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ABSTRACT

This report presents the forward sensitivity analysis method as a means for quantification 
of uncertainty in system analysis. The traditional approach to uncertainty quantification is 
based on a “black box” approach. The simulation tool is treated as an unknown signal 
generator, a distribution of inputs according to assumed probability density functions is 
sent in and the distribution of the outputs is measured and correlated back to the original 
input distribution. This approach requires large number of simulation runs and therefore 
has high computational cost. Contrary to the “black box” method, a more efficient 
sensitivity approach can take advantage of intimate knowledge of the simulation code. In 
this approach equations for the propagation of uncertainty are constructed and the 
sensitivity is solved for as variables in the same simulation. This “glass box” method can 
generate similar sensitivity information as the above “black box” approach with couples 
of runs to cover a large uncertainty region.  Because only small numbers of runs are 
required, those runs can be done with a high accuracy in space and time ensuring that the 
uncertainty of the physical model is being measured and not simply the numerical error 
caused by the coarse discretization.

In the forward sensitivity method, the model is differentiated with respect to each 
parameter to yield an additional system of the same size as the original one, the result of 
which is the solution sensitivity. The sensitivity of any output variable can then be 
directly obtained from these sensitivities by applying the chain rule of differentiation. We 
extend the forward sensitivity method to include time and spatial steps as special 
parameters so that the numerical errors can be quantified against other physical 
parameters. This extension makes the forward sensitivity method a much more powerful 
tool to help uncertainty analysis. By knowing the relative sensitivity of time and space 
steps with other interested physical parameters, the simulation can be run at appropriate 
time and space steps that ensure numerical sensitivities will not affect the confidence of 
the physical parameter sensitivity results. 

Two well defined benchmark problems, thermal wave and nonlinear diffusion, are 
utilized to demonstrate the extended forward sensitivity analysis method. All the physical 
solutions, parameter sensitivity solutions, even time step sensitivity in one case, have 
analytical forms, which allows the verification to be done in the strictest sense. A pilot 
code, Extended Forward sensitivity Analysis pilot code (EFA), has been developed to 
implement the above work.  
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1. INTRODUCTION 

Verification and validation (V&V) are playing more important roles to quantify 
uncertainties and realize high fidelity simulations in nuclear system analysis. Traditional 
V&V in nuclear system analysis more focus on the validation part or do not differentiate 
verification and validation. Progress in V&V in CFD fields [1] and from broader software 
engineering fields makes it possible to obtain high confidence in new high fidelity 
software. For example, order-of-accuracy verification in a 3-D CFD code has been 
performed through method of manufactured solution (MMS) [2] to verify second order 
accuracy and identify the existence of any first order errors. Advances in sensitivity 
analysis techniques [3, 4, 5, and 6] can be utilized to quantify uncertainties, which is 
meaningful only after rigorous V&V has guaranteed that the numerical errors are small.  

The traditional approach [7, 8] to uncertainty quantification is based on a “black box” 
approach. The simulation tool is treated as an unknown signal generator, a distribution of 
inputs according to assumed probability density functions is sent in and the distribution 
of the outputs is measured and correlated back to the original input distribution. This 
approach is usually performed with coarse resolution models in space and time because 
of the larger number of simulation runs (say, 100) required to resolve the distribution of 
inputs. Even with coarse resolution models, the total computation cost of this method is 
still very high due to the requirement of many runs. 

In contrast to the “black box” method, a more efficient sensitivity approach can take 
advantage of intimate knowledge of the simulation code.  In this approach, equations for 
the propagation of uncertainty are constructed and the sensitivities are solved for as 
variables in the simulation.  This can generate similar sensitivity information as the above 
“black box” approach with couples of runs to cover a large uncertainty region.  Because 
only small numbers of runs are required, those runs can be done with a high accuracy in 
space and time ensuring that the uncertainty of the physical model is being measured and 
not simply the numerical error caused by the coarse discretization. Because of the 
increased efficiency and accuracy of this method, the uncertainty of many physical 
models can be measured and ordered according to uncertainty scales. Given this 
quantitative measure of uncertainty scales, one can prioritize the effort of model 
improvement according to where the model improvement will result in the largest 
reduction of uncertainty. 

Two of the most popular sensitivity analysis methods are the forward sensitivity method 
and the adjoint sensitivity method [6, 9, 10, and 11]. In the forward sensitivity method, 
the model is differentiated with respect to each parameter to yield an additional system of 
the same size as the original one, the result of which is the solution sensitivity. The 
sensitivity of any output variable can then be directly obtained from these sensitivities by 
applying the chain rule of differentiation. The forward sensitivity method is most suitable 
when one needs the sensitivity information of many outputs with respect to relatively few 
parameters. In the adjoint method, the solution sensitivities need not be computed 
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explicitly. Instead, for each output variable of interest, one forms and solves an additional 
system, adjoint to the original one, the solution of which can then be used to evaluate the 
gradient of the output variable with respect to any set of model parameters. The adjoint 
sensitivity method is more practical than the forward approach when the number of 
parameters is large and when one needs the sensitivities of only few output variables [10, 
11]. However, if one considers numerical errors important, extended forward sensitivity 
method with time step and spatial step as special parameters can be always applicable 
even for applications with large set of physical parameters.  

This report only discusses forward sensitivity analysis methods. Two well defined 
benchmark problems are used to show and extend the technique. This work not only 
applies forward sensitivity analysis method with the strictest verification, but also extends 
the technique to include time and space step sensitivities as one method to quantify 
numerical errors. The report is organized in the following way: section 2 will present the 
basic forward sensitivity analysis theory; section 3 will discuss the Newton’s method to 
solve nonlinear equations; section 4 will present how to estimate dynamical time and 
length scales which are important to select correct time and length steps; section 5 will 
present the first benchmark problem – thermal wave problem; section 6 will present the 
second benchmark problem – nonlinear diffusion problem; and the last section summary 
the conclusions and discuss further works.

2. FORWARD SENSITIVITY ANALYSIS 

Consider the general form of a nonlinear system of partial differential equations 

0),,( pt
t

YFY ,  (2-1) 

Here Y is the state vector, t time, F the vector of the functions, and p a parameter that the 
solution depends upon.  We define the parameter sensitivity by how much it affects the 
solution or in equation form 

dp
dYs ,  (2-2) 

Here s is the sensitivity of the solution Y with respect to the parameter p (we also call sp
as p parameter sensitivity).   

The goal is to derive an equation for the time evolution of the sensitivity s:

dp
d

tdp
d

dp
d

tt
FYYs ,  (2-3) 

Here the first step made use of Eq. 2-2 and the second step employed Eq. 2-1.  We now 
proceed to analyze the right hand side (RHS) of Eq. 2-3. 
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p
p

t
t

d FFY
Y
FF .  (2-4) 

Therefore

pp
p

pp
t

tpdp
d Fs

Y
FFFY

Y
FF ,  (2-5) 

From Eq. 2-2 and the fact that time is not a function of p. Combining Eqs. 2-3 and 2-5 we 
obtain the equation for the time evolution of the sensitivity s

pt
Fs

Y
Fs .  (2-6) 

We will simplify notation to describe the solution procedure.  Define 

),,()( pt
t

YFYYf ,  (2-7) 

pt
Fs

Y
Fssg )( .  (2-8) 

We will solve the nonlinear system of equations 

0
)(
)(

sg
Yf

,  (2-9) 

using Newton’s method.  To solve this system we need the Jacobian matrix: 

s
g

Y
g

s
f

Y
f

J .  (2-10) 

We will now discuss each of the four components of Eq. 2-10.  First we have 

Y
FY

YY
fJ

t
~ ,  (2-11) 

This is just the normal Jacobian matrix for solving Eq. 2-1 which we already have access 
from our Newton’s solution method. 

0
s
f ,  (2-12) 

Since f does not depend on s.

J
Y
Fs

ss
g ~

t
,  (2-13) 

Since
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tt
s

s
Y

Y
 ,  (2-14) 

when the same time discretization scheme is used for both the physical problem 
represented by Eq. 2-7 and the sensitivity problem represented by Eq. 2-8. To 
demonstrate this, one can use a first order time difference for both LHS and RHS terms: 

IYY
Y tt

nn

n

11

1  ,  (2-15)   

Iss
s tt

nn

n

11

1  ,  (2-16)   

Where superscript n+1 and n represent time steps, t  is the time step length, and I the 
identical matrix. Eq. 2-14 holds for other time difference schemes. The last step is to set 

0
Y
g .  (2-17) 

There are two reasons for this assumption.  First the actual calculation of this derivative is 
very complicated.  Second, it is safe to assume that the majority of the sensitivity comes 
from the physics which is in the normal Jacobian matrix so that the contribution from this 
derivative should be small.  Either way, as long as the residuals defined by Eq. 2-9 are 

small, the corruption of the large Jacobian matrix by assuming 0
Y
g  will only affect 

the convergence rate of the Jacobian iteration.  It will not affect the accuracy of the 
solution of Eq. 2-9.  So we can now write our Newton linearization as 

g(s)
f(Y)

s
Y

J0
0J
~

~
  (2-18) 

Eq. 2-18 will be iterated until the residual of Eq. 2-9 is small.  Several researchers [4 and 

5] tried to calculate 
Y
g , which ends up with a much more complex system to solve. We 

believe that ignoring 
Y
g will allow the forward sensitivity method to be practical for 

large engineering system analysis applications. 

Once we have solved for Y and s we can now plot the solution Y with uncertainty bars 
based on an uncertainty range in p defined as p ,

pp
dp
d sYYYY .  (2-19) 

There is an important assumption in using Eq. 2-19.  This analysis requires that the 
truncation error in the solution method is small so that one is analyzing the physical 
model and not the numerical error.  For this analysis the first step is to verify that the 
solution is not sensitive to the grid spacing x or time step t . This can be done through 
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two methods: the conventional time step and spatial step convergence study or taking 
x and t as special sensitivity parameters to calculate the solution sensitivities with 

them. The later method could be more efficient than conventional convergence study 
since they only require one run instead of series runs in convergence study. We will 
derive the methods to calculate x and t sensitivities in later sections. 

3. NEWTON’S METHOD FOR NONLINEAR EQUATIONS 

Newton’s method [12, 13, and 14] is designed to solve nonlinear systems of the form: 

0)(Yres ,  (3-1) 

Where res is the residue function vector for the discretized form of the nonlinear 
equations, like Eq. 2-9, and Y the solution variable vector. Newton’s method solves Eq. 
3-1 iteratively by solving a sequence of linear problems defined by: 

)(~ 1 kkk YresYJ ,  (3-2) 

Where the superscript “k” is the Newton iteration step index. The (i, j) element of the 
Jacobian matrix J~ is the derivative of the ith residue equation with respect to the jth 
variable or in equation form: 

j

ijiJ
Y

res),(~ .  (3-3) 

The Jacobian matrix can be constructed analytically or by a numerical method: 

)()(~
,

YreseYres j ii
jiJ ,  (3-4) 

where is a small number, say 10-8 or calculated by more complex methods. ej is a unit 
vector where all elements are zero except for the jth element, which is 1: 

][ 1 jje .  (3-5) 

Eq. 3-2 is solved for the update vector and then a new Newton iteration value for Y is 
computed from 

11 kkk YYY .  (3-6) 

The iteration on Y is continued until the nonlinear residual given by Eq. 3-1 is small 
relative to its value for the initial guess: 

)()( 0YresYres rtolk ,  (3-7) 

or very small in its absolute value 

atolk )(Yres ,  (3-8) 
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where rtol is the relative error tolerance, say 10-8, and atoll is the absolute error tolerance, 
say 10-16. Different norms can be used and we use L2-norm in this work for all the 
evaluation:

n

i
i

1

2
2

vv ,  (3-9) 

where v is any vector with n elements. 

Calculating the sensitivity residual (Eq. 2-8) requires matrix and vector multiplication 

s
Y
F , which can be directly calculated by forming a matrix for 

Y
F  and doing the 

multiplication, or be avoided by numerical approximation, together with 
p
F  [6]: 

2
),,(),,( ptpt

p
sYFsYFFs

Y
F , (3-10) 

Where is a small number, say 0.1% to 1% of p or calculated by more complex 
methods. 

4. DYNAMICAL TIME AND SPACE SCALES 

4.1 Dynamical Time Scale and Time Step Control 

The appropriate time steps used in the solution methods should resolve the dynamic time 
scales of the physics in the problem [14].  Since the time scales in the problem are 
changing as the problem is evolving over time, an efficient algorithm would adjust the 
time step to adapt to the changing dynamic time scales. That means short time steps 
should be taken when the problem is changing rapidly while large time steps be taken 
when the problem is changing slowly.   

Because of the implicit nature in Newton’s methodology, there is no numerical stability 
limit and consequently the time step sizes can be determined based on the rate at which 
state variables change and the error control.  The time step used here is called dynamical 
time step size control. The dynamical time scales for a generic state variable y is given by 

1)1(
t
y

y
.  (4-1) 

For a system that contains multiple equations in multiple variables and in multiple control 
volumes, a dynamical time scale is computed for each variable in each control volume.  
The time step is then based on the minimum of all the dynamical time scales for all 
control volumes. 

The dynamical time scale for each variable in each control volume is approximated by 
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1

1
1 )(5.0

n
i

n
i

nn
i

n
in

i yy
tyy .   (4-2) 

Taking the minimum across all control volumes and all variables, we obtain 

],min[ 11 nnn tt i ,  (4-3) 

where  controls the maximum rate at which the time step is allowed to grow. 

4.2 Dynamical Spatial Scale 

Similarly as for the time scale, a dynamical spatial scale can be calculated as 

1)1(
x
y

y
L .  (4-4) 

The dynamical spatial scale for each variable in each control volume is approximated by 

n
i

n
i

nn
i

n
in

yy
xyyLi

1

11 )(5.0 .   (4-5) 

Taking the minimum across all control volumes and all variables, we obtain 

],min[ 11 nn
i

n xLx .  (4-6) 

5. THERMAL WAVE PROBLEM 

5.1 Physical Model 

We will first use the thermal wave problem [15, 16] as an example to investigate the 
forward sensitivity method. This problem has very useful analytical solutions for the 
problem itself and all the parameter sensitivities so that the numerical algorithms can be 
accurately verified. The following is the equation for the thermal wave problem: 

)(2

2

Tf
x
T

t
T ,  (5-1) 

for ,x , and 0t . We assume an exact solution which describes a thermal 
wave moving with a constant velocity c and with a constant wave width :

ctxctxT tanh1
2
1),,,( ,  (5-2) 

In Eq. 5-1, f(T) is the source term for the manufactured solution, which can be calculated 
by substituting an assumed solution T (Eq. 5-2) into the LHS of Eq. 5-1. The reference 
values for c and are: c=2, =1. In the later numerical analysis, we will limit the 
computation domain in [-10, 10]. Fig. 5-1 shows the analytical solution ),,,( ctxT  (Eq. 
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5-2). The boundary conditions and initial condition will be directly derived from the 
analytical solution (Eq. 5-2). 

Figure 5-1: Analytical solution for the thermal wave problem. 

Substitute Eq. 5-2 into the LHS of Eq. 5-1, we obtain: 

2

)42)(1(2),,( TcTTcTf .  (5-3) 

Fig. 5-2 shows the ),,,( ctxf  function (Eq.5-3) for different time and with reference 
values for c and .

Figure 5-2: Source term for the thermal wave problem. 
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According to Eqs (4-1) and (4-4), the time scale and length scale can be derived as: 

1tanh
),,,(

ctxc
ctxT ,  (5-4) 

1tanh
),,,(

ctx
ctxLT .  (5-5) 

We are only interested in the minimum scales, which can be easily derived according to 
Eqs. (5-4) and (5-5) as: 

cT 2
)(min ,  (5-6) 

2
),(min cLT .  (5-7) 

These minimum scales will be used to select the maximum time step and spatial steps in 
numerical calculations shown in later sections. 

With the analytical solution Eq.5-2, the solution sensitivity with respective to parameter 
c,

dc
dTsc ,   (5-8) 

and the solution sensitivity with respective to the parameter ,

d
dTs ,   (5-9) 

can be easily derived as: 

tctxctxsc

2

tanh1
2
1),,,( ,  (5-10)  

2

2

tanh1
2
1),,,( ctxctxctxs ,  (5-11)  

Figs. 5-3 and 5-4 show the analytical parameter sensitivity solutions ),,,( ctxsc  (Eq. 5-
10) and ),,,( ctxs  (Eq. 5-11), respectively. 
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Figure 5-3: Analytical solution for the sensitivity sc.

Figure 5-4: Analytical solution for the sensitivity s .

The time scale for sc is: 

ctxtc

tctx
cs

tanh2
),,,( .  (5-12) 
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The minimum time scale for sc is: 

tc
tct

cs 2
),,(min ,  (5-13) 

We note that: 

0),,0(min ct
cs ,  (5-14) 

c
ct

cs 2
),,(min .  (5-15) 

The length scale for sc is: 

ctx
ctxL

cs

tanh2
),,,( .  (5-16) 

The minimum length scale for sc is: 

2
)(mincsL .  (5-17) 

The time scale for s  is: 

ctxctxc

ctxctxs

tanh21
),,,( .  (5-18) 

The minimum time scale for s  in the computational domain is 0 when ct 10 . The 
length scale for s  is: 

ctxctx
ctxctxLs

tanh21
),,,( .  (5-19) 

The minimum length scale for s  in the computational domain is 0 when ct 10 .

For the solution sensitivities with respective to the time step and the spatial step, one can 
not directly derive the sensitivity equations from the original PDEs since the time and 
spatial steps are discrete quantities that depend on the discretization method. Let’s 
consider the time step sensitivity. When we discretize a PDE, the actual discrete equation 
to be solved is the original PDE with added local truncation error. If we subtract the local 
truncation error term in the PDE, the modified equation will give us a higher order 
solution. For the first order backward Euler scheme, the local truncation error term is 
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2

2

2 t
TtLTEt ,  (5-20) 

and the modified equation is  

)(
2 2

2

2

2

Tf
t
Tt

x
T

t
T .  (5-21) 

We will derive time step sensitivity equation according to Eq. 5-21 and Eq. 2-8. Rick 
Rauenzahn at Los Alamos National Laboratory (LANL) derived the analytical solution 
for Eq. 5-21 for the reference values of  c=2 and =1:

t

t
t

x
ttxTMEA

21
1

21
2

tanh1
2
1),,( .  (5-22) 

According to this equation, we can derive an analytical solution for time step sensitivity 
for the 1st order backward Euler scheme: 

t

ttxx
ttxs t 212

221tanh1
),,(

2

.  (5-23) 

Fig. 5-5 shows ),,( ttxs t  for three different times with a fixed time step and Fig. 5-6 
shows the ),,( ttxs t  for five different time steps at the same time. Fig. 5-5 shows the 
solution sensitivity with respective to the time step increases with time and reflects the 
accumulation of local truncation error over time. One interesting result according to Fig. 
5-6 and Eq. 5-23 is that the time step sensitivities for smaller time steps converge to one 
solution.  

The time scale for s t is: 

)212tanh(4
1),,(

txt
ttx

ts .  (5-24) 

The minimum time scale for s t is ¼. The length scale for s t is: 

)212tanh(2121
),,(

txttx
xttxL

ts . (5-25) 

The minimum length scale for s t is 0. 

For other time step schemes, local truncation errors can be derived and the time step 
sensitivity can be numerically solved. So this is a generic method to consider time step 
errors. The time step sensitivity here reflects the accumulated time step error instead of 
local errors. The accumulated time step error usually cannot be obtained except for 
special cases with analytical solutions. The spatial step sensitivity equation can be 
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derived with a similar method. Since for the thermal wave problem, we need a fourth 
order partial differential term for the spatial step truncation error, and we don not have an 
analytical solution for the modified equation. Therefore, we leave this investigation for 
other problems which have more easier modified equations. 

Figure 5-5: Analytical solution for the sensitivity s t for different times. 

Figure 5-6: Analytical solution for the sensitivity s t for different time steps. 
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5.2 Numerical Models 

We use Newton’s method to solve the physical problem defined by Eq. 5-1 with exact 
boundary conditions and the initial condition according to Eq. 5-2, and the associated 
sensitivity problems. Note that for each time step, according to Eq. 2-18, the physical 
problem can be solved first and all the sensitivity equations can then be solved later in 
parallel. If the sensitivity parameters are numerous, each sensitivity equation can be 
solved on separate CPUs. This natural parallel structure will greatly facilitate the use of 
super computers. 

F function in Eq. 5-1 for the physical problem and associated sensitivity problems 
( cs and s ) as described by Eq. 2-7 and Eq. 2-8 is, 

),,(),,,,( 2

2

cTf
x
TcTtxF .  (5-26) 

For time step sensitivity problem, the corresponding function is, 

),,(
2

),,,,,( 2

2

2

2

cTf
t
Tt

x
TtcTtxF .  (5-27) 

The discretized nonlinear residual equation for the physical problem at time step n+1 and 
control volume (CV) i is written as 

nn
n

i
n

in
i FF

t
TTres )1()( 1

1
1T ,  (5-28) 

where )( 1n
ires T represents the ith element in the residual vector and  is a parameter to 

control the implicitness of the numerical schemes, for example,  

methodexplicitorderfirst0,
N)-(CmethodNicolson-Crankordersecond0.5,
Euler)(backwardmethodimplicitfullyorderfirst,1

 (5-29) 

The diffusion term can be discretized with the central difference method: 

1,...,221
1122

2

IiforTTT
xx

T
iii

i
, (5-30) 

where subscript i represents the spatial control volume index. Note that the solution value 
is located at the center of each control volume. For the first type of boundary conditions, 
the boundary values (i=0 or i=I+1) are located at the boundary of the control volume. 
Therefore Eq. (5-30) needs to be adjusted to reflect the fact of zero width control 
volumes. We can derive the 2nd order discrete forms for CV 1 and CV I with the Taylor 
expansion method as: 
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1022
1

2

2

4
3
8

3
41 TTT

xx
T ,  (5-31) 

III
I

TTT
xx

T 4
3
4

3
81

1122

2

.  (5-32) 

Two different methods are used to form the problem residue Jacobian matrix defined by 
Eq. 3-3. The first one uses direct evaluation method as defined by Eq. 3-3 and the second 
one uses approximate method defined by Eq. 3-4. Note that the Jacobian matrix is 
tridiagonal in this 1-D problem: 

)~,~,~(~
1,,1, iiiiii JJJtridiagJ .  (5-33) 

According to Eqs. 3-3, 5-28, 5-26, 5-30, 5-31, and 5-32, direct evaluation Jacobian matrix 
inputs are: 

1,...,2)(~
21

1

1

1, Iifor
xT

resJ n
i

n
i

ii
T  (5-34) 

21
1

1

1, 3
4)(~

xT
resJ n

I

n
I

II
T   (5-35) 

1,...,2

212212221)(~ 121
221

1

,

Iifor

cTcT
xtT

resJ n
i

n
in

i

n
i

ii
T

  (5-36) 

cTcT
xtT

resJ nn
n

n

212212241)(~ 1
1

21
1221

1

1
1

1,1
T   (5-37) 

cTcT
xtT

resJ n
I

n
In

I

n
I

II 212212241)(~ 121
221

1

,
T   (5-38) 

1,...,2)(~
21

1

1

1, Iifor
xT

resJ n
i

n
i

ii
T  (5-39) 

21
2

1
1

2,1 3
8)(~

xT
resJ n

nT   (5-40) 

According to Eqs. 3-4 and 5-28, the Jacobian matrix can also be approximately obtained 
by:

Iifor

resres
T

resJ
n

i
n

i
n

i

n
i

ii

,...,2

)()()(~ 11

1
1

1

1,
TeTT 1i

  , (5-41) 
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Iifor

resres
T

resJ
n

i
n

i
n

i

n
i

ii

,...,1

)()()(~ 11

1

1

,
TeTT i

       , (5-42) 

1,...,1

)()()(~ 11

1
1

1

1,

Iifor

resres
T

resJ
n

i
n

i
n

i

n
i

ii
TeTT 1i

   . (5-43) 

For the sensitivity problem, the same Jacobian matrix is used as for the physical problem. 
The discretized residual function for the sensitivity problem is: 
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Although it is possible to directly evaluate the 
p
Fs

Y
F  term, the form becomes very 

complex and error-prone due to the matrix-vector multiplication s
Y
F  and directly 

deriving
p
F . This term can be approximated by the second order Jacobian free method 

(Eq. 3-10) as

2
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F ii
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sTsT . (5-45) 

For the sensitivity problem for t , the first term in 
p
Fs

Y
F  can be approximated by 

the following equation: 
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, (5-46) 

where F is according to Eq. (5-26) without adding the local time step truncation term; the 
second term is analytically derived according to Eq. (5-27): 
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Similar treatment for x sensitivity residue can be constructed. However due to its higher 
order nature in this particular problem, we will leave it to other simpler problems. 
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5.3 Numerical Results 

This section will first show the results of convergence studies for both time and space, 
and for both the physical problem and associated parameter sensitivity problems. Then a 
special discussion will be given for the t  sensitivity results. Since we have analytical 
solutions for the thermal wave problem and all the parameter sensitivities, we can 
accurately calculate the absolute error according to the following equation [1]: 

n
err analyticalnumerical

abs
2

vv
,  (5-48) 

Here n is the number of control volumes. Finally an example will be given to show how 
to use the sensitivity information by considering the numerical error from the time step 
integration. 

Both analytical Jacobian matrix (Eq. 5-34 to Eq. 5-40) and the numerical Jacobian matrix 
(Eq. 5-41 to Eq. 5-43) were tested. The convergence speeds for both methods are very 
fast. To reduce computation cost, the analytical Jacobian is used for all the later 
calculations. 

5.3.1 Convergence Study for the Physical Problem 

First we consider a convergence study for the physical problem. Fig. 5-7 shows the space 
convergence study for C-N scheme with very small time step ( t =10-4).  Except for the 
first two large x values which are larger than the minimum dynamical length scale (0.5, 
according to Eq. 5-7), the subsequent errors drop by about 4 times when x is halved, 
which clearly shows the 2nd order spatial step convergence rate. Fig. 5-8 shows the time 
convergence study for C-N scheme with small spatial step ( x =1/32). The solution 
errors drop approximately by 4 times when t  is halved until the spatial error dominates 
the total error, which proves the 2nd order time step convergence rate. Fig. 5-9 shows the 
time convergence study for 1st order backward Euler scheme with small spatial step 
( x =1/32). The solution errors drop approximately by half when t  is halved, which 
shows the 1st order convergence rate. The spatial convergence rate is still 2nd order even 
for the 1st order time scheme.  
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Figure 5-7: Space convergence study for the thermal wave problem, C-N scheme, t =10-4.

Figure 5-8: Time convergence study for the thermal wave problem, C-N scheme, x =1/32.
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Figure 5-9: Time convergence study for the thermal wave problem, backward Euler scheme, x =1/32.

5.3.2 Convergence Study and Results for cs  and s

Both time and space convergence studies for the parameter sensitivities were performed. 
Through numerical experiments, we found both the relative and absolute error tolerances 
in Newton iteration (Eq. 3-7 and 3-8) need to be relaxed in order to converge for the 
sensitivity equations, i.e., increasing by 100 times than the values for the physical 
problem itself. Although we use the physical problem Jacobian to approximate the 
sensitivity problem Jacobian, the total Newton iteration numbers for sensitivity problems 
are close to the iteration number needed for solving the physical problem itself. 
Therefore, the CPU time needed to solve sensitivity problems is proportional to the 
number of sensitivities.  

Fig. 5-10 shows the space convergence study for the sensitivity cs  for C-N scheme with 
very small time step ( t =10-4).  For x  larger than the minimum dynamical length scale, 
we observe there exists oscillation behavior with time;  For smaller x , other errors due 
to the approximation treatment on sensitivity residue (Eq. 5-45), Newton iteration 
convergence control tolerance, and time step error begin to dominate so that the 
convergence speed becomes lower and finally stopped. For the middle range of x
between 0.5 to 0.125, 2nd order convergence speed is apparent. Fig. 5-11 shows the time 
convergence study for the sensitivity cs  for C-N scheme with a small spatial step 
( x =1/32). 2nd order convergence speed is achieved until t  becomes too small when 
other errors similar as shown in the space convergence study begin to dominate. Fig. 5-12 
shows the time convergence study for the sensitivity cs  for the 1st order backward Euler 
scheme with a small spatial step ( x =1/32). It is very clear that the 1st order convergence 
speed is obtained. 
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Figure 5-10: Space convergence study for the sensitivity cs in the thermal wave problem, C-N scheme, 

t =10-4.

Figure 5-11: Time convergence study for the sensitivity cs in the thermal wave problem, C-N scheme, 

x =1/32.
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Figure 5-12: Time convergence study for the sensitivity cs in the thermal wave problem, backward Euler 

scheme, x =1/32.

Fig. 5-13 shows the space convergence study for the sensitivity s  for C-N scheme with 
very small time step ( t =10-4).  For larger x , we observe there exists oscillation 
behavior with time;  For smaller x , 2nd order convergence speed is apparent. Fig. 5-14 
shows the time convergence study for the sensitivity s  for C-N scheme with small 
spatial step ( x =1/32). 2nd order convergence speed is achieved until t  becomes too 
small when the spatial error begins to dominate. Fig. 5-15 shows the time convergence 
study for the sensitivity s  for the 1st order backward Euler scheme with a small spatial 
step ( x =1/32). It is very clear that the 1st order convergence speed is obtained. 
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Figure 5-13: Space convergence study for the sensitivity s  in the thermal wave problem, C-N scheme, 

t =10-4.

Figure 5-14: Time convergence study for the sensitivity s in the thermal wave problem, C-N scheme, 

x =1/32.
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Figure 5-15: Time convergence study for the sensitivity s  in the thermal wave problem, backward Euler 

scheme, x =1/32.

5.3.3 Time Step Sensitivity Convergence Study and Results 

The time step sensitivity analysis is different from the normal parameters as discussed in 
previous sections. The first question is what proper initial condition we should use for 

ts . One can argue that 0 initial condition should be used since the physical problem 
initial condition does not depend on t . But one can also derive the initial condition 
according to ts  analytical solution (Eq. 5-23) by setting time equals 0, same as the 
treatment for other normal parameter sensitivities. We’ll compare the effects due to 
different initial conditions shortly.

Another potential error source is the treatment in Eq. 5-47. Note that the approximation is 
actually for time step (n-1) instead for time step n, which requires solutions at time step 
(n+2). To demonstrate this 1st order approximation effect, we can use the analytical 
solution for this term as shown below: 

iii

ctxctxc
t
T

t
F 1tanhtanh

2
1

2
1

2

2

2

2

2

. (5-49) 

Figs. 5-16 and 5-17 show the initial condition effect on the time step sensitivity ts  for 

two different time steps, with analytical treatment on
t

F . Both figures show that using 

the analytical initial condition for ts  gives results much more close to the analytical 
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solution than with the zero initial condition. However, for large complex nonlinear PDE 
systems, the analytical initial condition for ts  is usually not available. From Fig. 5-17 
we notice that the numerical solution with analytical initial condition almost converges 
exactly to the analytical solution when a small time step is used.  

Figure 5-16: Initial condition effect on the time step sensitivity ts in the thermal wave problem, analytical 

treatment of 
t

F
, backward Euler scheme, t =0.1, x =1/32.

Figure 5-17: Initial condition effect on the time step sensitivity ts in the thermal wave problem, analytical 

treatment of 
t

F
, backward Euler scheme, t =0.001, x =1/32.
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Fig. 5-18 shows the spatial step convergence study result for ts . A small time step was 
used to minimize the time step error. For larger x , there exists numerical oscillation 
with time. For smaller x , the ts  errors for different x  show 2nd order convergence 
speed until the time step error saturates. Fig. 5-19 shows the time step convergence study. 
The convergence trend is at least first order. By comparing Figs. 5-18 and 5-19 with Figs. 
5-10 to 5-15, time step sensitivity analyses show very similar convergence behavior as 
normal physical parameter sensitivities. 

Figure 5-18: Space convergence study for the sensitivity ts  in the thermal wave problem, analytical 

treatment of 
t

F
, backward Euler scheme, t =0.001.
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Figure 5-19: Time convergence study for the sensitivity ts  in the thermal wave problem, analytical 

treatment of 
t

F
, backward Euler scheme, x =1/32.

Consider the effect of approximate treatment on
t

F  according to Eq. 5-47. For time 

iteration 1, the solution at time iteration (-1) is calculated by using the analytical solution. 
In the cases without analytical solutions, the time step sensitivity iteration can start from 
the 2nd time step so that the numerical solution at time step iteration 1 will be available to 

calculate 
t

F  numerically. Figs. 5-20 and 5-21 show the initial condition effect on the 

time step sensitivity ts  for two different time steps. Both figures show that using the 
analytical initial condition for ts  gives results more close to the analytical solution than 
with the zero initial condition. Therefore, accurate initial condition for ts  is important to 
calculate ts . From the small time step figure we note that the numerical solution can 

converge to the analytical solution. Therefore, numerical treatment on
t

F  according to 

Eq. 5-47 will not cause large error in the solution of ts .
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Figure 5-20: Initial condition effect on the time step sensitivity ts in the thermal wave problem, 

approximate treatment on
t

F
, backward Euler scheme, t =0.1, x =1/32.

Figure 5-21: Initial condition effect on the time step sensitivity ts in the thermal wave problem, 

approximate treatment on
t

F
, backward Euler scheme, t =0.001, x =1/32.

Fig. 5-22 shows the spatial step convergence study result for ts . A small time step was 
used to minimize time step error. For larger x , there exists numerical oscillation with 
time. For smaller x , the ts  errors for different x  converge with 2nd order speed until 
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other errors saturate. Fig. 5-23 shows the time step convergence study. The convergence 
trend is at least first order for all the time steps.   

Figure 5-22: Space convergence study for the sensitivity ts  in the thermal wave problem, approximate 

treatment on
t

F
, backward Euler scheme, t =0.0001. 

Figure 5-23: Time convergence study for the sensitivity ts  in the thermal wave problem, approximate 

treatment on
t

F
, backward Euler scheme, x =1/64.
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Fig. 5-24 shows an example how to interpret ts  and how to use it. In this figure, the 
solid diamond line is the thermal wave problem analytical solution at time equal to 2.  
The cross line is the numerical result with a time step of 0.1, which is the reference time 
step. The circle line is the direct numerical result with the reference time step reduced by 
99% and the square line is the direct numerical result with the reference time step 
increased by 99%. We can take these three lines as the time step convergence study with 
time steps reduced from 0.199 to 0.1, and further to a very small value 0.001. We can see 
the smallest time step generates a solution almost exactly same as the analytical solution. 
The two triangle lines are calculated with Eq. 2-19 according to the numerical solution 
with the reference t  and its corresponding ts . So these two lines form a range, where 
the exact solution should and actually does fall in. Because in the converged range larger 

t  always generate a solution with more errors, the error bars actually can be reduced by 
almost half – between the cross reference solution line and the down triangle line.  

Figure 5-24: Comparison of analytical solution, direct time convergence study, and numerical error bars 
from sensitivity analysis result for the thermal wave problem, backward Euler scheme, x =0.03125, time 
at 2. 
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5.3.4 Sensitivity Comparison 

When all the parameter sensitivity solutions are available, a systematic comparison of 
parameter sensitivities can be performed. Eq. (2-19) can be rewritten as  

p
p
p

psYY ,  (5-50) 

where ps  is the sensitivity solution, p the reference value for the parameter, and 
p
p  the 

uncertainty range given by the physical models, which can be provided by experts in 
those physical models or determined by accuracy requirement. We are only interested in 
the parameters where the multiplication of three variables is large. To reduce uncertainty 
from one parameter, people can either improve the measurement on the parameter to 

reduce
p
p  or propose better models to reduce ps .

Fig. 5-25 compares sensitivity ts , cs , and s  at t=0.1 and t=2. The solid lines are for 
time at 0.1 and the dash lines are for time at 2. Lines with circle symbols are ts ; lines 
with square symbols are cs ; and lines with diamond symbols are s . The relative ranking 
of ts , cs , and s  varies with time and location. Near the start, the solution sensitivity 
with respective to the wave speed cs  is smaller than the solution sensitivity with 
respective to the wave width s  and the solution sensitivity with respective to the time 
step ts . At later time, cs  outgrows s . Also we can notice that ts  is larger than cs and 
s  in most locations for most time. However, we cannot say the solution is sensitive to 

the time step since the time step is very small so that t
t
t

t
)(s  is also small.  
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Figure 5-25: Comparison of sensitivities ts , cs , and s  at t=0.1 and t=2 in the thermal wave problem, 

backward Euler scheme, x =0.03125, t =0.001.

Fig. 5-26 compares the sensitivity analysis results from the forward sensitivity analysis 
method (shown as dash lines) and from direct calculations (shown as discrete points) by 
changing the wave speed c by ±10%. The forward sensitivity results match the direct 
calculation results very well. Note that the forward sensitivity only requires one run while 
the direct calculations require three runs. When we reduce the uncertainty range for c to 
±5%, the forward sensitivity results match the direct calculation results even much better, 
as shown in Fig. 5-27. 
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Figure 5-26: Comparison of sensitivity analyses for the wave speed parameter between forward sensitivity 
analysis and direct calculation in the thermal wave problem, t=2, backward Euler scheme, x =0.03125, 

t =0.001, uncertainty range: ±10%. 

Figure 5-27: Comparison of sensitivity analyses for the wave speed parameter between forward sensitivity 
analysis and direct calculation in the thermal wave problem, t=2, backward Euler scheme, x =0.03125, 

t =0.001, uncertainty range: ±5%. 

Fig. 5-28 compares the sensitivity analysis results from the forward sensitivity analysis 
method (shown as dash lines) and from direct calculations (shown as discrete points) by 
changing the wave width  by ±10%. The forward sensitivity results match the direct 
calculation results excellently. Therefore, we can reliably use the forward sensitivity to 
evaluate the parameter uncertainty effect on solution. 
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Figure 5-28: Comparison of sensitivity analyses for the wave width parameter between forward sensitivity 
analysis and direct calculation in the thermal wave problem, t=2, backward Euler scheme, x =0.03125, 

t =0.001, uncertainty range: ±10%. 

The forward sensitivity analysis provides a systematic method to evaluate the parameter 
sensitivity effects on solution, along with time and space convergence information. Fig. 
5-29 compares sensitivity effects from time step, wave speed, and wave width parameters 
for a large time step (0.1) and a very small spatial step (1/32). We can readily notice that 
the solution is still very sensitive to the time step, which means the solution is not well 
converged. The uncertainty bar from the time step is much larger than the uncertainty bar 
from the wave width parameter and is at the same order with the uncertainty bar from the 
wave speed parameter. Therefore, the solution along with the sensitivity analysis is not 
reliable. One should use a smaller time step in order to obtain accurate solution and 
sensitivity analysis results. Fig. 5-30 shows the similar results for a very small time step 
(0.001) and a very small spatial step (1/32). In this case, the solution is not sensitive to 
the time step, therefore the solution and sensitivity results are reliable. These comparisons 
just show how important to consider time and space convergences when performing 
uncertainty analysis. In conventional Monte Carlo type of uncertainty analysis, people 
tend to use large time steps and coarse grids in order to do large amount of calculations 
without considering numerical errors. The sensitivity results from such practices often 
contain large error and even are totally wrong. Including the time step and space step as 
special sensitivity parameters provides a new method to avoid such pitfalls and improves 
both accuracy and efficiency.   
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Figure 5-29: Comparison of sensitivity effects from time step, wave speed, and wave width for the thermal 
wave problem, t=2, backward Euler scheme, x =0.03125, t =0.1.

Figure 5-30: Comparison of sensitivity effects from time step, wave speed, and wave width for the thermal 
wave problem, t=2, backward Euler scheme, x =0.03125, t =0.001.
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6. NONLINEAR DIFFUSION PROBLEM 

6.1 Physical Model 

We will use a nonlinear diffusion problem as another example to investigate the forward 
sensitivity method. The following is the equation: 

),,(),,(),,(),,( txmmstxT
x

txT
xt

txT , (6-1) 

for ]1,0[x , and 0t . In Eq. 6-1  is a constant parameter which does not change with 
time, ),,( txmms  the source term for the manufactured solution depending on the 
assumed analytical solution, which can be calculated by substituting an assumed solution 

),,( txT  into the LHS. With the analytical solution available, the numerical errors can 
be accurately measured. The above problem meets the following boundary conditions: 

atT ),,0( ,   (6-2) 

btT ),,1( ,   (6-3) 

where a=1, and b=0.1. The initial condition can be obtained from the constructed 
analytical solution which should be a smooth function with time, space, and the 
nonlinearity index . For example, we can assume the following analytical solution: 

19.01),,( txtxT ,  (6-4) 

The initial condition then is: 

xxT 9.01),0,( ,  (6-5) 

Substitute Eq. 6-4 into the LHS of Eq. 6-1, we obtain: 

19.019.0

19.0181.0ln9.0),,(
11

22111

ttxx

txxxxtxmms
tt

ttt

 (6-6) 

This test problem provides the flexibility to adjust the nonlinearity and observe the 
sensitivity of the solution with the nonlinearity index :

d
dTs .  (6-7) 

s  can be directly calculated by substituting Eq. 6-4 into Eq. 6-7, 

xtxtxs t ln9.0),,( 1 ,  (6-8)  
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Figs. 6-1 to 6-6 show the analytical solution (Eq. 6-5), the source term for the 
manufactured solution (Eq. 6-6), and the analytical sensitivity solution for ,
respectively, for both cases of 7.0 and 7 . For small , we call the problem a 
weak nonlinear diffusion problem; and for large , i.e., =7, we call it a strong nonlinear 
diffusion problem. From Figs. 6-1 and 6-2, we notice that the nonlinearity increases with 
time by starting with a linear problem. This problem provides a good test covering both 
linear and nonlinear problems. For the same time, the strong nonlinear diffusion problem 
exhibits much larger gradient at the wave front than the weak nonlinear diffusion 
problem.  From Figs. 6-3 and 6-4, we note that the source terms for weak and strong 
nonlinear problems show quite different behaviors. Figs. 6-5 and 6-6 show that the 
sensitivity decreases by an order when  increases from 0.7 to 7. Because quite different 
behaviors between weak and strong nonlinear diffusion problems, we’ll show the 
sensitivity analysis results separately for both cases. 
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Figure 6-1: Weak nonlinear diffusion problem analytical solution as function of time. 
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Figure 6-2: Strong nonlinear diffusion problem analytical solution as function of time. 
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Figure 6-3: Source term for the manufactured solution in the weak nonlinear diffusion problem. 
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Figure 6-4: Source term for the manufactured solution in the strong nonlinear diffusion problem. 

Figure 6-5: Analytical solution for the sensitivity s in the weak nonlinear diffusion problem. 
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Figure 6-6: Analytical solution for the sensitivity s in the strong nonlinear diffusion problem. 

According to Eqs 4-1 and 4-4, the time scale and length scale for the nonlinear diffusion 
problem can be derived as: 

xx

x
tx t
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T ln
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,  (6-9) 
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Figs. 6-7 and 6-8 show the time scales for the weak and strong nonlinear diffusion 
problems at three times. The time scale quickly increases with time. We are only 
interested in the minimum time scales, which can be numerically solved according to Eq. 
6-9. The minimum time scale at time 0 for the weak nonlinear diffusion problem is about 
2.3; and the minimum time scale at time 0 for the strong nonlinear diffusion problem is 
about 0.23. Fig 6-9 shows the length scale for the weak nonlinear diffusion problem at 
three times. From this figure and Eq. 6-10, we note that the minimum length scales 
always appear at the right side boundary: 

19
1),(min t

tLT .  (6-11) 

Figs. 6-10 and 6-11 show the minimum length scales as a function of time for the weak 
and strong nonlinear diffusion problems, respectively. The minimum length scales 
decrease with time. At time equal 0, both minimum length scales are about 0.1. However, 
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the minimum length scale for the strong nonlinear diffusion problem drops much faster 
than the minimum length scale for the weak nonlinear diffusion problem.  

Figure 6-7: Time scales for the weak nonlinear diffusion problem at three times: 0, 1, and 2. 

Figure 6-8: Time scales for the strong nonlinear diffusion problem at three times: 0, 1, and 2. 
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Figure 6-9: Length scales for the weak nonlinear diffusion problem at three times: 0, 1, and 2. 

Figure 6-10: The minimum length scale as a function of time for the weak nonlinear diffusion problem. 
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Figure 6-11: The minimum length scale as a function of time for the strong nonlinear diffusion problem. 

According to Eqs 4-1, 4-4, and 6-8, the time scale and length scale for s  can be derived 
as:

1ln
),,(

xt
ttxs ,  (6-12) 

x
t

xtxLs

ln
11

),,( .  (6-13) 

Figs. 6-12 and 6-13 show the time scales of s  for the weak and strong nonlinear diffusion 
problems at three times, respectively. The time scale is 0 for time equal 0 since s  = 0. 
The minimum time scale always appears at x=0 and equals to 0. Figs 6-14 and 6-15 show 
the length scales of s  for the weak and strong nonlinear diffusion problems at three 
times, respectively. From these figures and Eq. 6-13, we note that the minimum length 
scales always appear at the left and right side boundaries and equal to 0. 
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Figure 6-12: Time scales of s  for the weak nonlinear diffusion problem at three times: 0, 1, and 2. 

Figure 6-13: Time scales of s  for the strong nonlinear diffusion problem at three times: 0, 1, and 2. 
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Figure 6-14: Length scales of s  for the weak nonlinear diffusion problem at three times: 0, 1, and 2. 

Figure 6-15: Length scales of s  for the strong nonlinear diffusion problem at three times: 0, 1, and 2. 
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6.2 Numerical Models 

We use Newton’s method to solve the physical problem defined by Eq. 6-1, 6-2, 6-3, and 
6-5 and the associated sensitivity problem. F function in Eq. 6-1 for the physical problem 
and associated sensitivity problem as described by Eq. 2-7 and 2-8 is, 

),,(),,,( txmms
x
TT

x
TtxF .  (6-14) 

The discretized nonlinear residual equation for the physical problem at time step n+1 and 
control volume i is same as Eq. (5-28): 
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The diffusion term can be discretized with center difference method: 
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where subscript i represents the spatial control volume index, ranging from 2 to I-1. Note 
that the solution value is located at the center of each control volume. For the first type of 
boundary conditions defined by Eqs 6-2 and 6-3, the boundary values (i=0 or i=I+1) are 
located at the boundary of the control volume. Therefore Eq. (6-15) needs to be adjusted 
to reflect the half control volume fact: 
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Two different methods are used to form the problem residue Jacobian matrix defined by 
Eq. 3-3. The first one uses direct evaluation method as defined by Eq. 3-3 and the second 
one uses approximate method defined by Eq. 3-4. Note that the Jacobian matrix is 
tridiagonal in this 1-D problem: 

)~,~,~(~
1,,1, iiiiii JJJtridiagJ .  (5-33) 

According to Eqs. 3-3, 5-28, 6-14, 6-15, 6-16, and 6-17, direct evaluation Jacobian matrix 
inputs are: 
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According to Eqs. 3-4 and 5-28, the Jacobian matrix can also be approximately obtained 
similar as Eqs. 5-41 to 5-43.  
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For the sensitivity problem s , the same Jacobian matrix is used as the physical problem. 
The discretized residual function for the sensitivity problem is: 
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Although it is possible to directly evaluate the Fs
Y
F  term, the form becomes very 

complex and error-prone for F  due to the complex form of ),,( txmms function (Eq. 

6-6). This term can be approximated by Jacobian free method (Eq. 3-10) as  

2
),,,(),,,( sTsT txFtxFFs

Y
F ii

i

. (6-24) 

For the sensitivity problem for t  in the first order scheme, Eqs 5-46 and 5-47 in the 
thermal wave problem are used since the time discretization scheme is exactly same.  

6.3 Numerical Results for the Weak Nonlinear Diffusion Problem 

6.3.1 Convergence Study for the Physical Problem 

First we consider convergence studies for the physical problem. We run the problem from 
t=0 to t=10. Fig. 6-16 shows the space convergence study for the C-N scheme with a very 
small time step ( t =10-4). The errors drop by about 4 times when x is halved, which 
clearly shows the 2nd order spatial step convergence rate. Fig. 6-17 shows the time 
convergence study for the C-N scheme with a small spatial step ( x =1/640). The 
solution errors drop by about four times when t  is halved until the spatial error 
dominates the total error, which proves the 2nd order time step convergence rate. Fig. 6-
18 shows the time convergence study for the C-N scheme with a very small spatial step 
( x =0.0001). The secondary convergence range extends further down by two orders in 
this case. Fig. 6-19 shows the time convergence study for the 1st order backward Euler 
scheme with a small spatial step ( x =1/640). The solution errors drop approximately by 
half when t  is halved until the spatial error dominates in the total numerical error, 
which shows the 1st order convergence rate. The spatial convergence rate is still 2nd order 
even for the 1st order time scheme.  
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Figure 6-16: Space convergence study for the weak nonlinear diffusion problem, C-N scheme, t =10-4.

Figure 6-17: Time convergence study for the weak nonlinear diffusion problem, C-N scheme, x =1/640.
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Figure 6-18: Time convergence study for the weak nonlinear diffusion problem, C-N scheme, x =1e-4.

Figure 6-19: Time convergence study for the weak nonlinear diffusion problem, backward Euler scheme, 
x =1/640.

6.3.2 Convergence Study and Results for s

Fig. 6-20 shows the space convergence study for the sensitivity s  for the C-N scheme 
with a very small time step ( t =10-4).  For time less than 2, we observe that there exists 
oscillation behavior with time. This may be due to the fact that the dynamical time scale 
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is 0 for time equal 0. 2nd order convergence speed is apparent for x . Fig. 6-21 shows the 
time convergence study for the sensitivity s  for C-N scheme with a small spatial step 
( x =1/640). 2nd order convergence speed is achieved until t  becomes too small when 
the spatial error begins to dominate. Fig. 6-22 shows the time convergence study for the 
sensitivity s  for the 1st order backward Euler scheme with a small spatial step 
( x =1/640). It is very clear that the 1st order convergence speed is obtained. 

Figure 6-20: Space convergence study for the sensitivity s  in the weak nonlinear diffusion problem, C-N 

scheme, t =10-4.

Figure 6-21: Time convergence study for the sensitivity s  in the weak nonlinear diffusion problem, C-N 

scheme, x =1/640. 
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Figure 6-22: Time convergence study for the sensitivity s  in the weak nonlinear diffusion problem, 

backward Euler scheme, x =1/640.

6.3.3 Time Step Sensitivity Convergence Study and Results  

In this section, we investigate the time step sensitivity in the first order backward Euler 
scheme. The local truncation error term is same as Eq. (5-20): 

2
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TtLTEt ,  (6-25) 

and the modified equation is  
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For this problem, we do not have an analytical solution for time step sensitivity ts .
Therefore 0 initial condition for ts will be used and we will check the correctness of 

ts solution by indirect method shown later. Similar to the thermal wave problem, an 

approximate numerical method and an analytical method are used to calculate 
t

F  as 

shown in Eq. (6-27) and Eq. (6-28), respectively:  
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From Fig. 6-19, we notice that the solution is not very sensitive with the time step and the 
time step error drops rapidly with time. Therefore, we are only interested in the early time 
evolution. Figs. 6-23 and 6-24 show the time step sensitivity ts  for different time steps 

at time equal to 1, with analytical and numerical treatments on
t

F , respectively. Both 

figures show that ts  approaches to a curve with the decrease of t: Fig. 6-23 showing 
downward convergence direction and Fig. 6-24 showing upward convergence direction. 
Fig. 6-24 also shows that the time step sensitivity results have larger errors for very large 

t when the approximate numerical treatment of 
t

F is used (Eq. 6-27). Fig. 6-25 

compares the time step sensitivities from two different treatments on 
t

F  for a small 

time step. The results are very close. Therefore for a smaller time step, numerical 

treatment of 
t

F can give a good time step sensitivity result.  

Figure 6-23: Time step sensitivity ts in the weak nonlinear diffusion problem, backward Euler scheme, 

x =1/640, t=1, with analytical treatment of
t

F
.



53

Figure 6-24: Time step sensitivity ts in the weak nonlinear diffusion problem, backward Euler scheme, 

x =1/640, t=1, with numerical treatment of
t

F
.

Figure 6-25: Comparison of time step sensitivity ts in the weak nonlinear diffusion problem from 

numerical and analytical treatment of 
t

F
, backward Euler scheme, x =1/640, t=1/16, t=1. 

Fig. 6-26 shows the spatial step convergence study result for ts . Since we do not have 
analytical solution for ts , a Richardson extrapolation method is used to estimate the 
space error. First a fine resolution result is obtained by setting x =1/640 and t=0.01.
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Then the time step is fixed at 0.01 and spatial steps are decreased from 1/10 to 1/320. The 
time step sensitivity error is calculated by assuming the fine resolution result being the 
accurate solution. Overall error dynamical behavior demonstrates the 2nd order 
convergence speed.

Figure 6-26: Space convergence study for the sensitivity ts  in the weak nonlinear diffusion problem with 

analytical treatment of 
t

F
, backward Euler scheme, t=0.01. 

Fig. 6-27 shows an indirect check on the correctness of the calculated ts  and how to use 
it. Because all the numerical solutions in this particular problem are not very sensitive to 
the time step, a zoom-in view is shown here. In this figure, the solid diamond line is the 
analytical solution at time equal to 1.  The cross line is the numerical result with a time 
step of 0.5, a large time step but still smaller than the minimum dynamical time scale, 
which is the reference time step. The circle line is the numerical result with the reference 
time step reduced by 99%. We can take these two lines as time step convergence study 
with time steps reduced from 0.5 to 0.005. We can see the smaller time step generates a 
solution almost exactly the same as the analytical solution. The triangle line is calculated 
with Eq. 2-19 according to the numerical solution with the reference t =0.5 and its 
corresponding ts . Note that the estimated solution according to the time step sensitivity 
is very close to the analytical solution or numerical solution with a much smaller time 
step. The fact implies the following three important points: (1) the time step sensitivity 
analysis is correct; (2) the accumulated temporal error can be estimated according to the 
time step sensitivity analysis method, i.e., about 0.4% for t =0.5 in this case; (3) the 
time step sensitivity analysis could play the same role as the time step convergence study 
and the potential computational saving is large since one can avoid the costly 
computation with series of smaller time steps.  
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Figure 6-27: Comparison of analytical solution, direct time convergence study, and numerical error bars 
from sensitivity analysis result in the weak nonlinear diffusion problem, backward Euler scheme, 

x =1/640, time at 1. 

6.3.4 Sensitivity Comparison 

When all the parameter sensitivity solutions are available, a systematic comparison of 
parameter sensitivities can be performed. Fig. 6-28 compares sensitivity ts and s at
t=0.1 and t=1. The solid lines are for time at 0.1 and the dash lines are for time at 1. Lines 
with circle symbols are ts ; and lines with diamond symbols are s . s is always much 
larger than ts  for different time.  
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Figure 6-28: Comparison of sensitivity ts  and s  at t=0.1 and t=1 in the weak nonlinear diffusion 

problem, backward Euler scheme, x =1/640, t =0.01.

Figs. 6-29 and 6-30 compares the sensitivity analysis results from the forward sensitivity 
analysis method (shown as dash lines) and from direct calculations (shown as discrete 
points) by changing  by ±20%, at time 1 and 10, respectively. The forward sensitivity 
results match the direct calculation results very well. Note that the forward sensitivity 
only requires one run while the direct calculations require three runs.  
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Figure 6-29: Comparison of sensitivity analyses for  between forward sensitivity analysis and direct 
calculation in the weak nonlinear diffusion problem, t=1, x =1/640, t =0.01, C-N scheme, uncertainty 
range: ±20%. 

Figure 6-30: Comparison of sensitivity analyses for  between forward sensitivity analysis and direct 
calculation in the weak nonlinear diffusion problem, t=10, x =1/640, t =0.01, C-N scheme, uncertainty 
range: ±20%. 
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The extended forward sensitivity analysis provides a systematic method to evaluate the 
parameter sensitivity effects on solution, along with time and space convergence 
information. Fig. 6-31 compares sensitivity effects from the time step and  parameter for 
a large time step ( t=1) at time equal to 1. Even for this large time step (remember that 
the minimum dynamical time scale at time equal 0 is about 2.3), the solution is much 
more sensitive to the physical parameter  than the time step. Fig. 6-32 shows the zoom-
in view at time equal to 1.  Fig. 6-33 shows similar result at time equal to 10. Fig. 6-34 
shows the corresponding zoom-in view. Temporal errors in later time have been damped 
so that the physical parameter  sensitivity becomes more dominating. This case shows 
an example where closure models (reflected in the complex, strong, manufactured source 
term) play a major role while PDEs play a less important role. In conventional nuclear 
reactor system analysis codes, there exist evidences that such cases existing. In such 
situations, the simulation accuracy more depends on the accuracy of the closure model 
parameters than the PDEs. For these types of problems, even the solution is not very 
sensitive to the time step, knowing the fact is still very useful to have high confidence on 
the simulation results and save the computational cost. 

Figure 6-31: Comparison of sensitivity effects from time step and  in the weak nonlinear diffusion 
problem, t=1, backward Euler scheme, x =1/640, t =1.
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Figure 6-32: Comparison of sensitivity effects from time step and  (zoom-in view) in the weak nonlinear 
diffusion problem, t=1, backward Euler scheme, x =1/640, t =1.

Figure 6-33: Comparison of sensitivity effects from time step and  in the weak nonlinear diffusion 
problem, t=10, backward Euler scheme, x =1/640, t =1.
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Figure 6-34: Comparison of sensitivity effects from time step and  (zoom-in view) in the weak nonlinear 
diffusion problem, t=10, backward Euler scheme, x =1/640, t =1.

6.4 Numerical Results for the Strong Nonlinear Diffusion 
Problem 

6.4.1 Convergence Study for the Physical Problem 

In this part, we discuss the strong nonlinear diffusion problem by setting =7. First we 
consider convergence study for the physical problem. We run the problem from t=0 to 
t=1. Fig. 6-35 shows the space convergence study for C-N scheme with very small time 
step ( t =10-4). The errors drop by about 4 times when x is halved except for the first 
spatial step, which clearly shows the 2nd order spatial step convergence rate. As shown in 
Fig. 6-11, the minimum dynamical length scale becomes much smaller than 0.1 (the first 
spatial step) in later time. Therefore the first spatial step is out of asymptotic region for 
later time. Fig. 6-36 shows the time convergence study for the C-N scheme with a small 
spatial step ( x =1/640). The solution errors drop by about four times when t  is halved 
until the spatial error dominates the total error, which proves the 2nd order time step 
convergence rate. Fig. 6-37 shows the time convergence study for the 1st order backward 
Euler scheme with a small spatial step ( x =1/640). The solution errors drop 
approximately by half when t  is halved, which shows the 1st order convergence rate. 
The spatial convergence rate is still 2nd order even for the 1st order time scheme.  
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Figure 6-35: Space convergence study for the strong nonlinear diffusion problem, C-N scheme, t =10-4.

Figure 6-36: Time convergence study for the strong nonlinear diffusion problem, C-N scheme, x =1/640.
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Figure 6-37: Time convergence study for the strong nonlinear diffusion problem, backward Euler scheme, 
x =1/640.

6.4.2 Convergence Study and Results for s

Fig. 6-38 shows the space convergence study for the sensitivity s  for C-N scheme with 
very small time step ( t =10-4).  For time less than 0.2, we observe there exists oscillation 
behavior of error with time. This may due to very small time scale when time close to 0 
and very small length scale for regions close to left and right boundaries. 2nd order 
convergence speed is apparent for smaller x  until the time step error begins to 
dominate. Fig. 6-39 shows the time convergence study for the sensitivity s  for the C-N 
scheme with a small spatial step ( x =1/640). 2nd order convergence speed is achieved 
until t  becomes too small when the spatial error begins to dominate. Fig. 6-40 shows 
the time convergence study for the sensitivity s  for the 1st order backward Euler scheme 
with a small spatial step ( x =1/640). It is very clear that the 1st order convergence speed 
is obtained. 
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Figure 6-38: Space convergence study for the sensitivity s  in the strong nonlinear diffusion problem, C-

N scheme, t =10-4.

Figure 6-39: Time convergence study for the sensitivity s  in the strong nonlinear diffusion problem, C-N 

scheme, x =1/640. 
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Figure 6-40: Time convergence study for the sensitivity s  in the strong nonlinear diffusion problem, 

backward Euler scheme, x =1/640.

6.4.3 Time Step Sensitivity Convergence Study and Results  

In this section, we investigate the time step sensitivity in the first order backward Euler 
scheme. Fig. 6-41 shows the time step sensitivity ts  for different time steps at time 

equal to 1, with analytical treatment on
t

F . It shows that ts  approaches to a curve with 

the decrease of t.

Figure 6-41: Time step sensitivity ts in the strong nonlinear diffusion problem, backward Euler scheme, 

x =1/640, t=1, with analytical treatment of
t

F
.
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Fig. 6-42 shows the spatial step convergence study result for ts . Since we do not have 
analytical solution for ts , a Richardson extrapolation method is used to estimate the 
space error. First a fine resolution result is obtained by setting x =1/640 and t=0.001. 
Then the time step is fixed at 0.001 and spatial steps are increased from 1/10 to 1/320. 
The time step sensitivity error is calculated by assuming the fine resolution result being 
the accurate solution. Overall error dynamical behavior shows the 2nd order convergence 
speed for smaller x.

Figure 6-42: Space convergence study for the sensitivity ts  in the strong nonlinear diffusion problem 

with analytical treatment of 
t

F
, backward Euler scheme, t=0.001. 

Fig. 6-43 shows an indirect check on the correctness of the calculated ts  and how to use 
it. Because all the numerical solutions in this particular problem are not very sensitive to 
the time step, a zoom-in view is shown here. In this figure, the solid diamond line is the 
analytical solution at time equal to 1.  The cross line is the numerical result with a time 
step of 0.005, a relative large time step for this strong nonlinear problem, which is the 
reference time step. The circle line is the numerical result with the reference time step 
reduced by 90%. We can take these two lines as the time step convergence study with the 
time step being reduced from 0.005 to 0.0005. We can see the smaller time step generates 
a solution very close to the analytical solution. The triangle line is calculated with Eq. 2-
19 according to the numerical solution with the reference t =0.005 and its 
corresponding ts . Note that the estimated solution according to the time step sensitivity 
is quite close to the analytical solution or numerical solution with a much smaller time 
step. Similar to the weak nonlinear diffusion problem, the fact implies the following three 
important points: (1) the time step sensitivity analysis is correct; (2) the maximum 
accumulated temporal error can be estimated according to the time step sensitivity 
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analysis method, i.e., about maximum 10% error for t =0.005 in this case; (3) the time 
step sensitivity analysis could play the same role as the time step convergence study and 
the potential computational saving is large since one can avoid the costly computation 
with small time steps.  

Figure 6-43: Comparison of analytical solution, direct time convergence study, and numerical error bars 
from sensitivity analysis result in the strong nonlinear diffusion problem, backward Euler scheme, 

x =1/640, time at 1. 

6.4.4 Sensitivity Comparison 

When all the parameter sensitivity solutions are available, a systematic comparison of 
parameter sensitivities can be performed. Fig. 6-44 compares sensitivity ts and s at
t=0.1 and t=1. The solid lines are for time at 0.1 and the dash lines are for time at 1. Lines 
with circle symbols are ts ; and lines with diamond symbols are s . ts  is always larger 
than s  for different time and the order of ts  increases rapidly with time.  
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Figure 6-44: Comparison of sensitivity ts  and s  at t=0.1 and t=1 in the strong nonlinear diffusion 

problem, backward Euler scheme, x =1/640, t =0.001.

Fig. 6-45 compares the sensitivity analysis results from the forward sensitivity analysis 
method (shown as dash lines) and from direct calculations (shown as discrete points) by 
changing  by ±20%, at time 1. The forward sensitivity results match the direct 
calculation results very well.  

Figure 6-45: Comparison of sensitivity analyses for  between forward sensitivity analysis and direct 
calculation in the strong nonlinear diffusion problem, t=1, x =1/640, t =0.001, C-N scheme, 
uncertainty range: ±20%. 
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The extended forward sensitivity analysis provides a systematic method to evaluate the 
parameter sensitivity effects on solution, along with time and space convergence 
information. Fig. 6-46 compares sensitivity effects from time step and  parameter for a 
relative large time step ( t=0.01) at time equal to 1. Fig. 6-47 shows the zoom-in view at 
time equal to 1. The solution is more sensitive to the physical parameter  than the time 
step in majority of the computational domain. However, the time step uncertainty bar has 
same order of width as the physical parameter  uncertainty bar in a small region close to 
the right boundary, where exists large numerical error. The local numerical error has been 
correctly captured by the time step sensitivity analysis. Actually, the -90% t bar corrects 
the numerical error so successfully that the lower time step uncertainty bar is very close 
to the analytical solution. 

Figure 6-46: Comparison of sensitivity effects from time step and  in the strong nonlinear diffusion 
problem, t=1, backward Euler scheme, x =1/640, t =0.01.
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Figure 6-47: Comparison of sensitivity effects from time step and  (zoom-in view) in the strong nonlinear 
diffusion problem, t=1, backward Euler scheme, x =1/640, t =0.01.

Fig. 6-48 shows similar result at time equal to 1 for a small time step ( t=0.001). In this 
case, the solution is not sensitive to the time step; therefore the solution and sensitivity 
results are reliable.  

Figure 6-48: Comparison of sensitivity effects from time step and  in the strong nonlinear diffusion 
problem, t=1, backward Euler scheme, x =1/640, t =0.001.
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7. SUMMARY 

Applying the extended forward sensitivity analysis method to two benchmark problems 
shows the correctness, efficiency, and large potential to extend the method to more 
general systems. By taking advantage of intimate knowledge of the simulation code, this 
“glass box” method can generate similar sensitivity information as the conventional 
“black box” approach with couples of runs to cover a large uncertainty region. Therefore, 
the computational saving potential is very large. Forward sensitivity method is simple in 
mathematics and can be relatively easy to implement in a large code by adding sensitivity 
equation residues along with the physical problem residues. The formed computation 
structures are naturally suitable for parallel computation. 

By extending the forward sensitivity method to include time and spatial steps as special 
parameters, numerical errors can be quantified against other physical parameters. This 
extension makes the forward sensitivity method a much more powerful tool to help 
uncertainty analysis. By knowing the relative sensitivity of time and space steps with 
other interested physical parameters, the simulation is allowed to run at appropriate time 
and space steps without affecting the confidence to the physical parameter sensitivity 
results.

Two well defined benchmark problems, thermal wave and nonlinear diffusion, are 
utilized to demonstrate the extended forward sensitivity analysis. All the physical 
solutions, parameter sensitivity solutions, even time step sensitivity in one case, have 
analytical forms, which allows the verification to be done in the strictest sense. A pilot 
code, Extended Forward sensitivity analysis pilot code (EFA), has been developed to 
implement the above work. While V&V has been widely recognized as indispensable to 
high fidelity simulation, very few of practical works have been pursued to quantify 
numerical error sensitivity along with physical parameter sensitivities. The extended 
forward sensitivity method can potentially fill the gap. 

The work described in this report is preliminary and future works are necessary to apply 
this method into a large system code. Few examples include: (1) extend the method for 
spatial step sensitivity; (2) identify or design new verification problems with different 
natures to further verify the feasibility of the extended forward sensitivity analysis; (3) 
extend the work to multiple equation systems and multiple component systems. 
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