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radioactive waste has
urface at DOE sites.

PROBLEM: Leaking
entered the subs
Prediction of contaminant fransport is

LAYER SCALE:
The ULTRA ROCK CENTRIFUGE (URC) measures

water content as a function of pressure (6(y))
and predicts hydraulic conductivity (K(S)).
Solution is collected from centrifuged, originally
saturated samples to generate a production curve
(Fig. 1). The slope of the production curve is used
to calculate relative permeability (Fig. 2) using
the following expressions (Christiansen, 2002;

GOAL:
strategies which can be applied to existing
contaminant distributions and migration
scenarios at Hanford and similar sites

complicated by geological heterogeneities,
resulting in scale-dependence of transport
parameters.

To provide validated scaling

OBJECTIVES:
1. Layer Scale: Separate quantification
of  hydraulic,  geochemical, and

mineralogical factors influencing U(VI)
transport

Up-Scale: Apply numerical, composite
medium, and fractal approaches to
compute effective coupled hydraulic
and reactive transport parameters

Validate: Apply up-scaled parameters
to U(VI) transport through
progressively larger scales of intact
samples that encompass both lateral
and vertical U(VI) transport

FUTURE WORK:

1

Repeated measurements
unconsolidated granular material
determine precision of URC method.

on
to

Determination of hydraulic properties
of individual layers of large intact
Hanford sediment sample.

Determine arplicabili'ry of composite
medium model to transient system

Validate model with measurements at
different scales

Extend model from monofractal (2
materials) to multifractal  (many
materials)

Extend uncertainty analysis to large-
scale models
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Fig. 1. Production versus time at constant angular
velocity of 9000 RPM. Raw data is corrected during

early times in which RPM < 9000. time since centrifuge started.

FeuEaAliity 5y scturation, Qj
cumulative water production,

oupled Processes Influencing the Transport of
Uranium over Multiple Scales
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NTERMEDIATE SCALE:

In order to reliably estimate transport parameters,
analyses of uncertainty and sensitivity are performed to
determine the contributions of model and parameter
estimation errors. Previous work involved the transport of
Br, Co, and U(VI) in intact Hanford sediment cores in
which flow is parallel or perpendicular to bedding (Mayes
et al, 2003, in prep; Pace et al., 2003, 2007). Six
different parameter combinations using convective-
dispersive equation (Parker and van Genuchten, 1984) for
simultaneously fitting nonreactive tracer Br and reactive
tracer Co are attempted (Fig. 3).
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Fig. 3. Fitting velocity (V), ispersion (D), refardation (R), puise, and decay constant (1) fo flow-
g-p:

llel Co data in Hanford Coarse (HC) sediment showing 95% confidence limits. The fit
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Fig. 2. Relative permeability versus saturation for two small diameter Berea Sandstone

test cores. The measurement was repeated 3 fimes.

Berea Sandstone test cores were repeatedly
measured to study the degree of consistency of
the laboratory method (e.g., Fig. 2). At high
saturations, the precision of the k.,
measurements appears to be higher than at low
saturation, where the relative k., can vary up to
05-15 order of magnitude for any given
saturation value.
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Sensitivity

rresponds to Fit Combination #5 (Fig. 4).
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Fig. 4. Combined uncertainty due to model fitting error and parameter un
of fitting parameters.

Fig. 4 shows that uncertainties due to model fitting
errors exceed those due to parameter estimation errors.
Errors decrease with increasing estimated parameters
for combinations 1-5. Combination 6, however, did not
improve the fit and therefore can be eliminated.
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Fig. 5. Sensitivity
of fitting
parameters during
experimental
progress.
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Fig. 5 demonstrates the sensitivity of
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LARGE 2D SCALE:

Effective hydraulic parameters of unsaturated lay
sediments were estimated using a physically-based Canto
model to represent interbedded layers of coarse (blue
red (fine) sediments (Tang et al., accepted).

A direct averaging approach

composite medium model, is

to  scale  the hyd
arameters  from indiv
ayers to a composite sy:

=4 (e.g., Mualem, 1984; Yeh e

1985; Pruess, 2004).

This approach has been criticized because it ignores var‘l

in the hydraulic gradient (dh or Ah) (Khaleel et al.,

Therefore we tested the sensitivity of the mod

variations in hydraulic gradient over scales of 10-100 cm.
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Fig. 6. Comparison between layered and effective (composite) parameters af a scale of 10 cm for parallel-bed
cross-bed conductivity for a range of hydraulic gradients (dh).

The hydraulic conductivity calculated from layered and eff
parameters were similar regardless of the gradient (Fig. 6)
model works well the for steady-state 1D case. Results
similar for length scale of 100 cm (not shown). Anisotropy i
sensitive to the gradient (Fig. 7).
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Fig. 7. Anisotropy as a function of gradient (dh).
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Fig. 8. Simulation of 2D layered system

The variance in conductivity at high gradients causes
difference between layered and composite cases (Fig. 8)
hydraulic conductivity of the composite case is close t
harmonic mean of the layered case (Fig. 8), meaning tha
composite medium approach is valid for these conditions.
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