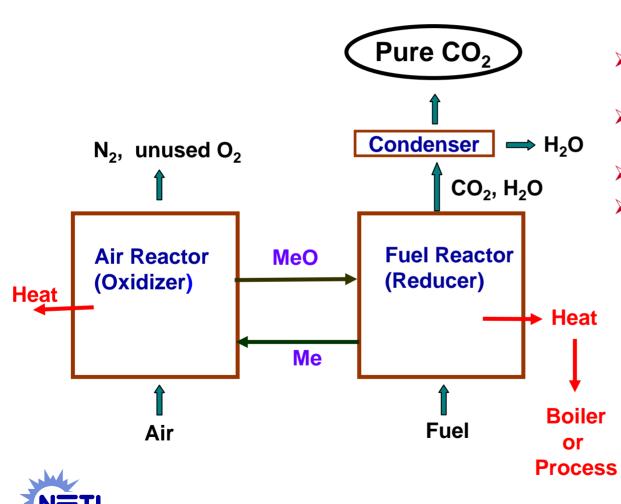
Combustion of Coal Using Chemical Looping Oxygen Carriers

Hanjing Tian^{1,2}, Tom Simonyi^{1,2}, Ranjani V. Siriwardane^{1,} Geo. A. Richards

¹U.S. Department of Energy, National Energy Technology Laboratory Morgantown, WV, 26505 ²Parsons, PO Box 618, Pittsburgh, PA 15129

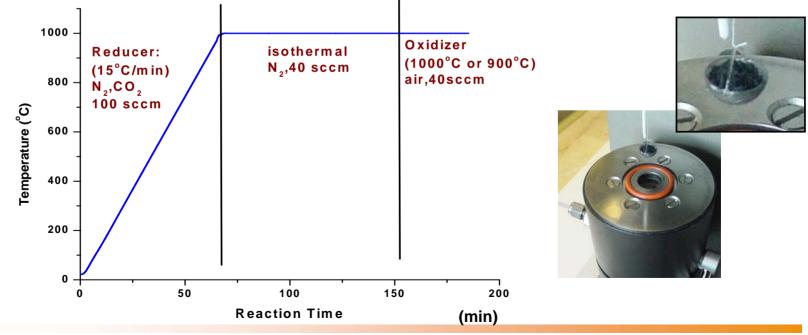

> Poster Session American Flame Research Committee Meeting

> > May 12 -14, 2008 Park City, UT

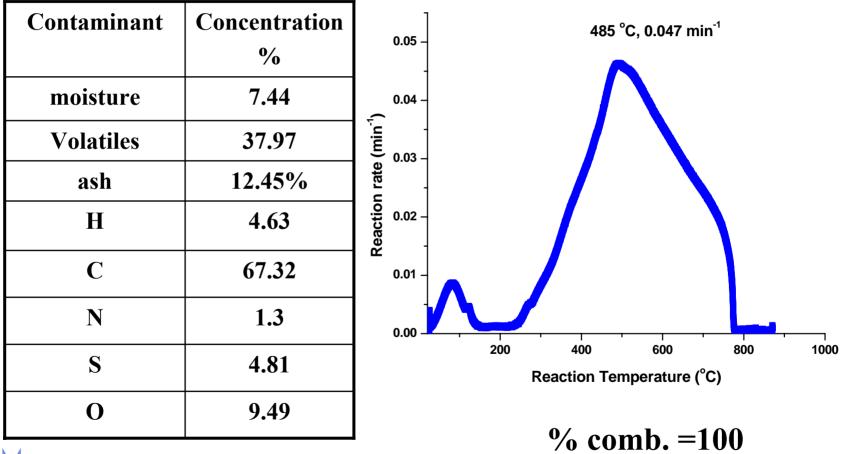
Introduction Chemical Looping Combustion

- Metal/metal oxide (Me/MeO) transfers oxygen to the fuel.
- Air is not mixed up with fuel
- CO₂ is not diluted with N₂ of flue gas
- Reduced NOx problems
- Sequestration ready CO₂

- No additional energy penalty for the separation

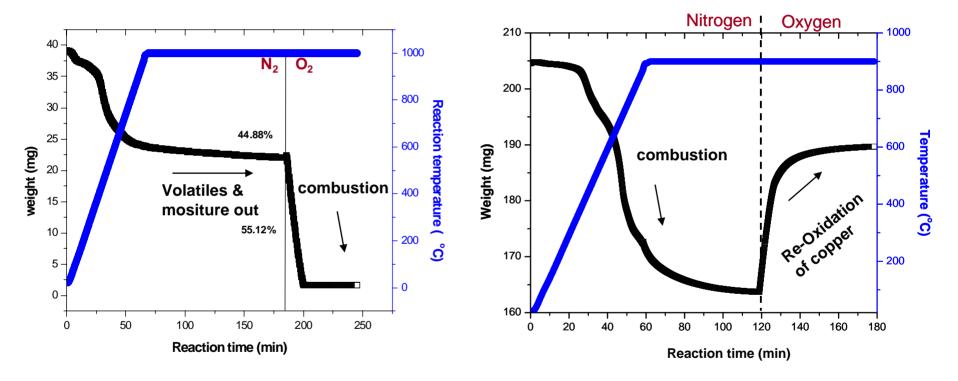

Can solid fuels be used <u>directly</u> with chemical looping combustion?

Experimental Approach


- Mixture of coal with metal oxides (CuO, NiO, Fe₂O₃ Co₃O₄ and Mn₂O₃) or bentonite supported metal oxides weight ratio: 0.2 (coal) : 3-.5(MeOx)
- Gases in reducer: N₂, CO₂
- TGA temperature segments:

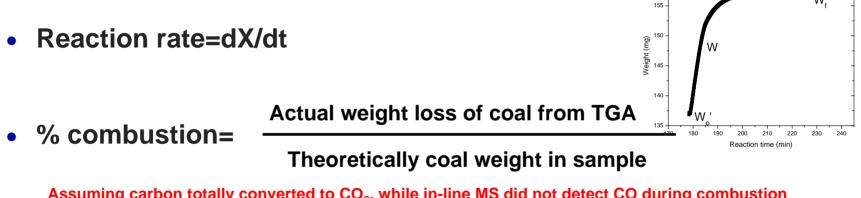
TGA Combustion of Coal in Air

Coal Components (Illinois #6,100 micron)



Comparison of heating/combustion to chemical looping combustion

TGA Profile of Coal in N₂


TGA Profile of Coal +CuO in N₂

Reaction Rate Calculations

- Fractional Reduction (X) = $(W_o W)/(W_o W_f)$
- Fractional Oxidation (X) = $(W W_o')/(W_f' W_o')$

Assuming carbon totally converted to CO₂, while in-line MS did not detect CO during combustion

Experimental oxygen consumption

Oxygen uptake (%)=

Theoretical capacity for oxygen consumption

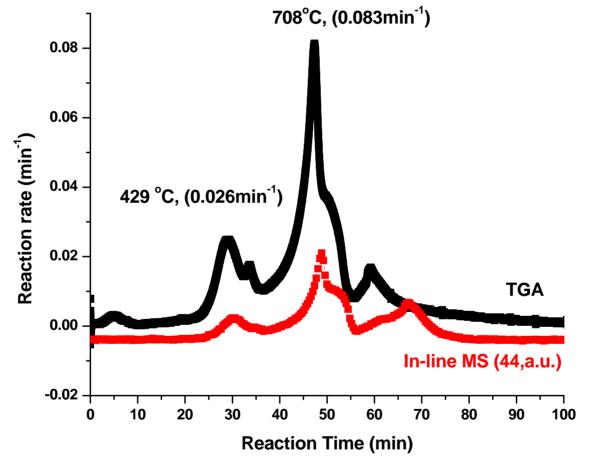
165 160

150

160

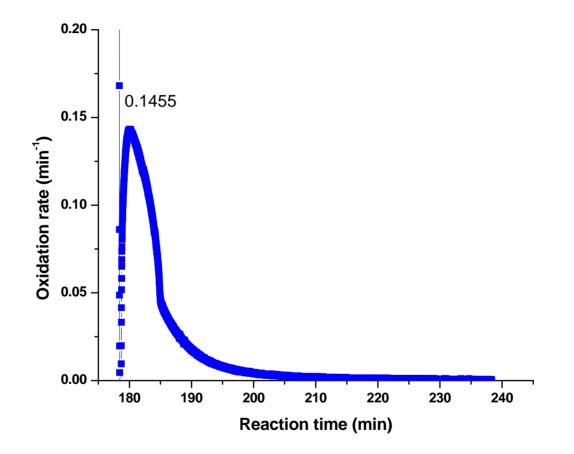
w

Reaction time (min


W

W.

Veight 9mg) 155



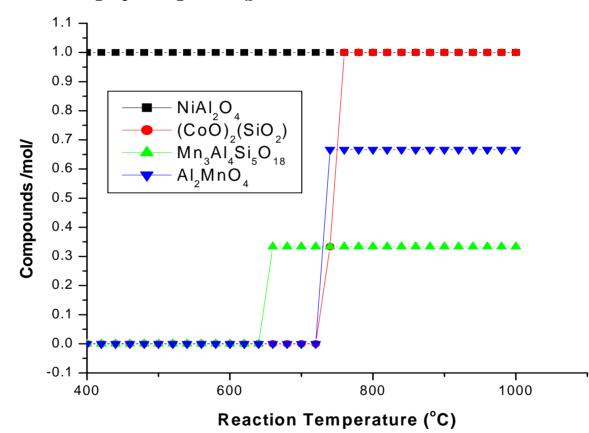
Reduction Segment of Coal+CuO in N₂

+major reaction happens at ~700 °C, which is ideal for CLC process design +CO2 combustion obtained from in-line MS matches TGA profiles TL +In-line MS does NOT detect CO

Oxidation Segment of CuO in Air at 900 °C

Faster oxidation rates than combustion rates

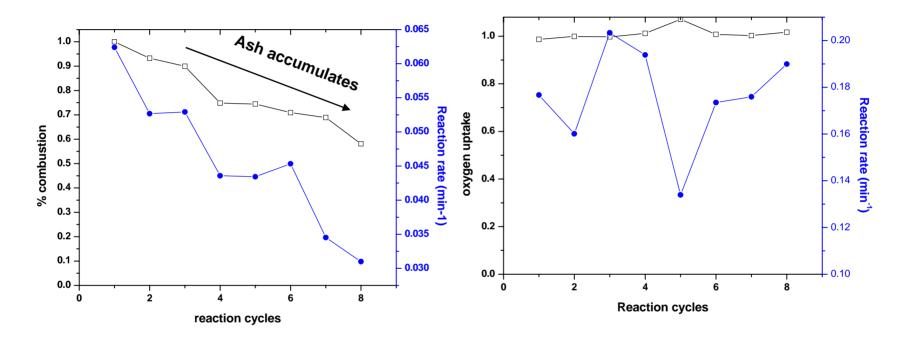
Coal-CLC of Various Metal Oxides in CO₂


	Combustion				Oxidation		
sample	Comb. Temp.(°C)	Comb. Rate (min ⁻¹⁾	% combustion	ΔH (KJ/mol)	Oxi. Rate (min ⁻¹⁾	Oxygen uptake(%)	ΔH (KJ/mol)
CuO	703	0.098	100	-96.5	0.172	98.6	-156
Fe ₂ O ₃	973	0.055	94.9	79.2	0.77	83.7Fe(II)	-347.4
NiO	993	0.061	73.05	75.2	0.84	77.5	-327.7
Mn ₂ O ₃	905	0.011	76.76	-36.1	0.42	72.2Mn(II)	-216.4
Co ₃ O ₄	781	0.096	83.3	-8.6	1.74	78.2 Co(II)	-243.9

CuO reacted at 900 °C, other metal oxides reacted at 1000 °C

Slight exothermic reaction for Mn_2O_3 and Co_3O_4 reduction Endothermic reaction for NiO and Fe_2O_3 reduction

Thermodynamic (FactSage) Calculation on Metal Oxides and Ash


(Al₂O₃:SiO₂:MeO_x=1:1:1, Temp. up to 1000 °C)

+strong interaction between ash and NiO, Co_3O_4 and Mn_2O_3 +Interaction between ash with CuO and Fe_2O_3 is NOT thermodynamically favorable

Multiple Cycle Test of CuO over Coal-CLC in N₂ (NO ash removal)

+CuO possess excellent combustion and oxidation performance in multiple cycle tests over coal-CLC

- + The combustion percentage and combustion rate decrease due to the accumulation of ash
- + Oxygen uptake and oxidation rate keep constant
- + Fair combustion and oxidation performance obtained in 8th cycle even without ash separation

Summary

• Combustion of coal feasible with metal oxides

+Metal oxides could supply oxygen for direct coal combustion

+Excellent combustion and re-oxidation performance in N2

- + Produces sequestration ready-CO₂ by recycling CO₂ in reducer
- TGA and bench scale reactor tests proved that CuO possess excellent reduction/oxidation performance, and has a potential for an excellent oxygen carrier for solid-CLC.
- Carbon dioxide can also promote the combustion reaction for some metal oxides (results not presented here).
- The reduced metal could be easily re-oxided to metal oxide for looping reaction, the oxidation rate is faster than the reduction rate.

