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Stochastic Event Counter for Discrete-Event
Systems under Unreliable Observations

Tae-Sic Yoo and Humberto E. Garcia
Idaho National Laboratory

Abstract— This paper addresses the issues of counting the
occurrence of special events in the framework of partially-
observed discrete-event dynamical systems (DEDS). First,
we develop a noble recursive procedure that updates active
counter information state sequentially with available obser-
vations. In general, the cardinality of active counter infor-
mation state is unbounded, which makes the exact recursion
infeasible computationally. To overcome this difficulty, we
develop an approximated recursive procedure that regulates
and bounds the size of active counter information state. Using
the approximated active counting information state, we give an
approximated minimum mean square error (MMSE) counter.
The developed algorithms are then applied to count special
routing events in a material flow system.

I. INTRODUCTION

The failure/fault analysis of discrete-event dynamical sys-
tems has received attentions from academia and industries
since the seminal work [8] was published. The framework
presented in [8] deals with the detection of special events
where the finite-state automaton describes the dynamic of
the system and the associated partial-observation is assumed
to be reliable.

Among the subsequent extensions and improvements of
[8], recent developments on the detection problem of special
events accounting for sensor unreliability and stochastic
aspects in discrete-event systems include [6], [9], [1]. In
[6], the authors show that, in general, the observer of
a finite-state stochastic automaton cannot be represented
by another finite-state stochastic automaton. In [9], the
authors introduced the notions of stochastic diagnosability
that incorporate the stochastic automaton describing the
behavior of the system. These notions of diagnosability
relax that of deterministic automaton introduced in [8].
Also presented in [9] is the procedure of building the
stochastic diagnoser1 that bears a similar structure of the
logical diagnoser of [8]. The transitions of the stochastic
diagnoser include probability transition matrixes that can
be used to update the probability distribution on the state
estimate. In [1], the authors present a method of calculating
the observation likelihood of the stochastic automaton. The
authors then used the developed procedure to decide the
most-likely stochastic automaton explaining the observed
output sequence among the candidate stochastic automata.
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Humberto.Garcia}@inl.gov

1The stochastic diagnoser is not a stochastic automaton. Therefore, the
results presented in [6], [9] do not contradict each other.

One can find attempts addressing special events with
repeatable nature in [3], [5], [10], [4]. Intermittent or
non-persistent faults are repetitive in nature and can au-
tonomously reset. The issue of detecting whether or not
a resetting has occurred was addressed in [3]. In [5], the
authors addressed fault counting problems and introduced
several notions of diagnosability that capture the various
counting capabilities of special events.

Though results on probabilistic detection/diagnosis for
stochastic automata and event counting for deterministic
automata are available, results on the “probabilistic count-
ing” of special events for stochastic automata are limited at
best. In [10], a counting strategy accommodating stochastic
automata and unreliable observations was presented. How-
ever, the counting strategy of [10] is deterministic in that
the presented counting algorithm searches the minimum
count of the associated state estimate rather than using the
probabilistic distribution of state estimate of the stochastic
automaton; essentially, it deals with possibility rather than
probability. In this paper, we attempt to fully utilize the
probabilistic aspect of stochastic automata in developing
algorithms for special event counting.

The main contributions of this paper are summarized
below.

• A noble recursive procedure for updating counter in-
formation state is given;

• An approximated recursive procedure for updating
counter information state is developed;

• An approximated MMSE conditional expectation
counter is given;

• We apply the developed methodology to a material
flow system where some special routing events are
counted dynamically.

The rest of the paper is organized as follows. In Sec-
tion II, we provide necessary notation and definitions.
Section III defines MMSE counter and gives the associated
counter information state. Also given in Section III is a
recursive procedure for sequentially updating counter infor-
mation state. In Section IV, we develop an approximated
algorithm for the recursive procedure given in Section III.
An approximated MMSE counter is described in Section IV
as well. In Section V, we give an illustrative material flow
system application where the developed counters provide
the dynamic estimates on the number of occurrences of
special routing events.

We assume in the remainder of this paper that the reader
is familiar with terminologies typical of DEDS.



II. PRELIMINARIES

In this section, we define the model of DEDS under
consideration and related necessary notation. We consider
a stochastic automaton as the system model. A stochastic
automaton is a quadruple

A = (X, Σ, a, π0)

where X := {x1, x2, . . . , xnx
} is the finite state space,

Σ := {σ1, σ2, . . . , σnσ
} is the set of events, and π0 :=

{π0(xi) : xi ∈ X} is the initial probability distribution of
the system. The state transition probability function a is
defined as below:

a : X × Σ × X → [0, 1]

where, ∀x ∈ X ,
nσ∑
i=1

nx∑
j=1

a(x, σi, xj) = 1.

In practice, sensors are seldom perfect. Observation in-
formation from sensors thus can be unreliable. We model
the unreliability of observation information in the following
manner. Let Δ := {y1, y2, . . . , yny

} be the set of distinctive
observation symbols. The set of output symbols is

Δ∗ := Δ ∪ {ε}
where the symbol ε represents the situation of having no
observation. The unreliable output function b : Σ × Δ∗ →
[0, 1] satisfies the following: ∀σ ∈ Σ,

b(σ, ε) +

ny∑
i=1

b(σ, yi) = 1.

The functional value b(σ, y) is the conditional probability
of having output y ∈ Σ × Δ∗ when the system executes
event σ ∈ Σ.2

For any finite set S, S∗ denotes the Kleene closure of S.
A run of the system is the sequence of transitions of system
states such that

(x1
s, σ

1, x1
d) . . . (xn

s , σn, xn
d ) ∈ (X × Σ × X)∗

where xi
s, x

i
d ∈ X and σi ∈ Σ, for i = 1, . . . , n. For brevity,

let us have the following sequence notation:

{(xi
s, σ

i, xi
d)}n

i=1 := (x1
s, σ

1, x1
d) . . . (xn

s , σn, xn
d ).

The above run of the system is called feasible if and only
if the following conditions satisfy conjunctively:

• π0(x
1
s) > 0;

• a(xi
s, σ

i, xi
d) > 0, ∀i ∈ {1, . . . , n};

• xi
s = xi+1

d , ∀i ∈ {1, . . . , n − 1}.
An output run of the system is the sequence of output

symbols such that

{oi}n
i=1 := o1o2 . . . on ∈ (Δ∗)

∗

2One can also model insertion or false alarm by including the self-
loop with insertion events to the stochastic automata A and updating b
appropriately to include the insertion events.

where oi ∈ Δ∗ for i = 1, . . . , n. The output run {oi}n
i=1 is

called feasible if and only if there is a feasible run of the
system {(xi

s, σ
i, xi

d)}n
i=1 such that

b(σi, oi) > 0, ∀i ∈ {1, . . . , n}.
An observation run of the system is the sequence of

observation symbols such that

{yi}m
i=1 := y1y2 . . . ym ∈ Δ∗

where yi ∈ Δ for i = 1, . . . , m. The observation run
{yi}m

i=1 is called feasible if and only if there is a feasible
output run of the system {oi}n

i=1 ∈ (Δ∗)
∗ such that

PΔ({oi}n
i=1) = {yi}m

i=1

where PΔ : (Δ∗)
∗ → Δ∗ is a plain projection function that

removes ε symbol from the output runs of the system.
Given the above stochastic model, we are interested in

sequentially estimating the number of occurrences of event
f ∈ Σ with observation sequences from Δ.3 We call these
sequential estimation functions as counters in this paper.
Formally, a counter is a function C : Δ∗ → R∗ where R∗

is the set of non-negative real numbers. We denote Nt(f)
a random variable on the number of transitions incurred
by event f up to the moment when the tth observation is
available.

We note that the above stochastic model is similar to
a Hidden Markov Model (HMM) [7] in that it is doubly-
stochastic; i.e., the dynamics of the underlying system and
the associated observations are both stochastic. A major
distinction is that the above stochastic model explicitly
accounts for “no observation” represented by the ε symbol.
In HMM, one usually assumes that stochastic observations
are available and ready to be processed if and only if
the underlying Markov model makes a transition. In this
sense, the presented framework of stochastic automata and
unreliable output functions subsumes HMM.

An example is given below illustrating the notation
presented above.

Example 1: Consider the stochastic automaton A and the
associated unreliable output function b described in Fig. 1.

Fig. 1. Stochastic automaton and unreliable output function

Consider a sample run of the system and corresponding
output and observation runs below.

System run : (1, e, 1)(1, f, 2)(2, f, 2)(2, e, 1) . . .

Output run : e e ε f . . .

Observation run : e e f . . .

3For simplicity, we only consider a single event f ∈ Σ to be counted.
Extension to multiple events or multiple types of multiple events in the
sense of [8] is straightforward.



Note that the third transition (2, f, 2) of the sample run
of the system does not generate an observation symbol in
Δ. Counters will use the observation run eef . . . to update
functional values. Also note that system transitions incurred
by f occurred twice while eef is observed. Therefore,
N3(f) = 2 for the above system run.

III. INFORMATION STATE OF COUNTERS

We are interested in designing counters that minimize
the mean square error. Formally, for any function gt of the
sequence of random observations from Δ of length t, say
{Yk}t

k=1 := (Y1, Y2, . . . , Yt), we want to find a function
that minimizes the mean square error as below:

argmin
gt

E[(Nt(f) − gt)
2].

It is well-known that the conditional expectation of Nt(f)
given Y t

1 is a minimizer for the above optimization argu-
ment. That is,

E[Nt(f)|{Yk}t
k=1] ∈ argmin

gt

E[(Nt(f) − gt)
2].

The state space of counters considered in this paper is
X × Z∗ where Z∗ is the set of non-negative integers. Let
αt(xi, c) denote the probability that the system is at state
xi while executed the special event f c-times given that
realized observation sequence is {yik

}t
k=1 and the system

state is initially distributed according to π0. With this, we
set the information state of counters as all possible special
event counts of all system states:

Zt := {αt(xi, c) : xi ∈ X, c ∈ Z∗}
where

ns∑
i=1

∞∑
c=0

αt(xi, c) = 1.

We call that αt(xi, c) is active if αt(xi, c) > 0. The set of
active counts after observing {yik

}t
k=1 is

Ct := {c : αt(xi, c) > 0, xi ∈ X, c ∈ Z∗}.
The initial information state of counters is

Z0 = {α0(xi, c) : i = 1, . . . , ns, c ≥ 0}
where

α0(xi, c) =

{
π0(xi) if c = 0;
0 if c > 0.

The above simply implies that the system is initially dis-
tributed following π0 while the special event f has never
been executed.

We find a recursive form of updating information state
Zt from Zt−1: for c1 ≥ 0 and xi ∈ X ,

αt(xi, c) =

c∑
c′=0

ns∑
j=1

αt−1(xj , c
′)λ(xi, c − c′|xj , yit

) (1)

where λ(xi, c2|xj , yit
) denotes the probability that the sys-

tem reaches state xi while executing event f c2-times along
the sequence of transitions when we start in state xj and
observed yit

. Note that information state is updated only if

new observation from Δ is available. The above recursion
implies that, when we receive a new observation, yit

, we
can compute αt(xi, c) by adding all probabilities to reach
state xi from previous information state while executing the
special event c− c′ times given that we observed yit

. Then,
the conditional expectation of special event count given the
observation sequence is

E[Nt(f)|{yik
}t

k=1] =

∞∑
c=0

c

ns∑
i=1

αt(xi, c).

In the next subsection, we develop a procedure for comput-
ing λ(xi, c|xj , yit

).

A. Computation of λ(x, c|x′, y)

For brevity, let us introduce the following notation. For
o ∈ Δ∗,

p
o,1
i,j := a(xi, f, xj)b(f, o) and

p
o,0
i,j :=

∑
σ∈Σ\{f}

a(xi, σ, xj)b(σ, o).

Intuitively, p
o,1
i,j is the probability of reaching xj ∈ X by

executing f event with output o ∈ Δ∗ when we start in state
xi. On the other hand, p

y,0
i,j is the probability of reaching

xj ∈ X with output o ∈ Δ∗ while the system does not
execute f when we start in state xi.

We denote the probability of reaching state xj with
observation y ∈ Δ while executing f events c-times along
the transitions when we start in state xi by λ(xj , c, y|xi).
For brevity, we will use a short handed notation λ

y
i,j(c) for

λ(xj , c, y|xi). Note that λ
y
i,j(c) differs from λ(xj , c|xi, y) in

that observation y is not conditioned. The reach probability
λ

y
i,j(c) satisfies the following set of recursive equations: For

all 1 ≤ i, j ≤ ns, y ∈ Δ, and c ≥ 0,

λ
y
i,j(c) =

ns∑
k=1

p
ε,0
i,kλ

y
k,j(c) +

ns∑
k=1

p
ε,1
i,kλ

y
k,j(c − 1) + p

y,c
i,j (2)

In the above set of equations, p
ε,0
i,kλ

y
k,j(c) implies the prob-

ability of the following scenario. First, the system moves
from xi to xk (with 1 step) while avoiding the execution
of the special event and generating no observable symbol.
Then, from xk, the system reaches xj while generating
observation y and executing the special event c-times. Simi-
larly, pε,1

i,kλ
y
k,j(c−1) implies the probability of the following

scenario. First, the system moves from xi to xk (with 1
step) while executing the special event and generating no
observable symbol. Then, from xk, the system reaches xj

while generating observation y and executing the special
event c−1-times. The quantity p

y,c
i,j is the probability that the

system moves from xi to xj (with 1 step) while executing
the special event c-times and generating observation y.
Note that λ

y
k,j(−1) = 0 because negative counting is not

possible. Also note that p
y,c
i,j = 0, if c ≥ 2, because the

system only can execute at most one special event per
system execution. As the above scenarios are all disjoint
and include all possible paths to λ

y
i,j(c), by adding up these

probabilities, we can compute λ
y
i,j(c) as in (2).



Let In be the n × n identity matrix. Rewriting (2) gives
the following set of equations:

Λy
0 = (Ins

− P ε
0 )−1P

y
0 ;

Λy
1 = (Ins

− P ε
0 )−1(P ε

1Λy
0 + P

y
1 );

Λy
c = [(Ins

− P ε
0 )−1P ε

1 ]c−1Λy
1 , ∀c ≥ 2.

(3)

where the elements at the ith column and the jth row are:

Λy
c (i, j) := λ

y
i,j(c), P

y
0 (i, j) := p

y,0
i,j , and P

y
1 (i, j) := p

y,1
i,j .

We note that
∞∑

k=0

λ
y
i,j(k) = λ

y
i,j

where λ
y
i,j denotes the probability of reaching state xj with

one observation step while observing y ∈ Δ when we start
in state xi. We can set up the following set of equations for
λ

y
i,j . For all 1 ≤ i, j ≤ ns, y ∈ Δ,

λ
y
i,j =

ns∑
k=1

pε
i,kλ

y
k,j + p

y
i,j ,

where po
i,j is the probability of reaching xj ∈ X with output

o ∈ Δ∗ when we start in state xi. Formally, for o ∈ Δ∗,

po
i,j :=

∑
σ∈Σ

a(xi, σ, xj)b(σ, o).

Solving the above set of equations gives

Λy = (Ins
− P ε)−1P y

where the elements at the ith column and the jth row are:

Λy(i, j) := λ
y
i,j , P ε(i, j) := pε

i,j , and P y(i, j) := p
y
i,j .

Note that P 0 = P o
0 + P o

1 , for o ∈ Δ∗.
With marginalization, we have that, for xi, xj ∈ X , y ∈

Δ, and c ∈ Z∗,

λ(xj , c|xi, y) =
λ

y
i,j(c)∑ns

j=1 λ
y
i,j

. (4)

We provide next an example illustrating the computation
procedures presented above.

Example 2: Consider the stochastic automaton described
in Fig. 1. Then, we have

P ε
0 =

(
0.06 0
0.1 0

)
, P ε

1 =

(
0 0.14
0 0.1

)
,

P e
0 =

(
0.18 0
0.3 0

)
, P e

1 =

(
0 0.07
0 0.05

)
,

P
f
0 =

(
0.06 0
0.1 0

)
, and P

f
1 =

(
0 0.49
0 0.35

)
.

With (3), we have that, for e ∈ Δ,

Λe
0 = (I2 − P ε

0 )−1P e
0 =

(
0.1915 0
0.3191 0

)
;

Λe
1 = (I2 − P ε

0 )−1(P ε
1Λy

0 + P e
1 ) =

(
0.0475 0.0745
0.0367 0.0574

)
;

Λe
c+1 = [(I2 − P ε

0 )−1P ε
1 ]cΛe

1 =

(
0 0.1489
0 0.1149

)c

Λe
1.

For f ∈ Δ, we have that

Λf
0 = (I2 − P ε

0 )−1P
f
0 =

(
0.0638 0
0.1064 0

)
;

Λf
1 = (I2 − P ε

0 )−1(P ε
1Λf

0 + P
f
1 ) =

(
0.0158 0.5213
0.0122 0.4021

)
;

Λf
c+1 = [(I2 − P ε

0 )−1P ε
1 ]cΛf

1 =

(
0 0.1489
0 0.1149

)c

Λf
1 .

We have that

P ε = P ε
0 + P ε

1 , P e = P e
0 + P e

1 , and P f = P e
0 + P e

1 .

Then, we can compute the following.

Λe = (I2 − P ε)−1 · P e =

(
0.2452 0.0841
0.3606 0.0649

)
;

Λf = (I2 − P ε)−1 · P f =

(
0.0817 0.5889
0.1202 0.4543

)
.

With (4), we can compute λ(xj , c|xi, y), for xj , xi ∈ {1, 2},
y ∈ {e, f}, and c ∈ Z∗.

IV. APPROXIMATING COUNTER INFORMATION STATE

Note that Example 2 of the previous section gives that
λ(xj , c|xi, e) > 0 for all xj , xi ∈ {1, 2}, y ∈ {e, f},
and c ∈ Z∗. Then, for any initial distribution π0, we
have that αt(x, c) > 0 for all x ∈ X and c ∈ Z∗ and
t ∈ Z. Thus, exact recursion in (1) incurs infinite active
counter state, which makes exact recursion computation-
ally infeasible. To overcome this difficulty, we give an
approximation scheme that regulates and bounds the set
of active counter information states. First, we begin with
the following formulation that finds the minimum count
explaining counter information state approximately within
the given factor 0 < δ1 ≈ 0 for each observation symbol
y ∈ Δ:

N
y
i,j(δ1) = min

(
N : 1 −

∑N

c=0 λ
y
i,j(c)

λ
y
i,j

< δ1

)
.

Note that for N > N
y
i,j(δ1),∑∞
c=N λ

y
i,j(c)

λ
y
i,j

< δ1.

Intuitively, the above inequality means that the probability
of getting count beyond N

y
i,j(δ1) for transition to state

xj ∈ X with observation y ∈ Δ when the system starts at
state xi ∈ X is negligible. By finding the maximum among
all possible system state pairs, we get the approximated
maximum count for observation y ∈ Δ as below:

N
y
δ1

= max
(
N

y
i,j(δ1) : 1 ≤ i, j ≤ ns

)
.

Thus, each time y ∈ Δ is observed, we use N
y
δ1

in the
following manner to approximate λ(xj , h|xi, y):

λ̃(xj , h|xi, y) =

⎧⎨⎩
λ

y
i,j(h)∑ns

j=1

∑N
y
δ1

c=0
λ

y
i,j(c)

if 1 ≤ h ≤ N
y
δ1

;

0 o.w.



With the above scheme, we approximate the recursion
(1) in the following manner. First, we have the initial
approximated counter information state

Z̃0 = {α̃0(xi, c) : xi ∈ X, c ∈ Z∗}
where

α̃0(xi, c) =

{
π0(xi) i = 1, . . . , ns and c = 0;
0 o.w.

Approximated recursion is defined by replacing λ with λ̃

as below.

α̃t(xi, c) =

min(c,N
yit
δ1

)∑
c′=0

ns∑
j=1

α̃t−1(xj , c−c′)·λ̃(xi, c
′|xj , yit

).

Note that, the set of active information states is still not
bounded uniformly over t in general (e.g., Example 2). This
makes the recursion (1) with approximated values com-
putationally infeasible again. Therefore, we need another
level of approximation scheme to make the recursion (1)
computable.

Let us denote the set of active counts at time t with the
above approximation by

C̃t := {c : α̃t(xi, c) > 0, xi ∈ X, c ∈ Z∗}.
Also denote the probability of count by

α̃t(c) :=

ns∑
i=1

α̃t(xi, c).

We index the elements of C̃t with the following approach.
For ci, cj ∈ C̃t, i < j if and only if

[α̃t(ci) > α̃t(cj)] ∨ [(α̃t(ci) = α̃t(cj)) ∧ (ci < cj)].

Let us denote this complete-ordered set and the ith element
of this set by S̃t and ci, respectively. We find the minimum
count that explains counter information state approximately
within the given factor 0 < δ2 ≈ 0:

N t
δ2

:= min

(
N : 1 −

∑N

i=1 α̃t(ci)∑
c∈C̃t

α̃t(c)
< δ2

)
.

To give a hard bound on this set, for a given N∗ > 0, let

N t
δ2

:= min(N∗, N t
δ2

).

Note that when N t
δ2

= N t
δ2

, for N t
δ2

≤ N ≤ |C̃t|,∑|C̃t|
i=N α̃t(ci)∑
c∈C̃t

α̃t(c)
< δ2,

which intuitively means that the probability of having active
count ci where i > N t

δ2
is negligible. We collect the set of

counts that explains the distribution of counts approximately
in the following manner: For x ∈ X and ci ∈ C̃t,

αδ2

t (x, ci) :=

{
α̃t(x, ci) if i ≤ N t

δ2

0 o.w.

With normalization, we get

α̂δ2

t (x, c) :=
αδ2

t (x, c)∑Nt
δ2

i=1

∑ns

j=1 αδ2

t (xj , ci)

.

Equipped with the above procedure, we give the approxi-
mated recursion below.

α̃t(xi, c) =

min(c,N
yit
δ

)∑
c′=0

ns∑
j=1

α̂δ2

t−1(xj , c−c′)·λ̃(xi, c
′|xj , yit

).

Note that the approximated set of active counts at time t

is
Ĉt = {c : α̂t(xi, c) > 0, xi ∈ X, c ∈ Z∗}

and |Ĉt| ≤ N∗ for all t ≥ 0, trivially.
Having an approximated active counter information state

developed above, we can give an approximated MMSE
counter as below:

E(Nt(f)|{yk}t
k=1) ≈

Nt
δ2∑

i=1

ci

ns∑
j=1

α̂δ2

t (xj , ci).

V. APPLICATION

Consider a material flow system depicted in Fig. 2. Figure

Fig. 2. Material Flow System

2 depicts a material handling facility where two types of
materials are processed. The possible routes of the first
(second) type of material is depicted with arrowed plain
(dotted) lines.

The numbered rectangles represent Input/Working/Output
stations where materials is processed and transfer to/from.
Station 7 represents an input station where materials are
buffered to be pushed in (to Station 1) for processing.
Stations 1, 2, 3, and 4 are internal material processing
stations. Stations 5 and 6 are output stations where the
processed materials leave the facility.

A. Stochastic Automata System Model

A set of automata is used to model the material flows
among stations. For example, the automaton in Fig. 3
captures the material flow of station 1. State (Wi, j, k)
means that internal material processing station i has j



number of material type 1 and k number of material type
2. Event (i, j, k) means that a material of type k is moved
from station j to station i. For simplicity, we assume
zero buffering capacity for all internal material processing
stations.4 Therefore, for instance, after event (1, 7, 1), the
feasible events for W1 are the transportation events of
material type 1 from station 1 to some other stations, that
is, (2, 1, 1) and (3, 1, 1). Output stations 5 and 6 find the
automata model O5 and O6 depicted in Fig. 4 and Fig. 5,
respectively. As one can observe, output stations 5 and 6
are assumed to take materials indefinitely. For input station
7, we assume that there are infinite number of materials to
be processed. The automaton model of input station 7 is
denoted by I7 and depicted in Fig. 6.

Fig. 3. Working Station Automaton Model: W1

Fig. 4. Output Station Automaton Model: O5

Fig. 5. Output Station Automaton Model: O6

Fig. 6. Input Station Automaton Model: I7

The global system model is constructed by composing
all component models:

A := W1||W2||W3||W4||O5||O6||I7

where || is the parallel composition operator as in [2].

4Modeling buffering capabilities may amount to introduce more states
depending on the given material processing policies (FIFO, LIFO, etc.)
and define appropriate transitions.

Constructing transition probability function a may require
the assessments of experts and/or samplings from system
operations. Here, for simplicity, we assume that the transi-
tion probability is equally-likely for all active events of a
given state x. That is, ∀x ∈ X , σ ∈ Σ,

a(x, σ, x′) =
1

|act(x)| ,

where act(x) = {σ ∈ Σ : ∃x′ ∈ X s.t. a(x, σ, x′) > 0}.
Assume that, initially, the working stations of the material

flow system do not have materials being processed. That is,
the initial probability distribution is π0(x) = 1 when

π0(x) =

{
1 if x = (W1,0, . . . , W4,0, O5,0, O6,0, I7,∞)
0 o.w.

where

Wi,0 := (Wi, 0, 0), i = 1, . . . , 4;
Oi,0 := (Oi, 0, 0), i = 5, 6;
I7,∞ = (I7,∞,∞).

B. Sensor Models

Suppose that motion sensors are installed at all internal
working stations, W1, W2, W3, and W4. Motion sensors
are only able to identify the first component of the
executed event (i.e., that a material has been transferred to
the sensor’s station). Unidentified attributes of events are
marked with ∗. We consider the following two cases when
modeling different qualities for motion sensors.

(Case 1) For i ∈ W := {1, 2, 3, 4},

b1((i, j, k), (i′, ∗, ∗)) =

{
0.87; if i′ = i; (�1)
0.01, if i′ ∈ W \ {i}; (†1)

b1((i, j, k), ε) = 0.1 (‡1).
For i �∈ {1, 2, 3, 4}, b1((i, j, k), ε) = 1.

(Case 2) For i ∈ W ,

b2((i, j, k), (i′, ∗, ∗)) =

{
0.6; if i′ = i; (�2)
0.1, if i′ ∈ W \ {i}; (†2)

b2((i, j, k), ε) = 0.1 (‡2).
For i �∈ {1, 2, 3, 4}, b2((i, j, k), ε) = 1.

Above, the symbol ∗ is to indicate unidentified attributes
of events; �i represents the probability of detection for
the Case i; (†i) is to model the probabilities of misclas-
sifications for the Case i; (‡i) is for the probability of
misdetection for the Case i. It is obvious to see that the
motion sensors of Case 1 are more accurate than the ones
of Case 2.

C. Simulation and computational results

Suppose that we are interested in counting the occurrence
of event (2, 1, 1). The following approximation parameters
are used:

δ1 = 0.001, δ2 = 0.001, and N t
δ2

= ∞.



With these parameters, we ran the simulations with the
identical system run of length 3000 for the both cases.

For the sake of readability, Figs. 7 and 8 are marked
with every 100th computational results. The points con-
nected with the thick line is the approximated maximum
active counts, max(C̃t). The dotted line is to connect the
approximated minimum active counts, min(C̃t) for every
100th computations. We used circles to mark the actual
number of occurrences of event (2, 1, 1). The approximated
MMSE counts are marked with +. We note that the cone
of uncertainty becomes larger as the length of system run
increases for the both cases. However, one can observe that
Case 2 shows the wider band of uncertainty compared to
Case 1, in general. This is expected because Case 1 is
equipped with the sensors of higher accuracy than those
of Case 2.
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Fig. 7. Computational Results for Case 1
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Fig. 8. Computational Results for Case 2

Figure 9 shows the progress of overcount/undercount of
the approximated MMSE counts for the both cases. Overall,
the approximated MMSE counter of the Case 1 shows less
deviations from zero than that of Case 2.
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Fig. 9. Count mistakes

Markers (o for Case 1 and x for Case 2) in Fig. 10
show the probability distributions of count for the both
cases after the system executes the 3000th event. Solid
lines are normal distribution counter parts with mean and
variance are computed from the probability distributions of
count. Both cases show near-perfect fit. Observing this, we
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Fig. 10. Convergence to normal distribution

conjecture the following.
(Conjecture) Let us denote random variable St where

P (St = p) = α̃t(p) for t ∈ Z and p ∈ Z∗. If the stochastic
automaton A is strongly connected, there exists a constant
var ∈ R such that

St − E(St)√
t

� N(0, var) (in distribution)

where var ∈ R is the variance of the normal distribution.
We note that var is a function of locations and qualities

of sensors; higher qualities and better locations would entail
a lower var value. This raises the issue of sensor selection,
which is under current investigation.



VI. FINAL REMARKS

This paper reports a methodology of stochastic counting
of special events under stochastic automata with unreliable
observation information. To facilitate computational feasi-
bility, we developed an approximated stochastic counting
scheme. Also notable is the conjecture on the convergence
of count distribution. If this conjecture is positively verified,
one can use the converged variance as a measure for the
quality of the given observational network. Also interesting
would be a synthesis problem such as selecting sensors to
minimize the converged variance.
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