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Dana L. Kelly
Curtis L. Smith 

Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID  83415 

Abstract 

Dalal et al1 performed a statistical analysis of field and nozzle O-ring data collected prior 
to the ill-fated launch of the Challenger in January 1986.  The purpose of their analysis 
was to show how statistical analysis could be used to provide information to decision-
makers prior to the launch, information that could have been expected to lead to a 
decision to abort the launch due to the low temperatures (~30o F.) present at the launch 
pad on the morning of the scheduled launch.  Dalal et al.1 performed a frequentist 
analysis of the O-ring data, and found that a logistic regression model provided a 
relatively good fit to the past data.  In the second portion of their paper, Dalal et al. 
propagated parameter uncertainties through the fitted logistic regression model in order to 
estimate the probability of shuttle failure due to O-ring failure at the estimated launch 
temperature of ~30o F.  Because their analysis was frequentist in nature, probability 
distributions representing epistemic uncertainty in the input parameters were not 
available, and the authors had to resort to an approximate approach based on bootstrap 
confidence intervals.  In this paper, we will re-evaluate the analyses of Dalal et al. from a 
Bayesian perspective.  Markov chain Monte Carlo (MCMC) sampling will be used to 
sample from the joint posterior distribution of the model parameters, and to sample from 
the posterior predictive distributions at the estimated launch temperature, a temperature 
that had not been observed in prior launches of the space shuttle.  Uncertainties, which 
are represented by probability distributions in the Bayesian approach, are propagated 
through the model to obtain a probability distribution for O-ring failure, and subsequently 
for shuttle failure as a result of O-ring failure.  No approximations are required in the 
Bayesian approach and the resulting distributions can be input to a decision analysis to 
obtain expected utility for the decision to launch. 

When using a mathematical model, careful attention must be given to uncertainties in the 
model. 
- Richard Feynman 

Introduction 

Dalal et al.1 performed a statistical analysis of field and nozzle O-ring data collected prior 
to the ill-fated launch of the Challenger in January 1986.  The purpose of their analysis 
was to show how statistical analysis could be used to provide information to decision-
makers prior to the launch, information that could have been expected to lead to a 
decision to abort the launch due to the low temperatures (~30o F.) present at the launch 
pad on the morning of the scheduled launch.  Dalal et al.1 performed a frequentist 
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analysis of the O-ring data, and found that a logistic regression model provided a 
relatively good fit to the past data. 

In the second portion of their paper, Dalal et al.1 propagated parameter uncertainties 
through the fitted logistic regression model in order to estimate the probability of shuttle 
failure due to O-ring failure at the estimated launch temperature of ~30o F.  Because their 
analysis was frequentist in nature, probability distributions representing epistemic 
uncertainty in the input parameters were not available, and the authors had to resort to an 
approximate approach based on bootstrap confidence intervals, an approach developed by 
Efron.2

In this paper, we will re-evaluate the analyses of Dalal et al.1 from a Bayesian 
perspective.  Markov chain Monte Carlo (MCMC) sampling will be used to sample from 
the joint posterior distribution of the model parameters, and to sample from the posterior 
predictive distributions at the estimated launch temperature, a temperature that had not 
been observed in prior launches of the space shuttle.  The open-source version of the 
WinBUGS software package3 will be used to carry out the MCMC sampling.  
Uncertainties, which are represented by probability distributions in the Bayesian 
approach, are propagated through the model to obtain a probability distribution for O-ring 
failure, and subsequently for shuttle failure as a result of O-ring failure.  No 
approximations are required in the Bayesian approach and the resulting distributions 
valuable inputs to a decision to launch.  Also, this approach to analysis relates probability 
of failure directly to observables, such as temperature, providing a tangible model that 
engineers can use to make launch predictions. 

Table 1  Space shuttle field O-ring thermal distress data 
Flight Distress1 Temp (oF.) Press (psig) 

1 0 66 50 
2 1 70 50 
3 0 69 50 
5 0 68 50 
6 0 67 50 
7 0 72 50 
8 0 73 100 
9 0 70 100 
41-B 1 57 200 
41-C 1 63 200 
41-D 1 70 200 
41-G 0 78 200 
51-A 0 67 200 
51-C 2 53 200 
51-D 0 67 200 
51-B 0 75 200 
51-G 0 70 200 
51-F 0 81 200 
51-I 0 76 200 
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51-J 0 79 200 
61-A 2 75 200 
61-B 0 76 200 
61-C 1 58 200 
1Thermal distress is defined to be erosion of the O-ring or blow-by of hot gases.  The table shows the 
number of distress events for each launch.  There are six field O-rings on the shuttle, so the number of 
distress events is an integer in the interval [0, 6]. 

Stochastic Model for O-ring Distress 

There are six O-rings on the shuttle, so during each launch, the number of distress events, 
defined as erosion or blow-by of a primary field O-ring, is modeled as binomial with 
parameters p and n = 6:  X ~ binomial(p, 6). 

In this model, p is a function of both temperature and applied leak-test pressure.  The 
canonical link function is the logit function: 
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Following Dalal et al.1 we consider two potential explanatory models: 

1)  logit(p) = a + b*temp + c*press 
2)  logit(p) = a + b*temp 

The WinBUGS script for the first model, which includes both temperature and pressure 
as explanatory variables, is shown in Table 2.  Diffuse normal priors were used for the 
coefficients in this model to allow the numerical results to be compared with the 
maximum likelihood estimates and confidence intervals obtained by Dalal et al.1

Table 2  WinBUGS script for logistic regression of primary O-ring distress on temperature and 
pressure 
model { 
for(i in 1:K) { 
 distress[i] ~ dbin(p[i], 6) 
logit(p[i]) <- a + b*temp[i] + c*press[i] #Model with temperature and pressure 
 } 
distress.31 ~ dbin(p.31, 6) #Predicted number of distress events for launch 61-L 
logit(p.31) <- a + b*31 + c*200 
#Prior distributions – diffuse normal distributions about zero 
a ~ dnorm(0, 0.000001)  
b ~ dnorm(0, 0.000001) 
c ~ dnorm(0, 0.000001) 
} 
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inits 
list(a=5, b=0, c=0) #Chain 1 
list(a=1, b=-0.1, c=0.1) #Chain 2 

Five thousand burn-in iterations were performed, followed by 100,000 iterations to 
estimate the parameters.  The table below shows the posterior mean, standard deviation, 
and symmetric 95% interval for each of the parameters in the logistic regression model 
for p.  The marginal posterior distributions for a and b are approximately normal with the 
listed posterior means and standard deviations. 

Table 3  Summary posterior estimates of logistic regression parameters, temperature and pressure 
included as explanatory variables 

Parameter Mean Standard Dev. 95% Interval 
a (intercept) 2.24 3.74 (-4.71, 9.92) 
b (temp. coeff.) -0.105 0.05 (-0.20, -0.02) 
c (press. coeff.) 0.01 0.009 (-0.004, 0.03) 

The model that includes both temperature and pressure predicts about four distress events 
at 31o F., the approximate temperature for the disastrous launch of the Challenger. 

We next consider a simpler model, in which only temperature is included as an 
explanatory variable for the logistic regression.  The WinBUGS script for this model is 
shown in Table 4. 

Table 4  WinBUGS script for logistic regression of primary O-ring distress on temperature 
model { 
for(i in 1:K) { 
 distress[i] ~ dbin(p[i], 6) 
 logit(p[i]) <- a + b*temp[i] #Model with temperature only 
 } 
distress.31 ~ dbin(p.31, 6) 
logit(p.31) <- a + b*31 
a ~ dflat() #Diffuse priors over real axis 
b ~ dflat() 
} 

Inits 
list(a=1, b=0.1) #Chain 1 
list(a=10, b=-0.1) #Chain 2

One thousand burn-in iterations were required for convergence, followed by 100,000 
iterations to estimate the parameters.  The table below shows the posterior mean, standard 
deviation, and symmetric 95% interval for each of the parameters in the logistic 
regression model for p.   
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Table 5  Summary posterior estimates of logistic regression parameters, temperature included as 
explanatory variable 

Parameter Mean Standard Dev. 95% Interval 
a (intercept) 5.225 3.16 (-1.00, 11.48) 
b (temp. coeff.) -0.12 0.049 (-0.22, -0.025) 

Dalal et al.1 also examined a model that is quadratic in temperature.  Specifically, they 
analyzed the following model for distress probability, where t is the average of the 
temperature readings in the data: 

( ) ( )2ttcttba)p(itlog −+−+=        (2) 

The WinBUGS script for this model is shown in Table 6.  We analyzed this model with 
1,000 burn-in iterations, followed by 50,000 iterations for parameter estimation.  The 
posterior distributions of the parameters are summarized in Table 7. 

Table 6  WinBUGS script for logistic regression of primary O-ring distress quadratic in temperature 
model { 
for(i in 1:K) { 
  distress[i] ~ dbin(p[i], 6) 
  logit(p[i]) <- a +b*(temp[i] - temp.mean) + c*pow(temp[i] - temp.mean, 2) 
   } 
temp.mean <- mean(temp[]) 
a ~ dnorm(0, 0.000001) 
b ~ dnorm(0, 0.000001) 
c~ dnorm(0, 0.000001) 
} 

Inits 
list(a=-3, b=0.05, c=0.005) 
list(a=0, b=-0.05, c=-0.005)

Table 7  Summary posterior estimates for logistic regression model for primary O-ring distress, 
quadratic model in temperature 

Parameter Mean Standard Dev. 95% Interval 
a (intercept) -3.25 0.52 (-4.37, -2.32) 
b (temp. coeff.) -0.10 0.08 (-0.27, 0.03) 
c (press. coeff.) 0.003 0.006 (-0.01, 0.01) 

We use two measures to check model validity.  The first uses a summary statistic based 
on the posterior predictive distribution, and is a measure of how well the model can 
replicate the observed data.  We refer to this measure as a Bayesian p-value.  This 
measure is described in more detail in Gelman et al.4  We refer to this measure as a p-
value even though, as pointed out by Bayarri and Berger,5 this measure does not share the 
asymptotic properties of the frequentist p-value.  The WinBUGS script excerpt in Table 8 
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shows how this is calculated.  The second model-validation measure we will use is the 
deviance information criterion (DIC), a Bayesian analog of the Akaike information 
criterion (AIC) used by frequentists.  For details see Spiegelhalter et al.6  DIC is a 
measure of relative validity; the model with the lowest (best) DIC may still be a poor 
model from the standpoint of being able to replicate the observed data. 

Table 8  Portion of WinBUGS script for calculating Bayesian p-value 
model { 
for(i in 1:K) { 
distress[i] ~ dbin(p[i], 6) 
logit(p[i]) <- a + b*temp[i] + c*press[i] #Model with temperature and pressure 
 distress.rep[i] ~ dbin(p[i], 6) #Replicate from posterior predictive 
distribution 
 diff.obs[i] <- pow(distress[i] - 6*p[i], 2)/(6*p[i]*(1-p[i])) 
 diff.rep[i] <- pow(distress.rep[i] - 6*p[i], 2)/(6*p[i]*(1-p[i])) 
 } 
chisq.obs <- sum(diff.obs[]) #Observed summary statistic 
chisq.rep <- sum(diff.rep[]) #Replicated summary statistic 
p.value <- step(chisq.rep - chisq.obs) #Mean of this node should be near 0.5 
}

The model with only temperature predicts essentially the same number of distress events 
as the two more complex models.  The DIC is nearly the same for all the models; the 
simplest model with only temperature as an explanatory variable has a slightly larger 
Bayesian p-value than the model with both temperature and pressure, and is essentially 
the same as the model that is quadratic in temperature.  Because the simplest model is 
essentially equivalent to the more complex ones, we would recommend it for predictive 
analyses. 

Table 9  Model validation results for logistic regression models for primary O-ring distress 
Explanatory Variables DIC Bayesian p-value 

Temperature and pressure 36.58 0.19 
Temperature 35.75 0.21 
Quadratic in temperature 37.18 0.20 

Probability of Shuttle Failure 

The probability of shuttle failure is given by the joint probability of a) primary O-ring 
erosion, b) primary O-ring blowby, c) secondary O-ring erosion, and d) secondary O-ring 
failure.  The above analysis examined the probability of a ∪ b, because we defined O-
ring distress as either erosion or blowby.  Following Dalal et al.1, we use pa, pb, pc, and pd

to denote the probabilities of (a) – (d), conditional upon the preceding events.  The 
probability of failure of a field joint is then given by the product of these conditional 
probabilities: 



7

dcbaF ppppp =          (3) 

There are six field joints on each shuttle.  Assuming the joint failures are independent and 
identically distributed, then the probability of shuttle failure due to field joint failure is 
the probability that at least one of the six joints fails: 

( )611 Fsh pp −−=          (4) 

Note that this assumption is highly questionable; joint failures are likely to be dependent, 
and thus we are likely calculating a lower bound on the shuttle failure probability. 

We now turn to estimating each of the inputs to Equ. (3).  For pa, we have the primary O-
ring erosion data given in Table 10 below. 

Table 10  Data on primary O-ring erosion for shuttle field joints 
Flight Erosion Temp (oF.) Press (psig) 

1 0 66 50 
2 1 70 50 
3 0 69 50 
5 0 68 50 
6 0 67 50 
7 0 72 50 
8 0 73 100 
9 0 70 100 
41-B 1 57 200 
41-C 1 63 200 
41-D 1 70 200 
41-G 0 78 200 
51-A 0 67 200 
51-C 2 53 200 
51-D 0 67 200 
51-B 0 75 200 
51-G 0 70 200 
51-F 0 81 200 
51-I 0 76 200 
51-J 0 79 200 
61-A 0 75 200 
61-B 0 76 200 
61-C 1 58 200 

Dalal et al.1 fit a logistic regression model for pa using this data, with temperature and 
leak-test pressure as explanatory variables.  They concluded that pressure was not a 
significant variable, but kept it in the model because NASA engineers had thought that it 
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would be an important predictor of erosion.  We performed a Bayesian analysis of this 
model, as above. 

The table below shows the posterior mean, standard deviation, and symmetric 90% 
interval for each of the parameters in the logistic regression model for p.  These results 
compare well with the MLEs and 90% bootstrap confidence intervals obtained by Dalal 
et al.1  Zero is near the center of the marginal posterior distribution for the coefficient of 
pressure, indicating that pressure is not a significant explanatory variable, as was 
concluded by Dalal et al.1  Note also the larger Bayesian p-value for the model with 
temperature alone, and the slightly smaller DIC.  Together, these suggest that the model 
without pressure as an explanatory variable is better able to replicate the observed data.  
We will estimate the probability of shuttle failure both with pressure included, and with 
the simpler model that only includes temperature as an explanatory variable. 

Table 11  Summary posterior estimates of logistic regression parameters for primary O-ring erosion, 
temperature and pressure included as explanatory variables 

Parameter Mean Standard Dev. 90% Interval 
a (intercept) 8.38 5.38 (0.43, 17.46) 
b (temp. coeff.) -0.19 0.07 (-0.31, -0.08) 
c (press. coeff.) 0.004 0.01 (-0.01, 0.02) 

Table 12  Model validation results for logistic regression models for primary O-ring erosion 
Explanatory Variables DIC Bayesian p-value 

Temperature and pressure 26.84 0.34 
Temperature 24.91 0.50 

We next consider the conditional probability of primary O-ring blowby, given erosion, 
pb.  Of the seven field joints that exhibited erosion, only two also exhibited blow-by.  
This is too sparse a sample for regression modeling, so we follow Dalal et al.1 and 
estimate pb by pooling the data from field O-rings with data from nozzle O-rings, which 
exhibited similar performance (5 blow-by events in 17 erosion events).  This gives a total 
of 7 blow-by events in 24 erosion events with which to estimate pb.  Dalal et al.1 chose a 
uniform(0, 1) prior for pb; a Jeffreys prior, which is a beta(0.5, 0.5) distribution, would be 
a more standard choice in PRA.  However, the extra bias introduced by the uniform prior 
is minimal in this case, so we will retain the uniform prior for pb. 

We turn next to the conditional probability of secondary O-ring erosion, given blow-by of 
the primary O-ring, pc.  Again, there was very little data with which to quantify pc.  Dalal 
et al.1 pooled data from field and nozzle O-rings, yielding two events out of seven in 
which primary O-ring blow-by led to erosion of the secondary O-ring.  Again, Dalal et 
al.1 used a uniform prior for pc. 

No events existed in which a secondary O-ring had failed following primary O-ring 
erosion and blow-by, followed by secondary O-ring erosion.  Therefore, Dalal et al.1 set 
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pd equal to pb.  This correlates the state of knowledge of pd with that of pb, and changes 
Equ. (3), giving the probability of field joint failure, to 

cbaF pppp 2
=           (5) 

Table 13 shows the complete WinBUGS script used to estimate each of the terms in Equ. 
(5) and to propagate the uncertainties represented by the posterior distributions of the 
conditional probabilities in this equation to obtain the distribution for shuttle failure 
probability as a result of O-ring failure. 

Table 13  WinBUGS script used to calculate probability of shuttle failure as a result of field joint 
failure 
model { 
for(i in 1:K) { 
  erosion.prim[i] ~ dbin(p.a[i], 6) 
  logit(p.a[i]) <- a + b*temp[i] + c*press[i]  
  } 
blowby.erode ~ dbin(p.b, n.erode.blby) #Binomial dist. for primary blowby, given 
erosion 
n.erode.blby <- 24 #Pooled field and nozzle O-ring data 
p.b ~ dunif(0, 1) #Prior used by Dalal et al. 
erode.sec ~ dbin(p.c, n.erode.sec) #Binomial dist. for sec. erosion, given primary 
erosion and blowby 
n.erode.sec <- 7 
p.c ~ dunif(0, 1) 
p.F.31 <- p.a.31*pow(p.b, 2)*p.c #Probability of field joint failure at 31 deg. F 
p.F.60 <- p.a.60*pow(p.b, 2)*p.c #Probability of field joint failure at 60 deg. F 
p.sh.31 <- 1 - pow(1-p.F.31, 6) #Probability of shuttle failure at 31 deg. F 
p.sh.60 <- 1 - pow(1-p.F.60, 6) #Probability of shuttle failure at 60 deg. F 
logit(p.a.31) <- a + b*31 + c*200 
logit(p.a.60) <- a + b*60 + c*200 
a ~ dnorm(0, 0.000001) #Diffuse priors on logistic regression coefficients 
b ~ dnorm(0, 0.000001) 
c ~ dnorm(0, 0.000001) 
} 

data 
list(blowby.erode=7, erode.sec=2) 

inits 
list(a=5, b=0, c=0) #Logistic model for temp and press 
list(a=1, b=-0.1, c=0.1)

This script was run with 1,000 burn-in samples, followed by 100,000 samples for 
parameter estimation.  The results for shuttle failure probability are summarized in Table 
14.  As can be seen, the probability of shuttle failure is essentially independent of any 
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effect due to leak-test pressure, and is significantly higher at the lower of the two 
temperatures.  The posterior distributions for shuttle failure probability at the two 
different temperatures are shown below. 

Table 14  Summary of posterior distributions for shuttle failure due to field joint failure 
Explanatory Variables Mean 90% Interval 

31o F. 60o F. 31o F. 60o F. 
Temperature and pressure 0.163 0.02 (0.03, 0.39) (0.0035, 0.07) 
Temperature 0.165 0.02 (0.03, 0.39) (0.0035, 0.07) 

Figure 1  Posterior distribution for shuttle failure probability at 31o  and 60o F. 

Incorporating Uncertainty in Launch Temperature 
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In the Bayesian framework, it is straightforward to incorporate uncertainty about the 
launch temperature to represent the decision-maker’s state of knowledge in advance of 
the launch.  This is a distinct advantage over the frequentist framework.  To illustrate this 
concept, we will treat the temperature at launch as unknown, as it would be during the 
launch planning stages.  We will assume the average launch temperature in January is 
equal to the average low temperature (from www.weatherbase.com) of 52o F.  We will 
further assume that the lowest reported temperature during January (26o F.) represents a 
difference of two standard deviations.  We will thus take the predicted launch 
temperature as being normally distributed with a mean of 52o F. and a standard deviation 
of 13o F. 

This requires only a slight modification to the WinBUGS script shown in Table 13.  
Table 15 shows the revised script.  The predicted mean shuttle failure probability due to 
O-ring failure is now 0.08, with a 90% credible interval of (0.001, 0.27).  This illustrates 
the value of knowing the launch temperature; it refines the estimate of shuttle failure 
probability significantly, providing more information to the decision-maker. 

  
Table 15  WinBUGS script for predicting shuttle failure probability when launch temperature is 
unknown 
model { 
for(i in 1:K) { 
 erosion.prim[i] ~ dbin(p.a[i], 6) 
logit(p.a[i]) <- a + b*temp[i] + c*press[i] #Model with temperature and pressure 
 erosion.prim.rep[i] ~ dbin(p.a[i], 6) 
 } 
blowby.erode ~ dbin(p.b, n.erode.blby) #Binomial dist. for primary blowby, given 
erosion 
n.erode.blby <- 24 #Pooled field and nozzle O-ring data 
p.b ~ dunif(0, 1) #Prior used by Dalal et al. 
erode.sec ~ dbin(p.c, n.erode.sec) #Binomial dist. for sec. erosion, given primary 
erosion and blowby 
n.erode.sec <- 7 
p.c ~ dunif(0, 1) 
p.F.pred <- p.a.pred*pow(p.b, 2)*p.c 
p.sh.pred <- 1 - pow(1-p.F.pred, 6) 
erosion.prim.pred ~ dbin(p.a.pred, 6) 
logit(p.a.pred) <- a + b*temp.pred + c*200 
temp.pred ~ dnorm(52, 0.006) 
a ~ dnorm(0, 0.000001) 
b ~ dnorm(0, 0.000001) 
c ~ dnorm(0, 0.000001) 
}
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Conclusions 

We have demonstrated the value of developing models for unobservable parameters, such 
as O-ring failure probability, in which the unobservable parameter is a function of 
measurable parameters such as temperature and leak-test pressure.  Incorporating such 
explanatory variables into the model helps to foster communication between risk analysts 
and system engineers, who are often more comfortable working with measurable 
quantities. 

Bayesian estimation of the parameters in such models has been extremely difficult in the 
past, and has necessitated complex approximation methods, such as bootstrapping, to 
propagate parameter uncertainty through the model.  However, the advent of easy-to-use, 
powerful, open-source software such as WinBUGS has made this type of analysis quite 
tractable, even to nonspecialists. 

The Bayesian framework is particularly suited to risk-informed decision-making as it 
allows uncertainties in observable launch parameters such as temperature to be 
propagated through the model.  The decision-maker can easily see the refinement in 
model estimates obtained by gathering additional information.  The Bayesian framework 
is also well suited to model validation, an important but often overlooked aspect of risk 
analysis.  This validation step also aids dialog between risk analysts and system 
engineers.  In our example, system engineers thought leak-test pressure would be an 
important predictor of primary O-ring erosion, but this turned out not to be the case.  This 
outcome could be fed back to the system engineers, who in turn might find this insight a 
valuable addition to their knowledge. 
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