strain and high rates lead to significant {1012} tensile
twin fraction, despite texture favorably oriented for slip.
- Rate sensitivity of prismatic slip increases CRSS relative to twin

- In tension, for same orientation, {1122} activation stress relatively higher,
resulting in less twin reorientation.

o Increased twinning results in accelerated weakening of r-0 plane
texture ===t~ loss subsequent plastic anisotropy than anticipated.

s Microstructural evolution masked in 243 m/s Taylor sample due to
large strain throughout cylinder.
» Twinning less active at quasi-static rates.
- Texture evolution primarily due to slip, much more gradual than twinning
- Greater plastic anisotropy from slip in sharply r-0 textured structure
- Anisotropy directionally sensitive at Hopkinson-bar rates
« Compressive twins in tension less active than tensile twins in comp.
 Less twin reorientation in tension leads to greater plastic anisotropy
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