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Recent scientific studies are rapidly advancing novel technological improvements and 
engineering developments that demonstrate the ability to minimize, eliminate, or facilitate 
the removal of various contaminants and green house gas emissions in power generation.  
The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide 
mitigation not only because of its higher efficiency as compared to conventional coal firing 
plants, but also due to a higher driving force in the form of high partial pressure. One of the 
novel technological concepts currently being developed and investigated is membranes for 
carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using 
membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or 
pressures. Our earlier research studies examined the use of ionic liquids on various supports 
for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-
3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our 
initial studies with the following supports:  polysulfone (PSF), poly(ether sulfone) (PES), and 
cross-linked nylon. The PSF and PES supports had similar performance at room temperature, 
but increasing temperature caused the supported membranes to fail. The ionic liquid with the 
PES support greatly affected the glass transition temperature, while with the PSF, the glass 
transition temperature was only slightly depressed.  The cross-linked nylon support 
maintained performance without degradation over the temperature range 37-300°C with 
respect to its permeability and selectivity. However, while the cross-linked nylon support was 
able to withstand temperatures, the permeability continued to increase and the selectivity 
decreased with increasing temperature. Our studies indicated that further testing should 
examine the use of other ionic liquids, including those that form chemical complexes with 
CO2 based on amine interactions. The hypothesis is that the performance at the elevated 
temperatures could be improved by allowing a facilitated transport mechanism to become 
dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It 
was found that using the amine-based ionic liquid did improve selectivity and permeability at 
higher temperature. The hypothesis was confirmed, and it was determined that the type of 
amine used also played a role in facilitated transport. Given the appropriate aminated ionic 
liquid with the cross-linked nylon support, it is possible to have a membrane capable of 
separating CO2 at IGCC conditions. With this being the case, the research has expanded to 
include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in 
membrane poisoning or degradation. This communication will discuss the operation of the 
recently fabricated ionic liquid membranes and the impact of gaseous components other than 
CO2 on their performance and stability. 
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R&D Focus is on CO2
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Greenhouse Gas Emissions

• Anthropogenic CO2
– One-third from power 

generation point sources
– Majority of point sources burn 

coal

• Reduction CO2 emissions
– Switch to renewable energy
– Increase process efficiency
– Use lower-carbon content 

fuels or sources
– Capture and sequester CO2
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Critical Separation Challenges
Post- versus Pre-Combustion

• Post-combustion (PCC)
– Low pressure + dilute volume = 

high volume of gas
– Trace impurities in flue gas →

reduce CO2 adsorbing processes
– Compressing captured CO2 →

large parasitic load
• Pre-combustion (IGCC)

– CO2 concentration (40 volume %)
– High pressure and temperature
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IGCC with CO2 Capture
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Water-Gas Shift

CO CO2H2H2O+ +

• Conventional
– Cooling to 260oC
– Additional Steam

• Improvement through Separation
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Supported Liquid Membranes

• High liquid phase diffusivity increases permeability
• Potential to add complexes increasing CO2 solubility
• Problems

– Evaporation of liquid
– Blowout

High Solubility
Liquid

Solid SupportSolid Support

Sweep InFeed Out

Feed In Sweep Out
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Ionic Liquids:
A Solution to Evaporative Failure

• Negligible Vapor Pressure
• Thermally Stable above 200oC
• High CO2 Solubility Relative to H2, N2, and CH4
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Several Fabrication Options

Porous Substrate

Dense Substrate

Polymerized Liquid
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Constant Pressure Flux Measurements
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Developmental Progression
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Support Failure Limits Performance
[HMIM][Tf2N] on PSF
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Cross-linking Stabilizes Support
[HMIM][Tf2N] on Cross-linked Nylon
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Loss of Selectivity at High Temperature:
A Problem of Mechanism

Permeability = Solubility X Diffusivity
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Formation of Chemical Complexes:
A Potential Solution
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Facilitated Transport Increases Performance
[NH2PMIM][Tf2N] on Cross-linked Nylon
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Other Syngas Constituents Must be Considered

Coal
(Illinois #6)
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CO Increases CO2 Permeability
[HMIM][Tf2N] on Cross-linked Nylon
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Contaminants Eliminate Facilitated Transport
[NH2PMIM][Tf2N] on Cross-linked Nylon

1000/T 
K-1

2.0

C
O

2
P

er
m

ea
bi

lit
y 

B
ar

re
r

150°C 100°C 75°C 50°C

2.2 2.4 2.6 2.8 3.0 3.2 3.4
10

1000

100

20% H2, 20% CO2, 5% CO, bal. Ar
20% H2, 20% CO2, bal Ar

20% H2, 20% CO2, 0.9% H2S, bal. Ar



1000/T 
K-1

2.0

150°C 100°C 75°C 50°C

2.2 2.4 2.6 2.8 3.0 3.2 3.4
1

100

C
O

2/H
2

S
el

ec
tiv

ity

10

20% H2, 20% CO2, 5% CO, bal. Ar
20% H2, 20% CO2, bal. Ar

20% H2, 20% CO2, 0.9% H2S, bal. Ar

Contaminants Eliminate Facilitated Transport
[NH2PMIM][Tf2N] on Cross-linked Nylon



23

Hypothesis: Contaminants Interfere with 
Complex Formation
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Summary 

• High temperature CO2 selective membranes may 
facilitate water-gas shift and enhance IGCC efficiency

• Ionic liquid membranes with cross-linked supports may 
be employed at water-gas shift conditions

• Fabrication of temperature-stable facilitated transport 
membranes is possible with ionic liquid transport media

• Facilitated transport membranes based on amine 
complexes show significant vulnerability to H2S and CO

• Other complexes will be explored
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