Fluid Flow, Solute Mixing and **Precipitation In Porous Media**

daho National Laboratory

Idaho National Laboratory George D. Redden Yoshiko Fujita

Pacific Northwest National Laboratory

Yi-Lin Fang T.D. Scheibe A.M. Tartakovsky

University of Idaho Mikala Beig Joanna Taylor Robert W. Smith

U.S. Geological Survey Michael M. Reddy

Argonne National Laboratory Shelly Kelly

Pacific Northwest National Laboratory Operated by Battelle for the

Support from the U.S. Department of Energy, Environmental Remediation Sciences Program, under contracts DE-AC07-05ID14517 and DE-AC06-76RLO 1830

Office of Science Department of Energy

Mixing: Dispersion vs. Diffusion

Issues and challenges:

- Evolution of the spatial distribution of properties and processes
- Volume averaging of properties and processes in systems characterized by mixing zones (at all scales). For example:

 How should volumeaveraged concentration be used to predict reaction rates?

• Averaged concentrations may exist only in mixing zones, which can be small and transient.

Issues and challenges:

Hysteresis

Precipitation path (advection > diffusion)

Idaho National Laboratory

Dissolution path (diffusion > advection)

Precipitation

- Mineral precipitation
- Biomass growth
- Biofilm formation
- Colloid filtration

Impact:

- Fate and transport, sequestration
- Field-scale kinetics vs. laboratory kinetics
- Understanding the evolution of subsurface properties (MNA)
- Developing amendment introduction strategies
- Understanding "Rapid" engineered events

Flagship experiment:

- Hypotheses
 - Precipitation can be induced in the mixing zone between solutions containing reactive substrate (intuitively obvious, but interested in possible deviation of flow paths)
 - Permeability of a mixing zone where mineral precipitation occurs does not go to zero. (If it did, both sides of the mixing zone would be undersaturated)

Premodeling using Smoothed Particle Hydrodynamics: Parallel flow with mixing and precipitation

Experimental approach: Parallel flow, mixing and precipitation at a solution-solution interface, "2-D"

Blue dye

Blue dye

Blue dye

Blue dye

Blue dye

Idaho National Laboratory Blue dye

Blue dye

Tracer test showing fluid-fluid interface and mixing (second attempt)

Propagation of calcium carbonate (second attempt)

And Biofilms...?

Impact on permeability

Idaho National Laboratory

Before carbonate precipitation

After carbonate precipitation: Average permeability decreased by ~ 100

Plans:

- Precipitation Kinetics
 - Extend outside conventional conditions
 - Ion ratios
 - Correlation to Sr uptake and speciation
- 2-D flow experiments
 - Full characterization
 - propagation of precipitates in physically heterogeneous systems
 - ° Low permeability inclusions
 - ° High permeability flow paths
 - propagation of precipitates in chemically heterogeneous systems
 - ° calcite seeds
 - clay on sand

SPH and continuum-scale model refinement

Precipitation Kinetics

(see A.E. Nielsen (1983))

- R = k'(Ω-1)
- R = k''(Ω-1)²

Adsorption (linear)

Spiral growth (parabolic)

- $R = [k_{ex} \Omega^{7/6} (\Omega 1)^{2/3} (In\Omega)^{1/6}] \exp(-K_{ex}/In\Omega)$ Surface nucleation
 - ~ $(\Omega-1)^{5/6} \exp(-K_{ex}/\ln\Omega)$
 - ~ exp(-K_{ex}/ln Ω)
- $R = k'''(\Omega-1)^n$...Practical

Where:

ks are rate constants

Ω = [Π(a_i^v)]/K_{sp} (saturation ratio)

 a_i^{ν} is the activity of component i with stoichiometry v

K_{sp} = solubility product

Also, Ostwald Ripening, Ostwald Step Rule
Colloid filtration? Biomass growth?

Precipitation Kinetics

Precipitation Kinetics and Sr²⁺ sequestration: Experimental Approach

- Goals:
 - Test growth rate functions apply in models
 - Test influence of ion ratios and modifiers
 - Morphologies, modes, products interpretive
 - Sr²⁺ uptake and speciation
- Method constant composition
 - Batch reactors
 - Seeding to confine the role of homogeneous nucleation
 - Stirring maintain uniform concentrations and reduce the influence of diffusive transport to surface layers.

Maintain chemical composition (as opposed to "free drift") - to prolong the state of supersaturation.

Precipitation Kinetics: Relevant to Field?

- Will these relationships help predict what happens in the field?
 - Subsurface mixing zones are not stirred reactors.
 Diffusion will influence precipitation kinetics and, subsequently, distributions of saturation states.
 - Relative rate at which solutes are replenished or consumed – can result in non-stoichiometric, varying ion ratios
 - $R = k_f (Ca^{2+})^p (CO_3^{2-})^q k_b$ (Zhong and Mucci, 1993, GCA, vol. 57; Lin and Singer, 2005, GCA, vol. 69)

Pre-modeling: Simulating pore-scale precipitation using Smoothed Particle Hydrodynamics

- Lagrangian, gridless, particle-based
- Used to establish a basis for parameters and conceptual basis for continuum approach
 - Continuity: $d\rho / dt = \rho \nabla \cdot \mathbf{v}$
 - Conservation of momentum: $d\mathbf{v}/dt = 1/\rho\nabla P + \mu/\rho\nabla^2\mathbf{v} + \mathbf{F}^{ext}$
 - Diffusion/reaction: $dC^{A} / dt = D_{A} \nabla^{2} C^{A} - k_{AB} C^{A} C^{B}$ $dC^{B} / dt = D_{B} \nabla^{2} C^{B} - k_{AB} C^{A} C^{B}$ $dC^{C} / dt = D^{C} \nabla^{2} C^{C} + k^{AB} C^{A} C^{B}$
- Precipitation of A and B via C_{intermediate}

daho National Laboratory

Hypothetical intermediate:

 $A + B = C_{\text{intermediate}}$ $C_{\text{intermediate}} = C_{\text{solid}}, \text{ driven by } (C - C_{\text{eq}})$ Irreversible formation of $C_{\text{intermediate}}$: $dC^{A} / dt = D_{A} \nabla^{2} C^{A} - k_{AB} C^{A} C^{B}$

Irreversible formation of C_{intermediate}:

Initial Saturation index

 Saturation index during precipitation

- Steady-state condition at solution-solution interface
 - Preservation of less stable solid phases
 - Co-existence of multiple phases

- Flow variations
 - Velocities and ratios
 - Changing map of Damköhler (reaction rate vs. advection), and Peclet (advection vs. diffusion) numbers

Continuum-scale simulation: mixing

Mixing without and with precipitation

Presentations, Publications:

- Redden, G. and A. M. Tartakovsky (2006). <u>Merging Experiments, Sensing, and Modeling for Predicting Coupled Biogeochemical Process</u> <u>Behavior Posters</u>. American Geophysical Union 2006 Fall Meeting, San Francisco, American Geophysical Union.
- Redden, G. D., Y. Fang, T. Scheibe, A. Tartakovsky, D. T. Fox, T. A. White, Y. Fujita and M. E. Delwiche (2005). <u>Calcium carbonate</u> precipitation along solution-solution interfaces in porous media. American Geophysical Union 2005 Fall Meeting, San Francisco, CA.
- Redden, G. D., Y. Fang, T. Scheibe, A. Tartakovsky, D. T. Fox, T. A. White, Y. Fujita and M. E. Delwiche (2005). "Calcium carbonate precipitation along solution-solution interfaces in porous media." <u>EOS Trans. AGU</u> **86**(52): Abstract B33C-1042.
- Redden, G. D., Y. Fang, T. Scheibe, A. M. Tartakovsky, D. T. Fox and T. A. White (2006). <u>Metal precipitation and mobility in systems</u> with fluid flow and mixing: Illustrating coupling and scaling issues. American Chemical Society, 231st ACS National Meeting, Atlanta, GA, American Chemical Society.
- Redden, G. D., Y. Fang, T. D. Scheibe, A. M. Tartakovsky, D. T. Fox, Y. Fujita and T. A. White (2006). <u>Fluid Flow, Solute Mixing and</u> <u>Precipitation in Porous Media</u>. INRA 2006 Environmental Subsurface Science Symposium, Moscow, ID.
- Scheibe, T. D., Y. Fang, A. M. Tartakovsky and G. Redden (2006). Hydrogeologic controls on subsurface biogeochemistry: field-scale effects of heterogeneous coupled physical and biogeochemical processes. <u>2006 Philadelphia Annual Meeting (22–25 October 2006)</u>. Geological Society of America. Philadelphia, Geological Society of America.
- Scheibe, T. D., A. M. Tartakovsky, Y. Fang and G. D. Redden (2006). <u>Models of Coupled Flow, Transport and Mineral Precipitation at a</u> <u>Mixing Interface in Intermediate-Scale Experiments</u>. American Geophysical Union 2006 Fall Meeting, San Francisco, American Geophysical Union.
- Scheibe, T. D., A. M. Tartakovsky, G. Redden, P. Meakin and Y. Fang (2006). <u>Pore-scale simulations of reactive transport with smoothed</u> <u>particle hydrodynamics</u>. Society for Industrial and Applied Mathematics Annual Meeting, Boston, MA.
- Tartakovsky, A., T. Scheibe, G. Redden, Y. Fang, P. Meakin and P. Saripalli (2006). <u>Smoothed particle hydrodynamics model for pore-</u> scale flow, reactive transport and mineral precipitation. CMWR XVI - Computational Methods in Water Resources conference, XVI International Conference, Copenhagen, Denmark.
- Tartakovsky, A., T. Scheibe, G. Redden and P. Meakin (2006). "Pore-scale smoothed particle hydrodynamics model of the mixing induced precipitation.", submitted to Water Resources Research
- Tartakovsky, A. M., T. D. Scheibe, P. Meakin, G. Redden and Y. Fang (2006). <u>Multiscale Lagrangian Particle model for Reactive</u> <u>Transport and Mineral Precipitation in Porous Media.</u> American Geophysical Union 2006 Fall Meeting, San Francisco, American Geophysical Union.
- Tartakovsky, A. M., T. D. Scheibe, G. Redden, Y. Fang, P. Meakin and K. P. Saripalli (2006). <u>Smoothed particle hydrodynamics model for</u> pore-scale flow, reactive transport and mineral precipitation. XVI International Conference on Computational Methods in Water

Resources, Copenhagne, Denmark.

Idaho National Laboratory

Connections:

 Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

– University of Idaho; Robert W. Smith, PI

- Hybrid Numerical Methods for Multiscale Simulations of Subsurface Biogeochemical Processes

 – PNNL; Tim Scheibe, PI
- Collaboration opportunities for:
 - Microbial characterization methods
 - Geotechnical properties

Idaho National Laboratory
Parallel flow: mixing and precipitation at a solutionsolution interface, 3-D, X-ray tomography

Injection of a supersaturated solution

Propagation of calcium carbonate

Application: nested dipole application

Example 1: *In situ* generation and mixing of reactants and geophysical monitoring

 Application: Formation of calcium carbonate and co-precipitation (immobilization) of strontium

 $(Ca,Sr)CO_3$

urea

Reactions (simplified):

 $(NH_{2})_{2}CO + 3H_{2}O \xrightarrow{\text{Urease}} HCO_{3}^{-} + 2NH_{4}^{+} + OH^{-}$ $HCO_{3}^{-} + Ca^{2+} \rightarrow CaCO_{3}(s) + H^{+}$ $HCO_{3}^{-} + Ca^{2+} + Sr^{2+} \rightarrow (Ca,Sr)CO_{3}(s) + H^{+}$ $urea - CO_{3}^{2-}$

 K_{sp} calcite = (Ca²⁺)(CO₃²⁻) ~ 10^{-8.4}

 An abiotic analog to a microbially mediated process
Idaho National Laboratory

Questions:

- Impact of flow rate
 - Location of pecipitation
 - Efficiency of reaction = f(mixing)
- Impact of premeability reduction
 - Constant flow
 - Constant gradient

Ultimate Modeling Objective

Prefer a macroscopic continuum scale description

- Practical
- Can simulate larger systems

Perform pore-scale modeling to:

- Validate continuum approach
- Provide basis for empirical or effective parameters used in continuum approach
- \rightarrow Reduce level of detail as much as possible

Continuum model

 $A + B = C_{solid}$

Continuity: $d\rho/dt = \rho \nabla \cdot \mathbf{v}$

- Conservation of momentum: $d\mathbf{v}/dt = 1/\rho\nabla P + \mu/\rho\nabla^2\mathbf{v} + \mathbf{F}^{ext}$
- Diffusion/reaction: $dC^{A} / dt = D_{A} \nabla^{2} C^{A} - k_{AB} C^{A} C^{B}$ $dC^{B} / dt = D_{B} \nabla^{2} C^{B} - k_{AB} C^{A} C^{B}$ $dC^{C} / dt = D^{C} \nabla^{2} C^{C} + k^{AB} C^{A} C^{B}$ Idaho National Laboratory

t = 2000

t = 4000

t = 6000

Supersaturation and velocity profiles

t = 1000

t = 6000

Impact of Peclet number (advection/diffusion)

t = 3000

t = 6000

Ocular Trauma - by Wade Clarke @2005

After explaining to a student through various lessons and examples that:

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

I tried to check if she really understood that, so I gave a different example. This was the result:

$$\lim_{x \to 5} \frac{1}{x-5} = \infty$$

_	anon
---	------

