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Abstract

This report illustrates a comparative study to analyze the physical differences between
numerical simulations obtained with both the conservation and incompressible forms of the
Navier-Stokes equations for natural convection flows in simple geometries. The purpose of
this study is to quantify how the incompressible flow assumption (which is based upon con-
stant density advection, divergence-free flow, and the Boussinesq gravitational body force ap-
proximation) differs from the conservation form (which only assumes that the fluid is a contin-
uum) when solving flows driven by gravity acting upon density variations resulting from local
temperature gradients. Driving this study is the common use of the incompressible flow as-
sumption in fluid flow simulations for nuclear power applications in natural convection flows
subjected to a high heat flux (large temperature differences). A series of simulations were
conducted on two-dimensional, differentially-heated rectangular geometries and modeled with
both hydrodynamic formulations. From these simulations, the selected characterization param-
eters of maximum Nusselt number, average Nusselt number, and normalized pressure reduc-
tion were calculated. Comparisons of these parameters were made with available benchmark
solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally,
we generated body force, velocity, and divergence of velocity distributions to provide a basis
for further analysis. The simulations and analysis were then extended to include helium at the
Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results
show that the consequences of incorporating the incompressible flow assumption in high heat
flux situations may lead to unrepresentative results. The results question the use of the incom-
pressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large
temperature variations are present. The results show that the use of the incompressible flow
assumption with the Boussinesq gravitational body force approximation should be restricted
to flows where the density change of a fluid particle along a pathline is negligible.
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1 Introduction

Natural convection is a highly relied upon cooling mechanism in nuclear reactor safety. Unlike
forced convection in reactors, where the fluid is driven by pump pressure gradients, the driving
force for natural convection is buoyancy. Natural convection heat transfer is defined as mass and
energy transport driven by buoyancy forces due to density variations acted upon by gravitation. The
density variations result from local temperature gradients generated by heat conduction and internal
energy advection. Typical natural convection problems result in flow speeds which are relatively
slow, i.e. low Mach number. This often encourages the use of the incompressible flow assumption
to reduce computational effort. However, the single fluid incompressible flow model assumes
constant density advection and, thus, one is forced to use an additional approximation for the
gravitational body force to simulate natural convection. Typically, the Boussinesq approximation is
employed to model the gravitational body force for incompressible natural convection simulations.
The Boussinesq approximation uses a first-order Taylor series to approximate the density variations
based upon the difference between local temperature and a reference temperature.

This first-order approximation brings into question the validity of the incompressible flow
assumption incorporating the Boussinesq approximation for simulating natural convection flows
in certain nuclear power applications where high heat fluxes (large temperature differences) are
present which can result in significant variations in density. This question of validity has not gone
unnoticed in the nuclear engineering community, given two recent workshops sponsored by CEA
and INRIA on the subject [2, 10]. The goal of these workshops was to generate benchmark refer-
ence solutions on non-Boussinesq natural convection flows by extending the well-known de Vahl
Davis [8, 7] differentially heated square cavity problem to the case of large temperature differences
(high heat flux) for which the Boussinesq approximation is no longer valid. The simulation domain
consisted of a two-dimensional square cavity containing air differentially heated along the vertical
walls with specified temperatures. Adiabatic boundary conditions were applied to both the lower
and upper horizontal walls. The various test cases were defined by Rayleigh number, constant
or variable transport coefficients, and non-dimensional temperature difference. The benchmark
solutions were based upon the conservation of mass and internal energy requirements. The cho-
sen benchmark solution parameters were integrated Nusselt numbers along both the “hot” and
“cold” walls (conservation of energy) and the ratio of maximum steady-state pressure to initial
pressure (conservation of mass and energy). Additionally, workshop contributers were also asked
to provide other non-benchmark solution parameters, such as maximum Nusselt number, to further
characterize simulation results. The results of these workshops are tabulated in Le Quere [19] and
Paillere [16].

In this study, we extended the goals of the CEA and INRIA workshops by further investigating
the effects of density variation upon natural convection heat transfer subjected to a large temper-
ature variation. The contributors to the workshops had already concluded that the incompressible
Boussinesq approximation was invalid for high heat flux (causing significant variations in fluid
density) boundary conditions. Here, we desire to quantify the differences by comparing “incom-
pressible” and “compressible” solutions for both small and large temperature difference boundary
conditions. The motivation for conducting these comparisons is due to the common use of the
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incompressible flow assumption in fluid flow simulations for nuclear power applications, includ-
ing the gas-cooled Next Generation Nuclear Plant (NGNP) reactor designs [12]. We expanded
our analysis over the workshops criteria to include volumetric body force distributions, centerline
velocity distributions, and rate of expansion.

Our approach is to perform simulations with two computational fluid dynamic (CFD) computer
codes with one solving the conservation form of the governing hydrodynamic equations and the
other solving the incompressible form. We first reproduced the results of the de Vahl Davis bench-
mark with a small temperature difference to demonstrate the equivalency of both formulations in
the incompressible limit. Next, we duplicated two of the high heat flux test cases for air from the
CEA and INRIA workshops. The two test cases chosen varied only in that one incorporated con-
stant transport coefficients and the other employed temperature dependent transport coefficients.
The reason for choosing these two test cases was twofold: First, the conservation CFD code we
used incorporated a conservation form of the total energy equation where the workshops only re-
quired a primitive variable form of the energy equation (that also neglected viscous heating), in
terms of thermal energy, which neglects kinetic energy contributions. This provided an opportu-
nity to validate our conservation CFD code against an accepted numerical benchmark experiment
for variable density, low-Mach number flow. And second, the two test cases provided an avenue to
quantify the differing results obtained with an incompressible formulation when compared to the
high heat flux benchmark solutions. Our simulations culminated by applying our analysis criteria
to helium natural convection at the global normal operating conditions of the Very High Temper-
ature gas-cooled Reactor (VHTR) [12], i.e. maximum coolant temperature difference and average
reactor pressure.

For this report, we first define the governing equations and parameter definitions needed to
conduct this comparative study. The problem description follows with defined test cases and com-
putational domain, including the computational meshes, boundary conditions, initial conditions,
and fluid properties. A detailed results section is next. This report ends with summary and conclu-
sions.

10



2 Governing Equations and Definitions

This section details the governing hydrodynamic models employed in this study. We define the
conservation and incompressible forms along with a strict mathematical definition of the incom-
pressible flow assumption. Definitions of various flow parameters pertinent to this study are also
included.

2.1 The Conservative Navier-Stokes Equations

The conservation form of the governing hydrodynamic equations are defined in terms of density,
momentum, and total energy per unit volume. They are commonly referred to as the conservative
form of the Navier-Stokes equations. Strictly speaking though, only the balance of momentum
equations are the Navier-Stokes equations. The conservation of mass and total energy equations,
along with an equation of state, determine closure quantities. Expressed in two-dimensional planar
space-time coordinates (x,y,7), these equations are

the conservation of mass equation,

9, dpu  dpv

Jdt dx  dy =0, )

the balance of momentum in the x-direction,

dpu J(pu?+P) dpuv ITy Iy
= ‘ 2
o T ax TTay Tax Tay TP 2)
the balance of momentum in the y-direction,
dpv  dpuv  I(pv*+P) Ity  OTy
o T ox T oy T ax oy P8 3)
and the conservation of total energy equation,
dpe, dpuh; Jdpvh
= » 4
at + ax + 8y p(ug +ng) ()

P d
+ " (UTex + VT — qx) + 8_y (UTuy +vTyy — qy) -
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In equations (1)-(4), the variable p is density, u and v are the components of the velocity vector i
in the x and radial y directions, respectively, P is the thermodynamic pressure, g, and g, are the
gravitational vector components, and ¢; is the specific total energy. The specific total enthalpy &,
is defined by

. p@t +P

hy &)

For a Newtonian fluid with the Stokes hypothesis, the viscous stress tensor components are defined
as

o) ou ov Ju Jv 2 Jdv  du
w2 -5) wonmn(Gg) mon=t(g5-5). ©

where U is the viscous transport coefficient, dynamic viscosity. The components of the heat flux
vector are defined as

aT oT
qx = —kg and g, = _ka_y ,

@)
where k is the thermal transport coefficient, or thermal conductivity, and 7 is the absolute temper-
ature.

The ideal gas equation of state is employed in this the study for it’s functional dependence on
density and energy,

P=(y—1)pe=pR.T, ®)

where e is the specific internal energy, 7 is the ratio of specific heats, and R, is the specific gas
constant per unit mass of the gas. As temperature 7 is not one of the solution variables of equa-
tions (1)-(4), the ideal gas equation of state is more commonly expressed in terms of the conserved
variables,

- | .
P:(y—1)<pe,—p”2pp”> and T:—<et—”7”>, 9)

Cy

where ¢, is the specific heat at constant volume.

With equations (1)-(4), no assumptions about the flow are made outside of the continuum
assumption. These equations govern all fluids, even those traditionally considered incompressible.
In the case of liquid metals, an enormous change in pressure results in relatively little change in
density, thus one of the motivations for the incompressible flow assumption. However, liquid metal
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density can vary significantly in the presence of high energy deposition. In the Advanced Burner
Test Reactor (ABTR), normal reactor operating conditions will see approximately an 11% variation
in density of the sodium coolant [?]. In the ABTR protected loss of flow (PLOF) scenario, the
resulting natural circulation flow field will see an estimated 7% variation in the sodium density [?].
In the VHTR, the helium density will vary by a factor of two across the flow field under normal
reactor operating conditions. In the VHTR loss of forced cooling (LOFC) scenario, it is unknown
at this time the approximate magnitude in the variation of helium density. However, however the
density variation in space and time will be relatively large and the incompressible flow assumption
with the Boussinesq approximation will most likely give unrepresentative results.

Also, equations (1)-(4) are commonly referred to in the literature as the “fully compressible”
equations. We prefer to use the term “conservative” or “conservation” equations. We feel that
“compressible” may be somewhat misleading as compressible infers large pressure gradients re-
sulting in density variation due to compression. Compressibility is not a requirement of the flow
but a natural outcome of the governing equations with a consistent set of initial and boundary
conditions and equation of state. Some researchers believe it is appropriate to employ the incom-
pressible flow assumption purely because of small pressure gradients in low Mach number flow
conditions. This study includes simulations with large density variations that are due to high en-
ergy deposition, not compression. In this context, referring to the equations as compressible is
a poor descriptive. Also, there are many forms of compressible equations. It is common to see
variable density simulations modeled with all, or partly, primitive variable equation sets [9, 15, 5].
In this context, the use of “compressible” to describe an equation seems to be arbitrary.

2.2 The Strict Definition of Incompressible Flow

Many analysts assume that the definition of incompressible flow is simply that density is constant
in the flow field. However, the definition is much more than that. Here, we will strictly define
the incompressible flow assumption in order to help quantify the physical differences with the
conservative form of the Navier-Stokes equations, equations (1)-(4).

Following Panton [17], the term “incompressible flow” is applied to any situation where changes
in the density of a particle along a pathline is negligible. A mathematical definition can be derived
from the conservation of mass equation. Recasting equation (1) in vector form,

Ip o
5, tVpi=0, (10)

and applying the chain rule to the spatial derivative, yields
d
8—€+ﬁ-Vp:—pV-ﬁ. (1)

The left-hand side of equation (11) represents density advection and is commonly known as the
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material derivative, a time derivative of density following a material particle along a pathline in
space and time. The material derivative is denoted by

Dp dp
D o TEVP, (12)

and, thus, equation (11) becomes

Dp .
o =PV (13)

The strict mathematical definition of “incompressible flow” is

1bp (14)

p Dt
Notice that equation (14) does not declare that density must be constant. In fact, variable density
flows, such as two immiscible fluids (like oil and water) are commonly modeled with the incom-
pressible flow assumption. The only requirement is that the density of each fluid particle remain
unchanged along a pathline. Therefore, the local pressure and energy have no influence upon the
density of the fluid particle. Thus, density in an incompressible flow is not described by an equa-
tion of state but only by the initial conditions. An interesting sidelight of equation (14) is that it
is not satisfied with p = 0, which of course would violate the continuum assumption. Satisfying
equation (14) requires that the flow field become “divergence free”, or

V.i=0. (15)

With equation (15), the mass conservation equation (10) reduces to a mathematical constraint
imposed upon the flow field for the incompressible flow assumption.

In reality, a divergence free flow field is non-physical, especially for non-isothermal flow fields.
As a material particle changes position in a flow field, the volume of the fluid particle may change
due to mechanical or thermodynamic influences. If the particle volume is changing (expanding
or contracting), it is doing work on the surrounding fluid. In Section 4.2, it will be shown that
V -ii is a significant quantity for variable density flows, even for low Mach numbers. We can
describe this quantity in physical terms by returning to the mass conservation equation (10). First,
define specific volume as the volume of a material particle occupied by a unit of mass, v = 1/p.
Substituting the definition for v into equation (10), yields

Veii=——— (16)

which gives a volumetric rate interpretation for V - ii and is known as the “rate of expansion” of a
fluid particle. This quantity is also known as the “dilatation” rate.
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For this study, it is also useful to analyze another consequence of the incompressible flow
assumption. The gravitational body force terms of the conservation form of the Navier-Stokes
equations (2) and (3) are reliant upon variations in density due to thermo-mechanical effects. Ig-
noring the mechanical (pressure) effects, the density dependence on internal energy (temperature)
must be approximated for incompressible flow. Referring to Burmeister [4], the definition of the
coefficient of thermal expansion is

1 /dp
= 1(®),

We can approximate the partial differential in equation (17) with a Taylor series expansion about
the reference density,

dp

_ 9*p (T —T,)
p=pot 21,4+ 22T

arz 2 4

where p, and T, are the reference density and temperature, respectively. Ignoring second-order and
higher terms, a first-order approximation for the density difference is obtained by incorporating
equation (17),

P —Po = —pof(T —T,) (19)
The approximate gravitational body force is then

P8~ Pog — PogB(T —T) - (20)
Equation (20) is commonly referred to as the Boussinesq buoyancy model for natural convection.

Obviously, B must have units of inverse temperature. We can easily see this by operating on
equation (8) with equation (17) to obtain

ﬁl(P> P Q2D

T po \T?R.)  poT "

For a single fluid incompressible flow, p = p,, so that

B=—. (22)

Note that the coefficient of thermal expansion 3 must be a constant for incompressible flow. f3
is based upon the assumption that the fluid particle’s density must remain a constant in space and
time (the material derivative definition for incompressible flow). Therefore, we can not assume
a temperature dependency for 3 as this implies variable particle density. Also, a higher-order
approximation in terms of the temperature difference won’t fully alleviate the impact of a constant

B.
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2.3 The Incompressible Navier-Stokes Equations with Thermal Energy

The incompressible form of the governing hydrodynamic equations may be derived from equa-
tions (1-4) by imposing the definition of incompressible flow, equations (14) and(15).

As shown in the previous section, the conservation of mass equation becomes a mathematical
constraint on velocity. In two dimensions, this constraint is

du Jdv
R i\l (23)

The two-dimensional incompressible Navier-Stokes equations with the Boussinesq buoyancy model
are the balance of x-momentum,

du du du _doy  doyn  dp

Po o1 +Pou§ +pova_y = Tox dy Ix +pogx[l - ﬁ(T - TO)] ) 24)

and the balance of y-momentum,

av av dv _ doy d0y, dp
Pogy HPoltgL TPy = B G S Pegy L= BT =T, (25)

where p (lower case) is the incompressible pressure (not thermodynamic pressure) and is a variance
from the reference pressure P,. The components of the incompressible viscous stress tensor, Oy,
Oy, Oyy, and Oyy, are defined as

0 du 0 0
e = 21 (a—;‘> cxyzcyxzu<a—;+£> . and 0y, =2 <a—;> . (26)

Neglecting viscous heating, the thermal energy transport equation in an incompressible gas can be
written in the form

OT 9T T\  dax dqy
””Cp<az LPF +Vay) ~Tox oy @7)

where c), is specific heat at constant pressure.
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3 Computational Domain and Test Cases

This comparative study will be composed of six simulation test cases performed on a common
computational domain. The domain is comprised of a two-dimensional square cavity with the four
walls being zero-mass flux boundaries. The vertical walls are differentially heated with specified
temperatures. The horizontal walls are defined as adiabatic (zero heat flux). Initial and boundary
conditions for the first three test cases are taken from established benchmark reference solutions
for natural convection of air. These three test cases provide a solution baseline for the comparative
analysis between the conservative and incompressible flow models. The final three test cases are
designed to analyze helium natural convection flow at the global normal operating conditions of
the Very High Temperature gas-cooled Reactor (VHTR) [12], i.e., maximum coolant temperature
difference and average reactor pressure. The first helium test case is with constant transport prop-
erties and the second helium test case is with variable transport properties. The third helium test
case is transient with a cosine temporal wave defining the hot wall temperature.

Here, we will give a generic description of the computational domain, including initial and
boundary conditions, and the physical parameters important in defining the nature of the flow and
analyzing the solution. Then, a brief history and description of the benchmark reference solutions
employed in this study will follow. This study’s simulation test cases will then be defined by
specific values of initial and boundary conditions for each test case. Finally, a brief description of
the conservative and incompressible flow solvers and computational meshes concludes this chapter.

3.1 Domain Description and Physical Parameters

The computational domain for the comparison study presented here is based upon the De Vahl
Davis differentially heated square cavity problem [8, 7] as shown in Figure 1. The square domain
is L width and height. The natural convection problem is described by two vertically heated walls
with prescribed temperatures, 7;, and T¢, which are the “hot” and “cold” wall temperatures, respec-
tively. Adiabatic heat transfer boundary conditions are applied along the horizontal walls, defined
by zero heat flux in the y-direction, gy, = 0. All four walls have no-slip, zero-mass flux boundary
conditions, # = 0. The gravitational vector, g, is applied anti-parallel to the y-coordinate. Initial
conditions are composed of constant distributions of reference pressure and temperature, P, and 75,
and stationary flow, 7 = 0. Note that nothing about these initial and boundary conditions indicate
a compressible event as there are no initial pressure gradients and pressure is not even prescribed
at the boundary.

The flow field for this natural convection problem can be characterized by two non-dimensional
parameters. The first is a non-dimensional temperature difference, given by

e— I,—1. T—T:
CT,+T. 2T,

(28)

where T, is the reference temperature taken to be the average of 7;, and 7,. The second and more
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Figure 1. Differentially heated square cavity domain with generic
specification of boundary conditions and gravitational vector.

important parameter is Rayleigh number. The Rayleigh number for a natural convection problem
is a dimensionless number associated with the heat transfer within the fluid. When the Rayleigh
number is below the critical value for the flow field, heat transfer is primarily in the form of
conduction. When it exceeds the critical value, heat transfer is primarily in the form of convection.
The Rayleigh number is defined as the product of the Grashof number, which is the ratio of the
buoyancy and viscous forces within a fluid, and the Prandtl number, which is the ratio of the
momentum and thermal diffusivities. For an ideal gas, the Rayleigh number for a square cavity is
expressed as

gp2(Ty,—T.)L?

Ra = GrPr = Pr 3
Tous

) (29)

where p, is the reference density determined from the equation of state at the reference pressure
and temperature, P, and T, respectively, , is the reference dynamic viscosity determined from
thermal dependence at the reference temperature, and g is the magnitude of the gravitational vector.

All three workshop benchmark solutions are also in the form of non-dimensional parameters.
Non-dimensional wall heat flux, or local Nusselt number Nu, is defined as

1 KT)9
M k) o, 0

where 7i is the outward normal vector to the vertical walls. From equation (30) we can compute
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the integrated (average) Nusselt number along the wall,

1 p=L
Nu:—/ Nu(y)dy . (31)
L Jy=0

The CEA and INRIA workshops required the calculation of a thermodynamic pressure ratio.
Here, we have only concerned ourselves with a closed system where the mass of the system is
constant. The thermodynamic pressure of this system is defined as

1 —1
P, = —dQ 32
th mey < 0 RT > ’ ( )

where Q2 is the volume of the system and m, is defined as the initial mass of the system,

1 P,
= dQ=— | —dQ. 33
ny /on RJaT (33)

o

The thermodynamic pressure ratio is then defined as P,j,/P,.

For those simulations that require variable transport properties, temperature dependent dynamic
viscosity and thermal conductivity, are given by Sutherland’s law [21],

15
N(T)_< T ) Tsun+S (34)

Usin  \ Tsurn T+S

This study will include one air benchmark from the CEA and INRIA workshops with variable
transport properties. For this case, Sutherland coefficients for air [10] are § = 110.5 K, Tg,;;, =
273.15 K, and g, = 1.68 x 107 kg/(m-s).

3.2 Benchmark Solution Description and History

The first of the three benchmark solutions employed in this study was suggested during the confer-
ence on Numerical Methods in Thermal Problems, which took place in Swansea, U.K. during July
1979. There, 1.P. Jones [11] proposed that buoyancy-driven flow in a differentially heated square
cavity (see Figure 1 below) would be a suitable benchmark problem for “testing” and validating
computer codes. Following this conference, an informal workshop was formed which produced
what is now commonly referred to as the de Vahl Davis benchmark [8, 7] solution for natural con-
vection in a differentially heated square cavity. At the time of this workshop (March of 1980), it
was decided that this benchmark problem provided a non-trivial solution structure that had prac-
tical application in studying the effectiveness of reactor insulation and the cooling of radioactive
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waste containers. The problem statement for workshop contributers required incompressible, grid-
converged solutions for Rayleigh numbers of Ra = 103, 10%, 10°, and 10°. For Ra = 10° and 10%,
solutions were required on uniform meshes of 11 x 11, 21 x 21, and 41 x 41. At the higher values
of Ra = 10> and 10°, a uniform mesh of 81 x 81 was also required as the solutions for these higher
Rayleigh numbers contained multiple vortices. Richardson’s extrapolation was then applied to
determine benchmark solutions for the following parameters: average Nusselt number; maximum
and minimum Nusselt numbers along the hot wall and their locations; maximum vertical velocity
on the horizontal mid-plane and its location; and maximum horizontal velocity on the vertical mid-
plane and its location. For a converged steady-state solution, the average Nusselt number should
be the same on both the hot and cold walls for energy conservation.

The second and third benchmark solutions were obtained from two recent French workshops.
The first workshop [2], titled Modeling and Simulation of Natural Convection Flows with Large
Temperature Differences and hosted by the CEA Nuclear Reactor Division of the French Atomic
Energy Commission, was held in January of 2000 at the Institut National des Sciences & Tech-
niques Nucléaires (INSTN) in Saclay, France. In the call for contributions to this workshop, a
benchmark problem was designed around the extension of the incompressible de Vahl Davis bench-
mark problem to cases with large temperature differences imposed upon the vertical walls. Eight
test cases, simulating air at a prescribed Rayleigh number of Ra = 10%, were described by four
non-dimensional temperature differences, € = 0.01, 0.2, 0.4, and 0.6, and both constant and vari-
able viscous and thermal diffusion coefficients with the temperature dependent coefficients defined
by Sutherland’s Law, given by equation (34). The two test cases for € = 0.01 are designed to show
the equivalence between the conservative and incompressible formulations in the incompressible
limit.

While the objective of the CEA workshop was to establish reference solutions from a code-
to-code comparison of various flow models and solvers, the results of this workshop were not
published until the next French workshop in 2004 [10]. Contributors to the CEA workshop identi-
fied several numerical difficulties, such as mass and energy conservation issues, post-processing of
Nusselt numbers, and CPU performance constraints. Following the CEA workshop, several con-
tributors performed additional simulations to further refine the reference solutions. These results
were then presented in the framework of the second French workshop [10], Mathematical and Nu-
merical aspects of Low Mach Number Flows, organized by INRIA and held June 21-25, 2004 in
Porquerolles, France. The number of selected reference solutions were scaled back to include the
two original Rayleigh number Ra = 109 air test cases from the CEA workshop and an additional
test case at a Rayleigh number of Ra = 107 with variable transport properties, all at £ = 0.6.

3.3 Comparative Study Approach and Test Cases

As stated before, the goal of this comparative study is to quantify the differences between “incom-
pressible” and “compressible” solutions for high-heat flux natural convection simulations. Our
comparative study approach is to solve both hydrodynamic formulations to:

1. Reproduce the results of the de Vahl Davis benchmark [8, 7] with a small temperature dif-
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ference to demonstrate the equivalency of both model formulations in the incompressible
limit.

2. Duplicate two of the high heat flux benchmark cases for air from the CEA and INRIA work-
shops [2, 10]. This will provide baseline comparisons between the conservative and incom-
pressible solutions against accepted solutions.

3. Generate additional analysis criteria to include such terms as volumetric body force distribu-
tions, centerline velocity distributions, and rate of expansion. A more in-depth analysis will
be performed in the immediate vicinity of the vertical hot wall boundary layer for the steady-
state cases. In this region, the analysis will be based upon the summation of forces in the
vertical direction composed of the pressure gradient force, the gravitational force, viscous
force, and the inertial force.

4. Finally, apply the comparative analysis criteria to helium natural convection test cases at the
global normal operating conditions of the VHTR (maximum coolant temperature difference
and average reactor pressure).

The first five test cases defined in this study are the constant wall temperature, differentially-
heated square cavity geometry of de Vahl Davis at a chosen Rayleigh number of Ra = 10°. We
chose this value as it ensures a laminar flow field and avoids the problem of turbulence modeling
(mathematical model dependency) between codes. A sixth test is defined with a transient hot wall
boundary condition (see Table 2 below). For this transient test case the Rayleigh number varies
between Ra = 0 — 10°. In all test cases, the initial conditions are composed of constant distributions
of reference pressure and temperature, P, and 7, (given in Tables 1 and 2), and stationary flow,
i=0.

The test cases for the comparisons with air benchmark solutions are tabulated in Table 1 and are
defined by non-dimensional temperature difference €, specified hot and cold wall temperatures 7j,
and T, respectively, and whether the transport properties are constant and variable. Test case TC-1,

Table 1. Air Benchmark Test Cases, (Ra = 10°, T, = 600 K, and
P, = 101.325 kPa).

TestCase # | € T, (K) | T, (K) | Properties
TC-1 0.01 | 606.0 | 594.0 | constant
TC-2 0.6 | 960.0 | 240.0 | constant
TC-3 0.6 | 960.0 | 240.0 | Eqn. (34)

with it’s small temperature difference, is is used to approximate the de Vahl Davis reference [8, 7]
solution.

Similarily, the helium test cases are tabulated in Table 2. The transient test case is TC-6 with
the transient temperature boundary condition for the hot wall given by

Ty(t) = 1148.15+375.0cos(0.47) K, (35)
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Table 2. Helium Test Cases, (Ra = 10°, T, = 1148.15 K, and

P, =7.0 MPa).

Test Case # € T;, (K) T, (K) | Properties
TC-4 0.3267 1523.15 | 773.15 | constant
TC-5 0.3267 1523.15 | 773.15 | Eqn. (34)
TC-6 0.0-0.3267 | Eqn. (35) | 773.15 | Eqn. (34)

where the period is 5 seconds. For the helium cases with variable transport properties (TC-5 and
TC-6) defined by equation (34), Sutherland coefficients for helium [21] are S = 97.4 K, Tg;;; =

273.15 K, and pg,;, = 1.864 x 10~% kg/(m-s).
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4 Simulation Results and Analysis

In this chapter, the simulation and analysis results of the comparative study to quantify the physical
differences between numerical simulations obtained with both the conservation and incompressible
forms of the Navier-Stokes equations for natural convection flows is presented. Preceding this,
the numerical solution methods and computational meshes for both hydrodynamic formulations
will be briefly discussed. Contour plots of test case TC-2 are then presented to give the general
solution structure of natural convection in a differentially heated cavity for both the conservative
and incompressible formulations. Then, the analysis begins with direct comparison of the two
solution methods/formulations against the known air benchmarks to provide a baseline assessment.
Developed for this study, an extended set of analysis criteria is then applied to the air benchmark
test cases. Following the air benchmark comparison analysis, the benchmark and extended analysis
criteria is applied to two helium test cases whose initial and boundary conditions are based upon the
global operating conditions of the helium-cooled VHTR concept. Finally, a preliminary analysis
of transient effects is conducted.

4.1 Solution Methods and Computational Meshes

The conservative solver employed in this study is the PCICE-FEM scheme [13, 14, 3]. The PCICE-
FEM scheme is a finite element method (FEM) spatial discretization of the Pressure-Corrected
Implicit Continuous-fluid Eulerian (PCICE) algorithm. The PCICE algorithm defines the temporal
discretization and hydrodynamic coupling procedure for the PCICE-FEM scheme. It is an ad-
vanced semi-implicit, mass-momentum coupled pressure-based scheme. The governing hydrody-
namic equations for this scheme are the conservative form of the balance of momentum equations
(Navier-Stokes), mass conservation equation, and the total energy equation. An operator splitting
process is performed along explicit and implicit operators of the semi-implicit governing equations
to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of
semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit pre-
dictor step and a semi-implicit pressure-correction step with the elliptic pressure Poisson solution
coupling the predictor-corrector steps. The result of this predictor-corrector formulation is that the
pressure Poisson equation in the PCICE-FEM scheme is provided with sufficient internal energy
information to avoid an iterative scheme. In the PCICE-FEM code employed here, linear trian-
gular (unstructured) finite elements are used exclusively for the finite element formulation as they
are easily generated on domains with complex geometries, they achieve near second-order spatial
accuracy, they can be easily adapted to minimize error in the solution, and they can be integrated
exactly, which eliminates the need of quadrature integration.

The incompressible studies were conducted using the commercial CFD package STAR-CCM+
produced by CD-adapco [1]. STAR-CCM+ uses a face-based cell formulation, enabling it to use
cells with any number of faces. Therefore, it employs a meshing technology which can automat-
ically generate tetrahedral, polyhedral and trimmed hexahedral and dodecahedral meshes. In this
two-dimensional study, quadrilateral elements were used in order to better approximate the com-
putational mesh utilized by the PCICE-FEM code. The governing equations are discretized using
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the finite volume method (FVM). The default interpolation approach used for the convective terms
is a second-order upwind scheme while the diffusive terms are interpolated by a linear approach.
The discretized equations are solved with the segregated solver using algebraic multigrid, which is
based on the iterative Gauss-Siedel solution method. The segregated solver solves the governing
equations in an uncoupled manner in which the linkage between the momentum and continuity
equations occurs using a predictor-corrector approach. The complete process is developed us-
ing collocated variables and a Rhie-Chow [20] type pressure-velocity coupling combined with the
SIMPLE algorithm [18]. Although the segregated solver is not suitable for high Raleigh-number
applications, it was chosen for this study because it is capable of handling mildly compressible
flow and low Raleigh number natural convection flow; furthermore, difficulties were encountered
in obtaining optimal coupled solver settings for this study.

Figures 2 and 3 illustrate the two computational meshes utilized in this study. The mesh shown
in Figure 2 is essentially a structured 120 x 120 FEM mesh consisting of 28,800 orthogonal tri-
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Figure 2. Triangular finite element mesh for differentially heated
square cavity domain.

angular elements defined by 14,641 nodal points. It is upon this mesh that the conservative hy-
drodynamic formulation is solved for the various test cases. The conservative solution variables
computed on this FEM mesh are located at the nodes of the triangular element vertices. The mesh
shown in Figure 3 is of a structured 120 x 120 quadrilateral FVM mesh. The incompressible for-
mulation is solved by STAR-CCM+ on this mesh where the incompressible variables are computed
at the cell centers. These two meshes are essentially the same mesh as the cell vertices for both
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Figure 3. Quadrilateral finite volume mesh for differentially
heated square cavity domain.

meshes are at identical coordinate locations.

4.2 General Solution of the Differentially Heated Cavity Problem

In this section, we will provide an example of a natural convection solution in a differentially heated
square cavity. The solution profiles for all the steady-state test cases are similar in form (but not
in magnitude) as the solution to the square cavity problem is in large part defined by the Rayleigh
number, irrespective of non-dimensional temperature difference or working fluid (air or helium).
Thus, we chose test case TC-2 to provide a graphical illustration of a Rayleigh number Ra = 10°
natural convection solution in a square cavity solution for both conservative and incompressible
formulations. This test case, with its large temperature difference (& = 0.6), clearly demonstrates
some of the physical differences in solutions between the formulations for this natural convection
problem. Even with the large temperature difference, this flow field is relatively slow compared to
that of a natural convection scenario in a gas-cooled reactor. The peak velocity magnitude for test
case TC-2 corresponds to an approximate Mach number of M = 2.0 x 1073,

Figure 4 is a side-by-side comparison of the steady-state streamline solutions. The obvious
difference between the two solutions is the asymmetry of the conservative streamline solution
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(a) Streamlines for conservative solution. (b) Streamlines for incompressible solution.

Figure 4. Streamline comparison for test case TC-2.

shown in Figure 4(a) versus the symmetric incompressible streamline solution (odd-function with
the origin shifted to x = y = 0.5) shown in Figure 4(b). The asymmetry of the conservative solution
is a direct result of the expansion of the gas (decrease in density) along the hot wall and the
contraction (increase in density) of the gas along the cold wall. With the material derivate forced
to be zero in the incompressible formulation resulting in a divergence-free flow field (no expansion
or contraction), the incompressible solution illustrated in Figure 4(b) is then symmetric.

The density solution comparison, shown in Figure 5, highlights the most striking physical
difference between the two model formulations. Figure 5(a) reflects the density solution obtained
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(a) Density contour for conservative solution. (b) Density contour for incompressible solution.

Figure 5. Density comparison for test case TC-2.
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with the conservative formulation. With € = 0.6 the density varies approximately by a factor of
four. For helium natural convection in the VHTR reactor (€ = 0.33), density varies by a factor of
two. In contrast, Figure 5(a) illustrates the incompressible rendition of density which is a specified
constant for a single-phase, single-component fluid.

In Figure 6, we see a side-by-side comparison of the absolute pressure solutions. Figure 6(a)
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(a) Pressure contour for conservative solution. (b) Pressure contour for incompressible solution.

Figure 6. Pressure comparison for test case TC-2.

shows the pressure contour for the conservative solution and Figure 6(b) represents the pressure
distribution for the incompressible solution. While at first glance, the solutions appear to be similar
because both pressure solutions appear to be nearly hydrostatic. Both simulations were started
at a prescribed pressure of one atmosphere (101,325 Pa). However, the steady-state solutions
have significantly different domain integrated (average) pressures. The average pressure for the
conservative solution is P ~ 87,012 Pa while the average pressure for the incompressible solution is
p ~ 101,328 Pa. The incompressible average pressure is essentially the sum of the initial pressure
and half of the hydrostatic pressure difference (linear distribution).

The reason for these differences in integrated pressure is purely physical. The conservative
pressure is thermodynamic (physical) and requires an equation of state to define its functional
dependency upon density and energy. In order to conserve mass in this closed system, square
cavity, the thermodynamic pressure of the conservative solution has to adjust to the total integrated
energy in the domain and, in this case, causes an overall reduction in absolute pressure. In contrast
to thermodynamic pressure’s functional dependency, the incompressible absolute pressure (non-
physical) is dependent upon an arbitrary reference value. Considering the incompressible flow
equations (23)-(27), only the momentum equations (24) and (25) rely upon pressure in the form
of a differential pressure gradient. Because the density p and thermal energy 7 do not depend
upon pressure (basis of the incompressible flow assumption, see Section 2.2), the average initial
(or reference) pressure is purely arbitrary. In fact, we could have started the incompressible flow
test cases with a prescribed pressure of negative one atmosphere (-101,325 Pa) and obtained a final
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averaged pressure of p &~ —101,322 Pa. The velocity and temperature profiles would have been
identical to the incompressible solution presented here. Typically, incompressible flow simulations
do not employ a reference pressure in terms of absolute pressure. A zero “gauge” pressure is quite
common. Thus, the pressure determined at the computational points are actually departures from
this gauge pressure.

Figure 7 is a side-by-side comparison of absolute temperature solutions for both the con-
servative and incompressible formulations, shown in Figure 7(a) and Figure 7(b), respectively.
Qualitatively, these two temperature solutions appear to be very similar. That is to be expected
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(a) Temperature contour for conservative solution. (b) Temperature contour for incompressible solution.

Figure 7. Temperature comparison for test case TC-2.

as the heat conduction terms in both formulations are the same. As we will see in later sections,
the large density variations apparent in Figure 5(a) result in noticeably different velocity profiles
between both formulations. Thus, the viscous and thermal boundary layer thicknesses are then dif-
ferent, which result in different wall heat fluxes. We can see some of the resulting velocity profile
differences with the deeper penetration of “cold” gas (more dense fluid with greater momentum
and inertia) along the bottom wall in the conservative solution (Figure 7(a)).

The last quantity that we will be comparing is divergence of velocity (or rate of expansion), an-
other fundamental difference between the two formulations. Figure 8(a) illustrates the divergence
of velocity distribution for test case TC-2 conservative solution. The divergence of velocity, or
rate of expansion, represents a physical quantity that we can see demonstrated by the expansion
of the gas along the hot wall (positive values) as well as the contraction of the fluid along the
cold wall (negative values). The magnitude of the expansion and contraction of the gas is on the
order of 2.0 —2.5 s~!. This is not insignificant as the peak velocity in the vertical boundary lay-
ers is approximately 1.0 m/s, which is nearly 10% higher than the corresponding incompressible
solution.

Where divergence of velocity is a physical quantity for the conservative solution, the numerical
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Figure 8. Divergence of velocity comparison for test case TC-2.

divergence of velocity profile for the incompressible solution, shown in Figure 8(b), is based upon
nothing more than the spatial discretization error and the convergence error in the iterative solution
method used to drive the divergence of velocity towards zero. Ideally, the mathematical divergence
of velocity is zero across the domain but is never perfectly achieved in a numerical approximation.
The plot shown in Figure 8(b) is actually the mass imbalance field, which represents the total mass
flux in each cell. Computing the divergence of velocity is not an option available in STAR-CCM+.
The mass imbalance field is “representative” of the divergence of velocity at steady-state.

4.3 Comparison with Benchmark Results

Here, we will compare our conservative and incompressible solutions of the differentially heated
square cavity problem with the accepted benchmark solutions of de Vahl Davis [8, 7] and the CEA
and INRA workshops [2, 10]. Reproducing the de Vahl Davis problem with a small difference in
specified wall temperatures allows for; 1) Quantification of the error between the incompressible
solution obtained with STAR-CCM+ on the moderately fine (relative to the 80 x 80 mesh employed
in the de Vahl Davis benchmark) mesh of Figure 3 and 2) Obtaining a baseline comparison of
the conservative solution in the nearly incompressible limit, where the conservative solution is
not divergence-free. Reproducing the high-temperature difference CEA and INRA air benchmark
problems allows us to; 1) Verify the accuracy of the conservation solution obtained with the PCICE
code on the moderately coarse (relative to the contributors in the CEA and INRA workshops) mesh
of Figure 2 and 2) Quantify the differences between the conservative and incompressible solutions
for the high-temperature air benchmark test cases.

In the following three sections, direct comparisons for test cases TC-1 through TC-3 are made
between the solutions obtained with the conservative and incompressible solvers and the estab-
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lished benchmark reference solutions. The de Vahl Davis benchmark comparison results are de-
scribed in Section 4.3.1, where the reference values are all in terms of various non-dimensional
wall heat (Nusselt number Nu) parameters. For graphical purposes, the cold wall Nusselt numbers
are presented as absolute values. With equation (30), the cold wall Nusselt numbers would have
been negative, which denotes heat flowing out of the boundary. Sections 4.3.2 and 4.3.3 contain
the comparisons with the CEA and INRIA benchmark results. There, the reference solutions are
in terms of integrated wall Nu and non-dimensional thermodynamic pressure reduction.

4.3.1 Test Case TC-1, De Vahl Davis Air Benchmark

Figure 9 illustrates the Nusselt number Nu comparison results for the de Vahl Davis problem
(test case TC-1) at a Rayleigh number of Ra = 10°. The line plots are of local Nusselt number
Nu computed along the vertical hot and cold walls according to equation (30). For this low-
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Figure 9. Test Case TC-1 hot and cold wall Nusselt distributions.

temperature difference (nearly isothermal) case, it is difficult to delineate between the conservative
and incompressible solutions. This is clear evidence that, for nearly isothermal density-driven flow,
the formulations are nearly equivalent. Note that the solutions are symmetric about y = 0.5 m, a
result of constant density definition for the incompressible formulation and nearly constant density
distribution for the conservative formulation.

Table 3 gives the computed benchmark values of various parameters for both the conservative
and compressible formulations and their corresponding relative error compared to the accepted
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Table 3. Test Case 1 Comparison, (Ra = 10°, £ = 0.01, and con-

stant transport coefficients).

benchmark reference values. In Table 3, Nu" and Nu* are the integrated (average) Nusselt numbers

Parameter | Conservative | Incompressible | Reference | % REC | % REI
Nd' 8.79721 8.83511 8.8 0.032 | 0.399
Nu' 8.79721 8.83534 8.8 0.032 | 0.407

Nufjm 17.5370 17.5891 17.925 2.165 1.874
Nué’:(l5 8.31960 8.37688 8.799 5.448 | 4.797
Nufjm 0.95816 0.97981 0.989 3.118 | 0.929
Nu, ., 17.5370 17.5913 17.925 2.165 1.862
Nu;:O'5 8.31961 8.37693 8.799 5.448 | 4.797
Nuj,;. 0.95816 0.98088 0.989 3.118 | 0.821

along the hot and cold walls, respectively, determined by equation (31). For these square-cavity,

natural convection problems, if Nu' = Nu‘, then we have conserved energy in the simulation due to
the adiabatic top and bottom horizontal walls. Nu” .. and Nu¢,,, are the maximum Nusselt values
along the hot and cold walls, respectively, with corresponding minimum Nusselt values Nu},ﬁm
and Nuj,,,. Nug’zo.5 and Nuj_ 5 are the Nusselt values at y = 0.5m for the hot and cold walls,
respectively. %REC and %REI are the percent relative errors compared to the Reference values

for the conservative and incompressible formulations, respectively.

There is one note to make about the given number of significant digits in the Reference column
of Table 3. The de Vahl Davis [8, 7] required grid converged results on uniform meshes of 11 x 11,
21 x 21, 41 x 41, and 81 x 81 grid points for this Ra = 10° problem. Given commonly available
computer hardware and the algorithms of 1980, an 81 x 81 grid required significant computational
effort for this non-trivial problem. However, a uniform grid of this size is not adequate to accurately
capture the five vortices of this flow field. Nor does this coarse grid have the required resolution
for accurate heat transfer calculations at the boundary. There was a wide variation in contributor
solution results, thus the lack of significant digits in the given reference solutions for Nu" and
Nu‘. The attention should be more focused upon the comparison between our solutions, which
were computed on a clustered 121 x 121 grid. With two different source codes containing different
governing equations, algorithms, and spatial discretization methods, the two solutions we obtained
for the de Vahl Davis problem are nearly identical, which implies that the two formulations achieve
comparable results in the incompressible limit.

4.3.2 Test Case TC-2, CEA and INRIA Air Benchmark (Constant Transport Properties)

Figure 10 illustrates the Nusselt number Nu comparison results for the high temperature difference,
constant transport property problem of test case TC-2. The line plots are of local Nusselt number
Nu computed along the vertical hot and cold walls with equation (30). Here we begin to see
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Figure 10. Test Case TC-2 hot and cold wall Nusselt distribu-
tions.

significant variations in the solutions between the conservative an incompressible formulations for
high-heat flux situations. Note that the incompressible Nusselt distribution is symmetric and the
conservative Nusselt distribution is not. In this constant transport property case, the variance in the
solutions can be traced back to the strong variation in density for the conservative formulation (see
Figure 5). The variation in density increases the “buoyancy” of the gas in this region and creates
the rate of expansion (non-zero divergence of velocity) of the gas (see Figure 8), accelerating the
gas upward resulting in a thinner thermal boundary layer. We see this effect in Figure 10 where
the heat flux is higher for the conservative solution through the hot wall boundary layer and lower
through the cold wall boundary layer.

The benchmark reference solutions for the CEA and INRIA workshops are in terms of inter-

grated wall Nusselt numbers Nu" and Nu® and thermodynamic pressure ratio P,/ P,, determined by
equation (32). These reference values are provided in Tables 4 and 5. The thermodynamic pressure
ratio Py, / P, is not a parameter that can be applied for the incompressible solution and is denoted by
NA. Additional variables that are consistent with the de Vahl Davis benchmark reference solution
were also provided by various workshop contributors but were not defined as reference values.
One of the contributors to the workshops, Vierendeels, produced results on a 2048 x 2048 grid.
Vierendeels solution [16] agrees exactly with benchmark values (for the given number of signif-
icant digits). Additional non-reference variables provided by Vierendeels are then assumed to be
correct for this study. They are denoted by an * in Tables 4 and 5 and used as reference values for
our comparison study.
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Table 4. Test Case 2 Comparison, (Ra = 10°, £ = 0.6, and con-
stant transport coefficients).

Parameter | Conservative | Incompressible | Reference | % REC | % REI
]Wh 8.85439 8.82412 8.85978 0.061 0.402
Nu‘ 8.85449 8.82418 8.85978 0.060 | 0.402

P/ P, 0.85871 NA 0.85634 0.277 NA

Nu’,;lax 19.5409 17.5929 *19.5964 | 0.283 | 10.223
Nufvl:O.5 7.80950 8.37693 *7.81938 | 0.127 | 7.130
Nu’,;in 1.07294 0.97917 *1.07345 | 0.048 8.783
Nug, . 16.3407 17.5929 *16.3623 | 0.132 | 7.521
Nu;:O.5 8.81809 8.37664 *8.79636 | 0.247 | 4.772
Nuj,, 0.85819 0.97916 *0.85512 | 0.359 | 14.506

Overall, the conservative solution obtained with our code on a relatively coarse mesh agrees
well with the benchmark reference values given in Table 4, well within 1%. This is important as
we extend the simulation analysis to helium VHTR conditions of test cases TC-4 through TC-6.
We can thus expect equally accurate results for the VHTR conditions where no reference solutions
exist. As expected, the constant density profile and first-order body force approximation (Boussi-
nesq) of the incompressible formulation produced less representative results with peak errors on
the order of 10%.

4.3.3 Test Case TC-3, CEA and INRIA Air Benchmark (Temperature Dependent Transport
Properties)

Figure 11 illustrates the wall Nusselt number Nu comparison results for the high temperature dif-
ference, temperature-dependent transport property problem of test case TC-3. The line plots are
of local Nusselt number Nu computed along the vertical hot and cold walls according to equa-
tion (30). The temperature dependent dynamic viscosity is given by equation (34) and scaled to
achieve a Rayleigh number of Ra = 10°. Now note that, for variable transport coefficients, neither
solution is symmetric.

The reference values, including the Vierendeels values, for test case TC-3 are provided in
Table 5. Note that the peak hot wall Nusselt number Nu,,. are higher than test case TC-2 and
the centerline hot wall Nusselt number Nu” . are lower than test case TC-2. Also, The average
temperature of the domain for the conservative solution is higher than the average temperature
for the constant transport property test case TC-2. This has resulted in a higher thermodynamic
pressure ratio, Pj,/P, = 0.923853, than pressure reduction ratio of test case TC-2 (see Table 4),
P, /P, = 0.85871. These two thermodynamic phenomena will be explained in Section 4.4.3.

As with test case TC-2, the conservative solution agrees well with the air benchmark reference
values for the variable transport property test case TC-3. Again, the conservative values are within
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tions.

Table 5. Test Case 3 Comparison, (Ra = 10°, € = 0.6, and vari-
able transport coefficients).

Parameter | Conservative | Incompressible | Reference | % REC | % REI
Nud' 8.6810 8.5888 8.6866 0.064 1.126
Nu‘ 8.6815 8.5888 8.6866 0.059 1.126

P/ P, 0.923853 NA 0.924487 | 0.069 NA
Nuﬁmx 20.2725 17.6753 *20.2704 | 0.010 12.80
N”;Z:.os 7.4455 8.0161 *7.4593 0.185 | 7.464
Nufju-n 1.0765 0.9815 *1.0667 0.919 | 7.987
Nut,,. 15.4255 16.3898 *15.5194 | 0.605 | 5.608
Nu;:o5 8.6195 8.2566 *8.6372 0.205 | 4.407
Nug,;. 0.7577 0.8539 *0.7575 0.026 | 12.726

1% error. The peak errors on the incompressible solution Nusselt numbers have now risen to
approximately 12%.

34



4.4 Extended Analysis

Here, we further extend the air benchmark reference solution analysis of test cases TC-1 through
TC-3 to include the examination of individual terms of the governing equations and to compare
their effects upon the viscous and and thermal boundary layers. Specifically, we compare the
individual terms of the y-component of the balance of momentum equations at steady-state in the
vicinity of the hot wall boundary layer. The steady-state form of equations (3) and (25) can be
recast in terms of the summation of specific forces,

+ Dy +p8y (36)

and

+—y+pogy[1_B(T_To)] . (37)

Equations (36) and (37) are the y-components of the steady-state balance of momentum for the
conservative and incompressible forms, respectively.

In the following analysis, the sum of the first two terms on the right-hand-side of equations (36)
and (37) are referred to as the inertia of the conservative and incompressible forms, respectively.
The y-component of the pressure gradient terms of equations (36) and (37) appear identical. How-
ever, it must be kept in mind that only the pressure gradient of the conservative form is thermo-
dynamic where as the pressure in the incompressible form is actually deviation from the reference
pressure. The sum of the two stress components, fourth and fifth terms, are referred to as the stress
component of the conservative and incompressible forms, respectively. The final momentum terms
to compare are the y-component of the body force.

The extended analysis also includes comparisons of the y-component of velocity and temper-
ature distributions in the hot wall boundary layer. This allows us a starting point to explain the
differences in Nusselt numbers between conservative and incompressible formulations for large
temperature variations.

4.4.1 Test Case TC-1, De Vahl Davis Air Benchmark

Figure 12 illustrates the distributions of the specific force terms of equations (36) and (37) along
the centerline (y = 0.5 m) in the vicinity of the hot wall boundary layer for the small temperature
difference test case, TC-1. For this nearly isothermal, constant property test case, the conservative
and incompressible solutions nearly overlap. The specific force terms relating to inertia and stress
are clustered near zero and are negligible compared to the balance between the pressure gradient
and the body force terms. The Boussinesq gravitational body force (line h) approximates the the
conservative body force (line d) very well, which implies that this approximation is valid for small
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Figure 12. Test Case TC-1 specific force distribution in the hot
wall boundary layer taken along the centerline at y = 0.5 m. The
solid lines refer to the conservative profiles of a) inertia, b) ther-
modynamic pressure gradient, c) stress component, and d) gravi-
tational body force. The dashed lines refer to the incompressible
profiles of e) inertia, f) pressure gradient, g) stress component, and
h) Boussinesq gravitational body force approximation.

temperature differences. The equivalency of the stress and inertia terms for nearly isothermal flows
results in nearly equivalent velocity profiles in the boundary layer as shown in Figure 13(a). With
the convective velocities nearly equivalent in the boundary layer, the temperature profiles in the
thermal boundary layer are nearly indistinguishable, as shown in Figure 13(b). The end result is
the nearly identical Nusselt distributions of Figure 9.

4.4.2 Test Case TC-2, CEA and INRIA Air Benchmark

The specific force distribution near the hot wall for test case TC-2 is shown in Figure 14. For
this high temperature difference test case, we see a relatively wide (compared to test case TC-1)
variation in the specific force distributions between the conservative and incompressible solutions.
With identical transport properties utilized for both simulations, these specific force variations
are primarily due to the variable density profile of the conservative formulation, which varies
by a factor of four across the domain, versus the constant density profile of the incompressible
assumption (see Figure 5).
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Figure 13. Viscous and thermal boundary layer profile compari-
son for test case TC-1.

In Figure 14, we see that the inertia profiles are still relatively insignificant to the balance
of specific forces. Even though peak boundary layer velocity for this test case is an order of
magnitude higher than the boundary layer velocity of test case TC-1, the velocity magnitudes
and variations in velocity for these square cavity problems are too low for the inertia terms to
contribute significantly to the viscous and thermal boundary layer profiles. However, in the near-
wall region (0 < x < 0.05 m), the stress terms (lines ¢ and g) are now nearly the same order of
magnitude as the body force terms. Also, we now see a significant departure in the body force
terms, lines d and h of Figure 14. In fact, this departure, on the order of 10%, is evident across
the domain. Global integration of the body force terms indicates that the domain is subjected to
different total body forces determined by the two formulations. The question here, open of coarse
to personal interpretation and accuracy requirements, is whether the Boussinesq gravitational body
force approximation is valid for this flow field. One more point to make here, in the absence of
significant dynamical pressure variations, the y-component of the pressure gradient are still nearly
constant for this test case. The incompressible pressure gradient is larger primarily due to the
error in the Boussinesq body force approximation away from the wall. Near the wall, differences
between the stress distributions are nearly equivalent to the differences in the body force terms,
which sum to the difference between the pressure gradients.

Figure 15(a) plots the velocity distribution in the vicinity of the hot wall boundary layer for test
case TC-2. Here, the peak conservative velocity is 20% higher than the peak incompressible veloc-
ity. Also, the viscous boundary layer is much thicker. It is interesting that in the near-wall region
(0.0 < x < 0.03 m), the velocity distributions for the conservative and incompressible solutions are
nearly identical, yet this is the region of largest disparity between the stress distributions (see lines
c and g of Figure 14). It must also be remembered that the conservative density is one-half the
incompressible density in this region (see Figure 5), however, the magnitude of the conservative
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Figure 14. Test Case TC-2 specific force distribution in the hot
wall boundary layer taken along the centerline at y = 0.5 m. The
solid lines refer to the conservative profiles of a) inertia, b) ther-
modynamic pressure gradient, c) stress component, and d) gravi-
tational body force. The dashed lines refer to the incompressible
profiles of e) inertia, f) pressure gradient, g) stress component, and
h) Boussinesq gravitational body force approximation.

body force is larger than the incompressible body force approximation. That is because T — T,
Boussinesq gravitational body force is linear and poorly represents the nonlinear change in den-
sity over large temperature changes. Figure 15(b) compares the temperature distributions through
the hot wall thermal boundary layer. We can see that the conservative thermal boundary layer is
thicker and has a higher temperature drop than the incompressible solution. However, the gradient
of the incompressible temperature distribution normal to the hot wall is slightly higher. This yields
a larger hot wall heat flux at the centerline, N u;':(). 5, as noted in Table 4.

4.4.3 Test Case TC-3, CEA and INRIA Air Benchmark

The distribution of specific forces is plotted in Figure 16 for the last air benchmark test case, TC-3.
The transport properties in this test case were given a temperature dependency according to equa-
tion (34). Interestingly, the temperature dependent transport properties impacts the thermodynamic
characteristics of this test case in several ways. Along the hot wall, the un-scaled values of dynamic
viscosity and thermal conductivity are u = 3.967006 x 107> kg/(m-s) and k = 5.613034 x 1072
W/(m-K), respectively, versus tt = 2.953289 x 1073 kg/(m-s) and k = 4.178691 x 10~2 W/(m-K)
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Figure 15. Viscous and thermal boundary layer profile compari-
son for test case TC-2.

for test case TC-2. The higher value of dynamic viscosity u results in a thicker viscous boundary
layer with a smaller peak velocity, approximately 0.1 m/s smaller as shown in Figure 17(a). The
higher value of thermal conductivity k results in a thicker thermal boundary layer with a smaller
drop in temperature (approximately 50 K smaller) across the boundary layer, as shown in Fig-
ure 17(b).

As noted in Section 4.3.3, the thermodynamic pressure ratio By, /P, is closer to one for test
case TC-3 than it is for the constant transport property test case TC-2. This is because the variable
thermal conductivity of test case TC-3 allows a larger region of “hot” gas in the domain. The
contraction of the gas is then not as great. Also, the peak Nusselt number Nuﬁm along the hot
wall is greater in test case TC-3 than TC-2. This is because, along the hot wall, the coefficient
k/k, = 1.343252 in equation (30) for test case TC-3. k/k, = 1.0 in test case TC-2 where the
thermal conductivity is constant across the domain. On the contrary, the reference heat flux at
the centerline, N ”;1:0.5’ is lower than the reference heat flux of test case TC-2. This is because
there is a smaller temperature drop across the thicker thermal boundary resulting in a smaller
normal temperature gradient that the coefficient k/k, can not overcome. With a larger region
of “hot” gas, the average conservative density away from the boundary layers is closer to the
specified incompressible density. Thus, the Boussinesq approximation results in a more accurate
prediction, lines d and h of Figure 16, of the incompressible body force than it did for test case
TC-2, lines d and h of Figure 14. A result of the better Boussinesq approximation is that the y-
component of the pressure gradients, lines d and h of Figure 16, more closely than they did in test
case TC-2. However, in the vicinity of the hot wall boundary layer, where the temperature profile
is still quite nonlinear, the Boussinesq approximation continues to fail in accurately representing
the gravitational body force.
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Figure 16. Test Case TC-3 specific force distribution in the hot
wall boundary layer taken along the centerline at y = 0.5 m. The
solid lines refer to the conservative profiles of a) inertia, b) ther-
modynamic pressure gradient, c) stress component, and d) gravi-
tational body force. The dashed lines refer to the incompressible
profiles of e) inertia, f) pressure gradient, g) stress component, and
h) Boussinesq gravitational body force approximation.

4.5 Helium Natural Convection Results

Several conclusions can be drawn from the results described in Sections 4.3 and 4.4. First, both the
conservative and incompressible formulations (and the codes we employed for this study) produce
nearly equivalent solutions with comparable accuracy in the incompressible limit, approximated
with a small temperature difference on the de Vahl Davis benchmark problem TC-1. Second,
comparisons with the CEA and INRIA air benchmark test cases, TC-2 and TC-3, confirmed that
our conservative code can be expected can be expected to provide accuracy within 1% for large
temperature difference natural convection flows, where the flow field is laminar and the fluid prop-
erties follow the ideal gas assumption, equation (8). Finally, the Boussinesq approximation can not
be counted on to accurately represent the gravitational body force for density driven flows with a
highly nonlinear temperature profile.

Now, we can apply our analysis criteria for the air benchmark test cases to helium natural
convection flow in a square cavity under the average operating parameters of the Very High Tem-
perature gas-cooled Reactor (VHTR) [12], i.e. maximum coolant temperature difference and av-
erage reactor pressure. For test cases TC-4 and TC-5, The hot and cold wall temperatures are
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Figure 17. Viscous and thermal boundary layer profile compari-
son for test case TC-3.

T, = 1523.15 K and T, = 773.15 K, respectively, which translates into a non-dimensional temper-
ature difference of € = 0.3267. The reference temperature, pressure, and density are 7, = 1148.15
K, P, = 7.0 MPa, and p, = 2.860625 kg/m?>, respectively. Test case TC-4 is defined with constant
transport properties and test TC-5 is defined with temperature dependent transport properties with
the properties of both test cases scaled to achieve a Rayleigh number of Ra = 10°. Finally, we
end the analysis with a transient test case TC-6, which will have initial conditions obtained from
the test case TC-5 steady-state solution and is also defined by temperature dependent transport
properties.

4.5.1 Test Case TC-4, Helium with Constant Transport Properties

Our first helium natural convection simulation is the constant transport property test case TC-4.
Figure 18 illustrates the hot and cold wall non-dimensional heat flux (Nusselt) distributions for both
of the conservative and incompressible steady-state solutions. Once again for constant transport
properties, we see that the incompressible solution is symmetric and the conservative solution is
not. However, with the non-dimensional temperature difference € equal to roughly half of the high-
temperature difference air test cases, the disparity between the conservative and incompressible
Nusselt distributions is reduced considerably. The density distribution for the conservative solution
now varies by a factor of two compared to the high-temperature difference air test cases where the
density varied by a factor of four across the domain.

Table 6 lists the derived solution values, based upon the high-temperature difference air bench-
mark reference variables, for test case TC-4. Both solutions show excellent steady-state conver-
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Figure 18. Test Case TC-4 hot and cold wall Nusselt distribu-
tions.

gence (and energy conservation) as the integrated hot and cold wall Nusselt numbers, Nuj, and Nu.,
are nearly equivalent. In other words, Nu;, ~ Nu, for each of the conservative and incompressible
solutions. In the absence of helium benchmark reference solutions and based upon our experience

Table 6. Test Case 4 Comparison, (Ra = 10°, € = 0.3267, and
constant transport coefficients).

Parameter | Conservative | Incompressible | % Difference
Nuy, 8.7878 8.7969 0.104
Nu, 8.7879 8.7968 0.101

Py /P, 0.96200 NA NA
Nu' 18.2215 17.4699 4.125
Nu;’:.05 8.0937 8.3583 3.269
Nuﬁ”-n 1.0313 0.9813 4.848
Nus, .. 16.6723 17.4699 4.765
Nuj_ o5 8.5876 8.3581 2.672
Nu;,;. 0.9388 0.9814 4.538

with the air benchmark solutions, we assume here that the conservative solution is the most accu-
rate in determining the percentage of difference between the two solutions. The peak differences
between the solutions is on the order of 4%.
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The specific force distribution near the hot wall for test case TC-4 is shown in Figure 19.
For this helium high-temperature difference test case, we see a relatively narrow variation in the
specific force distributions between the conservative and incompressible solutions. The widest
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Figure 19. Test Case TC-4 specific force distribution in the hot
wall boundary layer taken along the centerline at y = 0.5 m. The
solid lines refer to the conservative profiles of a) inertia, b) ther-
modynamic pressure gradient, c) stress component, and d) gravi-
tational body force. The dashed lines refer to the incompressible
profiles of e) inertia, f) pressure gradient, g) stress component, and
h) Boussinesq gravitational body force approximation.

disparity between the solutions occurs in the near-wall region (0.0 < x < 0.03 m) for the stress
(lines c and g) and body force (lines d and h) distributions.

Figure 20 compares the velocity and temperature distributions through the hot wall boundary
layer for test case TC-4.

4.5.2 Test Case TC-5, Helium with Variable Transport Properties

Our second helium natural convection simulation is the temperature dependent transport property
test case TC-5. Figure 21 illustrates the hot and cold wall non-dimensional heat flux (Nusselt)
distributions for both of the conservative and incompressible steady-state solutions. As with test
case TC-3, niether solution is symmetric for variable transport properties.
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Figure 20. Viscous and thermal boundary layer profile compari-
son for test case TC-4.
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Figure 21. Test Case TC-5 hot and cold wall Nusselt distribu-
tions.

Table 7 lists the derived solution values, based upon the high-temperature difference benchmark
reference variables, for test case TC-4. Both solutions show excellent steady-state convergence
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(and energy conservation)

Table 7. Test Case 5 Comparison, (Ra = 10°, £ = 0.3267, and
variable transport coefficients).

Parameter | Conservative | Incompressible | % Difference
Nuy, 8.7246 8.7417 0.196
Nu, 8.7248 8.7416 0.196

Py/P, 0.97506 NA NA
Nul',. 18.4194 17.6807 4.010
Nu;’:.O5 7.9822 8.2367 3.188
Nut. 1.0492 0.9900 5.642
NuS, . 16.3842 17.0198 3.879
Nuj_ s 8.5289 8.1630 4.290
Nus,, 0.8924 0.9469 6.107

The specific force distribution near the hot wall for test case TC-5 is shown in Figure 22.
For this helium high-temperature difference test case, we see a relatively narrow variation in the
specific force distributions between the conservative and incompressible solutions.

Figure 23 compares the velocity and temperature distributions through the hot wall boundary
layer for test case TC-5.

4.5.3 Test Case TC-6, Transient Helium Conditions with Variable Transport Properties

Our last test case for this comparative study is transient natural convection flow of helium gas in a
square cavity. The transient nature of test case TC-6 is defined by a temporal variation of the hot
vertical wall given by the cosine function of equation (35). With this equation, we vary the hot
wall temperature between 1523.15 K to 773.15 K over a 5 second period for a toal of three periods
(15 seconds). As with our previous helium test cases, TC-4 and TC-5, both the top and bottom
walls are defined adiabatic and the cold wall temperature boundary condition remains specified
at a constant 773.15 K. The initial conditions for this test case are derived from the steady-state
solution of test case TC-5. The transport properties are the temperature dependent properties of
test case TC-5, which essentially gives us a time dependent Rayleigh number parameter that varies
between Ra = 0.0 and Ra = 10°.

The imposition of time dependent behavior for the specified hot wall boundary temperature
greatly increases the complexity of the flow field compared to the steady-state test cases. Com-
paring the conservative and incompressible solutions through force balances is no longer possible
due to non-zero and unequal fluid accelerations (time rate of change in the momentum compo-
nents) between the conservative and incompressible balance of momentum equations. We now see
the conservative and incompressible boundary layers evolving in different time frames, with the
incompressible solution noticeably lagging, not in “sync” shall we say. The following discussion
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Figure 22. Test Case TC-5 specific force distribution in the hot
wall boundary layer taken along the centerline at y = 0.5 m. The
solid lines refer to the conservative profiles of a) inertia, b) ther-
modynamic pressure gradient, c) stress component, and d) gravi-
tational body force. The dashed lines refer to the incompressible
profiles of e) inertia, f) pressure gradient, g) stress component, and
h) Boussinesq gravitational body force approximation.

attempts to explain the significant solution differences in the hot wall Nusselt numbers, depicted
in Figure 24, at various solution times.

Without a lengthy mathematical description, describing the transient behavior of the conser-
vative representation (nonlinearly-coupled parabolic-hyperbolic system of equations) of natural
convection flow is difficult at best due to the strong thermodynamic coupling of the conservative
equations (1)-(4). In fact, it is pressure’s dependency on density and energy, defined through the
equation of state (8), that couple the conservation of mass and total energy equations to the bal-
ance of momentum equations. This is even true for flows, such as the one presented here, that do
not depend upon pressure gradients as such to define the velocity field. A rigorous characteristic
analysis [13] of the conservative equations shows how these equations are coupled through a ther-
modynamic definition of pressure and become an indeterminate system without a thermodynamic
definition of pressure. On the other hand, the incompressible equation system, equations (24)-(27),
are only weakly coupled through the first-oder approximation (Boussinesq) of the gravitational
body force in the momentum equations and the advection term of the thermal energy equation.
Pressure in an incompressible formulation plays no thermodynamic role in coupling with the ther-
mal energy equation.
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Figure 23. Viscous and thermal boundary layer profile compari-
son for test case TC-5.

Up to this point, we have rigorously avoided the use of the word “compressible” in this study to
describe the phenomena associated with natural convection flows represented by the conservative
form of the governing equations. We have already shown that these natural convection flows
are density driven due to internal energy variations and not due to pressure gradients. However,
what can be best described as “thermal compression and expansion” takes place globally in the
conservative solution for this transient test case. As volume (and mass) is constant in this closed
system, the internal energy of the system is proportional to the average pressure of the system at
any point in time during the transient period. The system pressure remains in near thermodynamic
equilibrium with the system internal energy and the constant mass of the system. Dynamic pressure
effects are almost non-existent because the time scale of the pressure propagation speeds are four
orders of magnitude smaller than the period of the thermal transient being investigated here. Thus,
the pressure distribution maintains a hydrostatic profile even as the system, or average, pressure
rises and falls.

Through a combination of interior domain heat conduction and hot wall heat flux resulting
from the transient specified hot wall temperature, we achieve the lowest system internal energy at
time + = 13.425 s. At this point in time, the thermodynamic pressure ratio is F;;,/P, = 0.82220
for a system pressure of 5.75467 MPa versus an initial thermodynamic pressure ratio of P, /P, =
0.97506 with a system pressure of 6.82542 MPa at the beginning of the simulation. At the end time
t = 15.0 s, the thermodynamic pressure ratio is now P, /P, = 0.86057 with the system pressure
rising to 6.02401 MPa. There is no reflection of this transient thermodynamic response in the
incompressible flow results.

The transient thermodynamic response effects local phenomena as well, such as in the near
wall regions of the hot and cold walls. Near these walls, the temperature of the gas closely follows
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Figure 24. Transient Nusselt comparison for test case TC-6.
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the transient hot wall temperature and remains close to the constant cold wall temperature. As
the system thermodynamic pressure rises and falls through the transient cycle, the local density in
these near wall regions must react accordingly. This can be explained in terms of the equation of
state by differentiating equation (8) over some differential change in time,

JdP JdP
() o (2

or,
AP = R.TAp + R.pAT , (39)

where AP, Ap, and AT are temporal increments of pressure, density and temperature, respectively.
Solving for Ap,

AP
R.T

_P
AT, (40)

we can see that the change in density near the wall is a nonlinear combination of the changes in
pressure and temperature, and we know from above that the change in pressure over time is not
zero. As the temperature of the hot wall boundary condition increases, the local density near the
wall must decrease even as the system’s thermodynamic pressure must increase. In order to con-
serve mass of the system, the density must increase elsewhere in the system. This is accomplished
by the increasing system pressure.

The transient nature of the near wall density must also satisfy the conservation of mass equa-
tion (1). Locally, the divergence of the mass flux pz# must be equal to the time rate of change
in density. Therefore, the velocity field must compensate for the expansion and contraction of
the fluid. Conversely, the Boussinesq approximation assumes that the local change in density is
approximated only by a function of the difference between the local temperature and a reference
temperature. Thus, the velocity profile in the incompressible solution only responds to the ef-
fects of the transient temperature boundary condition along the hot wall on the system, a thermal
response.

The results of the transient thermodynamic response of the conservative solution versus the
transient thermal response for the incompressible solution are clearly displayed in Figure 24. Fig-
ures 24(a), 24(c), and 24(e) are the Nusselt number distribution along the hot wall at times r = 2.5
s,t =7.5s,and r = 12.5 s, respectively. At these simulation times, the specified temperature along
the “hot” wall is equal to the constant specified cold wall temperature of test cases TC-4 and TC-5,
T;, = T, = 773.15 K. Note that the Nusselt number distributions at these solution times are nega-
tive along the wall indicating that heat is flowing out of the hot wall boundary (the interior is at
a higher temperature than the specified wall temperature). While the Nusselt number profiles for
both the conservative and incompressible solutions appear similar, the magnitude of the Nusselt
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numbers are decreasing in time. The differences in peak Nusselt numbers between the solutions
are ANu=2.5,ANu=1.8,and ANu=1.5attimest =2.5s,t =7.5s,and t = 12.5 s, respectively.
At these solution times, the difference in peak Nusselt numbers translate into 14.8%, 13.2%, and
13.2%, respectively. Figures 24(b), 24(d), and 24(f) are the Nusselt number distribution along the
hot wall at times t = 5.0 s, = 10.0 s, and # = 15.0 s, respectively. At these simulation times, the
specified temperature along the hot wall is equal to the constant specified hot wall temperature of
test cases TC-4 and TC-5, T;, = 1523.15 K. At these solution times, the Nusselt number profiles
are similar with the peak Nusselt numbers for both solutions slightly increasing in time (indicating
that the interior near wall temperature is slightly decreasing with time). Also, the peak difference
in Nusselt numbers remain fairly constant in time, approximately 13.2%.

Figures 24(a)- 24(f) clearly shows that the incompressible solution consistently under predicts
the magnitude of hot wall heat flux during this transient simulation. The thermodynamic response
for the conservative solution is significantly different than the thermal response of the incom-
pressible solution. The conservative velocity distribution differs from the incompressible velocity
distribution due to expansion and contraction of the gas and the different representations of the
gravitational body force. While the steady-state temperature distributions for both the conserva-
tive and incompressible solutions for test cases TC-4 and TC-5 were relatively close, the transient
temperature distributions for both solutions of test case TC-6 are significantly different in time.
Therefore, the temperature dependent transport properties differ accordingly.
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S Summary and Conclusions

In summary, this report illustrates a comparative study to analyze the physical differences be-
tween numerical simulations obtained with both the conservation and incompressible forms of the
Navier-Stokes equations for natural convection flows in simple geometries with the goal of inves-
tigating the possible consequences of assuming incompressible flow in Next Generation Nuclear
Plant (NGNP) simulations, specifically for helium-cooled reactor concepts. The purpose of this
study is to quantify how the incompressible flow assumption (which is based upon constant den-
sity advection, divergence-free flow, and the Boussinesq gravitational body force approximation)
differs from the conservation form (which only assumes that the fluid is a continuum) when solving
flows driven by gravity acting upon density variations resulting from local temperature gradients.

Our approach was to perform simulations with two computational fluid dynamic (CFD) com-
puter codes with one solving the conservation form of the governing hydrodynamic equations and
the other solving the incompressible form. We first reproduced the results of the de Vahl Davis
benchmark [8, 7] with a small temperature difference to demonstrate the equivalency of both for-
mulations in the incompressible limit. Next, we duplicated two of the high heat flux test cases for
air from the CEA and INRIA workshops [2, 10]. The two test cases chosen varied only in that one
incorporated constant transport coefficients and the other employed temperature dependent trans-
port coefficients. The reason for choosing these two test cases was twofold: First, the conservation
CFD code we used incorporated a conservation form of the total energy equation where the work-
shops only required a primitive variable form of the energy equation (that also neglected viscous
heating), in terms of thermal energy, which neglects kinetic energy contributions. This provided
an opportunity to validate our conservation CFD code against an accepted numerical benchmark
experiment for variable density, low-Mach number flow. And second, the test cases provided an
avenue to quantify the differing results obtained with an incompressible formulation when com-
pared to the high heat flux benchmark solutions. Our simulations culminated with the application
of our analysis criteria to three helium natural convection test cases at the global normal operating
conditions of the Very High Temperature gas-cooled Reactor (VHTR) [12], i.e., maximum coolant
temperature difference and average reactor pressure.

The solutions obtained with both the conservative and incompressible formulations for the de
Vahl Davis air benchmark test case TC-1 were nearly identical and compared well with the bench-
mark solutions. There was only a 1.0% variation in local density from the incompressible reference
density p, for this low-temperature difference (¢ = 0.01), constant transport property test case. The
small density variation seems to have negligibly effected the relative accuracy when compared to
the incompressible benchmark solution (see Table 3). As discussed in Section 4.3.1, there is some
question in the validity of the benchmark solution values given the wide variation in contributor
solution results produced on relatively coarse grids. Our conservative and incompressible results,
obtained on a grid with much finer boundary layer resolution (see Figures 2 and 3), agree more
closely with each other than the benchmark solution for some of the specific values of Nusselt
numbers Nu. The extended analysis for this nearly isothermal test case show that the near wall
specific force distributions and viscous and thermal boundary layer profiles are nearly identical for
both hydrodynamic formulations (see Figures 12 and 13). Overall, the solution obtained with the
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conservative code showed good behavior and acuracy in the nearly incompressible flow regime.

As expected, the comparison results diverged significantly for the high-temperature difference
(e =0.6) CEA and INRIA air benchmark test cases TC-2 (constant transport properties) and TC-3
(temperature dependent transport properties). The solutions obtained with the conservative code
compared very well with the benchmark Reference values (see Tables 4 and 5) with the relative
errors in both test cases less than 1%. It is possible in these two test cases for an ideal gas fluid
particle following a pathline in space and time to undergo a factor of four change in fluid density.
As discussed in Section 2.2, this magnitude of change in density of a fluid particle clearly results
in a violation of the incompressible flow assumption, equation (14). The inappropriateness of the
incompressible flow model for these two test cases is born out in our incompressible results with
the relative errors in the magnitude hot and cold wall Nusselt numbers Nu approaching 12%. The
extended analysis for these two air test cases also supports this conclusion. Except for the inertia
terms, the near wall specific force distributions show significant variation between the conservative
and incompressible solutions, as shown in Figures 14 and 16. The near wall viscous and thermal
boundary layer profiles of Figures 15 and 17 also show significant variation. Several conclusions
can be drawn from the comparison results obtained for test cases TC-2 and TC-3. First, both the
conservative and incompressible formulations (and the codes we employed for this study) produce
nearly equivalent solutions with comparable accuracy in the incompressible limit, approximated
with a small temperature difference on the de Vahl Davis benchmark problem TC-1. Second, com-
parisons with the CEA and INRIA air benchmark test cases, TC-2 and TC-3, confirmed that our
conservative code can be expected to provide accuracy within 1% for large temperature difference
natural convection flows, where the flow field is laminar and the fluid properties follow the ideal
gas assumption, equation (8). And third, the Boussinesq approximation can not be counted on to
accurately represent the gravitational body force for density driven flows with a highly nonlinear
temperature profile.

With confidence in our conservative code gained by generating representative comparison re-
sults for the high-temperature difference air benchmark test cases TC-2 and TC-3, we applied both
the conservative and incompressible codes to the high-temperature difference helium test cases
whose initial and boundary conditions are loosely based upon the VHTR operating conditions.
The single difference between the two helium test cases is that the transport properties for test case
TC-4 are constant (taken from the reference conditions) and the transport properties for test case
TC-5 are temperature dependent. As no benchmark solutions exist for the helium test cases, we as-
sumed that the conservative solution provides a more accurate representation of the flow field. We
then computed the relative error of the incompressible solution based upon the conservative solu-
tion. For both helium test cases, the various Nusselt numbers Nu obtained with the incompressible
code were on the order of 5% different than the results obtained with the conservative code (see
Tables 4 and 5). These results and the extended results are much closer than those obtained for
the air test cases TC-2 and TC-3. The reason for this is two-fold: First, while the hot an cold wall
temperature difference between the air and helium test cases were roughly the same (720.0 K for
the air test cases and 750.0 K for helium test cases), the non-dimensional temperature difference €
is approximately half for the helium test cases (& = 0.6 for the air test cases and € ~ 0.33 for the
helium test cases). The result is that the variation in density across the helium flow field is approx-
imately a factor of two versus a factor of four for the high-temperature difference air test cases.
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Still, a fluid particle density that varies by a factor of two can easily be considered a violation of the
incompressible flow assumption. And second, helium can be thought of as a thermodynamically
“stiff” gas. If we consider equation (40), the first term on the right-hand side defines the change
in density’s dependency upon the change in thermodynamic pressure. The coefficient 1/(R.T)
represents the sensitivity of this dependency. Helium’s specific gas constant is R, = 2077 J/(kg-K)
and air’s is R, = 287 J/(kg-K). R.T is approximately equal to the local sound speed squared. For
helium, this term translates into R.T =~ 3.16 x 10° m?/s? at T = 1523.15 K and air is an order of
magnitude less with R.T ~ 2.75 x 10° m?/s? at T = 960 K, which implies that the change in the
density of air is more dependent upon the change in pressure. The influence of this sensitivity
is born out in the thermodynamic pressure reduction ratio difference between the air and helium
test cases. For the air test case TC-2, the pressure reduction ratio is P, /P, = 0.85634, or 14.4%
deviation from the reference pressure. For the helium test case TC-4, the pressure reduction ratio
is By, /P, = 0.97500, or 2.5% deviation from the reference pressure.

The transient helium test case TC-6 raises more questions about the appropriateness of the
incompressible flow assumption for high-temperature difference natural convection flows than it
answers. From the results in Section 4.5.3, it is apparent that the thermodynamic effects upon
the the velocity field may be more important for time-dependent flows than for steady-state flows.
These effects, that are physically neglected with the incompressible flow assumption, basically re-
sulted in two different temporal solutions. These are preliminary results on a very simple geometry
and if further analysis is deemed necessary, we have several suggestions for further analysis:

1. The square cavity geometry somewhat limits attainable velocity magnitudes. A simple yet
more representative geometry for NGNP investigations is the 8:1 differentially heated cav-
ity. This geometry was incorporated into a special session of the First MIT Conference on
Computational Fluid and Solid Dynamics in June, 2001 [6]. One of the objectives of this
session was to determine the best time-dependent benchmark solution at particular values of
Rayleigh numbers. Rayleigh numbers were varied to determine a critical number in which
the flow becomes unsteady and to investigate the transient wall heat fluxes in the unsteady
regime. The working fluid for this benchmark problem is again air. The benchmark solu-
tions for this session were generated with the incompressible flow assumption. It would be
interesting to compare conservative solutions with the benchmark incompressible solutions
to how the magnitude of solution differences react to this tall geometry. Then, apply our
conservative and incompressible codes to this problem geometry with helium and the global
VHTR conditions.

2. Up to this point we have only been investigating laminar flows. It is doubtful that any nat-
ural convection scenario in a nuclear reactor is laminar and steady-state. The turbulent flow
regime is more likely and is inherently three-dimensional and unsteady. Direct Numerical
Simulation (DNS) approach would be the most desirable but is very expensive computation-
ally. A simple geometry, such as three-dimensional version of the 8:1 differentially heated
cavity, may be a possible alternative. If DNS is deemed too expensive, a Large Eddy Simu-
lation (LES) approach may be investigated.

3. In hindsight, it probably would have been more representative to assume transient heat flux
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boundary conditions consistent with nuclear core internal heat generation rates instead of
specified wall temperatures for the helium test cases.

4. Transient small-scale validation experiments would help in the decision process to determine
validity of the mathematical models for the governing equations and turbulence models. It
would provide provide a greater confidence in the mathematical models selected to represent
the reactor coolant flow fields.

In general, the incompressible flow assumption is valid in the case of isothermal, or nearly
isothermal, single phase flows under relatively small pressure gradients. In reality, there is no such
thing as incompressible flow. The assumption is non-physical and nothing more than a mathemati-
cal simplification when we choose to ignore variations in density that are always present. At times,
it is somewhat arbitrary in the decision process to determine if the incompressible flow assump-
tion has been violated. However, it seems unreasonable to neglect the large variation in density of
the helium that will be present in NGNP reactor simulations. If a helium fluid particle’s density
varies by a factor of two in space and time (material derivative), is it not reasonable to conclude
that this magnitude of density variation constitutes a violation of the incompressible flow assump-
tion? Therefore, the heat transfer results obtained with the incompressible flow assumption are
also called into question for the helium test cases. The significance of the Nusselt number differ-
ences are that the incompressible formulation can over or under predict wall heat flux. If we were
to apply typical reactor heat fluxes at the boundary instead of specified wall temperatures, wall
temperatures may vary significantly between the conservative and incompressible solutions. It is
not enough to have a large number of computational points to obtain results that will agree closely
with the validation experiments, the mathematical models must adequately represent the physics.
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