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Abstract.  
The National Spherical Torus Experiment (NSTX) [Ono, M., et al., Nucl. Fusion, 44, (2004), 

452.] is targeting long pulse high performance, non-inductive sustained operations at low aspect 

ratio, and the demonstration of non-solenoidal startup and current rampup.  The modeling of 

these plasmas provides a framework for experimental planning and identifies the tools to access 

these regimes.  Simulations based on NBI (Neutral Beam Injection)-heated plasmas are made to 

understand the impact of various modifications and identify the requirements for 1) high 

elongation and triangularity, 2) density control to optimize the current drive, 3) plasma rotation 

and/or feedback stabilization to operate above the no-wall β limit, and 4) Electron Bernstein 

Waves (EBW) for off-axis heating/current drive (H/CD).  Integrated scenarios are constructed to 

provide the transport evolution and H/CD source modeling, supported by rf and stability 

analyses.  Important factors include the energy confinement, Zeff, early heating/H-mode, 

broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0.  Simulations 

show that non-inductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, κ≈2.5, βN≤5, 

β≤15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy 

confinement to experiments.  The non-inductive sustained high β plasmas can be reached at 

IP=1.0 MA, BT=0.35 T, κ≈2.5, βN≤9, β≤43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 
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MW of EBW H/CD, density control, and 25% higher global energy confinement than 

experiments.  A scenario for non-solenoidal plasma current rampup is developed using High 

Harmonic Fast Wave (HHFW) H/CD in the early low IP and low Te phase, followed by NBI 

H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s. 

 

I. Introduction 
 
The National Spherical Torus Experiment (NSTX) will provide the physics basis to assess the 

fusion potential of the spherical torus concept[1].  In order to do this NSTX is targeting four 

specific goals; operation with 100% of the plasma current supplied non-inductively for more 

than a current redistribution time (τCR), operation of high β (β = 2µo〈p〉/BTo
2 ≈ 30-40%, βN  = 

β/(IP/aBT) > βN
no-wall) and high energy confinement (H98(y,2) > 1.2, global energy confinement 

multiplier [2]) plasmas for several energy confinement times, demonstration of non-solenoidal 

breakdown/startup and plasma current rampup, and the integration goal of operating high β 

plasmas with high confinement and 100% of the plasma current supplied non-inductively for 

several current redistribution times.  Integrated simulations are performed to determine the 

requirements for NSTX to meet these goals by reconstructing experimental discharges and 

projecting to these advanced plasma configurations.  In addition, where little experimental 

information exists, reasonable assumptions and theoretical models are applied until such 

information is available.  The use of simulations on NSTX is expected to evolve as physics 

models are developed, experimental results are available, and integrated discharge simulation 

tools improve. 

II. Computational Approach 

The Tokamak Simulation Code (TSC)[3] is used for the predictive time-dependent transport 

simulations.  This code solves the axisymmetric 2-dimensional MHD-Maxwell’s equations on a 

rectangular grid in (R,Z) space.  1-dimensional flux surface averaged transport equations are 

solved for energy, particles, and current density utilizing pre-defined transport coefficients (from 

theoretical models or experimental data).  The plasma is free-boundary so that surrounding 

conducting structures and poloidal field coils are included, allowing feedback systems to be 
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incorporated.  The code also has numerous peripheral physics models for bootstrap current, 

sawtooth evolution, ripple losses, etc. 

TRANSP[4] is used in the interpretive mode, where it receives equilibrium reconstructions from 

the experiments, ion and electron temperature profile data, electron density profile data, Zeff 

profile data, plasma rotation profile data, and solves flux conservation equations governing flux 

surface averaged 1-dimensional transport for energy, particles, current density, and momentum.  

The current density is typically not evolved, but constrained by the equilibrium reconstructions 

provided by EFIT.  The recent introduction of the Motional Stark Effect (MSE) diagnostic on 

NSTX gives considerably greater confidence in this constraint.  The neutral beam injection 

(NBI) properties in the plasma are calculated with NUBEAM[5,6], a Monte Carlo orbit 

following algorithm.  TRANSP contains several peripheral physics models, fast particle physics, 

and neutral particle effects.  

The CURRAY[7] code is a 3-dimensional ray-tracing calculation for rf waves in the frequency 

range from ion cyclotron to lower hybrid.  It is used here to examine High Harmonic Fast Wave 

(HHFW) heating and current drive.  The ray equations are based on the cold dispersion relation, 

with relevant thermal electron corrections.  Absorption mechanisms include electron Landau and 

transit time magnetic pumping (TTMP), ion cyclotron resonances at the fundamental and higher 

harmonics for thermal and slowing down distributions. At present, beam energetic ion absorption 

is modeled by an equivalent Maxwellian distribution with a characteristic temperature and 

anisotropy.  The GENRAY and CQL3D[8,9] codes are used to establish the Electron Bernstein 

Wave (EBW) deposition and current drive.  GENRAY is a ray-tracing calculation based on the 

Stix hot plasma, non-relativisitic dispersion relation.  CQL3D is a relativistic Fokker-Planck 

calculation which solves for the bounce-averaged, 2-dimensional (momentum space) electron 

distribution function.  The wave absorption, although calculated in GENRAY, is recalculated 

after coupling the ray information to the Fokker-Planck calculation, including relativistic effects 

and is consistent with the resulting non-Maxwellian distributions.   

Some ideal MHD stability analysis will be given for selected scenario flattop plasmas.  These are 

analyzed using an equilibrium description directly from TSC, which is read into the fixed 

boundary flux coordinate equilibrium code JSOLVER[10].  JSOLVER recalculates the 

equilibrium with high resolution for stability analysis.  High-n ballooning stability is calculated 



 4 

with BALMSC[11], and n=1 and 2 external kink stability is assessed with PEST2[12] or 

DCON[13].  The wall models used in the low-n stability analysis are shown in Fig. 1, one which 

is aligned with the actual conducting structure locations in NSTX, and the other intended to be 

more conservative to account for the nonaxisymmetries present in the NSTX structures.  Work to 

develop an axisymmetric equivalent model of the actual 3-dimensional structures using 

VALEN[14] is ongoing and will improve the identification of stability boundaries.  

III.  Experimental Progress on Long Pulse Discharges in NSTX 

Substantial progress has been made in producing long pulse discharges in NSTX, and this will be 

briefly discussed by using a single discharge from the last three run campaigns; 109070 (2002), 

112546 (2004), and 116313 (2005).  The pulse lengths for these discharges are 0.55 s, 1.05 s, and 

1.50 s, respectively, the last of which reached the toroidal field coil I2t heating limit.  In the 2002 

run period, another discharge actually lasted longer than 109070, with similar parameters, out to 

0.9 s, but had data acquisition problems and was not analized.  Discharge 109070 had IP = 800 

kA and BT = 0.5 T, discharge 112546 had IP = 800 kA and BT = 0.5 T, and discharge 116313 had 

IP = 750 kA and BT = 0.45 T.  Shown in Fig. 2 are the plasma currents, neutral beam injection 

(NBI) heating trajectories, plasma elongations, and internal self-inductances.  The two later 

discharges, 112546 and 116313 utilize an early heating and H-mode transition.  Here 2 of the 3 

NB sources are injected while the plasma current is being ramped up, and the 3rd source is 

injected near the end of the plasma current ramp.  A flat spot is made in the plasma current ramp 

at about the time that the 2 NB sources are injected inducing an H-mode with the plasma current 

at roughly 450-500 kA.  The earlier discharge 109070 injected only 1 NB source during the 

current ramp, and 2 after the current ramp was completed.  For this case the H-mode does not 

occur until the plasma current is at its full value of 800 kA.  The early onset of the H-mode 

causes the plasma to consume significantly less volt-seconds in the early phase of the discharge, 

creating longer flattop capability from the solenoid.  From Fig. 2, the discharge pulse length has 

been extended progressively each run campaign and the plasma elongation is routinely above 

2.25 for the recent discharges.  One of the more interesting results from the 2005 run period is 

the sustainment of the current profile, shown as li(1), for about 3 current redistribution times, 

versus a constantly rising li(1) value for the 2004 run period.  The low value of li(1), about 0.6, 

indicates a broad current profile which is attributed to the bootstrap current, since the NBI 
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current drive is peaked on axis, and as will be discussed later the bootstrap fraction reached over 

50%.  

Shown in Fig.  3 are the βN, peak density, peak electron temperature, and surface voltage as a 

function of time for the 3 discharges.  The discharge 109070 has a much higher electron 

temperature than the two discharges with an early H-mode, which results in a very low surface 

voltage.  This higher temperature can not be attributed to the slightly lower density, and this 

plasma likely obtained an enhanced confinement regime.  All the discharges have a constantly 

rising density, so that a longer pulse length ultimately ends up at a higher density.  In fact, 

116313 reaches just over 90% of the Greenwald density (nGr = IP/πa2).  All 3 discharges reach 

approximately βN = 6, with 109070 disrupting, while the two more recent discharges have the 

onset of MHD that reduces their stored energy.  Analysis indicated that 109070 may have 

disrupted from reaching the with-wall n=1 external kink limit[15].  Discharge 112546 is 

terminated after the NBI was shutoff at 1.0 s.  Discharge 116313 continues for 0.5 s after a drop 

in the stored energy making βN drop from 6.0 to 4.5, with the discharge ending from a 

preprogrammed shutdown of the toroidal field coil.  The most striking differences between these 

discharges is the confinement regime between 109070 and the recent discharges 112546 and 

116313, and the different current profile (li) evolutions between 112546 and 116313.  Analysis 

of these differences is intended to provide the basis for discharge optimization in the future.  

IV. Simulations of 100% Non-inductive Sustained Plasmas for τ flat > τCR Based on 

Discharge 109070  

Initial discharge simulations to produce 100% non-inductive current plasmas were based on the 

discharge 109070. The discharge 109070, which was NBI heated, is used as the basis for these 

simulations because it achieved 50% non-inductive current fraction, a βN exceeding 6.0, and an 

H98(y,2) value of 1.25, with an IP and β flattop time of about one current redistribution time.  The 

factor H98(y,2) represents a multiplier on the IPB98(y,2) global energy confinement scaling 

developed in ref[2].  For this discharge IP = 800 kA, BT = 0.5 T, R = 0.88 m, a = 0.59 m, 

elongation κ = 2.05, triangularity 〈δ〉 = 0.45, bootstrap current IBS = 240 kA, and neutral beam 

driven current INB = 160 kA, all evaluated at 450 ms.  A benchmark calculation in TSC to 

reproduce the discharge behavior was performed by taking the plasma H-mode properties at 0.45 



 6 

s, prior to any MHD in the discharge, and applying it throughout the H-mode phase, from 0.2 to 

0.55 s.  The thermal diffusivities, density profile, Zeff profile, NB heating profile, fast ion density 

and pressure, and NB driven current were obtained from TRANSP analysis of the discharge.  

Prior to 200 ms a theoretical L-mode model is used for the thermal diffusivities for electrons and 

ions prior to the H-mode transition, both in the simulations of the experiments and the 

projections.  Shown in Fig. 4 are the peak electron and ion temperatures as a function of time in 

the discharge and the TSC simulation, showing reasonable agreement, although not reproducing 

the L to H transition phase well, as would be expected.  Also shown are the profiles from the 

simulation at 0.45 s, showing the safety factor, thermal diffusivities, temperature profiles, and 

density profile.  Several other parameters were matched such as li, loop voltage, plasma shape, 

and stored energy.  In order to project this discharge to new plasma parameters, the thermal 

diffusivities are spatially fixed and scaled by the IPB98(y,2) scaling, the density and Zeff and 

their profiles are prescribed, and TRANSP NBI characteristics listed above are used. 

The simulation of 109070 demonstrated that the constantly rising density was suppressing the 

NBI driven current, and that the on-axis safety factor reached the vicinity of 1.0 around the 

disruption time of 0.55 s.  In addition, the bootstrap current was unaffected by the density rise.    

In order to increase the non-inductive current fraction we maintain the toroidal field at the 

109070 value of 0.5 T, to help keep the safety factor above 1.0.  This toroidal field value has a 

maximum pulse length of 1.5 s. The plasma current is kept at 800 kA, and the absorbed NBI 

power is 5.5 MW.  The plasma elongation was increased from 2.0 to 2.5 to enhance the bootstrap 

current fraction, the density was reduced from 0.5 to 0.3x1020 /m3 and assumed to be controlled 

to elevate the NBI driven current, and more NBI power was injected earlier to induce an early H-

mode.  The NBI source injection for 109070 was the 1st source at 0.10 s, the 2nd source at 0.20 s, 

and the 3rd source at 0.25 s.  For the early heating scenario 2 sources are injected at 0.10 s, and 

the 3rd source is injected at 0.20 s.  The NBI power absorption in the plasma takes account of the 

weaker confinement of the NB fast ions at lower plasma currents, which reduces the absorbed 

power, and can have a significant effect on the safety factor evolution, as will be discussed later.  

Shown in Fig. 5 are the plasma current and central safety factor for 109070 (pink) and the 

projected discharge (blue).  For the projected discharge the non-inductive current fraction 

reaches 92%, and the central safety factor reaches 1.0 at 1.5 s, which is the maximum pulse 

available.  The central safety factor drops during the discharge because the NBI driven current is 
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centrally peaked, but the early heating and H-mode transition raises the safety factor early in the 

discharge so it takes significantly longer to reach 1.0 compared to 109070. The predicted 

bootstrap and NBI currents are each 355 kA, βN reaches 4.7 and the H98(y,2) factor is 1.23.  Fig. 5 

shows the parallel current densities for 109070 (pink) and the projected discharge (blue), which 

show that 109070 has considerable inductive current in its profile (the difference between the 

total and the NBCD and bootstrap components), while the projected case is aligned with the non-

inductive current sources.  The projected case also has a higher on-axis current density than 

109070 since it has relaxed during its longer pulse length, while 109070 has not relaxed.  This 

projected discharge is one example of several variations of the three critical features (and energy 

confinement) cited above that were examined to produce 100% non-inductive plasmas.  

V. Simulations of 100% Non-inductive Sustained Plasmas for τ flat > τCR Based on 

Discharge 116313 

The recent discharge 116313 (2005) achieved a bootstrap current fraction approaching 50%, and 

a total non-inductive current fraction of over 70%.  In addition, βN was sustained at 5.5-6.0 for 

about 2 τCR, the internal self-inductance was maintained for 3 τCR, and the plasma current was in 

flattop for about 5 τCR. For this discharge IP = 750 kA, BT = 0.45 T, R = 0.88 m, a = 0.59 m, 

elongation κ = 2.3, triangularity 〈δ〉 = 0.65, bootstrap current IBS = 400 kA, and neutral beam 

driven current INB = 80 kA, all evaluated at 980 ms.  The energy confinement in this discharge 

was lower than that for the discharge 109070, indicated by the lower electron and ion 

temperatures between 0.2 and 0.5 s, while the densities and injected powers were similar.  A 

benchmark calculation was done using TSC to reproduce the discharge.  In this case a slightly 

different procedure was used than in the case of 109070.  The experimental density profiles, 

electron and ion temperature profiles are input to TSC, and the NBI power deposition profiles are 

obtained from a TRANSP run of the discharge using EFIT reconstructions with the MSE 

including the Er correction from plasma rotation. An algorithm is used in the TSC code allowing 

it to determine the thermal diffusivities for ions and electrons while still solving a predictive 

simulation[16].  The plasma density is forced to follow the experimental data.  The free-

boundary evolution of the plasma is provided by the experimental poloidal field coil currents, 

and feedback control systems on the plasma radial and vertical position, and plasma current.  

Shown in Fig. 6 are the peak electron and ion temperatures from the TSC simulation and from 
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the data, indicating reasonable agreement.  Also shown is the evolution of the density, indicating 

that there is substantial density profile peaking, which is known to enhance the bootstrap current.  

Various plasma profiles are also shown in Fig.6, demonstrating that the electron and ion 

temperature profiles are quite different from those of 109070, in addition to the density profile.  

In Fig. 7 the contributions to the plasma current are given, showing that the bootstrap current is 

reaching 400 kA, more than 50% of the plasma current, while the NBCD is suppressed and only 

reaches about 80 kA between 0.5 and 1.0 s.  The total non-inductive current fraction is exceeding 

70%.  Also shown is the time evolution of the safety factor on axis from the TSC simulation and 

the EFIT reconstructions with MSE constraint.  The agreement is reasonable, although the phase 

between 0.2 and 0.4 s requires further improvement.  Regardless, both trajectories indicate that 

the safety factor did not reach 1.0.  However, the MHD spectrum (Mirnov measurements) shows 

that a low frequency n=1 mode emerges at about 1.05 s, and persists to the end of the discharge.  

The plasma stored energy drops during this phase bringing βN from 6.0 to 4.5.  It should be noted 

that once a low-n MHD mode is present in the plasma, an axisymmetric simulation like that with 

the TSC will not reproduce the safety factor since it doesn’t contain the physics models for this.  

However, it is reproducing the loss in stored energy as a result of this MHD, which results in the 

safety factor (and other parameters) following a trajectory that is inconsistent with the 

experiment. 

It is of interest to understand the difference between the two discharges 109070 (2002) and 

116313 (2005), since they have strongly different energy confinement, which may be the result 

of different safety factor profile evolutions.  In fact, for 109070 at 0.45 s, the peak electron 

temperature is nearly twice, and the peak ion temperature is three times the peak temperatures for 

116313.  It is found in the simulations that the H-mode transition and the NBI power absorption 

at that time plays a role in the formation of reversed shear in the safety factor profile.  The 

discharge 109070 undergoes an H-mode transition at 0.2 s, when the plasma current is at its 

maximum of 800 kA, and the 2nd NB source in injected.  The 3rd NB source is injected at 0.25 s.  

The simulations indicate that at 0.2 s the safety factor profile is monotonic, but after the 

transition and heating, it becomes reversed, and this reversal persists during the discharge, at 

least until after 0.45 s.  In the more recent discharge 116313, the early heating and H-mode 

technique is being used.  In this case the H-mode transition occurs at about 0.085 s during the 

plasma current ramp, with the plasma current at 450-500 kA.  At this time 2 NB sources are 
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injected in rapid succession, but at this lower current, the NBI power absorbed by the plasma is 

low due to losses of the fast ions.  Although this heating seems to mildly amplify the reversed 

shear in the safety factor already present from the IP ramp, it is not adequate to maintain it.  The 

shear reversal is lost by 0.15 s, which is before the plasma current has reached its maximum 

value of 750 kA.  The safety factor profiles from the simulations are shown in Fig. 8.  The safety 

factor profiles from 116313 determined from EFIT reconstructions with the MSE constraint 

(including Er corrections) confirms this evolution in the safety factor profile found in the TSC 

simulation.  The MSE diagnostic was not available during the 2002 run campaign.  This 

difference in the early formation leads to higher energy confinement (H98(y,2) = 1.25 versus 1.1) 

in 109070 than 116313, however, the later discharge has better sustainment properties.  Future 

simulations will examine how changes in the heating and plasma current trajectories can produce 

profile evolutions that fall between these two cases, in order to balance the confinement and 

MHD stability properties. 

Since the most recent long pulse experiments have demonstrated two of the features highlighted 

by simulations to achieve 100% non-inductive current, high κ and early heating/H-mode, it is 

useful to examine the impact of density control on these discharges.  In these simulations the 

plasma density profile is prescribed by an analytic profile, and its magnitude is specified.  The 

thermal diffusivities are taken from the TSC reproduction simulation of discharge 116313 at 4 

time slices (t = 0.10, 0.25, 0.50, and 0.75 s) and interpolated/extrapolated for other time points.  

These are spatially fixed and then scaled by the IPB98(y,2) global energy confinement scaling to 

account for changes in global parameters.  The NBI characteristics are taken from TRANSP.  

Shown in Fig. 9 are the central safety factors as a function of time for 4 cases, two with peaked 

density profiles, and two with broad density profiles, and each of these with higher and lower 

energy confinement.  The plasma density is reduced to 0.42 x 1020 /m3, from the reference value 

of 0.92 x 1020 /m3 and held fixed in the flattop.  This results in peak electron temperatures of 

1.05-1.5 keV.  The point at which the central safety factor reaches 1.0 is designated by the 

circles.  The trajectories indicate that in order to keep the safety factor above 1.0, higher 

confinement is beneficial since it increases the bootstrap current, although it also tends to 

increase the NB driven current as well.  The peaked density cases are also doing better in this 

regard. The n(0)/〈n〉 = 1.7 and H98(y,2) = 1.2 case yields a non-inductive current fraction of 88%, 

while the H98(y,2) = 1.1 yields 78%.  The n(0)/〈n〉 = 1.15 and H98(y,2) = 1.15 case yields a non-
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inductive current fraction of 73%, while the H98(y,2) = 0.93 yields 53%.  Examining the highest 

non-inductive current case with n(0)/〈n〉 = 1.7 and H98(y,2) = 1.2, Fig. 9 shows the parallel current 

densities for the reference discharge 116313 and the projected discharge.  The NBCD is 

increased from 80 kA to 350 kA, and the bootstrap current is reduced from 400 kA to 275 kA.  

The drop in the bootstrap current is due to an overall drop in the plasma stored energy when 

lowering the density.  The NB current density is much higher in the core and is peaking the total 

current density over that from the reference discharge.  Overall, these simulations, based on the 

energy confinement of discharge 116313, indicate that the lower density is beneficial for raising 

the NB component to the non-inductive current, although this must be balanced with its tendency 

to drive the central safety factor below one.  Higher densities will be pursued to optimize this 

tradeoff. 

VI. Simulations of 100% Non-inductive Sustained High β  Plasmas for τ flat >> τCR Based on 

Discharge 109070 

The integration goal for NSTX is to combine the 100% non-inductive sustainment and high β for 

times much longer than a current redistribution time, so as to produce a plasma configuration that 

can be projected to steady state high fusion performance.  The discharge 109070 (2002) is used 

as the reference for projecting to this plasma regime.  Identified in the 100% non-inductive 

plasma projections were three critical features for reaching that goal; higher κ, early heating/H-

mode transition, and density control.  These are also required for these high β cases, but we will 

need to add higher energy confinement, Electron Bernstein Wave (EBW) off-axis current drive, 

and some degree of broadening of the NB driven current to reach the highest β’s.  The toroidal 

field is lowered to 0.35 T, the EBW is assumed to provide 3 MW of power to the plasma, and the 

NB energy is increased to provide 6.75 MW. The decrease in the toroidal field and any increase 

in plasma current are balanced against getting the various CD sources (including bootstrap) to 

provide the entire current and avoid the safety factor getting too low.  The lower BT allows the 

available flattop time to increase to 3.5 s.   

Due to the low toroidal field typical of spherical tori, the plasma is overdense, with ωpe
2/ωce

2 

>>1, and conventional electron cyclotron waves can not propagate.  EBWs can propagate in 

these plasmas and are strongly absorbed at the cyclotron resonances.  These EBWs can be 
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produced by mode conversion of electron cyclotron waves in the vicinity of the upper hybrid 

layer, which is near the plasma surface on the low field side for ST parameters.  Shown in Fig. 

10 are the results of analysis with the GENRAY/CQL3D codes to determine the current drive 

deposition of the EBWs in NSTX projected plasmas at β = 20 and 40%, and at 14 and 28 GHz.  

The calculations show that the current is driven off-axis in a similar location over this range, 

with current drive efficiencies ranging from 32 to 45 kA/MW.  The current drive arises from the 

Ohkawa effect[17], rather than the conventional Fisch-Boozer effect, and therefore is driven 

opposite to the direction of the launched waves.  The large trapped particle fraction on the low 

field side of the plasma at low aspect ratio leads to the high current drive efficiency  The heating 

and CD deposition results from GENRAY/CQL3D are used in the simulations, and further 

details can be found for NSTX in ref[9]. 

Two cases are identified from the simulations for the high β 100% non-inductive regime, one 

with IP = 800 kA and the NB driven current density and power deposition from TRANSP 

analysis of 109070, and one at 1.0 MA utilizing an arbitrary broadening of the power deposition 

and current density profile.  The lower current case requires 10% higher energy confinement 

than 109070, has an on axis density of n20(0) = 0.44, βN = 8.2 and β = 31%.  The central safety 

factor drops to 1.2 and remains there.  There is 433 kA of bootstrap current, 227 kA of NB 

driven current, and 105 kA of EBW current, with the non-inductive current fraction equal to 

100%.  The higher current case requires 25% higher energy confinement than 109070, has an on 

axis density of n20(0) = 0.42, βN = 8.9, and β = 42%.  The central safety factor drops to 1.7 and 

remains there.  There is 461 kA of bootstrap current, 390 kA of NB driven current, and 100 kA 

of EBW current, with the non-inductive current fraction equal to 100%. Shown in Fig. 11 are the 

time evolutions of the central safety factors and the parallel current densities for the two 

projected plasmas.  The broadening of the NB driven current profile in the higher β case allowed 

access to higher plasma current without forcing the central safety factor too low.  In order to 

examine this possibility on the experiment, efforts to characterize the NB driven current profile 

under various high and low frequency MHD, high and low toroidal field, as well other operating 

conditions are underway.  An interesting alternative is provided by the recent long pulse 

experiments (116313) that obtain strong density peaking, high density, and higher bootstrap 
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current, which could serve the same purpose of displacing more of the non-inductive current off-

axis.   

The current redistribution times for these plasmas are 0.5 to 0.7 s, yielding roughly 4-6 current 

relaxation times within the plasma current flattop.  Both these plasmas are stable to n = ∞ 

ballooning modes and n = 1 and 2 external kink modes with a wall approximately at the NSTX 

structure locations.  The structure models used for the low-n stability are shown in Fig. 1.  Since 

these plasmas exceed the no-wall β limit they will require resistive wall mode stabilization from 

the plasma rotation and/or feedback coils.  The long pulse experimental plasmas described in 

Section III already exceed the no-wall β limit and are sustained by plasma rotation. Analysis 

indicates that simultaneous high κ and δ, off-axis CD from EBWs, elevated q(0) above 1.0, and 

RWM stabilization are critical to accessing this stable high β regime. 

VII. Simulations of Non-solenoidal Current Rampup 

The non-solenoidal initiation and current rampup is a critical goal of the ST program since its 

attractiveness is directly tied to eliminating the OH central solenoid on the inboard side of the 

device and allowing access to compact geometry.  A discharge to achieve this goal can be 

divided into three phases; the breakdown and startup with Coaxial Helicity Injection (CHI) or the 

outer poloidal field coils (described elsewhere[18,19]), the early plasma current rampup and 

heating  with High Harmonic Fast Waves (HHFW), and the later plasma current rampup and 

heating from both HHFW and NBI.  The first phase is not modeled here and will not be 

discussed further in this study.  The time scales required for non-inductive current rampup are 

long compared to those required with inductive current rampup, since the inductive ramp rate is 

limited by the current redistribution time at the plasma edge while the non-inductive current 

ramp rate is limited by the current redistribution time at the plasma center[20]. It is possible to 

form a “current hole” during strong non-inductive current rampup, however, the drive for this is 

the time dependent increase in off-axis non-inductive current, which cannot be sustained 

indefinitely.  For the present simulations current holes are avoided, since they can not presently 

be treated in the TSC.  The available flattop is determined by the TF coil, ranging from 1.5 s at 

0.5 T to 5.0 s at 0.3 T.    
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Virtually no experimental information is available for this type of discharge on NSTX, so that 

simulations must rely on reasonable assumptions and theoretical models.  These assumptions are 

being examined critically based on experimental results as they become available.  The 

simulations assume that the plasma starts the non-inductive rampup at IP = 100 kA, provided by 

the initiation phase, which is treated in the code as inductive current.  HHFW is the heating and 

current drive source in this low IP and low Te phase, and NBI is added in the higher IP phase 

when the IP rate of increase is slowing down.  The toroidal field is 0.45 T allowing a maximum 

of 1.8 s of pulse length.  In the low IP phase the HHFW power is ramped slowly to avoid current 

hole formation, while the density is ramped to keep the temperature sufficiently low to access 

short core current redistribution time scales.  In order to keep the temperature from increasing 

too fast in this phase the plasma is limited on the inboard wall to avoid transition to H-mode.  

The peak electron temperature reaches 1.3 keV, while the density ramps up to 0.3×1020 m-3 over 

0.3 s.  Around 0.3-0.4 s the plasma is diverted, allowing an improvement in global confinement.  

Then beginning at 0.5 s the 6 MW of NBI power is injected in steps, accounting for the poor 

beam fast ion confinement at these lower plasma currents.  The NB power absorbed and 

subsequent driven current is based on the beam confinement observed in the IP rampup in 

discharge 109070 from TRANSP.  The heating and driven current from the beam continue to 

improve as the plasma current increases, but the slow current rise keeps the absorbed power low 

in these simulations, only reaching 2-3 MW for 6 MW of injected power.  The poloidal βP 

reaches 2.8, βN reaches about 5.0, li(1) drops to 0.47, and the central safety factor remains above 

4.0 during the discharge simulation.  The bootstrap current reaches 300 kA, and the HHFW 

driven current maximizes at 150 kA in the early phase and decreases when the density rises and 

NB fast ions are present to absorb HHFW power (calculated by CURRAY).  The HHFW phasing 

is 7 m-1 co-CD (same direction as the plasma current) and up to 6 MW are injected.  By 1.8 s the 

total plasma current has reached just over 420 kA.  Since the beam ions are not well confined, at 

these low plasma currents a significant HHFW current persists, in spite of parasitic absorption of 

HHFW power on fast NB ions.  These results are shown in Fig. 12 giving the contributions to the 

plasma current, density and electron and ion peak temperatures as a function of time.  Another 

simulation of the non-solenoidal rampup was done at the lower toroidal field of 0.35 T, which 

would allow 3.4 s of flattop.  This simulation showed similar behavior to the 0.45 T case, 

although by 3.4 s the plasma current reached 480 kA, βN reached 6.2, and the central safety 
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factor drops to 2.0.  The higher βN value at reduced toroidal field indicates that RWM 

stabilization may be required, however, the weaker NB absorption at low current will tend to 

reduce the beam driven rotation.  It appears that NSTX does not have sufficient pulse length to 

reach a plasma current of at least 800 kA to connect to a high performance plasma configuration, 

but can demonstrate the critical features of the non-inductive rampup. 

Experiments have begun to examine the HHFW heating and current drive at low IP.  Shown in 

Fig. 13 is a segment of a discharge where the plasma current was ramped up and maintained at 

250 kA with the solenoid.  Up to 2.8 MW of HHFW power was injected with k|| = 14 m-1 heating 

phasing in an effort to drive the surface voltage to 0.  The injection of power drives the stored 

energy up significantly and creates an H-mode confinement regime.  The surface voltage is 

reduced to 0 or even slightly below, and the solenoid current becomes slightly inverted or flat 

indicating it is no longer providing volt-seconds to the plasma.  Also shown in the figure are the 

electron temperature and density profiles at 4 time slices indicated on the time history plots.  The 

starting profile shows the peak electron temperature of about 500 eV, which rises to 1.0 keV over 

the next 0.015 s from HHFW heating.  This continues with the peak temperature reaching 1.5 

keV and an H-mode temperature pedestal beginning to form 0.040 s later.  Finally after 0.10 s 

the electron temperature profile has broadened significantly generating high pedestal 

temperatures, and a lower peak temperature.  This particular type of profile is ideal since it will 

generate a large bootstrap current, but keep the central temperature low enough to allow a 

reasonable IP ramp rate.  Unfortunately the HHFW power was driven to zero by feedback on the 

measured voltage across the antenna straps, and future efforts will concentrate on avoiding this 

to establish more stationary conditions. 

Other experiments were done to examine whether the HHFW could sustain the plasma current if 

the solenoid current was clamped, stopping it from providing volt-seconds to the plasma.  Shown 

in Fig. 14 are the results of one of these discharges.  Here the solenoid is used to ramp the plasma 

current up to 300 kA, and then the solenoid current is clamped at 0.25 s.  The plasma current will 

decay if no heating or CD is provided.  When HHFW, with k|| = 7 m-1 co-CD phasing, is applied 

the plasma enters an H-mode, and following the solenoid current clamp, slows the plasma 

current decay.  In this case the plasma later transitioned out of the H-mode and the current decay 

resumed similar to the no HHFW case.  Also shown in the figure are the pressure profiles for the 
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case without and with HHFW, showing the significantly higher stored energy with HHFW, 

which will drive bootstrap current.  How much current was driven by the HHFW needs to be 

better understood, and will require performing co-CD and counter-CD experiments at a range of 

power levels.   

The modeling used for the non-solenoidal simulations raises several questions that require 

experimental verification.  The plasma current and electron temperature provided by CHI or 

outer PF coil startup is unclear at this point, so experiments will continue to reduce the plasma 

current at which HHFW is injected.  In addition, the plasma must be close to the antenna for 

good power coupling, and experimental proposals for positioning the plasma on the antenna 

limiter at early times are being developed.  The HHFW heating and driven current are 

determined by ray-tracing calculations with CURRAY, however, experiments show that there 

can be parasitic absorption mechanisms that reduce the power that reaches the plasma core (and 

subsequently reduce the CD) as a function of the antenna phasing.  For example, the calculations 

indicate that the lowest k|| phasings have the highest CD efficiencies, while experiments show 

that the highest k|| phasings have the largest increase in peak electron temperature per unit power.  

This observation along with other diagnostic results point toward mechanisms that reduce the 

power reaching the plasma core.  Experiments have already begun to identify these trends in the 

low IP regime.  The energy confinement assumptions in the simulations were based on higher IP 

HHFW experiments, but the recent experiments described above indicate that H-mode is 

required for the HHFW to replace the inductively driven plasma current, and these experiments 

will continue particularly to determine how to sustain the HHFW H-mode.  The later phase of 

the non-inductive current rampup involves injecting NBs, but at low plasma currents where the 

absorption is much weaker than typical discharges in NSTX.  A dedicated effort to characterize 

the NB capability at low IP will be proposed for the next run period.  As part of this, the 

compatibility of simultaneous HHFW and NBI in the low IP regime will need to be assessed. 

VIII. Conclusions 

There has been substantial progress on producing long pulse plasmas in NSTX.  The discharge 

pulse length has reached the I2t heating limit for the toroidal field coil giving multiple current 

relaxation times for the sustainment of the plasma current, high βN, and current profile.  Plasma 

elongations are routinely above 2.25, the high βN phase is above the no-wall n=1 limit, and non-
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inductive current fractions are exceeding 70%.  Considerable evolution has occurred over the last 

3 run campaigns (2002, 2004, 2005) toward these plasmas, and the differences between the 

discharges are being examined to understand how to optimize this operating regime. 

Simulations of advanced ST plasma scenarios for NSTX using TSC have shown that the 100% 

non-inductive current, and 100% non-inductive high β objectives may be achieved, based on 

reasonable extrapolations of existing experimental discharges.  The 100% non-inductive 

scenarios, based on the discharge 109070 (2002), with NBI heating/CD achieve bootstrap current 

fractions of 45% at IP = 800 kA, require energy confinement already achieved on NSTX, and 

reach βN and β values of 4.7 and 13%, respectively.  This is accomplished by increasing the 

plasma elongation from 2.0 to 2.5, utilizing an early heating/H-mode transition to elevate the 

central safety factor, and reducing the density to enhance the NB driven current.  Simulations 

based on the most recent long pulse discharges 116313 (2005) show a significantly different 

energy confinement regime from 109070, that may be produced by the differences between the 

NB power absorption at the H-mode transition, affecting how the safety factor evolves.  Since 

the discharge 116313 has incorporated higher κ and an early heating/H-mode approach, 

simulations were done to project this discharge to lower density operation in order to reach 100% 

non-inductive current, showing that this does increase NB current drive, but must be balanced 

against producing peaked current profiles which drive the central safety factor to 1.0. 

The 100% non-inductive high-β scenarios at lower BT with NBI and EBW off-axis current drive  

achieve bootstrap current fractions of 45-50% at IP = 0.8-1.0 MA, require energy confinement 

10-25% higher than achieved on NSTX, and reach βN and βT values of 8.2-8.9 and 31-43%, 

respectively.  Broadening of the NB driven current profile was found to allow access to the IP = 

1.0 MA with β ≈ 40% regime, and characterization of the current density profile on high and low 

frequency MHD, BT, and other plasma parameters in the experiment is being done.  

The non-solenoidal current rampup simulations show that NSTX can address the critical features 

of this approach, addressing many of the challenges for future ST devices without a solenoid.  

The HHFW current drive is a critical feature of the low IP ramp phase to connect the early startup 

to the NBI heating and CD phase.  NSTX’s pulse lengths are probably not sufficient to provide 

non-solenoidal rampup to a high performance plasma at IP = 800 kA or higher.  Experiments to 
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address the HHFW heating/CD phase have begun, showing early signs of replacing the solenoid 

in IP = 250-300 kA regime.  In addition, sustaining an H-mode in these experiments appears a 

necessary feature to achieve this.  The numerous assumptions made in the simulations of the 

non-solenoidal current rampup are being critically examined to formulate experiments for their 

verification, which is already leading to improved simulations. 

Integrated simulations of NSTX to reproduce experimental discharges, and then project to 

regimes not yet produced in the experiment provides a means to focus experiments on the most 

critical features to access the advanced ST plasmas and establish their physics basis for future 

devices.  The feedback of experimental data to update and improve the simulations is critical to 

progressively reduce the level of extrapolation. 
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Figure Captions 
 
Figure 1. (color) The 1.0 MA high β plasma cross-section is shown with two wall models used in the 
low-n stability analysis, the closer wall lies on actual conducting structure locations in NSTX, while the 
other is a more conservative wall to approximate the nonaxisymmetric nature of the conducting 
structures. 
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Figure 2. (color) Experimental time traces of the plasma current and NB injected power (a), and plasma 
elongation and internal self-inductance (b) for discharges 109070 (2002, black), 112546 (2004, red), and 
116313 (2005, green).  Plasma elongation and internal self-inductance have suppressed zeros to clarify 
the differences between discharges during the flattop phases. 
 
Figure 3. (color) Experimental time traces of the peak electron density (a), surface voltage (b), peak 
electron temperature (c), and normalized β (d) for discharges 109070 (2002, black), 112546 (2004, red), 
and 116313 (2005, green).  The onset of MHD reducing the stored energy is noted. 

Figure 4. (color) Time history of the peak electron and ion temperatures (a) from the TSC simulation of 
the discharge 109070, and the data from Thomson scattering and Charge Recombination Spectroscopy 
diagnostics.  The profiles for the safety factor, ion and electron thermal diffusivities, ion and electron 
temperatures, and density at the time 0.45 s (b).  The total parallel current density, with bootstrap and NBI 
contributions at 0.45 s (c).  

Figure 5. (color) Time history of the plasma current and total non-inductive current (a), and central safety 
factor (b) for the simulation of discharge 109070 (pink) and the projected discharge using high κ, density 
control, and early heating/H-mode (blue).  The minimum value of the ordinate axis for the safety factor is 
0.5.  The total parallel current densities (solid) for 109070 (pink) and the projected discharge (blue), with 
bootstrap (dotted) and NBI (dashed) contributions at 0.45 s and 1.45 s, respectively (c). 

Figure 6. (color) Time history of the peak electron and ion temperatures from the TSC simulation of the 
discharge 116313 and the data from Thomson scattering and Charge Recombination Spectroscopy 
diagnostics (a).  Time history of the peak, line average, and volume average electron densities for 
discharge 116313 (b).  The profiles for the safety factor, ion and electron thermal diffusivities, ion and 
electron temperatures, and density at the time 0.98 s (c).  The total parallel current density (black), with 
bootstrap (red) and NB (blue contributions at 0.98 s (d). 

Figure 7. (color) Time histories of the contributions to the plasma current from bootstrap (red), NBCD 
(blue), and diamagnetic and Phirsch-Schluter currents (pink) (a), and the central safety factor (b) from the 
simulation of the discharge 116313 and the MSE constrained EFIT equilibrium reconstructions.  The 
minimum value of the ordinate axis for the safety factor is 0.5. 

Figure 8. (color) The safety factor profiles versus time from the simulations of discharges 109070 (a) and 
116313 (b) showing the presence of reversed shear generated after 0.2 s in 109070 with the discharge 
lasting until 0.55 s, and the early loss of reversed shear by 0.15s in 116313 with the discharge lasting until 
1.5 s.  This  may be responsible for the strongly different confinement regimes.  The minimum value of 
the ordinate axis for the safety factor is 0.5. 

Figure 9. (color) Time histories of the central safety factors for projected discharges based on 116313 (a) 
at lower density n20(0) = 0.42, for peaked (n(0)/〈n〉 = 1.7) and broad density(n(0)/〈n〉 = 1.15) at high and 
low energy confinement.  The central safety factor reaching 1.0 is indicated by the circles for each case.  
The minimum value of the ordinate axis for the safety factor is 0.5.  The total parallel current density 
(black) and NBCD contributions (blue) for the reference discharge 116313 simulation (dashed) and the 
projected low density case (solid) with the highest non-inductive current (b), which has peaked density 
and H98 = 1.2. 

Figure 10. (color) Profiles of the current density deposited by Electron Bernstein Wave current drive 
from calculations with GENRAY/CQL3D with frequencies of 14 and 28 GHz and plasma β = 20 and 
40%, for NSTX, showing similar deposition locations and total driven currents. 
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Figure 11. (color) Time histories of the central safety factors for the high β 100% non-inductive 
projected plasmas (a), based on discharge 109070, for 800 kA (solid) and 1.0 MA (dashed).  The 
minimum value of the ordinate axis for the safety factor is 0.5.  The parallel current densities (b) for the 
800 kA (upper) and 1.0 MA (lower) cases, showing the total (black), bootstrap (red), NBCD (blue) and 
EBWCD (green) contributions.  Indicated by the arrows is the NBCD width at half-maximum, the upper 
case using the discharge 109070 NBCD profile width, and the lower case using an assumed broader 
profile. 

Figure 12. (color) Time histories of the plasma current (black), the total non-inductive current (yellow), 
and the  contributions to the plasma current from bootstrap (red), HHFW CD (green), and NBCD (blue) 
(a).The peak electron and ion temperatures, and electron density (b) for the non-solenoidal IP rampup 
simulation for NSTX at BT = 0.45 s. 

Figure 13. (color) Experimental time traces of the stored energy, surface voltage, injected HHFW power, 
and solenoid current (a) during a segment of the discharge 117605.  The electron temperature and density 
profiles as function of major radius (b) at the time slices indicated on the time traces, 0.385 (green), 0.400 
(yellow), 0.425 (blue), and 0.485 s (pink). 

Figure 14. (color) Experimental time traces for the plasma current, stored energy, and injected HHFW 
power (a) for a discharge with HHFW 116449 and one without HHFW 116461, showing the slowing of 
the current decay while the plasma is in an HHFW H-mode..  The electron pressure profiles (b) for the 
two discharges at 0.285 s are also shown.  The time of the OH coil current clamp is indicated by the 
yellow line at 0.25 s. 
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