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Outline of Presentation

• MFIX-NG
• Polydispersed Flow
• High Resolution Gasifier
• Future Outlook
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MFIX-NG – Objectives

1. Improve the fidelity of multiphase flow models
• Balance equations and constitutive relations
• Validation studies

2. Develop fast and accurate numerical techniques
• Accurate spatial and temporal discretization
• Scalable parallel algorithms
• Verification studies

3. Develop advanced post-processing capabilities
• Data analysis 
• Visualization
• Reduced order models

Need a software 
platform for these
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The Path Forward

• Continue using/developing MFIX
• Needs much programming
• Cannot easily reuse modern software components
• Cannot take advantage of available open source 

software written in modern programming languages
• Use commercial software

• No flexibility for the concurrent development of 
theory, numerics, validation, and application

• May need to abandon MFIX open source users
• Construct software from existing software 

components
• Achieve desired features in the software
• Reduced development cost MFIX-NG
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MFIX-NG Primary (Programmatic) Goals 

• Develop software infrastructure to model 
multiphase flow processes in power and 
process industry (e.g., coal gasifiers).

• Develop and validate multiphase flow 
theory: 
• Transport equations,
• Boundary conditions, and 
• Constitutive relations.

• Develop numerical techniques for solving 
these multiphase flow equations efficiently 
and accurately.

• Increase the use of modeling for design 
and control in power and process industry.
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MFIX-NG Secondary (User-Related) Goals 

• Enable scientists to focus on model and 
algorithm development and validation, 
rather than code development and 
debugging.

• Reduce the need for scientist to 
understand the details of the underlying 
software framework, e.g., parallel 
computing.

• Reduce the development time for new 
applications by leveraging existing 
software and solver technology. 

• Allow computational scientists to explore 
new algorithms through the use and 
modification of existing software.



7 M. Syamlal, NETL, 10/29-11/1/2007

Unique Features Sought in MFIX-NG

• Script-based front-end: Physical models and 
numerical techniques are expressed in a thin 
layer of top-level code
−Fast, error-free development of novel physical 

models and numerical techniques.
• Components-based design: Software system is 

composed of replaceable units of code with well-
defined interfaces
−Reuse advanced software components developed 

at other national labs and universities
• Open-source development: Process and 

infrastructure to validate and accumulate code 
contributions from users
−Platform for exchanging and validating ideas
−User contributions deepen software capabilities
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Open Source Development

• Open Source (OS) Software
− Term coined in 1998
− Source code freely available for study, change and reuse
− Comes with a license (GPL, LGPL, …) that requires users to 

follow certain rules regarding usage and redistribution
− Success well established: Linux (operating system), Apache

(Webserver)
• Advantages

− Verification by ‘many eyes’
− Accumulation of user contributions
− Easier to exploit super computers
− Information dissemination
− Better peer review
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Goals, Objectives and Challenges (I)

• Building on the success of the MFIX flow solver, the next-
generation solver will offer
− Greater geometric and modeling flexibility

• Ability to model risers with inlets, cylinders without a centerline 
in grid, even entire apparatus

− Easier extendibility and maintainability.
• New solver will initially re-implement the MFIX solution 

algorithms and physical models.
• It will leverage externally developed libraries to easily take 

advantage of improvements made by other researchers.

• At the conclusion of the project, the new solver will
− Mimic the modeling capabilities now available in MFIX
− Offer greater geometric flexibility by the use of unstructured 

meshes
− Provide a platform for advanced multiphase solution algorithm 

development
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• Following the Unified Modeling Process 
adapted to the unique needs of the current 
project (e.g., application domain, research 
code, legacy codes, collaboration).
−User Requirements Document (URD)
−Software Requirements Document (SRD)
−Software Design Document (SDD) 
−Software Development Plan (SDP)
− Iterative Development process: Development goals 

are set every quarter based on a two-year roadmap.
−Software Development and Testing

MFIX-NG Development –1
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MFIX-NG Development –3

• Software Requirements Document (SRD)
• Explored and qualitatively evaluated a set 

of alternative frameworks and PSEs based 
on the available documentation, examples, 
etc.

•Rated each package with respect to features 
listed in SRD

•Conducted user survey to determine the 
relative importance of various features 
listed in the SRD

•Compiled the results of user survey and 
package ratings for determining the optimal 
framework
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MFIX-NG Development –4

• Software Design Document (SDD) 
•Use cases (typical ways in which the 

software will be used)
• class design diagram, collaboration 

diagrams, …External interface requirements 
(user, software, hardware).

•Performance targets, quality assurance.
•Design constraints.
•Preliminary design - top-level architecture, 

main components, dataflow charts.
•Testing strategy: unit tests, integration 

tests, verification tests
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MFIX-NG Development –5

• Software Development Plan (SDP)
•Tasks/features, benefits (limitations)
•Completion criteria
•Schedule/milestones
•Resources

• Software Development and Testing
−Two-year development time to achieve full capabilities
−Scheduled to finish FY08-Q3
−Approximately 2 FTE/year development effort

• MFIX will be maintained as a well-tested 
legacy code
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OpenFOAM Selected

• Selection of the basic software libraries was the first 
milestone.

• Exhaustive evaluation of linear solvers, problem-
solving environments, and CFD-specific libraries was 
performed.

• The OpenFOAM library was chosen as the most 
suitable.

PETSc

ROCCOM
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Framework Selection
Feature Rating % for 

Objectives

Framework

OpenFOAM

Trilinos

SAMRAI

OVERTURE

PETSc

AMROC

ROCCOM

Organization 1 2 3 4 Weighted 
Average

OpenCFD, UK 58.8

41.1

30.6

22.5

19.2

22.4

4.6

WEIGHTS  (Avg. 
of users) 0.335 0.255 0.18 0.230

CCM, Sandia

CASC, Livermore

CASC, Livermore

Argonne

CACR, CalTech

U. Illinois

46.1 52.0 39.6 100.0

3.9 26.0 56.3 100.0

0.0 34.0 41.7 62.5

3.9 38.0 0.0 50.0

23.1 0.0 0.0 50.0

0.0 20.0 0.2 75.0

7.7 8.0 0.0 0.0

Objectives: 1 – Physics representation; 2 – Numerical scheme; 
3 – SW development /maintenance; 4 – Open source

Gel et al. (2006)
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OpenFOAM Strengths

• Long development history.  Marketed as a commercial product 
for many years.

• Code base was open sourced.  A large active user group grew up 
quickly.  Many contributors from both academia and industry.  As
improvements are made to the OpenFOAM core libraries, NETL’s
next-generation solver will be able to make use of them.

• OpenFOAM is object oriented and highly CFD specific, allowing 
for concise expression of CFD algorithms.  Transport equations 
are expressed in terms of tensor calculus (i.e., div(U), grad(p)) 
rather than as coefficients stored in indexed matrices and 
vectors. 

• OpenFOAM natively supports unstructured meshes, high-order 
discretization schemes, parallel processing without need for 
special coding practices.

• OpenFOAM framework exists for treating Lagrangian particles. 
Can be used for DEM or DPM models.

• Also supports moving meshes. Can model moving baffles, etc.
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Highlights for OpenFOAM

• Standalone CFD code (OOP, 
templated C++)

• Originated from Imperial 
College (1993)

• FOAM was offered as a 
commercial code

• Released as open source in 
December 2004

• 3rd party software 
dependencies: MICO, 
Paraview, gcc, LAM/MPI 

• Active community with users 
group lists

Global weather prediction

Flow in a bearing

http://www.opencfd.co.uk/openfoam/index.html
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OpenFOAM Example Code

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)
== -fvc::grad(p)

);
solve(UEqn);

• Simple example showing the creation of a a transport 
equation for single-phase momentum

• The object U is a vector field object representing the velocity 
in every cell in the domain. The object UEqn is a vector 
matrix that represents the linear system defining the velocity 
field.

• The transient, convection, diffusion, and pressure terms are 
all neatly defined using the OpenFOAM notation.

• solve(UEqn); solves the linear system for the new 
velocity field.

( )

p
U

UU
t

U

−∇=
∇⋅∇−

⋅∇+
∂
∂

ν
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MFOAM – 1

• Initial efforts focused on learning the OpenFOAM library and 
building a prototype two-phase code.
− Followed the prototype single-phase solver codes included with the 

OpenFOAM source code.
− Included isothermal gas-solids transport.

• Included partial elimination algorithm for drag terms to promote
solution stability.

• Direct solution of the solids volume fraction equation.
• Hard-wired solids pressure relation and constant viscosities.

− Prototype mFoam code was successful in baseline testcases and 
served as the basis for the expanded solver.

− Simple ozone decomposition chemistry and oxygen and ozone 
transport equations were added to replicate a well-studied MFIX 
case.  Used as a proof-of-concept solver for reacting flows. 

• Developed a post processing program to serve as a prototype 
to replicate PostMFIX capabilities.
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MFOAM – 2

• Using the mFoam prototype code, several researchers 
began implementation of the core MFIX model 
functionality.
− Made use of CVS to maintain consistency during 

development process.
• A new storage scheme was devised to generalize 

the number of phases.
− The n-phase partial elimination algorithm was 

implemented for the momentum equations.  mFoam
could then solve flows involving a single continuous 
phase and one or more dispersed phases.

• The gas transport equation was modified to 
include the compressibility term allowing for 
variable density gas flows.

• The energy transport equation was added to each 
phase.
− The n-phase partial elimination algorithm was used to 

improve inter-phase coupling due to heat transfer.
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MFOAM – 3
• A general framework was assembled for 

handling drag models.  All of the MFIX drag 
models were transferred to mFoam using this 
new framework.

• The MFIX algebraic and PDE kinetic theory 
models were implemented, including the 
Johnson and Jackson BCs.

• The Schaeffer and Princeton frictional models 
• The Ahmadi and Simonin turbulence models 
• The momentum equations have been modified 

to include an additional term that allows for the 
solution of periodic flows driven by a pressure 
gradient.

• A baseline automated test harness has been set 
up to automatically compile and test new code 
revisions and flag any deviation from prior 
results.
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MFOAM – 4

• Adaptive time stepping algorithm used in MFIX 
was migrated to mFoam.
−This increases both the computational efficiency 

and stability by increasing the timestep when the 
solution converges smoothly and by recovering from 
failed time steps.

• Modifications made to the momentum equations to 
remove spuriously large solids velocities when 
volume fraction is low.
−Mirroring the approach in MFIX, this modification 

prevents the momentum equation from becoming 
poorly conditioned in very dilute flow regions.
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MFOAM – 5

Unstructured Mesh – no centerline.

Spouted Bed Simulation
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MFOAM – 6

• Evaluated four formats for reaction schemes and 
selected Cti format
− MFIX: easy to convert existing MFIX reaction files; 

non-standard format
− Chemkin: widely-used format; OpenFOAM already 

has a reader; format not extensible to multiple 
phases; fixed-column format prone to errors.

−OpenFOAM: similar to Chemkin format. the data is 
easier to input than Chemkin; format would be 
limited to the use with MFOAM/OpenFOAM.

− Cti: used in Cantera; easy to write and read; utilities 
for converting Chemkin files into cti format; enables 
integration with Cantera; will need a translator
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Block Solver Development
Block Solver Development 
• Equation Segregation in OpenFOAM: Matrix Support.

− Linear system and solver classes in OpenFOAM currently support scalar 
coefficients only.

− As matrix coefficients are scalar, equation segregation is enforced: for 
coupled systems or vector and tensor variables, each component is 
solved in turn.

− Segregated solvers do not provide sufficient level of coupling: a block 
matrix and solver approach is needed.

• Handling Complex Coupling
− For coupled vector and tensor variables, basic sparseness pattern follows 

from mesh connectivity. For efficient solution, this fact should be used
− Two types of coupling

• Inter-variable coupling: vector or tensor components coupled to each 
other.

• General matrix-to-matrix coupling: multiple transport equations solved 
together, with implicit handling of linearized coupling terms.

− Both approaches produce the same basic effect: choice will be made 
based on convenience in discretization and matrix assembly.
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MFOAM Future Work – 1

Sparse Matrix with Block Coefficients
− For cases of coupled vector and tensor variables, the FVM sparseness 

pattern is preserved: a vector component is coupled to other vector 
components in the same cell or to vector components in a neighboring cells.

− Example: block-coupled vector equation
• Variable organization: (ux, uy, uz).
• Ordering of each list matches the cell ordering and sparseness pattern 

matches the mesh.

− AP and AN coefficients are tensors; the rest of linear algebra generalizes 
naturally, including vector-matrix multiplication and linear solvers.
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MFOAM Future Work – 2
General Matrix-to-Matrix Coupling

− In cases where multiple equations for multiple variables are coupled in a 
general manner, a block coefficient approach is not appropriate: requires re-
ordering of coefficients

− Each matrix is assembled in isolation and placed into a block system. 
Example u1 − u2 coupling.

• [u1]: sparse matrix block containing u1 equation with implicit coupling.
• [u1 → u2]: off-diagonal block matrix containing u1 − u2 coupling terms.
• Linear solver operates on a complete block system; preconditioning is 

performed on diagonal blocks only.
• Implementation involves multiple blocks and arbitrary coupling: [u1 → u2] is 

considered a coupled interface on the [u1] block.
• Linear algebra and linear solver algorithms now operate on a block system: 

[u1 u2] is considered a single variable.
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MFOAM Future Work – 3
• Validation and Verification of mFoam

− During the current fiscal year, a testing protocol will be established.
• Will compare mFoam results to MFIX and other CFD codes as a means of 

verification.
• Will compare mFoam results to available experimental data as a means of 

validation.
− These tests will be carried out in the following fiscal year.
− Also in FY08, a careful investigation of high-order differencing schemes will be 

performed to mirror similar work done using MFIX by Guenther and Syamlal (2003).
• Performance evaluation

− A comprehensive test will be made of the computational efficiency and scalability of 
mFoam.  This will address single CPU performance as well as parallel performance 
over a tens to hundreds of CPUs.

• Advanced algorithm development
− After replicating the capabilities, new solution algorithm approaches will be 

investigated.  This will be the primary focus of research going forward.
− These will make use of the block solver capabilities as they become available.
− Also use of fractional step and explicit solution approaches.
− Investigate multiphase flux limiting schemes that use the drag to compute and cap 

fluxes for all phases in a nonlinearly coupled manner.  
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Outline of Presentation
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• Future Outlook



30 M. Syamlal, NETL, 10/29-11/1/2007

Polydispersity – Goals

• Implementation of I-A theory in MFIX ( www.mfix.org )

• Verification and validation of theory with:
− Experimental data produced at NETL, U. of Colorado and 

PSRI as well as data from the literature.
− Numerical-experiments using discrete particle techniques.

• Application of theory to large-scale coal gasifier

http://www.mfix.org/
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Motivations and Justification

• Powders found in nature and those used in industry usually have wide 
size distribution. E.g. coal used in transport gasifiers
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Motivation: results of simple shear flow
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Brief description of I-A theory
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Accomplishments
• I-A theory was implemented in MFIX open-source CFD code.

• I-A model modifications include:
− Removed drag term contribution to granular energy equation.
− Granular stresses and fluxes are now additive.
− Correct dilute limit for granular viscosity and conductivity.
− Modified Johnson-Jackson and Jenkins wall BC’s.

• Other code enhancements for polydisperse systems:
− Added 3 radial distribution functions.
− Added gas/solids drag law based on LBM.

• Code verified for simple granular shear flow.

• Code validation with experimental data:
− Currently under way using Joseph et al. (2007) data.
− Qualitative validation in dilute riser flow.
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Assessment of Kinetic Theory in Dense 
Fluidized Beds

• Assess the validity of the binary kinetic theory of Iddir & 
Arastaoopour theory (IA) (2005)
− Compare with axial segregation results of Joseph et al. 

(2007): experiments of a bidisperse fluidized bed at low 
gas velocities

• Assess the impact of a kinetic theory model in 
bidisperse fluidized beds and identify dominate terms:
− Compare predictions from:

• rigorous binary kinetic theory model of IA 
• formally monodisperse kinetic theory model of Lun et al. 

(1984) 
• without any kinetic theory model

Joseph et al. (2007) 
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Assessment of Kinetic Theory in dilute riser

• Assess the validity of the binary kinetic theory of Iddir & 
Arastaoopour theory (IA) (2005)
− Compare with radial segregation results of Mathiesen et 

al. (1999): experiments of a bidisperse dilute riser flow

• Assess the impact of a kinetic theory model in 
bidisperse riser flow and identify dominate terms that 
cause lateral segregation

Mathiesen et al. (1999)
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Fully-developed upward dense gas/solids 
flow in a channel

g

10 cm width

Glass beads :  2.4 g/cm3 density
200 &120 micron diameter
0.95 restitution coef.

Gas sup. Velocity fixed at: 5.5 m/s
Avg Solids volume fraction fixed at: 3%

Three concentration of initial powder 
mixtures was used (10, 50 and 90%).

Upward flow 
with periodic 
boundaries

1-D channel has 1 computational 
cell in flow-wise direction.

2-D channel has cell aspect ratio 
equal to one.

Johnson-Jackson wall BC with 
s = 1e-04 and ew = 0.7.weφ
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Time-averaged solids volume fraction profiles

a- Volume fraction profiles
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Time-averaged lateral momentum of major source terms
a- time-average source terms in U-mom for phase 1 (large)
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Time-averaged solids volume fraction profiles without S-S drag terms

a- Volume fraction profiles

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10X [cm]

εs

dp = 200 microns
dp = 120 microns
1-epg

b- Granular temperature profiles

0

0.05

0.1

0.15

0 2 4 6 8 10X [cm]

Θ
s [

g 
cm

2 /s
2 ]

200 microns

120 microns



41 M. Syamlal, NETL, 10/29-11/1/2007

Time-averaged particle diameter (number averaged) profiles using 
the full I-A theory

From experimental data of Mathiesen et al. 
(Inter. J. of multiphase flow, 26 (2000) 387-
419) using 120 and 185 microns glass beads.

Number density averaged particle diameter profiles
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Polydispersity Summary

• I-A theory was implemented in MFIX and 
verified using a simple granular shear flow.

• I-A theory comparison with experiments: 
−predicts the right segregation trends in dilute riser 

flow. 
−Disagreements observed in dense systems are 

currently under investigation1.

1. Gera et al. (2004)
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High Res Gasifier Objectives

• Programmatic goal: High resolution (~1 mm grid-size) 
gasifier simulations to help with the design of 
commercial-scale gasifiers

• Project goal: Capability to sufficiently resolve the CCPI 
gasifier
− Conduct a 10 M grid production simulation of CCPI 

gasifier with roughly one week turn-around time
− Develop the capability for conducting such MFIX 

simulations
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Challenges

• Simply running the gasifier simulation on a large number of 
processors (cores) will not help
− Parallel efficiency reduces below 50,000 cells per processor in typical 

CFD codes at most 200 cores, ~ ten weeks run time
• Need to use 2000 cores to reduce the turn around time

− Current gasifier simulations use 10’s of cores and achieve 20 
GFlop/s

− Increase the number of cores by 100x and the speed to 1 TFlop/s
• Current mode of I/O handling introduces a bottleneck when the 

number of cores is increased
− e.g., In a 2M-cell case the I/O time increased from1.4 % on 16 cores 

to 5.9 % on 64 cores
• Two things must be done to enable high resolution simulations

1. Increase the parallel scaling efficiency of MFIX
2. Develop the ability to do distributed I/O from 100 to 1000’s of cores
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Benchmarking

• Setup standardized test cases of increasing 
complexity (A. hydrodynamics only, B. simple 
chemistry, C. char combustion, D. coal 
gasification and combustion) 

• Benchmarking for coarse (262 K cells) and 
fine grid (2 million cells) performed for Cases 
A & B.
−Cray XT3 (PSC), AMD Opteron cluster 

(NERSC), and Cray XT4 (NCCS)
• Extensive TAU-based profiling of MFIX 

showed the need for reducing global collective 
operations
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Improve Existing Algorithm

• Reduced the number of global collective 
operations (dot products) in BiCGStab linear 
equation solver from 6 to ~3

• Reduced the communication cost  by 50%
• The net speed increase was found to be 10%
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Global collectives become expensive on a large number 
of cores because of high latency

• Communication time = Latency + (message size)/(band width)
• Latency is the time needed to initiate a message transfer and 

bandwidth is the rate of message transfer
• The size of messages passed during collective operations on a 

large number of cores is small
• Then latency accounts for most of the communication cost
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Standard BiCGStab iteration needs 6 vector-vector dot 
products (Original Algorithm)
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Eliminated 2 dot products and combined two 
into one operation (New Algorithm)

Combined 
two 
independent 
dot products 
into one
global 
operationFinal residual checked 

infrequently

3 + 1/(frequency) 
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Intermediate 
residual 
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Improve Existing Algorithm

• Use successive over relaxation (SOR) for all 
variables except for gas pressure and solids 
volume fraction
− SOR parallelizes better because it does not include 

any global collectives
− SOR routine was updated to work with the latest 

version of the code
− The gasifier test cases have been tested with this 

option and seem to run stably
− Further improvements (e.g., red-black algorithm) to 

make SOR performance independent of processor 
decomposition are being considered
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Develop New algorithm

• Evaluated two approaches for solving 
multiple equations in parallel
− Functional decomposition
− interleaving communications and computations (in 

linear equation solver) 
• Determined interleaving as the better method
• Evaluated a NBC library
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Parallel Solving of Multiple Equations
(New Algorithm)

Momentum (l=0)

Transport and physical properties, reaction 
rates (l)

Continuities (l)

Scalars (l) Momentum (l+1)

Check convergence (l)

Solve these equations in parallel; 
e.g., over 20 equations for a 
gasifier model.

(l) – iteration 
number
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Improving I/O for Massively 
Parallel Environment

• Problem: Single files that accumulate all time 
records become unwieldy to handle and slow to 
read when the grid size is large
− stopping the run and doing a restart_2 requires user 

intervention and does not retain data from before the 
restart

• Solution: Create multiple files with a user 
defined time interval
−Post-processing codes were modified to read this 

format
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Improving I/O for Massively 
Parallel Environment

• Problem: Reading large files containing species 
mass fraction data was slow

• Solution: 
− Post-processing codes were modified to read data 

only for the requested species instead of all the 
species

− Time required to post-process the results of a case 
on a 20 x 1176 x 40 grid, 16 species, and 100 time 
steps
• Original code: 715 seconds
• Modified code:  50 seconds
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Actual simulated physical time per day for 
Case D with 10 million cells
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Performance improvements achieved 

High Resolution (10M grid) Gasifier Simulation 
on 2048 cores
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Outline of Presentation

• MFIX-NG
• Polydispersed Flow
• High Resolution Gasifier
• Future Outlook
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Goal

• Ensure that by 2015 multiphase science based 
computer simulations play a significant role in the 
design, operation, and troubleshooting of 
multiphase flow devices in fossil fuel processing 
plants.

• Benefits 
− Reduce the time and cost to develop efficient fossil fuel plants
− Troubleshoot and mitigate problems
− Enable the invention of novel reactor designs for next 

generation power plants and coal refineries
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Collaboratory for Multiphase Flow Research 
(CMFR)

• Develop multiphase flow models and numerical techniques 
• Validate the models with well calibrated experiments
• Promote the use of computational tools in industrial practice
• Provide a focal point for collaboration with academic and 

national labs
• Disseminate information and attract young researchers to 

the subject
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Current Projects – CMFR

• Task 1: High Resolution Discretization Schemes for 
Multiphase Flow – TBD (WVU)

• Task 2: OpenFOAM Block Solver Development – Jasak
(Wikki/WVU)

• Task 3:  Evaluation and Benchmarking of Arches Code –
Clarke (WVU)

• Task 4: Dispersion in CFB Riser: Effect of Riser Inlet 
Configuration – Johnson and Kang (WVU), Monazam
(REM)

• Task 5:  Discrete Particle Dynamics Simulations –
McCarthy (Pitt), Higgs (CMU)

• Task 6:  Coal Partitioning/Gasifier Fouling Project –
Shadle (NETL), Kuhlman (WVU), Fruehan (CMU), 
Seetharaman (CMU), REM, NEA, PSU, LTI, SRI

• Task 7: Next generation multiphase flow solver – Prinkey
(Aeolus/WVU)

• Task 8: Image Analysis of Circulating Fluid Bed 
Hydrodynamics – Ross (WVU)

32.9 μm

Mineral particle dissolution 
in high temperature slag. 
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Extramural Projects

• Dispersion Coefficient
− D. Gidaspow, IIT

• Filtered two-fluid equations
− S. Sundaresan, Princeton U.

• Kinetic theory of polydispersed systems
− C. Hrenya, U. Colorado
− R. Fox, Iowa State U.
− S. Subramaniam, Iowa State U.
− S. Sundaresan, Princeton U.
− R. Cocco, PSRI

• Frictional flow Regime
− S. Sundaresan, Princeton U.
− S. Subramaniam, Iowa State U.
− G. Tardos, CCNY

Filtered “data” generated through highly 
resolved MFIX simulations. Andrews 
and Sundaresan (Princeton University), 
2005.
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NETL website:
www.netl.doe.gov

Visit Our Websites

Fossil Energy website:
www.fe.doe.gov

http://www.netl.doe.gov/
http://www.fe.doe.gov/
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