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Background

• SOFC fuel cells generate electricity and 
“high-grade” heat.

• SOFCs can inherently separate CO2 using 
anode isolation.

• The separate anode/cathode flows have 
unique opportunities to use rejected heat:

− Is there a way to use the high-grade heat to assist 
the CO2 compression for sequestration?

− Can the heat be used to recycle the anode gas?
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Basics of SOFC cycle
• Cathode exit used to preheat cathode inlet

• Rejected heat at the exit of the heat exchanger 
is low grade. In this introduction…..

Numeric values used
just for an example

Assume ideal component
performance

850 C

700 C

150 C

0 C
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Basics of SOFC cycle

• Cathode exit used to preheat cathode inlet
• Rejected heat at the exit of the heat exchanger 

is low grade.

Th

Tc

W
Qh

Qc

You don’t add the heat engine here - it will be very inefficient

Wasted exergy

850 C

700 C

150 C

0 C
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Basics of SOFC cycle
• Ideally desired to capitalize on heat engine 

using the highest grade heat possible.
• The heat engine “uses” just the temperature 

rise across the fuel cell
(i.e., in this example, 850 C  to 700C)

650 C

50 C850 C

0 C

700 C

For discussion,
assume 50 C
pinch point on
heat exchangers
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• The turbine is a recuperated cycle.  
• Note: for a recuperated cycle the efficiency is highest at 

lower pressure ratios.
• In this example – to isolate the anode – there is no 

combustor temperature rise.

What temperature do you expand to right here?

Brayton Cycle Example

For discussion,
assume 50 C
pinch point on
heat exchangers

650 C

850 C
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Brayton Cycle Example

What temperature do you expand to right here?

Answer:  
700 C

Required pressure ratio?

P3
P4

T3
T4

⎛⎜
⎝

⎞⎟
⎠

γ

γ 1−

= 1.7

• The turbine is a recuperated cycle.  
• Note: for a recuperated cycle the efficiency is highest at 

lower pressure ratios.
• In this example – to isolate the anode – there is no 

combustor temperature rise.

650 C

850 C

700 C
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Comparing the bottoming cycles
• Higher efficiency is produced by using the FC 

rejected heat at the full thermodynamic 
potential (hottest condition)

700 C

The heat engine peak temperature
Is set by the steam cycle (600 C supercritical)

The availability of the 850 C stream is reduced. 

20 C

The heat engine uses the cathode 
Heat from 850 C to 700 C to produce work; 
i.e., at the full availability

850 C = 1561F, “easy” turbine condition

600 C

850 C

650 C

850 C

650 C

50 C
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Brayton cycle + atmospheric pressure fuel cell

650 C

850 C 700 C 50 C

• “Inverted” brayton cycle takes ambient pressure hot gas and 
expands to sub-atmospheric.

• IBC concept is old, but first operation very recent:
− First analysis: Hodge,J. (1955) “Cycles and Performance Estimation”, Butterworths, London, pp. 172-174.

− Proposed use with SOFC: Tsujikawa, Y., Kaneko, K., Suzuki  (2004). “Proposal of the Atmospheric 
Pressure Turbine (APT) and High-Temperature Fuel Cell Hybrid System” JSME International Journal, Series B, 
Vol. 47, No. 2, pp. 256 – 260

− Operation of IBC: K. Inoue, E. Harada, J. Kitajima, K. Tanaka, (2006). “Construction and 
Performance Evaluation of Prototype Atmospheric Pressure Turbine (APT)”, ASME GT2006-90938. 
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More about inverted brayton cycles
• General IBC (below):

−The hot-side, cold-side HX correspond to a 
recuperator in more conventional cycles.

−The “cooler” corresponds to the variable heat 
subtraction (e.g., the inverse analogue of usual 
brayton cycle fuel addition). 

Sub-atm. Pressure 
E.g. 0.5 bar. 

C

Hot-Side HX

~

Atmospheric 
Hot Gas 

Ambient 

T

Cooler

Cold-Side HX E.g. Water 

Cooling Heat Out 

Work Out 
(Shaft, Elec.) 
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Inverted Brayton Cycles in Three Places

Work Out 

Work Out

Work Out

H2O (ℓ) 

CO2 

Ambient

Heat Out Air 

Heat Out

Heat Out

Cathode
Anode

AGR 
IBC 

Anode 
Waste 
IBC

B/C ~ 

Ox 

O2 

Cold-Side
HX

Cold-Side
HX

Cold-Side
HX 

Water 
Cooling 

Cathode 
IBC

Water 
Cooling 

Air

1 atm
(Note shaft could drive

Sequential compressors)

All cases:  same coal syngas fuel producing 68MW power from SOFC.

Blower

• What is the relative power from each IBC (red box?)
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Inverted Brayton Cycles in Three Places

Work Out 

Work Out

Work Out

H2O (ℓ) 

CO2 

Ambient

Heat Out Air 

Heat Out

Heat Out

Cathode
Anode

AGR 
IBC 

Anode 
Waste 
IBC

B/C ~ 

Ox 

O2 

Cold-Side
HX

Cold-Side
HX

Cold-Side
HX 

Water 
Cooling 

Cathode 
IBC

Water 
Cooling 

Air

1 atm
(Note shaft could drive

Sequential compressors)

All cases:  same coal syngas fuel producing 68MW power from SOFC.

• What is the relative power from each IBC (red box?)

Recycle prevents anode carbon
deposition w/o more steam addition
and increases fuel utilization

Blower
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Inverted Brayton Cycles in Three Places

Work Out 

Work Out

Work Out

H2O (ℓ) 

CO2 

Ambient

Heat Out Air 

Heat Out

Heat Out

Cathode
Anode

AGR 
IBC 

Anode 
Waste 
IBC

B/C ~ 

Ox 

O2 

Cold-Side
HX

Cold-Side
HX

Cold-Side
HX 

Water 
Cooling 

Cathode 
IBC

Water 
Cooling 

Air

1 atm
(Note shaft could drive

Sequential compressors)

All cases:  same coal syngas fuel producing 68MW power from SOFC.

• What is the relative power from each IBC (red box?)

Anode IBC uses waste 
heat for power and 
CO2 compression.

Water is condensed 
out here.

Blower
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Inverted Brayton Cycles in Three Places

Work Out 

Work Out

Work Out

H2O (ℓ) 

CO2 

Ambient

Heat Out Air 

Heat Out

Heat Out

Cathode
Anode

AGR 
IBC 

Anode 
Waste 
IBC

B/C ~ 

Ox 

O2 

Cold-Side
HX

Cold-Side
HX

Cold-Side
HX 

Water 
Cooling 

Cathode 
IBC

Water 
Cooling 

Air

1 atm
(Note shaft could drive

Sequential compressors)

• What is the relative power from each IBC (red box?)

All cases:  same coal syngas fuel producing 68MW power from SOFC.

Cathode IBC uses 
waste heat for
power production.

Blower
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Aspen Plus® Analysis
• Assumptions:

− Component efficiencies: all compressors 80%, expanders 85%, 
mechanical conversion 98%.

− Supplied with syngas after cold-gas cleaning (dry).
− Fuel cell model: 80% single-pass utilization
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Assumptions (continued)
• Pressure drops used for preliminary assessment:

Work Out 

Work Out

Work Out

H2O (ℓ) 

CO2 

Ambient

Heat Out Air 

Heat Out 

Heat Out

Cathode
Anode

AGR 
IBC 

Anode 
Waste 
IBC

B/C ~ 

Ox 

O2 

Cold-Side
HX

Cold-Side
HX

Cold-Side 
HX 

Water 
Cooling 

Cathode 
IBC

Water 
Cooling 

Air

0.05 bar (5 %)

0.1 bar (10 %)

All cases
produce 
1 atm CO2

Blower
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Results from Aspen Simulation
• Cathode IBC produces significant power.
• Anode gas recycle produces significant power.
• Without IBC recycle blower requires power.

Power summary in MW of base case and sensitivities for Example 1 (1 bar) 

 
 
Item 

 
 
Tag 

 
Base Case 

1 bar 

No 
Cathode 

IBC 

No 
Recycle 

Expander 

Reduced  
Efficiency 
Turbines 

 
 

2x ΔP 
Blower A-CMP -1.65 -1.65 -1.65 -1.89 -3.45 
Cath. IBC Exp. A-EXP 22.84 n/a 22.84 21.50 22.84 
Cath. IBC Comp. IBC-CMP -14.27 n/a -14.27 -16.75 -17.24 
Net Cath. IBC & Blower  6.92 -1.65 6.92 2.86 2.15 
AGR Exp. R-EXP 11.51 11.51 n/a 10.83 11.51 
AGR Comp. R-CMP -8.75 -8.75 -1.33 -10.00 -11.01 
Net AGR  2.76 2.76 -1.33 0.83 0.50 
Anode Waste IBC Exp. W-EXP 3.98 3.98 3.98 3.75 3.98 
Anode Waste IBC Comp. W-CMP -1.97 -1.97 -1.97 -2.25 -3.00 
Net Anode Waste IBC  2.01 2.01 2.01 1.50 0.98 
SOFC  68.00 68.00 68.00 68.00 68.00 
Total  79.69 71.10 75.60 73.19 71.63 
CO2 Compression 
(Not included in Total) 

CO2-CMP -7.05 -7.05 -7.05 -7.05 -7.05 

 4 stage intercooled compression to 150 bar
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Results from Aspen Simulation
• How sensitive are these results to assumptions?
• Reduced component efficiency: (70% compressor, 75% turbine).
• Double pressure drops (at original component efficiency).

Power summary in MW of base case and sensitivities for Example 1 (1 bar) 

 
 
Item 

 
 
Tag 

 
Base Case 

1 bar 

No 
Cathode 

IBC 

No 
Recycle 

Expander 

Reduced  
Efficiency 
Turbines 

 
 

2x ΔP 
Blower A-CMP -1.65 -1.65 -1.65 -1.89 -3.45 
Cath. IBC Exp. A-EXP 22.84 n/a 22.84 21.50 22.84 
Cath. IBC Comp. IBC-CMP -14.27 n/a -14.27 -16.75 -17.24 
Net Cath. IBC & Blower  6.92 -1.65 6.92 2.86 2.15 
AGR Exp. R-EXP 11.51 11.51 n/a 10.83 11.51 
AGR Comp. R-CMP -8.75 -8.75 -1.33 -10.00 -11.01 
Net AGR  2.76 2.76 -1.33 0.83 0.50 
Anode Waste IBC Exp. W-EXP 3.98 3.98 3.98 3.75 3.98 
Anode Waste IBC Comp. W-CMP -1.97 -1.97 -1.97 -2.25 -3.00 
Net Anode Waste IBC  2.01 2.01 2.01 1.50 0.98 
SOFC  68.00 68.00 68.00 68.00 68.00 
Total  79.69 71.10 75.60 73.19 71.63 
CO2 Compression 
(Not included in Total) 

CO2-CMP -7.05 -7.05 -7.05 -7.05 -7.05 

 4 stage intercooled compression to 150 bar Anode recycle still a power producer!
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Related work at NETL:
Control of isolated cathode/anode system

• Unique hybrid facility allows 
control development:
−Real-time fuel cell model mimics 

expected fuel cell dynamics.

−100 kW turbine, heat 
exchangers, control 
development.

−Fuel cell dynamic model with 
isolation being developed.

• Collaborations welcome!

Experimental hybrid facility at NETL
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Summary and Conclusions
• Isolated cathode/anode system can inherently separate CO2.

− Separate streams = unique options for waste heat recovery.
− Greatest work recovery via high-temperature heat engine.

• Inverted Brayton Cycle considered for special applications:
− “Low-temperature-rise” cathode flow.
− Anode gas recycling to prevent anode coking.
− Condensing water in the anode exhaust for sequestration.

• Net power from cathode flow, recycle, 
and condensing. 
− Results sensitive to component 

efficiency, pressure drop.
− Conservative assumptions: recycle still 

produces power. 
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