
DOE/ER/25581-1

Firewall Architectures for High-Speed Networks
Final Report

August 2007

Errin W. Fulp

Wake Forest University
Department of Computer Science

Winston-Salem, NC 27109

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71325423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 List of Accomplishments 4

1.1 Students Supported . 5
1.2 Publications and Invited Presentations 5

1.3 Synergistic Activities . 6

2 Project Motivation 7

3 Security Policy Models 8
3.1 Firewall Rule and Policy Models 8

3.1.1 Policy Accept and Deny Sets 9
3.2 Modeling Rule List Precedence Relationships 9

3.3 Trie-Based Policy Representation 11
3.3.1 Policy Trie Integrity 13
3.3.2 Push-Down Policy Tries 14

3.3.3 Worst Case Analysis 16
3.3.4 Experimental Results 17

3.3.5 Tuple-Comparisons Results 18
3.4 Storage Results . 19

4 Security Policy Optimization Techniques 19
4.1 List-Based Policy Optimization 20

4.2 Trie-Based Policy Optimization 21
4.2.1 Ordering Policy Sub-Tries 23
4.2.2 A Trie Sorting Algorithm 24

4.2.3 Trie-Based Policy Optimization Experimental Results . 25
4.3 Rule Splitting . 26

5 Parallel Firewalls Designs 27
5.1 Data-Parallel Architecture . 28

5.2 Function Parallel Architecture with Gate 28
5.3 Independent Function Parallel Architecture 31

5.3.1 Policy Distribution . 32
5.3.2 Policy Distribution Performance 33
5.3.3 Policy Distribution Algorithm 35

5.3.4 System Redundancy 35

1

5.4 Theoretical Models . 36
5.5 Parallel Firewall Experimental Results 37

5.5.1 Increasing Arrival Rates 39
5.5.2 Increasing Policy Size 40
5.5.3 Increasing Firewall Array Size 41

5.6 Firewall Grids . 41
5.7 Parallel Intrusion Detection Systems 42

5.8 Implementation, Testing, and Collaborations 44

2

DOE/ER/25581-1

Firewall Architectures for High-Speed Networks

Final Report

Date Issued/Published August 2007

Errin W. Fulp

Prepared for the United States Department of Energy Office of Science

Work Performed Under Grant Number DE-FG02-03ER25581

Project Summary

Firewalls are a key component for securing networks that are vital to government
agencies and private industry. They enforce a security policy by inspecting and filter-
ing traffic arriving or departing from a secure network [5, 40, 41]. While performing
these critical security operations, firewalls must act transparent to legitimate users,
with little or no effect on the perceived network performance (QoS). Packets must be
inspected and compared against increasingly complex rule sets and tables, which is a
time-consuming process. As a result, current firewall systems can introduce significant
delays and are unable to maintain QoS guarantees. Furthermore, firewalls are suscep-
tible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with
illegitimate traffic [20, 27, 35, 39, 40]. Current firewall technology only offers a short-
term solution that is not scalable; therefore, the objective of this DOE project
was to develop new firewall optimization techniques and architectures that
meet these important challenges.

Firewall optimization concerns decreasing the number of comparisons required per
packet, which reduces processing time and delay. This is done by reorganizing policy
rules via special sorting techniques that maintain the original policy integrity. This
research is important since it applies to current and future firewall systems. Another
method for increasing firewall performance is with new firewall designs. The architec-
tures under investigation consist of multiple firewalls that collectively enforce a security
policy. Our innovative distributed systems quickly divide traffic across different levels
based on perceived threat, allowing traffic to be processed in parallel (beyond current
firewall sandwich technology). Traffic deemed safe is transmitted to the secure net-
work, while remaining traffic is forwarded to lower levels for further examination. The
result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher
throughput, and traffic differentiation (a key component for maintaining QoS). Fur-
thermore, the distributed design is scalable to traffic loads and is less susceptible to DoS
attacks. Simulation and analytical results show these new architectures out-perform
any current firewall system, providing higher throughput, lower delays, and predictable
traffic differentiation.

3

1 List of Accomplishments

This project investigated several new and important research questions in network security.
Areas of interest included firewall policy optimization, parallel firewall system design, and
policy distribution methods. Given these diverse areas, the results of this research project
can benefit current and future firewall systems. Relevant publications from this project are
cited after each area.

• Security Policy Models - Firewall policy representations are an integral part of
this project. Models must represent the policy integrity, while providing a means for
optimization. New models were developed by this project that utilize ordered sets,
tries, and directed graphs to achieve these objectives [18, 13].

• Security Policy Optimization - The order of firewall rules significantly impacts
the security (integrity) and performance (processing time) of a security policy. Using
the policy models developed by this project, we have developed algorithms that can
optimize firewall security policies (reduce the number of comparisons required) [36, 13].

• Parallel Firewall Designs - Parallel firewall systems consist of an array of firewalls
that provide a scalable solution for securing high-speed networks. Two new function
parallel designs were developed by this project and have shown significant performance
improvements. For example, simulation results and analytical models show an m-times
reduction in processing delay is possible using the new function parallel designs as
compared to current data parallel designs [12, 14, 15].

• Security Policy Distribution - Given an array of firewalls, rules must be distributed
such that the integrity of the original policy is maintained (parallel firewall and single
firewall arrive at the same decision for the same packet). Using the policy Directed
Acyclical Graph (DAG) model developed by this project, we have established certain
criteria that must be followed to maintain integrity in parallel-firewall architectures
[16].

• Parallel Intrusion Detection Systems - Many of parallel designs can be applied to
Intrusion Dection Systems (IDS), thereby reducing the latency associated with payload
packet inspections. This project conducted an initial survey of parallel IDS techniques
[37].

• Open-Source Implementation and Synergistic Activities - We have imple-
mented the function parallel firewall architecture using Linux PC’s that can provide a
low-cost, scalable, high-speed firewall system. This work has also resulted in two pro-
visional patents for high-speed security devices, the creation of a company GreatWall
Systems (co-founded by the PI), and the funding of Phase I and II STTR proposals
(GreatWall Systems and Wake Forest University). In addition a collaborative effort
has started between this project and DOE Pacific Northwest National Laboratories
(PNNL) that will integrate high-speed security techniques into their infrastructure.

4

1.1 Students Supported

This research project supported the following students, each associated with the Computer
Science Department at Wake Forest University.

• Stephen Tarsa, undergraduate researcher, results published in the 2005 IEEE IM [13]
and IEEE ISCC [18, 36]. Research has resulted in a patent pending.

• Ryan J. Farley, MS thesis: “Function-Parallel Firewalls for High-Speed Networks,”
completed in 2006. Results published in IEEE ICC 2006 [15], IASTED Parallel Com-
puting and Networking Conference [12] completed in 2005. Research has resulted in a
patent pending.

• Micheal Horvath, MS thesis ”Policy Management Methods for Function Parallel Fire-
walls,” completed in 2007. Results published in the SPIE High Capacity Optical Net-
works and Enabling Technologies [16].

1.2 Publications and Invited Presentations

This research project has yielded multiple publications and presentations at various ACM/IEEE
conferences and workshops. The focus of these publications include: policy optimiza-
tion/managment (a new area discovered by this project), parallel firewalls, and parallel
IDS.

Refereed publications

• Errin Fulp and Patrick Wheeler. A Taxonomy of Parallel Techniques for Intrusion
Detection. In Proceedings of the ACMSE, Special Session on Computer and Network
Security, 2007.

• Errin W. Fulp. An Independent Function-Parallel Firewall Architecture for High-
Speed Networks (Short Paper). In Proceedings of the International Conference on
Information and Communications Security, 2006.

• Errin W. Fulp, Micheal R. Horvath, and Christopher C. Kopek. Managing Security
Policies for High-Speed Function Parallel Firewalls. In Proceedings of the SPIE In-
ternational Symposium on High Capacity Optical Networks and Enabling Technology,
2006.

• Errin W. Fulp. Parallel Firewall Designs for High-Speed Firewalls. In Proceedings of
the IEEE INFOCOM, High-Speed Networking Workshop, 2006.

• Stephen J. Tarsa and Errin W. Fulp. Balancing Trie-Based Policy Representations for
Network Firewalls. In Proceedings of the IEEE International Symposium on Computer
Communications (ISCC’06), 2006.

• Errin W. Fulp and Ryan J. Farley. A Function-Parallel Architecture for High-Speed
Firewalls. In Proceedings of the IEEE International Conference on Communications,
2006.

5

• Ryan J. Farley and Errin W. Fulp. Effects of Processing Delay on Function-Parallel
Network Firewalls. In Proceedings of the IASTED International Conference on Parallel
and Distributed Computing and Networks, 2006.

• Errin W. Fulp and Stephen J. Tarsa. Trie-Based Policy Representations for Network
Firewalls. In Proceedings of the IEEE International Symposium on Computer Com-
munications (ISCC’05), 2005.

• Errin W. Fulp. Optimization of Network Firewall Policies Using Directed Acyclical
Graphs. In Proceedings of the IEEE Internet Management Conference (IM’05), 2005.

Invited presentations

• Errin W. Fulp. Improving the Performance of Firewalls and Intrusion Protection Sys-
tems for High-Speed Networks, 2006. Department of Computer Science Seminar, North
Carolina State University.

• Errin W. Fulp. Techniques for Improving the Performance of Signature-Based Net-
work IDS, 2006. DOE Pacific Northwest National Laboratory, Cyber Security Group
Seminar.

• Errin W. Fulp. Security Issues for the Next Generation of Networks, 2005. Department
of Computer Science Seminar, Old Dominion University.

• Errin W. Fulp. Advances in Firewall Architectures for High-Speed Networks, 2005.
DOE High-Performance Network Research Meeting, DOE Brookhaven National Lab-
oratory.

• Errin W. Fulp. Firewall and Intrusion Detection Systems for High-Speed Networks,
2005. DOE Pacific Northwest National Laboratory, Cyber Security Group Seminar.

• Errin W. Fulp. Firewall Optimization Techniques and Architectures for High-Speed
Networks, 2004. DOE Pacific Northwest National Laboratory, Cyber Security Group
Seminar.

• Errin W. Fulp. Firewall Architectures for High-Speed Networks, 2004. DOE High-
Performance Network Research Meeting, DOE Fermi National Accelerator Laboratory.

1.3 Synergistic Activities

This project has started several important synergistic activities, these includes a new com-
pany and collaborations with several national research laboratories. In collaboration with
the Wake Forest University Office of Technology Management, the following two preliminary
patents filled for policy optimization and parallel firewall architectures.

• “Computer Network with Function-Parallel Firewall,” Errin W. Fulp and Ryan J.
Farley. U.S. Patent Pending No. 60/638,436 May 2005

6

• “Methods and Systems for Firewall Policy Optimization,” Errin W. Fulp and Stephen
J. Tarsa. U.S. Patent Pending No. 60/655,664 May 2005

Based on promising experimental results, the Office of Technology Asset Management has
started a business, GreatWall Systems located in Winston-Salem NC. The business will offer
computer/network security solutions that are based on this research. To date, GreatWall
Systems has receive both public (DOE STTR Phase I and II) and private funding.

Other synergistic activities started during this research project include the following.

• Founded the Network Security Group(nsg.cs.wfu.edu) at Wake Forest University, an
inter-campus collaboration to discuss current security issues.

• Program Committee for the IEEE INFOCOM High-Speed Networks Workshop, 2007.

• Established the Research and Education Collaboration Initiative between Wake For-
est University and PNNL Cyber Security Group that supports security research and
education.

• Program Committee and Local Arrangements Chair for the 2006 Eighth International
Conference on Information and Communications Security.

• Co-Chair for the Special Session on Computer Security, ACMSE, 2007.

2 Project Motivation

Network firewalls remain the forefront defense for most computer systems. Guided by a
security policy, these devices provide access control, auditing, and traffic control [5, 40, 41].
As seen in table 1, a security policy is a set of ordered rules that define the action to perform
on matching packets. Given the packet and/or connection information, rules indicate the
action to take place for each packet, such as discard, forward, or redirect. Security can be
further enhanced with connection state information. For example a table can be used to
record the state of each connection, which is useful for preventing certain types of attacks
(e.g., TCP SYN flood) [41].

Traditional firewall implementations consist of a single dedicated machine, similar to a
router, that sequentially applies the rule set to each arriving packet. However, packet filtering
can represent a significantly higher processing load than routing decisions [29, 35, 41]. For
example, a firewall that interconnects two 100 Mbps networks would have to process over
300,000 packets per second [40]. Successfully handling this high traffic becomes more difficult
as rule sets become more complex [6, 27, 41]. Furthermore, firewalls must be capable of
processing even more packets as interface speeds increase. In a high-speed environment
(e.g. Gigabit Ethernet), a single firewall can easily become a bottleneck and is susceptible
to DoS attacks [6, 11, 19, 20]. An attacker could simply inundate the firewall with traffic,
delaying or preventing legitimate packets from being processed. Therefore, new network
firewall solutions are necessary to manage these security threats.

This project investigated two methods for improving the performance of network firewalls.
The first method involves the representation and rule reorganization of the firewall policy.

7

Source Destination
No. Proto. IP Port IP Port Action Prob.
1 TCP 140.* * 130.* 80 deny 0.1
2 TCP 140.* * * 80 accept 0.05
3 TCP 150.* * 120.* 90 accept 0.15
4 UDP 150.* * * 3030 accept 0.3
5 * * * * * deny 0.4

Table 1: Example security policy consisting of multiple ordered rules.

These techniques seek to reduce the number of operations required to determine the correct
action for an arriving packet. Although these techniques can improve the performance and is
applicable to current firewalls, the performance improvement is limited. The second approach
uses parallel firewalls to provide scalable performance improvements. Both approaches and
the associated research findings are described in the following sections.

3 Security Policy Models

A firewall rule set, also known as a firewall policy or Access Control List (ACL), is tradi-
tionally an ordered list of firewall rules. Firewall policy models have been the subject of
recent research [2, 3, 22]; however, the primary purpose is anomaly detection and policy
verification. In contrast, the policy model developed by this project was designed for firewall
performance optimization and integrity. Firewall performance refers to reducing the average
number of comparisons required to determine an action, while integrity refers to maintaining
the original policy intent.

3.1 Firewall Rule and Policy Models

A firewall rule r can be modeled as an ordered tuple of sets, r = (r[1], r[2], ..., r[k]). Order
is necessary among the tuples since comparing rules and packets requires the comparison of
corresponding tuples. Each tuple r[l] is a set that can be fully specified, specify a range,
or contain wildcards ‘*’ in standard prefix format. For the Internet, security rules are
commonly represented as a 5-tuple consisting of: protocol type, IP source address, source
port number, IP destination address, and destination port number [40, 41]. Given this
model, the ordered tuples can be supersets and subsets of each other, which forms the basis
of precedence relationships. In addition to the prefixes, each filter rule has an action, which
is to accept or deny. However, the action will not be considered when comparing packets
and rules. Similar to a rule, a packet (IP datagram) d can be viewed as an ordered k-tuple
d = (d[1], d[2], ..., d[k]); however, ranges and wildcards are not possible for any packet tuple.

Using the previous rule definition, a standard security policy can be modeled as an
ordered set (list) of n rules, denoted as R = {r1, r2, ..., rn}. A packet d is sequentially
compared against each rule ri starting with the first, until a match is found (d ⇒ ri)
then the associated action is performed. This is referred to as a first-match policy and is

8

generally the default behavior for the majority of firewall systems including the Linux firewall
implementation iptables [30]. For this project we assume a first-match evaluation is always
used. A match is found between a packet and rule when every tuple of the packet is a subset
of the corresponding tuple in the rule.

Definition Packet d matches ri if

d ⇒ ri iff d[l] ⊆ ri[l], l = 1, ..., k

3.1.1 Policy Accept and Deny Sets

Given a firewall security policy and a first-match evaluation, it is important to determine
the packets that will be accepted, denied, or not match any rule. Assume a policy R exists
and first-match evaluation is used. Let A be the set of packets that will be accepted, let D
be the set of packets that will be denied, and let U be the set of packets that do not match
any rule. If the set of all possible packets is C, then a policy R is comprehensive if U = ∅
(i.e. A ∪ D = C). Therefore, policy R is comprehensive if for every possible packet a match
is found, which is an important objective.

There are many different ways to implement a given policy (e.g. using a single or paral-
lel firewall) or even modify it (e.g. reorder, combine, add, or remove rules); therefore, it is
important to determine equivalence and policy integrity. Consider two comprehensive poli-
cies R and R′ that have accept sets A and A′ respectively. The two policies are considered
equivalent if A = A′. Therefore, if policy R is replaced by an equivalent policy R′ then
the integrity of R is maintained. Therefore, it is important to maintain the precedence
constraints when implementing a firewall security policy.

3.2 Modeling Rule List Precedence Relationships

Because of the first-match evaluation, a rule list has an implied precedence relationship where
certain rules must appear before others if the integrity of the policy is to be maintained. For
example consider the rule list in table 1. Rule r1 must appear before rule r2, likewise rule
r5 must be the last rule in the policy. If for example, rule r2 was moved to the beginning
of the policy, then it will shadow [3] the original rule r1. However, there is no precedence
relationship between rules r2 and r3 given in table 1. Therefore, the relative ordering of these
two rules will not impact the policy integrity and can be changed to improve performance.

Performance refers to the number of rule comparisons required to find the first match for
a given policy and packet. We will assume the original policy is free from any anomalies.
When a policy is reordered to improve performance it should not introduce any anomalies,
which will occur if precedence relationships are not maintained. As a result, a model is
needed to effectively represent precedence relationships.

This project developed a new model for the rule precedence relationships using a Directed
Acyclical Graph (DAG) [28, 23]. Such graphs have been successfully used to represent the
relative order of individual tasks that must take place to complete a job (referred to as a task
graph model). Since certain rules must appear before others to maintain policy integrity,
this structure is well suited for modeling the precedence of firewall rules.

9

Let G = (R, E) be a policy DAG for a policy R, where vertices are rules and edges E are
the precedence relationships (constraint). A precedence relationship, or edge, exists between
rules ri and rj, if i < j, the actions for each rule are different, and the rules intersect.

Definition The intersection of rule ri and rj , denoted as ri ∩ rj is

ri ∩ rj = (ri[l] ∩ rj[l]), l = 1, ..., k

Therefore, the intersection of two rules results in an ordered set of tuples that collectively
describes the packets that match both rules. The rules ri and rj intersect if every tuple
of the resulting operation is non-empty. In contrast, the rules ri and rj do not intersect,
denoted as ri /∩ rj , if at least one tuple is the empty set. Note the intersection operation is
symmetric; therefore, if ri intersects rj, then rj will intersect ri. The same is true for rules
that do not intersect.

For example consider the rules given in table 1, the intersection of r1 and r2 yields (TCP,
140.*, *, 130.*, 80). Again, the rule actions are not considered in the intersection or
match operation. Since these two rules intersect, a packet can match both rules for example
d = (TCP, 140.1.1.1, 80, 130.1.1.1, 80). Furthermore, the actions of the two rules
are different. Therefore, the relative order must be maintained between these two rules
and an edge drawn from r1 to r2 must be present in the policy DAG, as seen in figure
1(a). In contrast consider the intersection of rules r1 and r5. These two rules intersect,
indicating packets belonging to the set (TCP, 140.*, *, 130.*, 80) would match both
rules. However, it does not matter which of the two rules a packet matches first, since the
action is the same for both rules. Therefore, an edge does not exist between rules r1 and r5

in the diagram. Similarly, rules r2 and r3 do not intersect due to the second tuple (source
IP address). A packet cannot match both rules indicating the relative order can change;
therefore, an edge will not exist between them.

The match operation can be used to identify precedence relationships, but it cannot do
so in every case. Consider a partial-match example [2], where ra = (UDP, *, 80, 10.*,

90, accept) and rb = (UDP, 10.*, 80, *, 90, deny). The intersection of ra and rb is
(UDP, 10.*, 80, 10.*, 90); therefore a packet, such as d = (UDP, 10.10.10.10, 80,

10.10.10.10, 90), can match both rules. If ra appears before rb then the packet d is
accepted, but if rb occurs before ra then d is rejected. As a result, the order of ra and rb in
the original policy must be maintained. However, the match operation is unable to identify
the precedence in this example.

Using the policy DAG representation a linear arrangement is sought that improves the
firewall performance. As depicted in figure 1(b), a linear arrangement (permutation or
topological sort) is a list of DAG vertices where all the successors of a vertex appear in
sequence after that vertex [28]. Therefore it follows that a linear arrangement of a policy
DAG represents a rule order, if the vertices are read from left to right. Furthermore, it is
proven in theorem 3.1 that any linear arrangement of a policy DAG maintains integrity.

Theorem 3.1 Any linear arrangement of a policy DAG maintains integrity.

Proof Assume a policy DAG G is constructed from the security policy R that is free of
anomalies. Consider any two rules ri and rj in the policy, where i < j. If an edge between

10

r1 r2 r3

r4 r5

(a) Policy DAG.

r1 r2 r3 r4 r5

(b) Linear arrangement corresponding
to the original rule order.

Figure 1: Rule list DAG representations of the firewall rules given in table 1. Vertices are rules
(circle is an accept rule and square is a deny rule) while edges indicate precedence requirements.

ri and rj in G does not exist, then a linear arrangement of G can interchange the order of
the two rules. An edge will not exist if the rules do not intersect; however, a reorder will not
effect integrity since a packet cannot match both rules. Shadowing is not introduced due to
the reorder since the intersection operation is symmetric. An edge will not exist if the two
rules intersect but have the same action; however, a reorder will not effect integrity since
the same action will occur regardless of which rule is matched first. If an edge does exist
between the rules, then their relative order will be maintained in every linear arrangement
of G; thus maintaining precedence and integrity.

3.3 Trie-Based Policy Representation

The previous sections described a model that represents the firewall policy in a list form,
which can be implemented using a simple list data structure. However, non-linear data struc-
tures can also be used to represent the firewall policy that can provide several performance
benefits.

This project developed a new security policy representation called the policy trie, which
provides faster processing of packets while maintaining the integrity of the original policy.
The policy trie T is a n-ary trie structure consisting of k levels that stores a security policy.
Each level T [l] corresponds to a rule tuple (except for the root), while nodes on a certain
level store the tuple values T [l, v]. Unlike the standard binary trie structure [1], the policy
trie is unique since a node can have multiple children, similar to an n-ary tree. This is
required since a node will store a rule tuple (multibit field), not just a single bit as done in
[34]. Tuples at each level are organized from specific to general (reading left to right). For
reference, levels will be numbered sequentially starting with zero for the root node. Likewise,
nodes of a particular level will be numbered sequentially starting with zero for the left-most
node. Since each level stores a tuple, a path from the root node to a leaf represents a firewall
rule, as seen in figure 2.

To create a policy trie T , rules are added in the order they appear in R. A rule r is
added to T by starting with the root node on the first level and comparing the values of its
children with the corresponding tuple of r. If one of the children is equal (not just a subset)

11

root

TCP UDP * protocol

140.* 150.* 150.* * source IP

* * * * source port

130.* * 120.* * * destination IP

20 80 90 3030 * destination port

deny accept accept accept deny action

r1 r2 r3 r4 r5

Figure 2: Policy trie representation of the firewall rules given in table 1.

to the corresponding rule tuple, then r will share this node and a new node is not added for
this level. The trie is traversed to that node and the process of comparing children to the
rule is repeated using the next tuple in r. If an exact match does not exist, a new child node
is created that contains the value of the corresponding packet tuple. In order to maintain
the specific-to-general organization of the trie, the new node is inserted in the rightmost
available position such that it is before (to the left of) any sibling that is a superset of the
new node. The new node forms a chain of nodes that stores the remaining tuple values of
the rule.

Consider the events that occur when rule r2 is added to the trie given in figure 2. Rule r2

has the same protocol, IP source, and source port values as r1; therefore, r2 will share these
nodes. Since the destination IP is different, this forms a chain consisting of this tuple, the
destination port, and action. This chain connects to the source port node, which adds r2 to
the trie. It is this structure that allows the elimination of multiple rules simultaneously. For
example if a UDP packet is compared using the trie given in figure 2, then rules r1, r2, and
r3 are eliminated after the protocol tuple comparison.

Once the new rule is added, if any nodes exist to the right of the new rule, then this
represents a rule re-order and may result in a shadowing. The intersection of the new rule
and each of these right-most rules is taken and the action of right rule, the rule that appears
first in the ordered policy, is applied.

Definition The intersection of rule ri and rj , denoted as ri ∩ rj is

ri ∩ rj = (ri[l] ∩ rj[l]), l = 1, ..., k

For all intersections that yield valid rules, the results form a subtree of the newly added
rule. The same method is applied to this subtree. For example consider the rules given in
figure 3(a). Note that the relative order of the rules must be preserved; otherwise integrity
is not maintained. When r2 is added to the policy trie, the source IP address will cause
the rule to be placed before r1 and the intersection must be taken. The intersection of r1

and r2 is (UDP, 1.*, 80, 1.*, 90). The result of the intersection indicates a packet can

12

Source Destination
No. Proto. IP Port IP Port Action

1 UDP * 80 1.* 90 deny
2 UDP 1.* 80 * 90 accept
3 * * * * * deny

(a) Example rule list, where the rules must maintain
their relative order.

root

UDP *

1.* * *

80 80 *

1.* * 1.* *

90 90 90 *

deny accept deny deny

r1 ∩ r2 r2 r1 r3

(b) Policy trie that requires intersection of r1 and
r2.

Figure 3: List and trie representation of a security policy where the policy trie requires the
intersection operation to maintain the integrity of the list.

match both rules, for example d = (UDP, 1.1.1.1, 80, 1.1.1.1, 90). Therefore this
intersection rule, with the action of r1, must be added to the trie. The final policy trie is
given in figure 3(b), which maintains the integrity of the policy given in 3(a). When r3 is
added, it is located to the right of r1 and r2, thus intersections are not performed. In this
example rules r1 and r2 are considered a partial-match [3]. The DAG policy representation
described in [10] will not correctly represent partial-match rules, because subsets (as done
with the match operation) are used to create the structure instead of intersections. As a
result, the DAG structure described in [10] is not suitable for firewall policies since integrity
cannot be maintained.

To process a packet d using the policy trie T (also referred to as searching T), the corre-
sponding tuple of the packet is compared with the children of the root node. Comparisons of
nodes are always performed from left and right, or specific to general. Once a match is found,
the current node is marked and the trie is traversed to the matching child. The procedure
is repeated with the remaining rule tuples. If no match is found, the search backtracks to
the parent node and finds the next matching node that has not been visited, continuing the
process of left to right comparison. Once a path has been found from the root node to a leaf
where all the rule tuples match (p[l] ⊆ T [l, i], l = 1, ..., k) the associated action is performed.

3.3.1 Policy Trie Integrity

As previously stated, a necessary objective of any policy representation is its ability to
maintain the policy integrity. This occurs if the new representation is equivalent to the
original list-based policy. A policy trie T is equivalent to the original security policy R for

13

any legal packet d, if searches of T and R result in the same action being performed. Unlike
other representations, this is proven true in the following theorem.

Theorem 3.2 A policy trie T is equivalent to the original security policy R.

Proof Assume a trie T is constructed with k levels using the process previously described
from an n rule security policy (ordered list). Furthermore assume the completed trie is
searched using the previously described method. One of the following three cases will occur
during the creation of the trie.
Case 1 Rule reorder does not occur during creation. If rule reorders do not occur during the
creation of T , then rules will appear from left to right in T as they appear in R (an in-order
traversal of T yields R). As a result, the policy representations are equivalent because nodes
are tested from left to right.
Case 2 Rule reorders occur without intersections. Consider a trie T consisting of n−1 rules
from R, which are added using the process previously described. In addition, let the n − 1
rules be ordered in T as they are in R. Assume a new rule rn is added to T and is located to
the left of an existing rule rm. Let S be the set of rules that appear to the right of rn in T ,
S = {ri, m ≤ i ≤ n}. If the rules in S do not intersect with rn, then a packet cannot match
both rn and any rule in S. As a result, testing rn before any rule in S is not significant since
shadowing is not introduced; thus, the reorder does not effect policy integrity.
Case 3 Reorder and intersections occur during creation. Consider a trie T consisting of
n− 1 rules from R, which are added using the process previously described. In addition, let
the n− 1 rules be ordered in T as they are in R. Assume a new rule rn is added to T and is
located to the left of the existing rule rm. Let S be the set of rules that appear to right of
rn in T , S = {ri, m ≤ i ≤ n}. Assume rn does intersect with rule ri in S. The intersection
represents the set of packets that match rn and ri, where the tuples of the intersection are
the more specific of the two rules. There must be at least one tuple in ri more specific
than the corresponding tuple in rn, otherwise rn is shadowed in the original rule list. The
intersection rule will be located to the left of rn and have the action of the ri. Therefore, the
intersection rule will always be tested first, and if true the action of the rule ri is applied.
This is the correct response; therefore, the reorder will not affect integrity.

3.3.2 Push-Down Policy Tries

The policy trie as described thus far may require backtracking when a packet is processed
(search is performed). Backtracking searches can have a worst-case performance that is equal
to a list representation [29]. Although the penalty for backtracking in an n-ary trie is not
as severe as a standard binary version, the conversion to a non-backtracking trie can reduce
the number of tuple-compares, which is the objective of the representation.

A non-backtracking policy trie, referred to as a push-down policy trie, is created by
replicating, or pushing-down general rules in the original policy. A general rule is a superset
of at least one other rule in the policy, and is defined as a range of values, containing at least
one wild-card in the standard prefix notation. The push-down procedure replicates more
general rules in subset subtries, that would match the same packets as the general rule. As
a result, the union of the push-down rules is a proper subset of the original rule.

14

root

TCP UDP *

140.* 150.* *
A 150.* *

B
*

C

* * * * * *

130.* * 120.* * * * * *

20 * 80 * 90 * * * 3030 * * *

deny deny accept deny accept deny deny deny accept deny deny deny

r1
r8 =

r7 ↓ r1
r2

r7 =
r6 ↓ r1

r3
r10 =
r9 ↓ r3

r9 =
r6 ↓ r1

r6 =
r5 ↓ r1

r4
r12 =

r11 ↓ r4

r11 =
r5 ↓ r4

r5

Figure 4: Push-down policy trie representation of the firewall rules given in table 1.

Definition The push-down of rule rg to rs, denoted as rg ↓ rs is

rg ↓ rs = (rs[1, .., l], rg[(l + 1), ..., k], rg[action])

where the rg[i] = rs[i], i = 1, ..., (l − 1) and l is the index of the first tuple of rs that is a
subset of the corresponding tuple in rg.

A general rule can only be pushed-down to rules that appear to left of it in the trie.
Furthermore, a non-backtracking policy trie is created when all general rules are pushed-
down; therefore, rg ↓ rs, ∀s < g. This can be easily implemented using a post-order traversal
of the policy trie. Note that while push-down always creates a rule that is more specific than
the general rule being pushed, the resulting rule may still be a superset of other rules in the
policy trie, and thus must be pushed down. For example, consider the push-down policy trie
given in figure 4. When rule r5 is pushed-down to rule r1 it creates rule r6. This is a general
rule that is pushed-down again to rule r1 yielding r7. This process repeats yielding r8, which
cannot be pushed-down further.

As done with the original (backtracking) policy trie, we must be certain that the integrity
of the original policy is maintained when using a push-down policy trie. Theorem 3.3 proves
that push-down and original policy tries are equivalent. Therefore it can be stated that the
push-down policy trie maintains integrity since, the original policy trie was proven to do so
in theorem 3.2.

Theorem 3.3 A push-down policy trie Tp is equivalent to the original policy trie T , which
is equivalent to the original security policy R.

Proof Assume a push-down trie Tp is constructed with k levels from an n rule ordered list.
Consider node i on level l, Tp[l, i], that is part of rule rs. The children of node i include
the children of siblings (of node i) that appear to the right, if node i matches the sibling.
Recall the push-down procedure is recursive. If a tuple value is not present among the
children of node i, the associated rule(s) are not a possible alternative since node i is not a
match. Furthermore, given the procedure for constructing the push-down trie, the children
are always ordered as they appear on the right. The rules will be tested in Tp in the same
order as T which is equivalent to R.

15

3.3.3 Worst Case Analysis

As described in the previous section, the push-down policy trie offers a performance increase
by eliminating the need to traverse backwards. In this section, the worst case performance
and storage requirement of the push-down trie is analyzed theoretically. A primary objective
of the policy trie representation is to reduce the number of tuple-comparisons required per
packet. Before this can be done, two important lemmas about push-down policy tries are
required. The associated proofs have been omitted due to space constraints [17].

Lemma 3.4 A node in a push-down policy trie cannot have more than n (the number of
rules) children.

Lemma 3.5 Each node traversal at a particular level in a push-down policy trie eliminates
at least one rule from consideration.

The previous two lemmas provide important bounds on the structure of any push-down
policy trie. As a result, the worst case number of tuple-comparisons is O(n + k), which is
proven in theorem 3.6. Comparing this bound with the worst case for a list-based represen-
tation, the push-down policy trie requires a fraction (1/k) of the processing.

Theorem 3.6 A comprehensive push-down trie consisting of k levels and constructed from
n rules requires O(n + k) number of tuple-comparisons to match a packet in the worst case.

Proof We must always traverse every level of the trie (k tuple-compares) to determine the
action. Following from lemmas 3.4 and 3.5, we know that traversing a node eliminates at
least one rule, which would require n traversals in the worst case. As a result, the worst case
number of tuple-compares is k + n.

It is important to note that intersection and push-down operations do increase the number
of nodes in the push-down trie, which increases the storage requirement. This is evident in
the number of nodes required for the push-down trie depicted in figure 4 as compared to
the original trie given in figure 2. Given an n rule firewall policy, push-down causes the
worst case storage requirement to occur under two specific conditions. The first condition is
ri ⇒ rj, ∀i < j < n, a rule matches all the rules that appear to the right, maximizing the
number of push-downs that occur. The second condition is ri[l]
= rj[l], ∀i < j < n, 1 ≤ l ≤ k;
none of the tuples are equal and nodes are never shared. This worst case is depicted in figure
5(a), where a 3 rule list requires 20 nodes in the push-down policy trie. However, the number
of nodes required by the trie can be greatly reduced by converting it into a Directed Acycical
Graph (DAG) [1, 29]. In the context of a DAG, the push-down operation directly references
nodes instead of replicating them as in the policy trie. For example, consider the push-
down trie given in figure 4. The parents of the nodes labeled A and B could point to the
node labeled C, which eliminates the need for new nodes for rules r6 and r11. The other
push-down rules can be replaced in a similar fashion. Similarly, the DAG equivalent of the
push-down policy trie given in figure 5(a) is depicted in figure 5(b) and requires significantly
fewer nodes. The DAG conversion causes the worst case push-down trie to only require k ·n
tuples, which equals the storage requirement for a list representation.

16

root

r1 r2 r3

(a) Worst case push-down policy trie. Double
circle nodes are the result of push-down opera-
tions.

root

r1 r2 r3

(b) DAG representation. The dotted arrows re-
place the push-down nodes.

Figure 5: Worst case push-down policy trie (r1 ⇒ r2, r1 ⇒ r3, and r2 ⇒ r3) and the DAG
equivalent. Assume the original security policy has three rules, where a rule has only three tuples.

The intersection of two rules, required when rule reordering occurs, may also result in a
new rule (a new combination of existing tuples). The worst case policy would require the
intersection among all rules to result in a valid rule, where tuples of the new rule alternate
between the two rules. In addition, the rules would have to be listed according to the first
tuple from most general to most specific. In this situation, intersection operations result in
chains. Therefore, the worst case number of nodes required to store the policy trie would be
O(n2). Although this is a higher space requirement than the standard list representation, it
only occurs under very specific circumstances. Furthermore, the significance of the additional
space requirement is relative to the frequency of the worst case packet(s).

3.3.4 Experimental Results

The previous section described a new network security policy representation called a policy
trie that was shown to provide theoretically better performance than the standard list-
based representation. Simulation results presented in this section will confirm the worst case
number of tuple-comparisons and show that similar performance gains are achieved in the
average case. In addition, the average and worst case storage requirements for the different
policy representations are presented and will be shown to also remain within their theoretical
bounds.

Simulations were conducted using list, backtracking trie (original trie), and push-down
trie representations of firewall policies. A random rule generator was used to create valid
rule sets with a realistic degree of rule intersection. The generator was set to allow a slightly
lower number of tuple permutations at high levels (source, source port, etc.) so that the
shape of resulting policy tries would mirror those of real-world firewall rule sets. Policy sizes
ranged from 50 rules to 500 rules, where 50 different policies were generated per policy size.
Sets of 10,000 packets were passed through representations of each policy and the resulting
decisions made were validated against the original rule set. Statistics concerning the average
and worst case number of tuple-comparisons were recorded as well as the amount of storage
required for each policy representation

17

0 100 200 300 400 500
0

500

1000

1500

2000

2500

number of rules

nu
m

be
r o

f t
up

le
-c

om
pa

ris
on

s

Average Number of Tuple-Comparisons

List
Backtracking trie
Push-down trie

(a) Average number of tuple-comparisons. Er-
ror bars represent one standard deviation.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

number of rules

nu
m

be
r o

f t
up

le
-c

om
pa

ris
on

s

Highest Number of Tuple-Comparisons

List

Backtracking trie

Push-down trie

List theoretical

Push-down theoretical

(b) Highest number of tuple-comparisons.

Figure 6: The average and worst case number of tuple-comparisons required for the firewall
experiments. Push-down trie provided the best performance in both cases.

3.3.5 Tuple-Comparisons Results

Results for the tuple-comparisons are given in figure 6. As expected, when the policy sizes
increased, both trie representations always performed considerably better than the linear
rule set. In all cases, each representation reached the same decision, indicating that they
were equivalent; thus maintaining integrity. As seen in figure 6(a), the average performance
for backtracking tries appears to be similar to that of push-down tries. However, the back-
tracking trie required 5 times as many comparisons on average than the push-down trie,
while the original list required 34 times as many tuple-comparisons on average.

The variance for the average number of comparisons in push-down tries was slightly lower
than that of backtracking tries. As a result, push-down tries sometimes performed signif-
icantly better than their backtracking counterparts. Compared to linear implementations,
the variance of trie-based implementations was very low and relatively constant. The stan-
dard deviation of the average number of comparisons in either trie implementation never
rose above 20 per packet over 10,000 packets. Though this number may seem significant,
the variance of linear policies averaged more than 46 comparisons and sometimes ranged as
high as 100 comparisons.

The worst case number of tuple-comparisons required by each representation is given
in figure 6(b). Similar to the average case results, both trie representations out-performed
the list representation. Compared to the push-down trie the backtracking trie required 7
times as many of tuple-comparisons to reach a decision in the worst case, while the list
representation required 31 times as many. In addition, the performance of push-down tries
and list representations were within the theoretical bounds.

18

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

number of rules

nu
m

be
r o

f t
up

le
s

st
or

ed

Average Amount of Storage Required

List
Backtracking trie
Push-down trie

(a) Average number of tuples stored. Error bars
represent one standard deviation.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 10

4

number of rules

nu
m

be
r o

f t
up

le
s

st
or

ed

Highest Amount of Storage Required

List

Backtracking trie

Push-down trie

Push-down theoretical

(b) Highest number of tuples stored.

Figure 7: The average and worst case number of tuple stored for the firewall experiments.
Backtracking trie required the least amount of storage in both cases.

3.4 Storage Results

The amount of storage required, measured in the number of tuples, is depicted in figure
7. As predicted, when policy sizes increased the backtracking tries consistently used less (a
third for these experiments) of the storage required by the list representation. In contrast,
the push-down tries required the most storage. The push-down trie storage was nonlinear
with respect to the number of rules and on average required 10 times as much storage as the
backtracking trie. Furthermore, the variance of push-down tries averaged over 1,000 nodes,
while the variance of backtracking tries averaged less than 50 nodes. Although the push-
down trie representation required the most storage, the observed worst case requirement was
well below the theoretical upper bound of n2, requiring on average 92% fewer tuples.

The amount of storage required by both trie representations is directly related to the
degree of rule overlap. Backtracking tries benefit from rule overlap because overlap results
in a greater number of shared nodes. In contrast, the storage requirement for push-down tries
improves when there are fewer subset relations in a policy, since fewer push-down operations
occur.

4 Security Policy Optimization Techniques

An important research area during the first year was the development of the firewall policy
models: policy Directed Acyclical Graphs (DAG) and policy tries. These models were de-
signed to maintain policy integrity and have been key for directing firewall design (such as
topology). Security policy optimization is the reorganization of firewall rules to reduce the
search time required to find the appropriate match (average or worst case). How optimization
is performed depends on the data structure used to represent the policy.

19

4.1 List-Based Policy Optimization

As mentioned in the introduction, it is important to inspect packets as quickly as possible
given increasing network speeds and QoS requirements. Using the policy DAG to main-
tain policy integrity, a linear arrangement is sought that minimizes the average number of
comparisons required. However, this will require information not present in the firewall rule
list. Certain firewall rules have a higher probability of matching a packet than others. As
a result, it is possible to develop a policy profile over time that indicates frequency of rule
matches (similar to cache hit ratio). Let P = {p1, p2, ..., pn} be the policy profile, where pi

is the probability that a packet will match rule i (first match in the policy). Furthermore,
assume a packet will always find a match,

∑n
i=1 pi = 1; therefore R is comprehensive. Using

this information, the average number of rule comparisons required is

E[n] =

n∑

i=1

i · pi (1)

For example, the average number of comparisons required for the rule set in table 1 is 3.85.
Given a policy DAG G = (R, E) and policy profile P = {p1, p2, ..., pn} a linear arrange-

ment π of G is sought that minimizes equation 1. In the absence of precedence relationships,
the average number of comparisons is minimized if the rules are sorted in non-increasing
order according to the probabilities [31], which is also referred to as Smith’s algorithm [33].
Precedence constraints causes the problem to be more realistic; however, it also makes de-
termining the optimal permutation more problematic.

Determining the optimal rule list permutation can be viewed as job scheduling for a single
machine with precedence constraints [21, 26]. The notation for such scheduling problems is
α|β|γ|δ, where α is the number of machines, β is the precedence (or absence of) which can be
represented as a DAG, γ is a restriction on processing time, and δ is the optimality criterion
[21]. Determining the optimal rule order is similar to the 1|β|1|∑wiCi scheduling problem,
or optimality criterion, where wi is a weight associated with a job (for example, importance)
and Ci is the completion time. As previously noted, the 1|||∑wiCi problem can be solved in
linear time the using Smith’s algorithm [33], which orders jobs according to non-decreasing
ti
wi

ratio, where ti is the processing time of job i. In this case set ti = 1 and wi = pi ∀i.
However, Lawler [24] and Lenstra et. al. [26] proved 1|β|1|∑wiCi to be NP-hard via the
linear arrangement problem, which implies determining the optimal firewall rule order is also
NP-hard. Note, determining the number of possible permutations has been proven to be
#P-hard [8].

Theorem 4.1 1|β|1|∑wiCi ∝ Determining the optimal order of a firewall rule list

Proof Consider the 1|β|1|∑wiCi problem. Each of n jobs Ji, i ∈ I, has to be processed
without preemption on a single machine that can handle at most one job at a time. For each
i ∈ I, let wi be the associated weight. Furthermore, let G = (V, E) be a DAG that represents
the precedence order of the jobs Ji. Assume the processing time of each job equals 1 time
unit, the weights to be 0 ≤ wi ≤ 1 such that

∑
wi = 1, and β, which is G, to be a rule list

DAG. In this case, the optimization criterion
∑

wi · Ci is the same as
∑

pi · i, which is given
in equation 1. Clearly, the optimal firewall rule ordering problem has a solution if and only

20

if 1|β|1|∑wiCi has a solution. Therefore, determining the optimal permutation of firewall
rules is NP-hard.

The sorting algorithm developed during the first year of the project used the following
comparison to determine if neighboring (appear consecutively) rules should be interchanged.

if(pi < pi+1 AND ri /∩ ri+1)then

The sorting method compared neighboring rules in this fashion until further exchanges were
not possible. It is important to note the match probabilities will not change after sorting,
since only non-intersecting rules may be exchanged. Sorting rules in this fashion can have
positive impact on the average number of comparisons required. The algorithm reduced
the average number of comparisons upwards of 70% for small policies, which is a signifi-
cant improvement. However, larger more realistic rule-sets were not able to have the same
performance increase.

The augmented algorithm developed this year also considered neighboring rules; however
an exchange never occurs if the rules intersect and have different actions. This test preserves
any precedence relationships in the policy. For example, the new sorting algorithm used
such a comparison to determine if neighboring rules should be exchanged. Note, ai denotes
the action associated with the ith rule.

if(pi < pi+1 AND (ri /∩ ri+1 OR ai == ai+1))then

Unlike the previous method, sorting in this fashion may impact the match probabilities. If
two rules do not intersect, then a relative reorder will not effect the match probability since
the appropriate first match is maintained for any packet, which is given in X. If two rules
intersect and have the same action, then a relative reorder will change the match probability,
since the rule that appears first in the relative reorder will have a higher probability (at the
expense of the other rule, which may need to be reordered). This simple modification can
result in further reductions in the average number of rule comparisons. The performance
increase is depicted in figure 8. As seen in the figure, the augmented sorting method con-
sistently performs better. This is because exchanges can still occur even if the dependency
percentage is high. If an exchange occurs between two rules with the same action, a portion
of the probability will be shifted towards the beginning of the list.

4.2 Trie-Based Policy Optimization

The policy trie and PDT representations described in section 3.3 dramatically reduce the
number of comparisons required to process a packet. Similar to policy list sorting, the
average number of comparisons can be further improved by organizing the trie such that the
more popular rules appear towards the left. Since constructing the trie may reorder rules,
building a trie from a sorted list may not result in a sorted trie. Furthermore, exchanging
sub-tries of different specificities runs the risk of violating the integrity of the associated
policy. As a result, sorting tries and PDTs is limited to comparisons between rules of the
same specificity (nodes that share the same parent node). In firewall policies controlling of
a wide variety of services and hosts, this severely limits the effectiveness of sorting.

21

0 20 40 60 80 100

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

intersection percentage

pe
rc

en
t d

iff
er

en
ce

Comparison Between Old and New Sorting Algorithms

Action sort, 85% of rule actions deny
Action sort, 50% of rule actions deny
Non-action sort

Figure 8: Percent decrease in the number of rule comparisons as the dependency percentage
increases for a 1000 rule policy. The new sorting algorithm (action sort) performs better.

root

TCP UDP *

140.* 150.* 150.* *

* * * *

130.* * 120.* * *

80 80 90 3030 *

p1 = 0.1 p2 = 0.05 p3 = 0.15 p4 = 0.3 p5 = 0.4

(a) Original policy trie.

root

UDP TCP *

150.* 150.* 140.* *

* * * *

* 120.* 130.* * *

3030 90 80 80 *

p4 = 0.3 p3 = 0.15 p1 = 0.05 p2 = 0.1 p5 = 0.4

(b) Sorted policy trie.

Figure 9: Original and sorted trie representations of the firewall rules given in figure 1. Dashed
edges represent precedence constraints between nodes that share the same parent.

22

As with list-based policies, policy-DAGs can be used to model the precedence relation-
ships between sub-tries. Sorting based on the constraints of a DAG allows the potential
reordering of rules of different specificities. Given a parent node in the trie, a DAG is cre-
ated with nodes representing each of the children’s sub-tries. These nodes are comprised
of the most general root to leaf path beginning with each respective child. Nodes are then
compared to determine where subset relationships exist and edges are drawn to represent
the subsequent precedence relationships. In figure 9(a) the children of the root node result in
two edges being drawn. Three rules in the TCP sub-trie and the one rule in the UDP sub-trie
intersect with the default rule in the * sub-trie. Edges are drawn between TCP and *, as
well as between UDP and *. In contrast, consider the children of the TCP sub-trie. Rules
in the 140.* sub-trie do not intersect with rules in the 150.* sub-trie, so an edge is not
drawn between these siblings. Based on the DAG, the sub-tries can be reordered to improve
performance without violating policy integrity, which is the basis of the sorting technique
described in the next section.

4.2.1 Ordering Policy Sub-Tries

Consider a policy trie T that contains sibling nodes i and j, where Ti is the sub-trie with
i as the root node and Tj is a sub-trie with j as the root node. Let P (i) be the sum of
the probabilities of the rules contained in sub-trie of root i, while C(i) denotes the number
of comparisons required to completely traverse sub-trie that has i as the root node, equal
to the number of branches. In order to reduce the average number of tuple comparisons,
sub-tries that share the same parent node should be ordered such that the P (i) values are
non-ascending and higher match probabilities occur first, from left to right. If sub-tries
that share a parent node have the same probability, P (i) equals P (j), then they should be
arranged such that their C(·) values appear in non-descending order.

Though reordering two rules may be beneficial, the constraints of a policy DAG must be
considered to ensure integrity. For example, take two neighboring sub-tries Ti and Ti+1 that
share the same parent node and are out of order. Let Ti /∩ Tj indicate the rules in Ti do not
intersect with the rules in Tj (rs /∩ rt, ∀rs ∈ Ti, ∀rt ∈ Tj). The two sub-tries can be rotated
about the parent if and only if Ti /∩ Ti+1 or if all the rules in sub-tries Ti and Ti+1 have
the same action. Similar to finding the linear sequence of a policy DAG’s, these conditions
maintain the policy trie integrity, which is proven in the following theorem.

Theorem 4.2 Given a policy trie T , exchanging sub-tries that have the same parent node
based on the associated policy-DAG maintains integrity.

Proof Consider two sub-tries, Ti and Tj , in a policy trie T (i < j, without loss of generality).
Ti and Tj may be exchanged if there is no edge from any node in Ti to Tj. By construction,
the nodes in each set represent the most general root to leaf path in their respective sub-trie
and by definition each node is a subset of its respective power set, Ti or Tj.

Suppose that a set of packets d overlaps with rules in both Ti and Tj and the associated
rule actions are different. The reordering of these two rules would result in a shadowing. It
follows that, by definition of the DAG, there exists an edge between these two rules. This
violates the choice of Ti and Tj . By contradiction, no such rules will exist and therefore, no
anomaly will be introduced into a sorted trie.

23

function sortTrie(trieNode m)
if(m is leaf node) return
done = false
while(!done)

done = true
for each child i of m that has a right neighboring sibling

if(P (i) < P (i + 1) AND (Ti /∩ Ti+1 OR
action(Ti)==action(Ti+1))then

exchange Ti and Ti+1
done = false

elseif(P (i) == P (i + 1) AND C(i) > C(i + 1) AND
(Ti /∩ Ti+1 OR action(Ti)==action(Ti+1))then

exchange Ti and Ti+1
done = false

endif
endfor

endwhile
for each child i of m

sortTrie(i)
endfor

endfunction

Figure 10: Trie sorting algorithm.

4.2.2 A Trie Sorting Algorithm

Using the guidelines for maintaining integrity described in the previous section, figure 4
presents a simple sorting technique for policy tries or PDTs. The algorithm starts with a
call at the root node, sorting child sub-tries based on match-probability and the number of
branches contained in each sub-trie. As previously described, an exchange of sub-tries does
not occur if the sub-tries intersect and have different actions. The function is then called on
each child node, and the process repeats until the leaf nodes are reached.

At each step, probabilities are calculated for sub-tries whose constraints permit compar-
ison. Probability values for nodes created as the result of the intersection procedure are
given a probability less than either of their two original rules, as they will match a smaller
set of packets than their ancestors. For all other sub-tries, their cumulative probability is
the summation of the probabilities of their leaves.

In the event that two probabilities are equal, the tie break is decided by the number
of branches in each trie, C(·). In this case, we want to make sure that tie break always
results in a better ordering, satisfying the inequality P (j) · C(j) + P (i) · (C(i) + C(j)) <
P (i) · C(i) + P (j) · (C(i) + C(j)), where (P (j), C(j)) and (P (i), C(i)) are the cumulative
probabilities and branches for two sub-tries Ti and Tj. By construction, we know that
P (i) = P (j) and C(i) > C(j). Simplification yields the true statement, C(j) < C(i),
confirming that the inequality is satisfied.

Figure 9(b) depicts the sorted version of the policy trie given in 9(a). The first function
call attempts to sort the sub-tries TCP, UDP, and * (protocol) about their parent node.
Although the probability for the sub-tries TCP and UDP equal (P (TCP) = P (UDP) = 0.3) the
sub-tries are exchanged since C(TCP) < C(UDP). Although P (*) has the highest probability,
it cannot be moved towards the left because of precedence edges. The children of TCP node
are then sorted (IP source), where the 140.* and 150.* sub-tries are exchanged based on
the number of branches. Sorting continues with the grandchildren of the 140.* node, the
130.* and * sub-tries (IP destination), which are not exchanged since they intersect.

24

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300
Average Number of Tuple-Comparisons

number of rules

nu
m

be
r o

f t
up

le
-c

om
pa

ris
on

s

List
Trie
Sorted Trie
PDT
Sorted PDT

(a) Average number of tuple-comparisons.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300
Maximum Number of Tuple-Comparisons

number of rules

nu
m

be
r o

f t
up

le
-c

om
pa

ris
on

s

List

Trie

Sorted Trie

PDT

Sorted PDT

(b) Highest number of tuple-comparisons.

Figure 11: The average and worst case number of tuple-comparisons required.

This algorithm can be implemented by keeping buckets attached to rule action tuples to
measure the relative frequency of matches for individual rules. Then, based on this infor-
mation, the tries can be rebalanced offline and implemented in the firewall. In simulations,
sorted tries provided significantly better processing time to all traffic by using DAG sorting
to favor high frequency rules.

4.2.3 Trie-Based Policy Optimization Experimental Results

The previous sections described how policy tries and PDTs can be sorted to reduce the
average number of tuple comparisons. Simulation results in this section will measure the
impact of the sorting method under realistic conditions. Firewall policies of sizes ranging
from 50 to 500 rules were generated using a random-rule generator that ensured anomaly
free policies and imitated the shape of common security policies. Sets of 10,000 packets were
then generated and skewed to favor random subsets of rules over others to simulate realistic
traffic distributions. Of note, our traffic generation algorithm mimics high flow to a small set
of services, with no regard for their placement in the policy. This is in contrast to the models
used in [4], which sought to produce DoS traffic that exploited the structure of linear and
backtracking trie implementations. Linear, back-tracking trie, and PDT implementations
were created and evaluated in their original form. Then, based on frequency analysis of the
traffic set, they were rebalanced using DAG sorting and evaluated for comparison.

The results for the average and higher number of tuple-comparisons are given in figure
11. As reported in [4], the trie implementations performed significantly better than the list,
yielding a 81% reduction in the number of tuple-comparisons required. In the case of back-
tracking tries, balancing resulted in 25% fewer comparisons than unbalanced tries. This is a
result of the reduction of cumulative delay by processing most packets faster. Not only does
the targeted traffic stream benefit, but those packets now requiring more comparisons also
benefit. Though the average number of comparisons decreased, the worst case performance

25

Source Destination
No. Proto. IP Port IP Port Action Prob.
4 UDP 150.* * * 3030 accept 0.3
5a UDP * * * * deny 0.3
3 TCP 150.* * 120.* 90 accept 0.15
1 TCP 140.* * 130.* 80 deny 0.1
2 TCP 140.* * * 80 accept 0.05
5b TCP * * * * deny 0.1

Table 2: Security policy given in figure 2 sorted with r5 (*, *, *, *, deny) into rules r5a and r5b.

for single packet evaluation for sorted tries remained the same. This is due to the nature of
back-tracking search in which all paths must be traversed for some packets no matter what
the order.

Push-Down Tries performed the best of all when sorted. The sorted PDT required 83%
fewer comparison on average than a list and 27% fewer comparisons on average than an
unsorted PDT. In addition, the maximum number of comparisons in worst case situations
decreased slightly, a function of their structural replication rules. As unpopular rules are
shuffled to the back of the PDT, they are not replicated elsewhere in the PDT unless needed.
This effectively allows certain rules to be excluded from most evaluations even in worst-case
situations.

4.3 Rule Splitting

Rule splitting takes a general rule and creates more specific rules that collectively perform
the same action over the same set of packets. Here, we are utilizing rule splitting to reduce
the average number of comparisons. For example in table 2, rule r5 is split into two separate
rules, r5a for UDP and r5b for TCP. Once the rules are positioned based on their probabilities
and their relation to other rules, the average number of rule comparisons is reduced to 2.6
(after sorting and splitting) which is a 16% less.

It many not be advantageous to split a general rule since it adds another rule to the
policy. For example, assume a policy contains 20 rules where the first 19 rules have the same
probability. Assume the last rule can be split and the new specific rule has a probability that
is 3

4
of the last rule. The impact of the probability of the last rule and the location of the

new split rule, m, is depicted in figure 12. The average number of comparisons is reduced
as the split rule is located closer to the first rule (surface decreases as m approaches one).
Furthermore, splitting yields better results when the general rule has a high probability.
However as seen in figure 12(b), the closer the specific rule is to the location of the original
rule the average number of comparisons increases, which is the penalty of adding one more
rule to the policy.

The effect of splitting a single rule can be described mathematically as follows. Consider
n rules where rule rn can be split into rules rn,l and rn,r (whose union is the original rule).
In addition, assume the split rule rn,l will be located at the mth position (1 ≤ m < n), while
rule rn,r will remain at the nth location. We want to determine the best location m, which

26

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
10

12

14

16

18

20

22

probability of last rule, p
n

Firewall Performance with and without Splitting

location of new rule, m

av
er

ag
e

nu
m

be
r o

f c
om

pa
re

s

Splitting
No splitting

(a) Original and splitting.

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
10

12

14

16

18

20

22

probability of last rule, p
n

Locations and Probabilities where Splitting is Better

location of new rule, m

av
er

ag
e

nu
m

be
r o

f c
om

pa
re

s

(b) Locations and probabilities where splitting is best.

Figure 12: Example of splitting the last rule in a policy. Surfaces depict the impact of split rule
location and the probability of the last rule (pn). The probability of the new split rule is 3

4
· pn.

yields a lower average number of comparisons as compared to the original rule set. This can
be defined mathematically in the following formula.

n∑

i=1

i · pi >
m−1∑

i=1

i · pi + m · pn,l +
n−1∑

i=m

(i + 1) · pi + (n + 1) · pn,r

The left side of the inequality is the average number of comparisons for the original rule
set. The right hand side of the inequality is the average number of comparisons with the
specific rule at location m. If we assume the rules located between m and n have an equal
probability (denoted as p) we can solve the previous equation for m.

m <
n · p − n · pn + (n + 1) · pn,r

p − pn,l

The new rule must be located between the first and mth; however, its final location will
depend on the relationship with the other rules (cannot be placed before any rule for which
it is a superset). This result can be applied iteratively to multiple rules and repeatedly to
the same rule.

5 Parallel Firewalls Designs

As described in the introduction, parallelization offers a scalable technique for improving
the performance of network firewalls. Using this approach an array of m firewalls processes
packets in parallel, as seen in figure 13. However, the designs depicted in the figure differ
based on what is distributed: packets or rules. Using terminology from parallel computing,
distributing packets can be considered data parallel since the data (packets) is distributed

27

Source Destination
No. Proto. IP Port IP Port Action Prob.
1 UDP 190.1.1.* * * 80 deny 0.05
2 UDP 210.1.* * * 90 accept 0.10
3 TCP 180.* * 180.* 90 accept 0.15
4 TCP 210.* * 220.* 80 accept 0.20
5 UDP 190.* * * * accept 0.20
6 * * * * * deny 0.30

Table 3: Example firewall policy used for the parallel firewall examples.

across the firewall [9]. In contrast, function parallel designs distribute the policy rules across
the firewalls.

5.1 Data-Parallel Architecture

As shown in figure 13(a), data parallel firewall architecture consists of an array of identically
configured firewalls [6]. Each firewall j in the system implements a local policy Rj, where
Rj = R. Arriving packets are distributed across the firewalls for processing (one packet is
sent to one firewall), allowing different packets to be processed in parallel. Since the accept
set for each firewall j equals the accept set of the original policy, Aj = A, policy integrity is
maintained.

Distributing packets across the array allows a data parallel firewall to increase system
throughput (number of packets processed per unit time) as compared to a traditional (single
machine) firewall [6]. Furthermore, increased throughput is easily achieved with the addition
of firewalls; therefore, this approach is very scalable. However the data parallel approach
has three major disadvantages. First, stateful inspection requires all traffic from a certain
connection or exchange to traverse the same firewall (where the stateful rule resides) or the
constant distribution and management of stateful rules. As a result, successful connection
tracking is difficult to perform at high speeds using the data parallel approach [6, 27]. Second,
distributing packets is only beneficial when each firewall in the array has a significant amount
of traffic to process (firewalls are never idle). The performance benefit (higher throughput)
only occurs under high traffic loads. Finally, the design does not differentiate between traffic
classes only load balancing. Therefore efficiently maintaining different QoS requirements is
not possible.

5.2 Function Parallel Architecture with Gate

Unlike the data parallel model which distributes packets, the function parallel design dis-
tributes policy rules across the firewall array [15]. The function parallel design consists of
multiple firewalls connected in parallel and a gate device. As seen in figure 13(b), when a
packet arrives to the function parallel system it is forwarded to every firewall and the gate.
Each firewall processes the packet using its local policy, including any state information.
Since the local policies are smaller than the original, the processing delay is reduced as com-

28

R1 = {r1, r2, r3, r4, r5, r6}

packet
distributor

•
R2 = {r1, r2, r3, r4, r5, r6}

(a) Data-parallel, packets dis-
tributed across equal firewalls.

R1 = {r1, r3, r5}

packet
duplicator

• gate

controlR2 = {r2, r4, r6}

(b) Function parallel with gate,
rules distributed across firewalls.

R1 = {r2, r3, r4, r6}

packet
duplicator

•
R2 = {r1, r5, r6}

(c) Function parallel, rules distributed across
independent firewalls.

Figure 13: Various parallel designs for network firewalls. The original security policy consists of
six rules R = {r1, ..., r6} and each design consists of two firewalls (depicted as solid rectangles,
where local policies are given within each rectangle).

29

pared to a traditional firewall. Once the firewall finishes processing a packet, it then signals
the gate indicating either no match was found, or provides the rule number and action if a
match was found. The gate stores the results for the packet and determines the final action
to perform using the policy DAG.

Since firewalls only implement a portion of the original policy, it is critical that rule
distribution is done to maintain integrity. The integrity of a policy R is maintained if the
rules are distributed such that every rule in R exists in the system and if the precedence
constraints of R are observed in each local policy Rj . As a result, the accept set of the gate
equals the accept set of the original policy [15]. This is more formally stated in the following
theorem.

Theorem 5.1 An array of m firewalls and a gate device arranged in a function parallel
fashion enforcing a comprehensive policy R will maintain integrity if policy rules are dis-
tributed to each firewall j such that: every rule in R is assigned to at least one firewall and
the precedence constraints of R are observed in Rj.

Proof Let R′ be the ordered subset of the rules in policy R that matches a packet d. Given a
first match policy, the first rule in R′ is the correct result. The first condition of the theorem
ensures that these rules will exist in the system. The second condition ensures shadowing
will never occur if multiple rules from R′ exist in the same local policy, therefore then local
first match is produced for d is the correct result. If these rules exist in different local policies
then the gate will be given multiple matches from the set R′ for d; however, the gate will
determine the appropriate rule since it always applies the lowest numbered rule of the local
first matches, thus policy integrity is maintained.

Therefore, a traditional single firewall and the function parallel firewall will always give the
same result for the same packet. Several different distributions are possible that adhere the
described guidelines. Essentially the rule numbers (indexes from the original policy) in each
local policy must be in ascending order, as seen in figure 13(b). Note the policy used is given
in table 3.

The function parallel design has several significant advantages over traditional and data
parallel firewalls. First, the function parallel design results in faster processing since every
firewall is utilized to process a single packet. Reducing the processing time, instead of
the arrival rate (as done in the data parallel design), yields better performance since each
firewall in the array processes packets regardless of the traffic load. The processing delay can
be further reduced with the addition of new firewalls. Second, unlike the data parallel design,
the function parallel design can maintain state information about existing connections. The
new state rule can be placed in any firewall since a packet will be processed by every firewall.

There are three disadvantages of the function parallel design. First, there is a possible
limitation on scalability, since the system cannot have more firewalls than rules. However,
given the size of most firewall policies range in the thousands of rules [38], the scalability limit
is not an important concern. Second, the system is unable to differentiate traffic, therefore
specific QoS constraints may not be provided. Thirdly, the gate requires specialized hardware
and introduces an additional delay. Therefore, to achieve the full potential of the function
parallel design it is preferable to eliminate the gate device and allow the firewalls to operate
independently.

30

5.3 Independent Function Parallel Architecture

As described in the previous subsection, a function parallel system consists of an array of
firewalls where arriving packets are duplicated and policy rules are distributed. Each firewall
processes an arriving packet using its local policy and a gate device is required to ensure
integrity is maintained. However, it is possible to allow the firewalls to operate independently,
thus eliminating the gate device and any need for inter-firewall communications.

Consider a function parallel system consisting of m firewalls that enforces a comprehensive
security policy R. Each firewall j in the array has a local comprehensive policy Rj that is
a portion of the security policy R. Therefore, each firewall has a local accept set Aj and a
deny set Dj. Integrity will maintained without a gate device if rules are distributed such
that a packet d ∈ D is dropped by all firewalls, while a packet a ∈ A is accepted by only one
firewall. This is more formally stated in the following theorem.

Theorem 5.2 An array of m firewalls arranged in a function parallel fashion enforcing a
comprehensive policy R can operate independently and maintain integrity if policy rules are
distributed such that: each local policy is comprehensive,

⋃m
j=1 Aj = A, and

⋂m
j=1 Aj = ∅.

Proof The first requirement, comprehensiveness, ensures each local policy will either accept
or deny a packet (

⋃m
j=1 U j = ∅). The second requirement

⋃m
j=1 Aj = A indicates that

collectively the system will accept only the packets accepted by the policy R. The last
requirement,

⋂m
j=1 Aj = ∅, ensures multiple firewalls will never accept the same packet (no

overlaps in the local accept sets), therefore only one copy of a packet will be accepted. As
such, the integrity of the policy R is maintained by the parallel firewall.

An example distribution of the policy given in table 3 across an array of two independent
firewalls is shown in figure 13(c). In this case, the local policy of the upper firewall will
accept only packets from the 210 and 180 address range, while the lower firewall will only
accept packets from the 190 address range. Duplicating the deny all rule, r6, is required to
make the local-policies comprehensive. Other distributions are possible, such as distributing
rules based on the protocol (R1 = {r1, r2, r5, r6} and R2 = {r3, r4, r6}) or destination ports
(R1 = {r1, r4, r5, r6} and R2 = {r2, r3, r6}). In each example a precedence edge will never
connect two rules in two different firewalls (no inter-firewall edges), and as a result, integrity is
maintained. Policy distribution can be done to balance the packet load (distribute popular
rules across the array) or to achieve a certain QoS objective. Of course the number of
distributions will depend on the original security policy, where fewer precedence edges allow
more distributions.

Like the function parallel system that relies on a gate device, the independent function
parallel system can manage state information since a packet is sent to every firewall. However,
allowing the firewalls to operate independently has several important unique advantages.
First, the elimination of the gate device causes the function parallel design to be compatible
with a variety of firewall devices since specialized equipment is not needed. Second, the
independent function parallel system will have lower processing delays than an equivalent
data parallel system or a function parallel system with a gate device. Third, local-policies
can be designed to process certain types of traffic on certain firewalls, yielding the ability

31

to provide service differentiation which is an important component for maintaining QoS
requirements.

Although the system has many significant advantages, it is not redundant. Integrity
will be lost if a firewall fails since a portion of the policy (local accept set) will not be
available. Fortunately, loss of a firewall will only result in a more conservative policy (fewer
packets accepted), which is better than the previous function parallel design with gate device.
Redundancy can be provided by duplicating the local policy to another firewall. As done in
[6], firewalls can be interconnected to determine if redundant rules should be processed.

5.3.1 Policy Distribution

Given a function parallel firewall array and a firewall policy, several rule distributions may
be able to maintain integrity. Identifying the sets of rules that form independent accept sets,
called rule chains, can help maintain integrity when rules are distributed. A rule chain is the
smallest ordered list of intersecting rules that forms an accept set which does not intersect
with another rule chain.

A rule chain can be found by starting with a rule in R that does not have any preceding
constraints (no incoming preceding edges in the policy DAG) and then following the prece-
dence edges until a rule is encountered that has no successive precedence constraints (no
outgoing precedence edges). All the rules along this path belong to a rule chain. Note that
an accept rule can only belong to one rule chain. Therefore, if two chains share an accept
rule, then they are considered one chain. In contrast, deny rules can be duplicated across
multiple chains. For example, rule r6, given in table 3, would be the last rule in each rule
chain. Once all the rules have been associated with a chain, all possible rule chains have
been found for the policy. For example, the rule chains for the policy given in table 3 are
c1 = {r1, r5, r6}, c2 = {r2, r6}, c3 = {r3, r6}, and c4 = {r4, r6}.

Once the rule chains have been determined, they can be distributed to the firewall nodes
in the array. When multiple chains are given to a node, the rules that belong to the chains
must be merged to form the local policy. Merging requires rules to adhere to the precedence
constraints specified be the original policy DAG (as in rule sorting). For example, merging
c2, c3, and c6 requires placing r6 at the end.

Distributing chains and merging rules will maintain policy integrity since the accept
sets for the chains are independent (first condition), and every accept rule in the original
policy exists in only one chain (second condition). Furthermore, merging the rules assures
shadowing will not occur in the local policies (assuming shadowing does not occur in the
original policy). This approach is more formally stated in the following theorem.

Theorem 5.3 Distributing and merging the rule chains of a policy R across function parallel
firewall will maintain policy integrity.

Proof Assume d chains are found in the policy R and let Ak represent the accept set of the
kth chain. Each rule chain represents an independent accept set since all intersecting rules
will always belong to the same chain and accept rules only belong to one chain, therefore the
intersection requirement is met (

⋂d
k=1 Ak = ∅). For the second requirement,

⋃d
k=1 Ak = A,

consider a packet that is accepted by rule ri in the policy R, therefore ri is the first match.

32

The rule ri would also be the first match in the chain that contains ri regardless which
processor ri resides since all intersecting rules will belong to the same chain (any subsequent
matching rules would appear after ri) and merging prevents shadowing. In addition, since
every rule must belong to a chain, the second condition is satisfied.

5.3.2 Policy Distribution Performance

A rule distribution is sought that minimizes the number of comparisons required to determine
an accept [16]. Given a comprehensive policy R and an array of m firewalls, each firewall j
in the array will implement a local-policy Rj which consists of nj rules where rj

i is the ith

rule in the local-policy. In addition, let pj
i is the probability of the ith rule in local-policy j

being the first match.
To determine the average number of comparisons for a given packet, assume each firewall

in the array requires one time-unit to compare the packet to a rule. Then assume the
firewalls are initially empty and synchronized so that each starts processing a packet at the
same time. When the first packet arrives, it is compared to the first rule in each of the
m local policies. Therefore, after the first time-unit, the packet has been compared to m
rules. The probability that the original first match (as defined by the R) is found in the first
time-unit is the sum of the probabilities of the first rule in each local policy. Similarly, the
probability the first-match occurs in two time-units is equal to the sum of the probabilities
of the second rule in each local policy. The expected number of rule comparisons required
to find the original first match in a function parallel firewall can be computed as

max (nj)∑

i=1

i ·
m∑

j=1

pj
i =

m∑

j=1

nj∑

i=1

i · pj
i , =

m∑

j=1

E(Rj) (2)

However, each rule in R is considered only once in the calculation, since only the average
number of comparisons required for a first-match is considered. If a rule is duplicated (such as
r6 in the distribution given in figure 13(b)), then it is only considered once in the calculation
at its earliest occurrence within the local policies. As a result of only considering each rule

once, the sum of the probabilities across the local policies should equal one,
∑m

j=1

∑nj

i=1 pj
i =

1.
For example, the expected number of comparisons required to find the original first match

for the system given in Figure 13(b) is

1 · (p1
1 + p2

1) + 2 · (p1
2 + p2

2) + 3 · (p1
3 + p2

3) =

1 · (p2 + p1) + 2 · (p3 + p5) + 3 · (p4 + p6) = 2.35

Note that rule r6 is duplicated in the distribution to maintain integrity. It is the third rule
in R1 and the fourth rule in R2; however, the rule is only considered once in the calculation
above. Using the same two firewall function parallel system, if the rules were distributed
based on protocol then the expected number of comparisons required to find the original
first match would be

1 · (p1
1 + p2

1) + 2 · (p1
2 + p2

2) + 3 · (p1
3 + p2

3) = 1 · (p2 + p3) + 2 · (p2 + p4) + 3 · (p5 + p6) = 2.30

33

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95
x 10

-7

expected number of comparisons

av
er

ag
e

fir
st

-m
at

ch
 d

el
ay

First-match Delay as Number of Comparisons Increases

Rule disrtibtion
Best rule distribution
Average

(a) Performance given same traffic.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95
x 10

-7

expected number of comparisons

av
er

ag
e

fir
st

-m
at

ch
 d

el
ay

First-match Delay as Number of Comparisons Increases

Rule disrtibtion
Best rule distribution
Average

(b) Performance using random traffic.

Figure 14: Packet delay as compared to the expected number of rule comparison for a function
parallel system (four firewall array) and a 48 rule policy. Each point represents a equivalent
distribution across the array.

The second distribution can be considered better since it requires fewer compares to deter-
mine the first-match. To achieve optimal performance, it is necessary to find a rule distri-
bution that minimizes the average number of comparisons before the original first match is
found.

The validity of the expected number of comparisons (equation 2) as a performance metric
was evaluated under realistic conditions using simulation. Each experiment simulated a
function parallel system consisting of a four firewall array implementing a 48 rule policy.
The rule match probability followed an inverse Zipf distribution, which is commensurate
with actual firewall policies [25, 38]. In addition, rules did not overlap (except for a default
deny all rule) which allows for a large number of possible distributions.

Given the 48 rule security policy, the performance of the distribution that minimized
average number of rule compares was compared against 10,000 random distributions that
each maintained integrity of the original policy. For each simulation the firewall system
packets arrived at a rate of 1 Gbps, and the average first-match delay and the sum of the
average number of comparisons were collected.

Figure 14(a) shows the delay and expected number of comparisons for different distribu-
tions and the same traffic trace. The traffic trace was generated such that packet lengths
were uniformly distributed between 40 and 1500 bytes and all legal IP addresses were equally
probable. As seen in the graph, the expected number of comparisons is linearly proportional
to the first-match delay. In addition, the best performance is obtained when the expected
number of comparisons is minimized. Therefore the average number of comparisons is a very
good metric given known traffic.

Performance of the metric under randomly generated traffic is depicted in figure 14(b).
In these experiments packets were randomly generated using the same parameters as the first

34

experiment. As seen in this graph, the performance metric is not able to provide an exact
performance prediction due to the variability in the traffic. However, the best performance
still occurs when the average number of compares is minimized. Therefore, the metric is
still able to provide insight into performance and can be used to compare different rule
distributions in a function parallel firewall.

5.3.3 Policy Distribution Algorithm

Improving the overall performance of the firewall is achieved by balancing the number of rules
on each node as well as placing rule chains so that high probability rules are located near
the beginning of each local policy. However, the goal of balancing the number of rules across
nodes when distributing rule chains is difficult. Examine the simple case of rule distribution
where the probability of each rule in the original policy is the same. An algorithm to find
the optimal solution must then be able to find the distribution with the minimum average
difference in rule counts between the nodes. This case is equivalent to the Equal-Subset-Sum
problem, described as follows:

Definition: (EQUAL-SUBSET-SUM). Given a set S = {s1, ..., sn} of positive integers,
are there two disjoint non-empty subsets X, Y ⊆ S such that the sum of the integers of X
is equal to the sum of the integers of Y .

An algorithm which can find an optimal distribution of rules when all probabilities are
the same, can then find a solution to the Equal-Subset-Sum problem, where the set S of
positive integers is equivalent to the number of rules in each chain, and the subsets X and
Y are nodes. The Equal-Subset-Sum problem, however, has been shown to exist in the class
of problems known as NP-Complete.

A simple rule distribution algorithm first sorts the rule chains according to the average
number of comparisons per rule chain ; for example, L = {c2, c3, c4, c1} since {E(c2) <
E(c3) < E(c4) < E(c1)}. Using the sorted list, the chains are distributed and merged across
the processors in a horizontal fashion. As a result, chains with the smallest average number
of comparisons are distributed first (placed near the end of the local policies). This simple,
greedy distribution technique ensures the most popular rules appear near the beginning of
the local policies. For the function parallel system shown in figure 13(b) and the policy
given in table 3, the distribution using this method would be R1 = {c3, c1} and R2 = {c2, c4}
which is equivalent to R1 = {r1, r5, r3, r6} and R2 = {r4, r2, r6}. The average number of
comparisons for the first match is 2.25, using this distribution.

5.3.4 System Redundancy

Similar to the traditional and data parallel firewalls, a disadvantage of the current function
parallel design is its inability to withstand a single firewall failure. If a single firewall fails in
the function parallel system, then part of the policy is lost and integrity is not maintained.
A simple solution commonly used for traditional firewalls is to duplicate the entire system;
however, this solution is cost prohibitive, not efficient, and difficult to manage.

Redundancy can be provided in the function parallel design by replicating rules (including
state generated), instead of firewalls. Consider the function parallel system depicted in figure
15(a), that consists of three firewalls and an six rule policy. If the local rule list of the neighbor

35

R1 = {r1, r2, r6}

packet
duplicator

• R2 = {r2, r3, r6}

R3 = {r4, r6}

(a) Function parallel non-redundant rule dis-
tribution.

R1 = {r1, r5, r2, r3 r6}

packet
duplicator

• R2 = {r2, r3, r4 r6}

R3 = {r4, r1, r5 r6}

(b) Function parallel with redundant rule dis-
tribution. Boxed rules within local policies
are only used if neighboring firewall fails.

Figure 15: Function parallel rule distributions, each system consisting of three firewalls and six
rules.

below is added to the end of every firewall, as seen in figure 15(b), then any non-continuous
firewall nodes can fail and integrity will be maintained.

The criteria for maintaining integrity still applies and may be problematic. Since the
last rule in many policies is a deny (or possibly accept) all, the redundant rules given to
the right-most firewall are shadowed (r8 shadows r1 and r2 in figure 15(b)). This can be
addressed by exchanging the redundant rules with the original rule in the right-most firewall
if the left-most firewall fails. The redundant design also requires short-circuit evaluations to
prevent multiple firewalls from evaluating the same rule. However unlike current solutions,
the function parallel design does not require the duplication of firewalls for redundancy.

5.4 Theoretical Models

We utilized theoretical models to guide system design and simulation to predict performance.
If arrivals and service times are assumed to be exponentially distributed, then a firewall
system can be considered an open network of M/M/1 queues (Jackson network) [7, 32].
Probabilities can be assigned to each link to indicate the likelihood of moving to the next
firewall, which are given from the policy profile (hit ratio) described in section 4. The average
end-to-end delay for q cascading firewalls (traversal path) interconnected by a graph T can
be computed as

E(T) =

q∑

i=1

1

μi − λi

where 1/μi is the service time (processing and transmission) and λi is the arrival rate to
firewall i. As a result, we have a theoretical model for the average delay across a firewall
system. Consider the parallel, function parallel, and hierarchical firewall designs given in
figure 13. Assume each firewall system consists of m firewalls and implements the same n
rule security policy. Let the total arrival rate to each system be λ packets per unit time and
assume each firewall can perform x rules per unit time.

For the parallel firewall, traffic arrives at the packet distributor, which evenly distributes

36

the traffic. As a result the arrival rate to each firewall is λ
m

. The service rate is x
n
, since each

firewall implements the complete rule set. The end-to-end delay across any firewall in the
data parallel firewall is

Ed(T) =
1

x
n
− λ

m

In contrast, rules are distributed across each firewall in the function parallel firewall.
Furthermore, all traffic arriving to the system is forwarded to each firewall. If we assume
the rules in each firewall are independent (rules distributed using a non-backtracking trie),
then the end-to-end delay across any firewall in the functional-parallel firewall is

Ef (T) =
1

m·x
n

− λ

The relative speedup compared to a parallel firewall system is 1
m

; therefore, the functional-
parallel system has the potential to be m times faster than a (data) parallel system. However,
the scalability of the functional-parallel system is dependent on the rule set.

The impact of increase arrival rate, number of rules, and number of firewalls can be
compared theoretically using the equation given above. Figure 16 show the average packet
delay as the arrival rate increases. The parallel firewall performs better than the single
firewall since the system can process multiple packets simultaneously. The function parallel
system performs better than the parallel system which indicates reducing the processing
requirement is more significant than reducing the arrival rate. This is also shown in figure
16(b) where the number of rules in the policy also increases.

The impact on increasing the number of rules on average packet delay is given in fig-
ure 17(a). The data and function parallel systems consisted of five firewalls, however the
function parallel system performs better than the data parallel firewall. The performance
improvement is constant as the number of rules increases indicating the function parallel
design is better.

Figure 17(b) shows the average delay as the number of firewalls in the array increases.
As firewalls are added to the two parallel designs, the function parallel system continues to
reduce the average delay. The adding more firewalls to the function parallel design reduces
the number of rules per local policy, therefore reducing the average processing time. As
firewalls are added to the data parallel system the average delay remains constant. More
firewalls does not improve the performance since additional firewalls do not have packets to
process.

5.5 Parallel Firewall Experimental Results

The performance of a traditional single firewall, the data parallel firewall, and the function
parallel firewall (with gate device and independent) was measured under realistic conditions
using simulation. Firewalls were simulated to process 6 × 107 rules per second, which is
comparable to current technology.

For each experiment the parallel designs always consisted of the same number of fire-
walls. The gate device delay was equivalent to processing three firewall rules. Short-circuit
evaluation was simulated for the gated design, where the firewalls in the array are notified to

37

20 40 60 80 100 120 140

10
-2

10
-1

10
0

arrival rate, λ

av
er

ag
e

de
la

y

Average Packet Delay as Arrival Rate Increases

Single

Data Parallel

Function Parallel

(a) Average delay as arrival rate increases.

0

50

100

150

200

200
300

400
500

600
700

800

0

0.5

1

1.5

2

2.5

3

number of rules

Average Delay as Arrival Rate and Number of Rules Increase

arrival rate, λ

av
er

ag
e

de
la

y

Data Parallel

Function Parallel

(b) Average delay as arrival rate and the number
of rules increases.

Figure 16: Theoretical comparison of different firewall designs.

20 40 60 80 100 120 140 160 180 200

10
-3

10
-2

10
-1

10
0

number of rules

av
er

ag
e

de
la

y

Average Packet Delay as Number of Rules Increases

Single
Data Parallel
Function Parallel

(a) Average delay as the number of rules in-
creases.

2 4 6 8 10 12 14 16 18 20

10
-2

10
-1

10
0

number of firewalls

av
er

ag
e

de
la

y

Average Packet Delay as Number of Firewalls Increases

Data Parallel
Function Parallel

(b) Average delay as the number of firewalls
increases.

Figure 17: Theoretical comparison of different firewall designs.

38

0 2 4 6 8 10

x 10
5

10
-6

10
-5

10
-4

10
-3

λ arrival rate (packets/second)

av
er

ag
e

de
la

y
(s

ec
on

ds
)

Average Packet Delay as Arrivals Increase

Single

Data Parallel

Function Parallel with Gate

Function Parallel

(a) Average delay.

0 2 4 6 8 10

x 10
5

10
-6

10
-5

10
-4

10
-3

λ arrival rate (packets/second)

m
ax

im
um

 d
el

ay
 (s

ec
on

ds
)

Maximum Packet Delay as Arrival Rate Increases

Single

Data Parallel

Function Parallel with Gate

Function Parallel

(b) Maximum delay.

Figure 18: Packet delay as the packet arrival rate increases. Parallel designs consisted of five
firewalls.

stop processing a packet once the appropriate match was determined. No additional delay
was added to the data parallel system for packet distribution (load balancing); therefore, the
results observed for the data parallel design are better than what should be expected.

Packets lengths were uniformly distributed between 40 and 1500 bytes, while all legal
IP addresses were equally probable. Firewall rules were generated such that the rule match
probability was given by an inverse Zipf distribution. As a result, rules near the beginning
of the policy were specific (matched a limited range of packets) while rules near the end
were more general, which is commensurate with actual firewall policies [25, 38]. Rules were
distributed for the function parallel design such that no inter-firewall dependency edges
existed, and if possible, more popular rules were located at the top of the local-policies. This
distribution provides load balancing and ensures integrity is maintained.

Three sets of experiments were performed to determine the effect of increasing arrival
rates, increasing policy size, and increasing number of firewalls. For each experiment 1000
simulations were performed, then the average and maximum packet delay were recorded.

5.5.1 Increasing Arrival Rates

The impact of increasing arrival rates on the four firewall designs is shown in figure 18.
In this experiment, each system implemented the same 1024 rule firewall policy [38] and
both parallel designs consisted of five firewalls. The arrival rate ranged from 5 × 103 to
1 × 106 packets per second (the highest arrival rate resulted in more than 6 Gbps of traffic
on average).

As seen in figure 18, the parallel designs performed considerable better than the tradi-
tional single firewall. As the arrival rate increased, the parallel designs were able to handle
larger volumes to traffic due to the distributed design. As seen in figure 18(a), the function
parallel firewall had an average delay that was consistently 4.0 times lower than the data

39

0 200 400 600 800 1000 1200 1400 1600 1800
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

number of rules

av
er

ag
e

de
la

y
(s

ec
on

ds
)

Average Packet Delay as Policy Size Increases

Single
Data Parallel
Function Parallel with Gate
Function Parallel

(a) Average delay.

0 200 400 600 800 1000 1200 1400 1600 1800
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

number of rules

m
ax

im
um

 d
el

ay
 (s

ec
on

ds
)

Maximum Packet Delay as Policy Size Increases

Single
Data Parallel
Function Parallel with Gate
Function Parallel

(b) Maximum delay.

Figure 19: Packet delay as the number of rules increases. Parallel designs consisted of five
firewalls.

parallel design, while the independent function parallel design average delay was 4.3 times
lower. This is expected because each firewall in the function parallel design is used to in-
spect arriving packets regardless of the arrival rate. The impact of the gate delay is more
prominent as the arrival rate increases. Similar to the average delay results, the function
parallel design had a maximum delay 34% lower than the data parallel design, while the
independent function parallel design was 38% lower.

5.5.2 Increasing Policy Size

The effect of increasing the policy size (number of rules) for the four firewall designs is
given in figure 19. In this experiment, the arrival rate was again 1 × 105 packets per second
(yielding more than 0.5 Gbps of traffic on average) and both parallel designs consisted of
five firewalls. Policies ranged from 60 to 3840 rules which is considered within the bounds
of typical policies [38].

When the policies consisted of relatively few rules, the single and data parallel firewalls
observed similar delays. However as seen in figure 19(a), the parallel designs performed
considerable better than the traditional single firewall once the policy contained more than
1000 rules. The function parallel firewall had an average delay that was 4.12 times lower
than the data parallel design, while the independent firewall was 3.79 times lower. This
slight difference is primarily due to short-circuit evaluation, where the gate informs firewalls
to stop processing a packet once the appropriate match is found. However this is only a
marginal gain given the inter-firewall communication and specialized hardware required for
short-circuit evaluation.

40

0 50 100 150 200 250
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

number of firewalls in the array

av
er

ag
e

de
la

y
(s

ec
on

ds
)

Average Packet Delay as Array Size Increases

Data Parallel
Function Parallel with Gate
Function Parallel

(a) Average delay.

0 50 100 150 200 250
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

number of nodes

m
ax

im
um

 d
el

ay
 (s

ec
on

ds
)

Maximum Packet Delay as Firewall Array Increases

Data Parallel
Function Parallel with Gate
Function Parallel

(b) Maximum delay.

Figure 20: Packet delay as the number of firewalls increases. Policies consisted of 1024 rules.

5.5.3 Increasing Firewall Array Size

Figure 20 shows the effect of increasing number of firewalls for the two parallel firewall
designs. The number of firewalls ranged from 2 to 256, the number of rules was 1024, and
arrival rate was 2 × 105 packets per second (again, yielding more than 1 Gbps of traffic).

As seen in figure 20(a), the function parallel design consistently performed better than
the data parallel firewall design. As firewalls were added, the function parallel system always
observed a reduction in the delay. This delay reduction trend is expected until the number
of firewalls equals the number of rules. In contrast, the delay for data parallel design quickly
stabilizes and the addition of more firewalls has no impact. This is because after a certain
point any additional firewalls will remain idle, thus these additional firewalls are unable
to reduce the delay. As additional firewalls are added the performance difference between
the function parallel firewall and theoretical limit becomes larger. The local policy delay
becomes smaller as more firewalls are added; however, the gate delay remains constant, thus
more prominent in the total delay experienced.

5.6 Firewall Grids

The function parallel design described in the previous section seeks to provide lower packet
processing delay by distributing rules across an array of firewalls. In many cases, the function
parallel design provides lower delays than an equivalent data parallel design. This was shown
theoretically and experimentally using simulations in this report. However, the function
parallel design does not provide the best performance in all situations.

Given extremely high traffic loads, the data parallel design can perform better than an
equivalent function parallel system. Furthermore, the policy profile (hit rate distribution)
has a significant on performance, as seen in figure 21. Experiments performed assumed the
policy profile followed an inverted Zipf distribution, where rules near the end of the policy had

41

1 2 3 4 5 6 7 8 9

x 10
5

10
-5

10
-4

10
-3

arrival rate

av
er

ag
e

de
la

y
(s

ec
on

ds
)

Average Packet Delay as Arrivals Increase

Function parallel, inverse Zipf
Function parallel, Zipf
Data parallel, inverse Zipf
Data parallel, Zipf

Figure 21: Average packet delay for the parallel design, each consisting of four firewalls, as the
arrival rate increases. Firewall policies consisted of 4096 rules and had either a Zipf or inverse
Zipf profile.

higher probabilities of being the first match. The function parallel design has an advantage
in this case because lower rules (the popular rules located near the end of the policy) are
evaluated earlier as compared to a data parallel design. However if more popular rules
appear near the beginning of the policy, the data parallel design performs better. Similarly,
the rule distribution effects the performance of the function parallel system. As previously
described function parallel rule distribution (without gate) requires duplicating certain deny
rules. As the number of duplicate rules increases the performance decreases, as seen in figure
22. However, it is important to note function parallel still performs better when the number
of rules is doubled. Finally, function parallel does not perform better if rule processing can
be done in sub-linear time, since reducing the number of rules does not significantly reduce
the processing time. This type of processing is possible with hardware firewalls, where static
rules can be effectively represented using Ternary Content Addressable Memory (TCAM) or
a Field Programmable Gate Array (FPGA) [29, 35].

Since neither parallel design always performs best, the best design uses a highly config-
urable array of firewalls. The array of firewalls can then change based on current traffic and
policy profiles. Function parallel design would be used when under low traffic loads or when
the policy profile follows a Zipfs distribution. In addition, it is possible to provide a hybrid
function and data parallel design. The firewalls can be divided into a data parallel array
of function parallel groups. This design would combine high throughput and redundancy of
from the data parallel design and low processing delay from the function parallel design.

5.7 Parallel Intrusion Detection Systems

Although firewalls and Intrusion Detection Systems (IDS) have some differences, they essen-
tially perform very similar operations. Both inspect and apply a policy to packets traversing
the system. Actions applied to packets include accept, deny, and, in the case of IDS, log-

42

20 40 60 80 100 120 140 160 180 200

10
-3

10
-2

10
-1

10
0

number of rules

av
er

ag
e

de
la

y

Average Packet Delay as the Number of Rules Increase

Single
Data Parallel
Function Parallel
Function Parallel 10% more rules
Function Parallel 50% more rules
Function Parallel 100% more rules

Figure 22: Average packet delay for the parallel designs, each consisting of four firewalls, as the
number of rules increases.

ging and generating alerts. When an alert is generated, it may request a rule change in the
firewall system to completely block the associated traffic. This connection between IDS and
the firewall creates an IPS. We will describe Snort IDS to better understand how IDS works
and to identify possible areas for parallelization.

Snort is a widely used, signature-based IDS, which consists of a packet decoding module,
preprocessing model, detection engine, and alert engine. The decoding module associates
a packet with a particular protocol. The preprocessor performs different functions, such as
flow detection, reassembly, and capturing the packet state for the IDS. These results are
given to the detection engine, which, like a firewall, applies a series of rules against the
packet stream.

An IDS rule expresses the action to perform on matching packets/streams and has a
format similar to that of a firewall rule. For example, consider the following Snort rule.

alert udp any any -> 10.1.1.0/24 222 (content:"|00 11 22 33 aa|"; msg:"rpcd request")

Each Snort rule consists of three components. The first identifies the action that must be
taken if there is a match. The second denotes the primary match criterion (similar to the 5
tuples from a firewall rule). In this example, the match criterion identifies any TCP packet
destined for the 10.1.1.0/24 address space and port 222. The third component contains rule
options and describes any additional match criteria (for example, patterns in the payload)
and parameters for executing the action. In the example above, the Snort would search
for the hexadecimal pattern "00 11 22 33 aa" in the payload. If it is also a match, the
message "rpcd request" is generated. Therefore, Snort allows the specification of packet
header and payload match criteria.

The processing time associated with intrusion detection can be significant [4]. As both
the number of signatures and network line speeds continue to increase, it becomes even more
important to develop efficient scalable approaches for IDS. In June 2003 there were just over
1500 signatures in the default Snort ruleset, in late 2006 there were more than 5000 default

43

signatures. Even with current network speeds, an IDS processing traffic between two 100
Mbps networks must be able to process over 300,000 packets per second [40]. As High Speed
Networks (HSNs) such as the United States Department of Energy’s UltraScienceNet and
the Experimental Science Network that connect sites at 5 Gbps become more prevalent, the
need for more efficient intrusion detection systems becomes more pressing.

Parallelism is one technique that may be used to help reduce IDS processing time. Par-
allelization can occur at different levels of the intrusion detection system. For example the
entire IDS can be duplicated and arriving packets can be distributed to the various systems.
Likewise certain components comprising the system can be duplicated, such as the content
matching function. At each level either function parallelism (in which work is distributed)
or data parallelism (in which data is distributed) may be employed.

5.8 Implementation, Testing, and Collaborations

The project has also started network security collaboration with Deborah Frincke and Jon
McCoy from the DOE Pacific Northwest National Laboratories (PNNL). During this summer
the PI will work at PNNL to integrate the optimization techniques and parallel designs
into the security infrastructure (PNNL currently utilizes a data parallel design). This is a
unique opportunity to apply this parallel firewall research to an actual high-speed network
environment.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1987.

[2] E. Al-Shaer and H. Hamed. Firewall Policy Management Advisor for Anomaly Detec-
tion and Rule Editing. In Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management, 2003.

[3] E. Al-Shaer and H. Hamed. Modeling and Management of Firewall Policies. IEEE
Transactions on Network and Service Management, 1(1), 2004.

[4] K. Anagnostakis, S. Antonatos, M. Polychronakis, and E. Markatos. E2xB: A domain-
specific string matching algorithm for intrusion detection. In Proceedings of IFIP In-
ternational Information Security Conference (SEC’03), 2003.

[5] S. M. Bellovin and W. Cheswick. Network Firewalls. IEEE Communications Magazine,
pages 50–57, Sept. 1994.

[6] C. Benecke. A Parallel Packet Screen for High Speed Networks. In Proceedings of the
15th Annual Computer Security Applications Conference, 1999.

[7] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov
Chains. John Wiley and Sons, Inc., 1998.

44

[8] G. Brightwell and P. Winkler. Counting Linear Extensions is #P-Complete. In Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, 1991.

[9] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufman, 1999.

[10] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A Software
Architecture for Next-Generation Routers. IEEE/ACM Transactions on Networking,
8(1), February 2000.

[11] U. Ellermann and C. Benecke. Firewalls for ATM Networks. In Proceedings of IN-
FOSEC’COM, 1998.

[12] R. J. Farley and E. W. Fulp. Effects of Processing Delay on Function-Parallel Archi-
tecture Network Firewalls. In Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Networks, 2006.

[13] E. W. Fulp. Optimization of Network Firewall Policies Using Directed Acyclical Graphs.
In Proceedings of the IEEE Internet Management Conference (IM’05), 2005.

[14] E. W. Fulp. An Independent Function-Parallel Firewall Architecture for High-Speed
Networks (Short Paper). In Proceedings of the International Conference on Information
and Communications Security, 2006.

[15] E. W. Fulp and R. J. Farley. A Function-Parallel Architecture for High-Speed Firewalls.
In Proceedings of the IEEE International Conference on Communications, 2006.

[16] E. W. Fulp, M. R. Horvath, and C. Kopek. Managing Security Policies for High-Speed
Function Parallel Firewalls. In Proceedings of the SPIE International Symposium on
High Capacity Optical Networks and Enabling Technology, 2006.

[17] E. W. Fulp and S. J. Tarsa. Network Firewall Policy Tries. Technical Report 20049,
Wake Forest University Computer Science Department, 2004.

[18] E. W. Fulp and S. J. Tarsa. Network Firewall Policy Representation Using Ordered
Sets and Tries. In Proceedings of the IEEE International Symposium on Computer
Communications (ISCC’05), 2005.

[19] R. Funke, A. Grote, and H.-U. Heiss. Performance Evaluation of Firewalls in Gigabit-
Networks. In Proceedings of the Symposium on Performance Evaluation of Computer
and Telecommunication Systems, 1999.

[20] S. Goddard, R. Kieckhafer, and Y. Zhang. An Unavailability Analysis of Firewall
Sandwich Configurations. In Proceedings of the 6th IEEE Symposium on High Assurance
Systems Engineering, 2001.

[21] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Optimizing and Ap-
proximation in Determinstic Sequencing and Scheduling: A Survey. Annals of Discrete
Mathematics, 5:287 – 326, 1979.

45

[22] A. Hari, S. Suri, and G. Parulkar. Detecting and Resolving Packet Filter Conflicts. In
Proceedings of IEEE INFOCOM, pages 1203–1212, 2000.

[23] E. Horowitz, S. Sahni, and D. Mehta. Fundamentals of Data Structures in C++. Com-
puer Science Press, 1995.

[24] E. L. Lawler. Sequencing Jobs to Minimize Total Weighted Completion Time Subject
to Precedence Constraints. Annals of Discrete Mathematics, 2:75 – 90, 1978.

[25] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the Self-Similar Nature
of Ethernet Traffic. IEEE Transactions on Networking, 2:1 – 15, 1994.

[26] J. K. Lenstra and A. H. G. R. Kan. Complexity of Scheduling under Precedence Con-
straints. Operations Research, 26(1):22 – 35, 1978.

[27] O. Paul and M. Laurent. A Full Bandwidth ATM Firewall. In Proceedings of the 6th
European Symposium on Research in Computer Security ESORICS’2000, 2000.

[28] B. R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in
C++. John Wiley & Sons, 1999.

[29] L. Qui, G. Varghese, and S. Suri. Fast Firewall Implementations for Software and
Hardware-Based Routers. In Proceedings of ACM SIGMETRICS, June 2001.

[30] V. P. Ranganath and D. Andresen. A Set-Based Approach to Packet Classification.
In Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Systems, pages 889–894, 2003.

[31] R. Rivest. On Self-Organizing Sequential Search Heuristics. Communications of the
ACM, 19(2), 1976.

[32] M. Schwartz. Telecommunication Networks: Protocols, Modeling, and Analysis.
Addison-Wesley, 1987.

[33] W. E. Smith. Various Optimizers for Single-Stage Production. Naval Research Logistics
Quarterly, 3:59 – 66, 1956.

[34] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and Scalable Layer Four
Switching. In Proceedings of ACM SIGCOMM, pages 191–202, 1998.

[35] S. Suri and G. Varghese. Packet Filtering in High Speed Networks. In Proceedings of
the Symposium on Discrete Algorithms, pages 969 – 970, 1999.

[36] S. J. Tarsa and E. W. Fulp. Balancing Trie-Based Policy Representations for Network
Firewalls. In Proceedings of the IEEE International Symposium on Computer Commu-
nications (ISCC’06), 2006.

[37] P. S. Wheeler and E. W. Fulp. A Taxonomy of Parallel Techniques for Intrusion Detec-
tion. In Proceedings of the ACMSE, Special Session on Computer and Network Security,
2007.

46

[38] A. Wool. A Quantitative Study of Firewall Configuration Errors. IEEE Computer,
37(6):62 –67, June 2004.

[39] J. Xu and M. Singhal. Design and Evaluation of a High-Performance ATM Firewall
Switch and Its Applications. IEEE Journal on Selected Areas in Communications,
17(6):1190–1200, June 1999.

[40] R. L. Ziegler. Linux Firewalls. New Riders, second edition, 2002.

[41] E. D. Zwicky, S. Cooper, and D. B. Chapman. Building Internet Firewalls. O’Reilly,
2000.

47

