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Motivation

In nuclear reactor safety and optimization there are key issues that rely on in-depth 
understanding of basic two-phase flow phenomena with heat and mass transfer.  Within the 
context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and 
flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very 
important to nuclear reactor systems.  The main difference between boiling and flashing is that 
bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the 
interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects 
in the surrounding liquid.  The flashing process tends to be far more explosive (and implosive), 
and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling.  
However, other problematic phenomena, such as crud deposition, appear to be intimately 
connecting with the boiling process.  In reality, these two processes share many details. 

Flashing occurs in flowing liquid systems when the pressure falls sufficiently low in some region 
of the flow, reaching a metastable state where the temperature is higher than the saturated one at 
the reduced pressure of this expanded state.  Then the superheated liquid releases its metastable 
energy (stored as internal energy) very quickly, even explosively, producing either pure vapor 
(bubble) or liquid-vapor mixture at high velocity, [2].  Expansion effects in nuclear reactor 
systems are often due to geometrical effects, as for example in nozzles where flashing appears at 
locations where the pressure is relatively low and the liquid superheated.  In the case of two-
phase blowdown (from the superheated liquid state), bubble collapse is usually not important, 
but the flashing of superheated liquid strongly influences critical flow rates.  In other cases, 
besides the performance limitations which this cavitation may cause in flow systems, subsequent 
bubble collapse may be responsible for damage to nearby solid surfaces. 

Many nuclear reactor applications rely on convective nucleate boiling to efficiently remove high 
heat fluxes from heated surfaces.  Nucleate boiling is a very effective heat transfer mechanism, 
however it is well known that there exists a critical value of the heat flux at which nucleate 
boiling transitions to film boiling (departure from nucleate boiling (DNB) and boiling crisis), a 
very poor heat transfer mechanism.  In most practical applications it is imperative to maintain the 
operating heat flux below such critical value, which is called the Critical Heat Flux (CHF).  In 
this case, the presence of a nearby solid surface is necessary for the rapid supply of the latent 
heat inherent in the phase change.  The presence of these surfaces is known to modify the flow 
patterns and other characteristics of these multiphase flows, and therefore must be interactively 
coupled with analyses of these phenomena.  And again, as mentioned above, DNB is believed to 
play an integral role in performance degradation as well as the crud deposition problem.  Despite 
several decades of intense study a consensus explanation of the physical mechanism causing 
CHF is yet to be found, even for the simple situation of pool boiling on a flat plate, let alone flow 
boiling in a rod-bundle geometry, which is the situation of interest in nuclear reactors.  Many 
theories have been formulated, all of which rely on simple CHF models based on an idealized 
geometry of the vapor/liquid interface.  For example, the classic hydrodynamic instability theory 
of CHF postulates an array of cylindrical vapor jets rising from the heater surface, the 
macrolayer dryout theory assumes a smooth liquid layer underneath a mushroom-shaped bubble, 
and the bubble interaction theories typically assume that nucleating bubbles are spherical.  
However, a very different picture of the physical situation at CHF has been revealed by recent 
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studies (Theofanus et al. 2002, Nishio and Tanaka 2004) using sophisticated imaging 
diagnostics.  Briefly, at high heat fluxes there exist numerous dry areas on the surface (with 
length scales of 2-3 mm in the x- and y-directions), dispersed within an interconnected network 
of liquid menisci (with length scales <50 m in the z-direction).  The geometry of the 
liquid/vapor interface is highly irregular and its nature is dynamic, i.e., the liquid menisci 
advance into and retreat from the dry areas as a function of time, due to various effects, e.g., 
liquid inertia (sloshing), capillary forces (surface tension) and recoil forces (evaporation).  Our 
inability to accurately predict heat transfer and heat transfer regime transitions (flow topologies)  
in the real nuclear reactor two-phase flow conditions and fuel bundle geometry results in 
increased safety margins and impedes the development of new fuel designs. 

With the advent of increased availabilitly of computational power and of a new generation of 
codes it is believed that significant progress can be made by using computational fluid dynamics 
(CFD) for nuclear fuel design thus leading to a drastic reduction in development costs.  As 
recently observed by the principal investigator at the European workshop on “Two-phase 
Convective Flow Boiling Flow Modelling”, our ideas for a broad spectrum of multiphase flow 
simulation improvements, as will be discussed subsequently, are being echoed by others.  In 
France, CEA, EDF, AREVA and IRSN have launched the NEPTUNE project, aimed at 
providing tools describing two-phase flow and heat transfer that are validated in the parameter 
range of the industrial applications, plus others covering the entire spectrum of space and time 
scales. In the U.S. no such unified effort exists, but it seems necessary to promote collaborative 
research on this subject at the widest scale. 

For example, the two-phase flow phenomena occurring inside a Boiling Water Reactor (BWR) 
fuel bundle includes coolant phase changes and multiple flow regimes which directly influence 
the coolant interaction with the fuel assembly and, ultimately, the reactor performance.  The 
resolution of traditional sub-channel analysis codes is too coarse for analyzing the detailed intra-
assembly flow patterns, such as flow around a spacer element and it is now generally recognized 
that their basic modeling approach and computational methods no longer represent state-of-the-
art in the field of numerical simulation.  New codes need to be developed for the fine-mesh, 
detailed simulation of BWR fuel assembly two-phase flow phenomena which take advantage of 
recent progress in Computational Fluid Dynamics (CFD) and the rapidly increasing 
computational power of massively parallel computers.  Similar arguments can be made for the 
need for high resolution modeling of localized subcooled boiling and bubble collapse in 
Pressurized Water Reactors (PWR) to predict performance degradation, especially with regard to 
the crud deposition problem. 

Because modern, high-resolution numerical methods/CFD codes divide the flow space into much 
finer computational cells it is imperative that we not:

Utilize traditional multiphase models which are mathematically ill-posed, 
Rely on traditional “flow regime maps” used in subchannel thermal-hydraulics 
codes to evaluate the interface topology. 

Traditional 6-equation, single pressure two-phase mixture models have a domain in which the 
square sound speed is negative which produces ill-posedness, non-hyperbolicity, wrong wave 
dynamics, and inappropriate transient solutions.  Such equations have been used in the past 
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because first order numerics were employed on course grids which produced large enough 
artificial viscosity to render a solution.  However, grid convergence with such a scheme is not 
possible – an untenable situation.  Using such equation systems negates the possibility of 
utilizing modern high-resolution methods (second order or higher), for example, finite volume 
methods based on Godunov methods with approximate Riemann solvers. 

Inter-phase interactions in multiphase fluids depend on both the area and the topology of the 
interface.  Traditional “flow-regime maps” are used in sub-channel thermal-hydraulics codes to 
evaluate the interface topology from cross-section-averaged flow parameters.  Because CFD 
codes divide the flow space into much finer computational cells, they need not rely on the 
traditional sub-channel flow regimes.  Instead, they must evaluate the local interface surface 
topology.  The advantage realized with this approach is that the ensemble of many computational 
cells, with relatively simple interface surface topologies, can provide complex global topologies 
that include all the traditional sub-channel flow regimes.  With these simplified flow regime 
topological maps, which will necessarily depend upon computational cell-size, only a few 
parameters need be used to determine the interface surface topology in each cell.  These 
parameters will be based on experimental data and direct numerical simulation (DNS) of highly 
resolved phenomena on a smaller scale. 

Direction

With the above motivation in mind, the appropriate research direction was established, aimed at 
developing well-designed physical/mathematical models along with high-resolution numerical 
solution methods for general multiphase flows.  Specifically, research for this project is directed 
towards a unified physical/mathematical and numerical model development of  compressible, all-
speed multiphase flows spanning the following areas: 

(1) General mixture level (true multiphase), 
(2) Resolved interface level (DNS-like), and 
(3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon 

specified mesh resolution. 
Conceptually, a well-designed 2-pressure, 2-velocity, seven-equation two-phase mixture model 
(as in 1)  could be systematically reduced analytically to produce a 1-pressure, 1-velocity, five-
equation model (as for 2) capable of a DNS-like (Direct Numerical Simlation) resolved interface 
solution.  If such a systematic reduction was accomplished numerically on a local spatial level, 
then a general algorithm (such as 1) could be made to reduce locally where appropriate to the 
interface resolved model (2), effectively giving an automatic multi-scale treatment (as 3). 

Research is needed to lay the foundations necessary to acquire the capability to simultaneously 
solve fluid dynamic interface problems as well as multiphase mixtures arising from boiling, 
flashing or cavitation of superheated liquid, and bubble collapse, etc. in light water reactor 
systems.  The effective nonlinear system of first order partial differential equations, along with 
their closure conditions, must be: 

hyperbolic and well-posed, 
in conservative form, if phase interactions and dissipative terms are neglected, and 
exhibit correct wave dynamics. 
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Such two-phase flow phenomena occurring inside light water nuclear reactors includes, 
especially with departure from nucleate boiling (DNB) and film boiling instability (boiling 
crisis), coolant phase changes and multiple flow regimes which directly influence the coolant 
interaction with the fuel elements/assemblies and, ultimately, the reactor performance.  Because 
of the inherent coupling, an understanding of these phemonena, along with subcooled boiling 
and bubble collapse, is also key to gaining an understanding of crud depostion in these systems.  
The goal of this research should be to provide models giving highly resolved details where 
necessary, simultaneously with large scale vessel/component simulation by providing a well-
posed, multi-scale model that will 

Resolve interfaces for larger bubbles (direct numerical simulation, DNS-like) with 
single velocity, single pressure treatment, and 
Average (or homogenize) the two-phase flow field for small bubbles with two 
velocities, two pressures. 

The principal investigator was recently asked to present an overview of this approach at the 2008 
SIAM Annual Meeting (Berry and Kadioglu 2008). 

The purpose of this three year LDRD project is, therefore, to lay the foundations prerequisite to 
developing the capability needed, as mentioned above, to simultaneously solve fluid dynamic 
interface problems as well as multiphase mixtures arising from boiling, cavitation, bubble 
collapse, etc. in light water reactor systems.  This project is a collaborative team effort that, in 
addition to the Multiphysics Methods and High Performance Computing Groups at INL, 
included Prof. Richard Saurel and his SMASH team at Polytechnique University in Marseille.  
Professor Saurel and his group has been working for along time in multiphase flows and 
interface modeling in extreme thermodynamic conditions such as those related to shocks, 
explosions, and detonation physics.  The key point here is that in these domains wave 
propagation is of fundamental importance and mathematical formulations as well as numerical 
methods must be perfectly clean.  To solve compressible multiphase flows, even for weak wave 
problems, well-posedness is essential and correct wave dynamics (correct eigenvectors, 
eigenvectors, dispersion relations, etc.) is imperative.  Our collaboration with Prof. Saurel is 
particularly ideal because of their complementary capabilities with researchers at INL.  It is 
anticipated that other partners will contribute support in subsequent years.  This informal report 
documents our research efforts for the nine-month authorized activity period of FY-2008 
(approximately mid-December through September of 2008). 

The complexity of multiphase, multi-component, and/or multi-material flow dictates that they 
need to be examined in an averaged sense.  Traditionally, one would begin with known (or at 
least postulated) microscopic flow relations that hold on the “small” scale.  These include 
continuum level conservation of mass, balance of species mass and momentum, conservation of 
energy, and a statement of the second law of thermodynamics often in the form of an entropy 
inequality (such as the Clausius-Duhem inequality).  The averaged or macroscopic conservation 
equations and entropy inequalities are then obtained from the microscopic equations through 
suitable averaging procedures.  At this stage a stronger form of the second law may also be 
postulated for the mixture of phases or materials.  To render the evolutionary material flow 
balance system unique, constitutive equations and phase or material interaction relations are 
introduced from experimental observation, or by postulation, through strict enforcement of the 
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constraints or restrictions resulting from the averaged entropy inequalities.  These averaged 
equations form the governing equation system for the dynamic evolution of these mixture flows. 

Most commonly, the averaging technique utilized is either volume or time averaging or a 
combination of the two.  The flow restrictions required for volume and time averaging to be 
valid can be severe, and violations of these restrictions are often found.  A more general, less 
restrictive (and far less commonly used) type of averaging known as ensemble averaging can 
also be used to produce the governing equation systems.  In fact volume and time averaging can 
be viewed as special cases of ensemble averaging.  In Chapter 2 an introduction to the ensemble 
averaging methodology is given to show how ensemble averaged balance equations and entropy 
inequality can be obtained from the microscopic balances.  It then motivates the general need for 
inclusion of a separate pressure for each phase along with an addition phasic volume fraction 
evolution equation of at least first or second order in time.  Finally, some seven-equation, two-
pressure, two-velocity hyperbolic, well-posed models for compressible two-phase flows are 
given and motivation is introduced for an alternative approach to solving the multiphase mixture 
flows, the discrete equation method, or DEM, to be subsequently discussed in more detail. 

Though our research is ultimately aimed at developing unified, well-designed 
physical/mathematical models along with high-resolution numerical solution methods for general 
multi-scale, multiphase flow, in the interim, for numerical efficiency reasons it is expedient to 
build quality, analytically reduced models of the general mixture equations that can be used to 
produce DNS-like, interface-resolving solutions for multiple compressible fluid phases.  Because 
of the inherent weaknesses of sharp interface methods for DNS-like simulations, most notably 
their inability to dynamically create interfaces and to solve interfaces separating pure media and 
mixtures, we focused on a diffuse interface method (DIM) which does not exhibit these 
weaknesses.  Chapter 3 details our works in this area.  The DIM considers interfaces as 
numerically diffused zones corresponding to artificial mixtures created by numerical diffusion.  
The determination of thermodynamic flow variables in these zones is achieved on the basis of 
multiphase flow theory.  The challenge is to derive physically, mathematically, and numerically 
consistent thermodynamic relations for the artificial mixture.  The same algorithm is 
implemented globally in both pure fluids and in mixture zones.  For this research, a single 
velocity, non-conservative hyperbolic model was developed, with two energy equations 
involving relaxation terms, which fulfills the equation of state and energy conservation on both 
sides of interfaces and guarantees correct transmission of pressure waves across them.  This 
formulation considerably simplifies numerical resolution within the context of diffuse interfaces.  
Codes were constructed to successfully demonstrate this methodology.  Our Ph.D. student’s 
work on this topic is of sufficient note that the world renowned scientist/mathematician S. 
Godunov (Russian Academy of Science), whose pioneering developments form the underpinning 
of modern CFD, will be traveling from Russia for his jury in December.  He will be joined also 
by R. Abgrall, a renowned multiphase flow method developer. 

Multiphase formulations have been developed to give the ability to solve problems involving 
both heterogeneous mixtures of materials and interfacial flows involving compressibility and 
phase transition.  In particular, for the direct numerical simulation (DNS) of interfacial flows, of 
prime importance for the nuclear industry for reactor safety and optimization, the aim is to 
compute the critical heat flux conditions that involve a competition between bubble growth, 
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surface tension, contact angle effects, heat and mass transfers at interfaces.  Contrary to the 
approach developed by other researchers, our approach embraced a general model that accounts 
for complete thermodynamics in both phases.  Chapter 4 details our efforts with the INL PCICE 
partially implicit method.  In this research we verified that the partially time-implicit, all-speed 
flow methods developed at INL (Appendix A of Chapter 4) for single-phase can be adapted to 
the finite volume framework (believed to be more suitable for the numerical approximation of 
hyperbolic models of diffuse interfaces with complex physics).  This extension was performed 
based on a mix of Godunov type and PCICE type concepts, with excellent results – both low 
speed and high speed flows were computed accurately.  Work was begun also on a more 
sophisticated hyperbolic model of DIM type (see previous paragraph), also with the combined 
Godunov-PCICE method.  A new variation of the PCICE predictor stage was implemented in 1-
D to correct for a lack of frame invariance in the original scheme.  The multiphase novelty 
compared to the single-phase version is the incorporation of a pressure relaxation substep.  Our 
other graduate student (Masters) constructed a poster of this work this summer which recently 
won in a competition at Ecole Normale Supérieure (ENS) in France. 

This LDRD also sponsored/directed research in a related area which will, in the future, become 
an integral part of the other research conducted and just described.  A rational derivation of the 
conservative part of the multiphase model is elaborated in Chapter 5 using Hamilton’s principle 
of stationary action followed by introduction of dissipation terms which are compatible with the 
entropy inequality to generalize the capillary models with the introduction of heat and mass 
transfer relaxation terms to describe phase transition. 

Typically, multiphase modeling begins with an averaged (or homogenized) system of partial 
differential equations (traditionally ill-posed) then discretizes this system to form a numerical 
scheme.  This presents problems for the numerical approximation of non-conservative terms at 
discontinuities (interfaces, shocks) as well as unwieldy treatment of fluxes with seven waves.  To 
solve interface problems without conservation errors and to avoid this questionable 
determination of average variables and the numerical approximation of the non-conservative 
terms in conjunction with 2 velocity mixture flows we employ a new homogenization method 
known as the Discrete Equations Method (DEM).  Contrary to conventional methods, the 
averaged equations for the mixture are not used, and this method directly obtains a (well-posed) 
discrete equation system from the single-phase system to produce a numerical scheme which 
accurately computes fluxes for arbitrary numbers of phases and solves non-conservative 
products.  The method effectively uses a sequence of single phase Riemann equation solves.  
Phase interactions are accounted for by Riemann solvers at each interface.  Flow topology can 
change with changing expressions for the fluxes.  Non-conservative terms are correctly 
approximated.  Some of the closure relations missing from the traditional approach are 
automatically obtained.  Lastly, we can sometimes identify the continuous system induced by the 
discrete equation.  This can be very useful from a theoretical standpoint.  In Chapter 6 we 
construct a DEM model for 1-D  two compressible phases in ducts of spatially variable cross-
section to test this approach.  For the first time, we demonstrated on a converging-diverging two-
phase nozzle that this well-posed 2 pressure, 2 velocity model could be integrated to a 
meaningful steady-state with both phases treated as compressible.  Chapter 7 gives a review of 
the general DEM method and investigates the modeling of mass transfer between compressible 

14



multiphase flows within the context of DEM through the development of a Reactive Riemann 
solver (RDEM) for phase change. 

With the exception of the PCICE method, all of the demonstrated methods above, and 
documented in this report, utilized explicit time integration.  To relieve time step restrictions due 
to stiffness and to achieve tighter coupling of equations, all methods need to evolve with implicit 
time integration.  Toward that objective, a significant effort has been expended toward 
development of a method of lines (MOL) approach to the integration of the equation system.  
With the MOL we discretize separately the space and time domains, effectively converting to a 
large system of ordinary differential equations (ODE) that can be integrated with previously 
developed, highly refined special purpose software.  A MOL framework was developed around 
several ODE integration packages.  Though not documented in this report, we are currently 
incorporating the 1-D variable area, two-phase DEM algorithm described above into this 
framework.  We will test and report on the fully implicit integration of this system at a later date.  
Ultimately, our plan is to be able to perform numerical integration of the stiff relaxation terms to 
produce a truly multi-scale method which can handle two-phase mixtures at the large, or under 
resolved scale, and DNS two-phase modeling on the small, or highly resolved, scale. 

Simple, efficient and robust algorithms are needed to solve the well-posed models. The various 
ingredients employed in methods to be developed should be general enough to consider future 
extensions to problems involving complex multiphysics.  Using the fractional step methods 
typically applied, and miss-applied, to calculate these types of initial value problems, that consist 
of different kinds of physics with multiple time-scales, some of which should be treated 
implicitly, requires some precautionary measures to avoid splitting and conditioning errors.  We 
believe that a fully implicit treatment may not only be advantageous, but indeed necessary.  An 
appropriate fully implicit approach will allow integration over the fast time scales for slow speed 
flows.  I anticipate that using a Jacobian-Free Newton-Krylov method with physics based 
preconditioning will allow tightly coupled solutions of the multiphysics phenomena inherent in 
nuclear reactor core applications. 
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Introduction

Many important “fluid” flows involve a combination of two or more materials having different 
properties.  The multiple phases or components often exhibit relative motion among the phases 
or material classes.  The microscopic motions of the individual constituents are complex and the 
solution to the micro-level evolutionary equations is difficult.  Characteristic of such flows of 
multi-component materials is an uncertainty in the exact locations of the particular constituents 
at any particular time.  For most practical purposes, it is not possible to exactly predict or 
measure the evolution of the details of such systems, nor is it even necessary or desirable.  
Instead, we are usually interested in more gross features of the motion, or the “average” behavior 
of the system.  Here we present descriptive equations that will predict the evolution of this 
averaged behavior.  Due to the complexities of interfaces and resultant discontinuities in fluid 
properties, as well as from physical scaling issues, it is essential to work with averaged quantities 
and parameters.  We begin by tightening up, or more rigorously defining, our concept of an 
average.  There are several types of averaging.  The published literature predominantly contains 
two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging
[Ishii 1975].  Occasionally combinations of the two are used.  However, we utilize a more 
general approach by adopting what is known as ensemble averaging.

When the physical system has a large amount of variability, a natural interpretation of the 
meaning of predictions is in terms of expected values and variances.  If there are many different 
events, or realizations, possible, then the expected value is naturally an “average” over all of 
these events, or the ensemble of realizations.  The ensemble then is the set of all experiments 
with the same boundary- and initial-conditions, with some properties that we would like to 
associate with the mean and distribution of the components and their velocities.  A realization of 
the flow is a possible motion that could have happened.  Implicit in this concept is the intuitive 
idea of a “more likely” and a “less likely” realization in the ensemble.  Therefore, as we shall see 
shortly each ensemble of realizations, corresponding to a given physical situation, has a 
probability measure on subsets of realizations.  The ensemble average is the generalization of the 
elementary idea of adding the values of the variable for each realization, and dividing by the 
number of observations.  The ensemble average then allows the interpretation of phenomena in 
terms of repeatability of multi-component flows. 

One of the nice features of ensemble averaging, as opposed to volume averaging, is that 
ensemble averaging does not require that a control volume contain a large quantity of a particular 
component in any given realization.  Consider the following example, taken directly from Drew 
and Lahey (1993), where the average of a particle-fluid mixture is of interest.  Gas turbines are 
eroded by particulate matter suspended in the gas stream passing through the inlet and impacting 
on the various parts of the machine, e.g. the turbine blades.  The trajectories of individual 
particles moving through the gas turbine are very complicated, depending on where and when 
the particles enter the inlet of the device.  Such predictions are, fortunately, seldom required.  A 
prediction, however, that is of interest to the designer is the average, or expected values, of the 
particle flux (or the concentration and velocities of particles) near parts in the device that are 
susceptible to erosion.   Since the local concentration of particles is proportional to the 
probability that particles will be at the various points in the device at various times, and the 
particle velocity field will be the mean velocity that the particles will have if they are at that 
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position in the device, the design engineer will be able to use this information to assess the places 
where erosion due to particle impact may occur.  Notice it may be that there are no times for 
which there will be many particles in some representative control volume (or representative 
elementary volume, REV).  So, volume averaging, which depends on the concept of having 
many representative particles in the averaging volume at any instant, will fail.  The 
appropriateness of ensemble averaging is obvious. Here the ensemble is the set of motions of a 
single particle through the device, given that it started at a random point at the inlet at a random 
time during the transient flow through the device.  Clearly the solution for the average 
concentration and average velocity gives little information about the behavior of a single particle 
in the device; however, the information is very appropriate for assessing the probability of 
damage to the device.  Similar examples could be given where time averaging will fail, but 
where ensemble averaging is again appropriate. 

The ensemble average is the more fundamentally based than either time or volume averaging.  In 
fact, both time and volume averaging can be viewed as approximations to the ensemble average, 
which can be justified, respectively, for steady or homogeneous flow [Drew and Passman 1999]. 

Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [Kashiwa & 
Rauenzahn 1994, Lhuillier 1996, Brackbill et.al. 1997, Drew & Passman 1999], for developing 
averaged conservation equations for multiple materials, any one of which may be at point x , at a 
given instant t.  With this procedure, the most likely state at a point (the expected value) will be 
determined simultaneously with which material is most likely to be found at that point.  Imagine 
running an experiment many times and collecting data about the state of the flow at each point x
and time t.  This information could include which material or phase is present, material density, 
velocity, pressure, temperature, concentration, etc.  From this information, one can compute the 
ensemble average.  The ensemble average of a generic property 0Q  of a fluid or material in a 
process is an average over the realizations 

0 0
1

1 RN

,r
rR

Q x,t Q x,t ,
N

 (1) 

where RN  is the number of times the process or experiment is repeated, and is a large number.  
Now imagine that many of the realizations are near duplicates, i.e. they are essentially the same 
state, with N  occurrences.  We can then rewrite the sum over the realizations as a sum over the 
number of states N
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N
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where
R

N x,t ,
f x ,t ,

N
 is the probability of the state  in the ensemble.  Note that in the 

limit of an infinite number of repetitions of the experiment, with a sum over all of the states, we 
have replaced the summation with an integral form in the definition of the ensemble average.  
More correctly, because 1 0

all

f x ,t , d .  , we refer to f x ,t ,  as the probability density. 

The state is the full thermodynamic description of the matter at a point x  and time t.  For 
example, 

0 0 0 0 0
1 1 1 2 2 2
0 0 0 0 0 0

1 2

,u ,h ,p , ,

,u ,h , ,u ,h , ,
X ,X ,

 (3) 

where:

1
0

kX x,t phase or material indicator function : if material k is present
otherwise

0

0

0

0

0

0

0

0

s

s

s

phase or material density
u phase or material velocity
h phase or material specific enthalpy
p pressure

deviatoric stress
species partial density

u species velocity
h species partial enthalpy ,

with
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0 0

0 0 0 0

0 0 0 0

s

species

s s

species

s s

species

u u

h h .

Other properties may also appear in the above thermodynamic state such as the phase or material 
temperature 0 , the phase or material specific internal energy 0e , and the phase or material 
specific entropy 0s .

In a typical multiphase flow, the ensemble averages of interest may include 

k kMaterial k volume fraction : X

0k kˆMaterial k bulk average density : X

0k
k

k

X
Material k intrinsic average density :

0
s s
k kˆSpecies s in material k bulk average density : X

0
s

ks
k

k

X
Species s in material k intrinsic average density :

0 0 0 0k k
k

k k k

X u X u
Material k velocity : u

ˆ

0 0 0 0k k
k

k k k

X E X E
Material k total energy : E

ˆ

0 0 0 0k k
k

k k k

X s X s
Material k entropy : s

ˆ

0Mean mixture stress : T T

0k
k

k

X T
Mean k material stress : T

0Pressure single pressure model : p p

0k
k

k

X p
Pressure in k material : p .

From a physical viewpoint, the bulk average density of a phase represents a summation of all of 
the density values that occurred for that phase, divided by the total number of experiments run.  
The bulk average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of mixture, or the observed material density.  On the other hand, the intrinsic average 
density physically corresponds to a summation of all of the density values that occurred for that 
phase, dividing by the number of times in which that phase occurred in the experiments.  The 
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intrinsic average density corresponds intuitively to the idea of the mass of phase k  per unit 
volume of phase k , or the true material density.  Some researchers prefer to work with bulk 
average densities [e.g. Kashiwa and Rauenzahn 1994] while others prefer working with intrinsic 
densities [e.g. Drew and Passman 1999].  This is mostly an issue of convenience, since one can 
easily be converted to the other.  Here we will use intrinsic averages.  Henceforth, when we say 
average, we shall mean intrinsic average unless indicated otherwise. 

For a reasonably broad range of conditions (with common substances), the exact balance 
equations, valid inside each material, are 

0 0 0u Material mass conservation  (4) 

0 0 0 0 0 0 0
s s s s su u u r Species mass conservation  (5) 

0 0 0 0u T g Material momentum balance  (6) 

0 0 0 0 0 0 0 0 0E T u q g u Material energy conservation  (7) 

0 0 0
0 0

0 0

,qs Material entropy inequality  (8) 

For these microscopic balance laws the material derivative has been used, which is defined as 

0
0 0 0

QQ u Q Material derivative .
t

 (9) 

Let us assume that the total variation of f  in the phase space x,t,  is [Kashiwa and 
Rauenzahn 1994]

0 0f f dfu f
t dt

 (10) 

where we are assuming that as we follow a material point through phase space its probability of 
occurrence remains constant.  Various moments of this equation can be formed, first by 
multiplying equation (10) by 0Q , and then averaging this result.  It can be shown [Kashiwa and 
Rauenzahn 1994, here corrected] that the resulting equation is 

0 0 0 0 0 0Q Q u Q Q u .
t

 (11) 

This result is called the moment evolution equation and the details of its derivation are given in 
the Appendix.  The averaged conservation equations are obtained by letting our generic 0Q  be 
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replaced by various “meaningful” functions and then by performing judicious manipulations on 
the equations to bring about physically useful forms of the equation. 

Mass Conservation

By letting 0 0kQ X  in equation (11) we get 

0
0 0 0 0 0 0

0 0 0 0

k
k k k k

k k

X
X u X X X u

t
X X u .

Introducing the pure material (microscopic) mass conservation equation and the definition of 
average results in 

0
k k

k k k ku X .
t

 (12) 

Since we are taking time- and spatial-derivatives of functions that are not smooth, this averaged 
mass conservation equation is to be interpreted in the sense of distributions, or generalized 
functions [Gelfand and Shilov 1964].   Let us examine the right hand side of this equation in 
more detail.  From the definition of a material derivative we know that 

0
k

k k
XX u X
t

in a generalized function sense.  On the other hand, letting intu  denote the velocity of an interface 
of phase or material k, the material derivative of kX  following the interface velocity vanishes 

0k
int k

X u X .
t

This result can be easily seen by first considering points not on the interface where either 0kX
or 1kX  and the partial derivatives both vanish, and thus the left side of this equation vanishes 
identically.  For points on the interface, which also move with the interface velocity, the function 

kX  is a jump that remains constant so their material derivatives following the interface vanish.  
Therefore we can write 
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0 0 0

0

0 0

k k
k k int k

int k

X XX u X u X
t t

u u X ,

 (13) 

and the averaged mass conservation equation becomes 

0 0
k k

k k k int k

mass
k

u u u X
t

.
 (14) 

We note that kX  has the sifting property of the Dirac delta function(al).  Thus the only 
contributors are the material interfaces. kX  is aligned with the surface unit normal vector 
pointing to phase k  [Drew 1983, Kataoka and Serizawa 1988] 

k k intX n x x ,t .

Thus the mass
k  represents the flux of mass to phase k  from the other phases via the interface, 

usually just referred to as phase change.  With no storage of mass at an interface the mass 
conservation further requires 

1

0
no.of phases

mass
k

k
.  (15) 

At this point, it is convenient to introduce for later use, the concept of interfacial area density of 
component k .  Defined as

k k kˆA n X ,

where kn̂  is the unit external normal to component k , it is the expected value of the ratio of the 
interfacial area (in a small volume) to the (small) volume, in the limit as that volume approaches 
zero.

25



Generic Conservation Equation

To more expeditiously derive the other conservation equations, let us first derive the averaged 
balance equation resulting from a generic, microscopic balance equation. Consider the generic, 
microscopic balance equation 

0 0
0 0 0 0 0 0u J g ,

t
 (16) 

or

0 0
0 0 0 0 0 0 0 0

d
u J g .

dt
 (17) 

Equation (16) and (17) hold at each point where sufficient smoothness occurs for the derivatives 
to be taken, as does its generic jump condition 

0 0 0 0int ˆu u J n m  (18) 

where 0  is the conserved quantity, 0J  is a molecular or diffusive flux, 0g  is a source density, 
and m is the interfacial source of 0 .  The symbol  here denotes the jump in the enclosed 
quantity across an interface.  Obviously, these quantities must be added to our state space, e.g. 

0 0 0 0

1 2

,u , ,J ,
.

X ,X ,
 (19) 

Let us also define averages of these quantities as 

0 0k
k

k k

X

0k
k

k

X J
J

0 0k
k

k k

X g
g .

By letting 0 0 0kQ X  in equation (11) we get 
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0 0 0 0
0 0 0 0 0 0

0 0
0 0 0 0 0

0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

k k
k k

k k k

k k

k k k

k k k k

k k int k k

X d X
X u X u

t dt

d
X X X u

dt

d
X X u

dt

X X J X g

X J J X X X g

X J J X u u X X g

0 0 0 0 0 0 0k k int kX J X g u u J X .

Introducing the fluctuating velocity 

0k ku u u

into this expression finally results in 

0 0 0 0 0 0

0 0 0 0 0 0

k k k
k k k k k k k k k k k int k

k k k k k k k int k k

Fluct mass int
k k k k k k k k k k

u J X u g u u J X
t

J X u g u u X J X

J J g ,
  (20) 

where 0 0Fluct k k
k

k

X u
J  is the flux of  due to fluctuations in the phase k  velocity, int

k  is 

the effective value of  that is transferred to phase k  from the other phases due to mass 
transfer, or phase change, and k  is a flux of  to phase k  not due to bulk mass transfer from 
the other phases.  This is our generic, averaged balance equation.  To obtain balance at the 
interface, our generic jump balance equation requires the constraint 

1

no.of phases
mass int
k k k

k
M ,  (21) 

where M m  is the expected net effect of all the interfacial -source terms. 
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Species Mass Conservation

The microscopic species mass balance equation can be written as 

0
0 0

s
s s su r ,

t
 (22) 

where 0
s  is the species partial density, 0

su  is the species bulk velocity, and sr  is the generation 
or source of the species due to chemical reactions.  The species mass balance equation is not 
usually written this way because we usually don’t know much about individual species 
velocities.  Instead, it is usually cast as 

0
0 0 0 0 0

s
s s s su u u r

t
 (23) 

because we have (to a certain extent) acquired empirical knowledge of the behavior of the first 
term on the right hand side of this equation, as we shall see shortly.  Let us now recast this 
equation as 

0 0 0
0 0 0 0 0 0 0

0 0 0 0

s s s s
s ru u u ,

t
 (24) 

which is in the form of our generic, averaged balance equation (20) with the assignments of 

0 0
0 0 0 0 0 0

0 0 0

s s s
s rJ u u g .

Thus the averaged species mass balance equation is 

0 0 0 0 0 0 0 0 0 0 0
s s s s s s s s

k k k k int kX X u X u u X r u u u u X .
t

Again introducing the fluctuating velocity and the definitions of averaged quantities, our final 
form of the averaged species mass balance equation is 

0 0 0

0

0 0

0 0 0

s
s s sk k

k k k k

s
k k

s
int k

s s
k

s
k

u X u u relative species flux
t

X u fluctuational diffusion

u u X phase change

u u X mass exchange

R chemical reactions

 (25) 
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where we have defined the average generation rate in phase k  due to chemical reactions as 
s

ks
k

k

X r
R  . 

Momentum Balance

The averaged momentum balance equation results from the generic, averaged balance equation 
(20) with the assignment of 

0 0 0 0 0 0u J T g g

to give 

Fluct mom int massk k k
k k k k k k k k k k k k k

u u u T T g u ,
t

 (26) 

where the fluctuating stress Fluct
kT  and the interfacial momentum source mom

k  are given by 

0
0

k k kFluct mom
k k k

k

X u u
T T X .

The averaged interfacial momentum balance constraint (jump condition) is 

1

no.of phases
mom int mass
k k k surface tension

k
u M ,  (27) 

where surface tensionM  is the interfacial momentum source, i.e. surface tension source. 

Energy Conservation

The assignment of 

0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

E e u u J T u q g g u

to the variables of the generic, averaged balance equation (20) gives the averaged energy 
conservation equation
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1 1
2 2

1
2

Fluct Fluct Fluct
k k k k k k k k k k k k k k k k k

Fluct
k k k k k k k k

energy mom int
k k k

mass int int int
k k k k

e u u e u e u u e T T u
t

q q g u

u

e u u ,

  (28) 

where

01
2

k k kFluct
k

k k

X u u
e fluctuation kinetic energy

0 00 1
2

k k k k k kk k kFluct
k

k k k

fluctution internal energy flux fluctuation shear working fluctuation kinetic energy flux

X T u X u u uX u e
q fluctuation energy flux

0 0k
k

k k

X
energy source

0
energy
k kq X interfacial heat source

0 0
mom int
k k ku T u X interfacial work .

The averaged interfacial energy balance constraint (jump condition) is 

1

1
2

no.of phases
energy mom int mass int int int
k k k k k k k

k
u e u u ,  (29) 

where  is the interfacial energy source. 

The kinetic energy associated with the velocity fluctuations, Fluct
ke  , is a type of “turbulent” 

kinetic energy.  Sometimes the sum Fluct
k ke e  is interpreted as the effective internal energy per 

unit mass of phase k .

It is sometimes useful to have an expression for the balance of fluctuation kinetic energy, Fluct
ke .

Its evolutionary description is derived by introducing the partition 0k ku u u  into the 
microscopic pure phase momentum balance, taking the dot product of this equation with k kX u ,
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then performing the statistical average over configurations (keeping in mind that 0kX u
vanishes) to obtain [details are left to the reader, see e.g. Nigmatulin 1990] 

0
0 0 0

:

2

Fluct
Fluct Fluctk

k k k k k k k k k

k k k k
k k

e u e T u
t

X u u u
X u T g

 (30) 

This equation bares some similarity to the equation of evolution of the fluctuational kinetic 
energy in a single-phase turbulent fluid [Wilcox 1998].  The first term on the right side describes 
the influence of the gradient of ku  on the development of Fluct

ke , the second term is expected to 
diffuse Fluct

ke , and the last term represents the power developed by the stresses and external 
forces [Lhuillier 1996]. 

For most multiphase flows, including some very (conceptually) simple flows such as gas flow 
through a packed bed or through a pebble-bed nuclear reactor, the nature of Fluct

ke  is somewhat 
different than that of a turbulent single-phase flow.  Contrary to a one-phase fluid in which the 
fluctuations disappear for slow flows, these fluctuations for a multiphase flow exist however 
slow the flow.  For this reason, Fluct

ke that is produced by hydrodynamic interactions between the 
phases is sometimes called pseudo-turbulence [Lhuillier 1996]. 

Entropy Inequality

The local form of the entropy inequality (8), sometimes called the “Second Law of 
Thermodynamics,” is used to place restrictions on the constitutive relations used to give unique 
phase or material behaviors.  With the assignment of 

0 0
0 0 0 0

0 0

qs J g

to the variables of the generic, averaged balance relationship (20) the averaged entropy 
inequality results, 

Fluct entropy mass intk k k
k k k k k k k k k k k k k

s s u S s
t

 (30) 

where
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0

0
k

k
k

qX
entropy flux

0k k kFluct
k

k

X s u
fluctuation entropy flux

0 0

0
k

k
k k

X
S entropy source

0

0

.entropy
k k

q X interfacial entropy source

This entropy inequality corresponds to what Drew and Passman (1999) call the microscopic 
entropy inequality.  A macroscopic entropy inequality can be obtained by summing inequalities 
(30) over all of the phases or materials present in the mixture [Truesdell 1984 and the other 
authors contained therein].  The macroscopic entropy inequality is useful for placing restrictions 
on the phasic or material interaction constitutive relations. The averaged interfacial entropy 
inequality (jump condition) is 

.

1
0 .

no of phases
entropy mass int
k k k

k
s  (31) 

Volume Fraction Propagation Equations

There remains one very important relationship to derive, a dynamic relationship that effectively 
reflects boundary conditions at the microscale.  It accounts for the fact that the constituent 
volume fractions can change without affecting the gross motion and, in a sense, models the 
microstructural force systems operating in the multiphase mixture.  Beginning with the previous 
Lagrangian interface material derivative relationship for kX ,

0k
int k

X u X
t

,

this equation is averaged to give 
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int int

int

int 0 .

k k
k k

k k

k
k

X Xu X u X
t t

X u X
t

u X
t

Introducing the fluctuating interface velocity 

I int Iu u u ,

where Iu  is the average interface velocity, into this equation yields 

int

0

k k
k I I k

k
I k I k

k
I k I k

k
I k I k

volk
I k k

u X u u X
t t

u X u X
t

u X u X
t

u u X
t

u
t

where vol
k  (for which a constituitive description is needed) is the driving function for the change 

of volume fraction k .  In summary, this equation is written as 

volk
I k ku

t
. (32) 

Because of the central role that this volume fraction propagation equation plays in modern, well-
posed two-phase flow models with correct wave dynamics, we dedicate the next section to its 
examination. 

Seven Equation, Two-Pressure, Two-Velocity Hyperbolic, Well-Posed Models 
for Two-Phase Flows

Prior to 1981 there had been attempts to remove the ill-posed nature from the full, two-phase 
flow equations, e.g. [Ransom and Scofield, 1976], [Stuhmiller, 1977], [Rousseau and Ferch, 
1979], [Banerjee and Chan, 1980], [Hancox et.al., 1980], as well as others.  All of these 
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researchers were trying to gain closure of this equation system (the classical 6-equations system) 
through algebraic means – and were meeting some limited success.  But they all seemed to be 
missing some key ingredient. 

In 1981 [Nguyen, 1981] presented a paper identifying the missing ingredient in compressible 
two-phase flow.  In this paper Nguyen utilized the entropy production for each phase to perform 
an Onsager-type analysis wherein a bilinear form in the thermodynamic fluxes and their 
conjugate forces was obtained.  From this he arrived at the so-called phenomenological laws, one 
of which, in first approximation is: 

k k
k i k kp p L w

t z
 (33) 

where the notation is standard, with kw  denoting the z -component of phase k  velocity and kL
denoting a phenomenological coefficient, possibly to be “obtained from the flow structure.”  To 
complete the set of closure equations, Nguyen proposed to define the interface pressure ip  as 

2

1 2
1

1 ,
2i k k k k

k
p p w w  (34) 

where k  was to be defined consistently with the physical situation of interest.  Nguyen 
furthermore deemed it reasonable to assume that the phenomenological coefficients were equal 
or

1 2L L L  . 

With these assumptions Nguyen then obtained a 7-equation model with real characteristics which 
was hyperbolic and which could be formulated as a well-posed initial-value problem. 

However, what Nguyen did not do (at least in that paper) was the following useful manipulation.  
Adding his equations (49) and (50) to eliminate ip  gives 

1 2 1 2

2 2
w w p p

t z L
 . 

While we are enhancing the equations of Nguyen’s paper, let us also do the following:  Let us 
assume that the phenomenological coefficients are not equal.  It is easily obtained that 

1 1 2 2 1 2

1 2 1 2

L w L w p p
t L L z L L

 . (35)

Now, if 2 1L L  and 1w  is of the same order as 2w  then the above relationship is approximately 
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1 2
2

2

p pw
t z L

 . 

These relationships are appealing because now the volume fraction change is governed by a 
dynamical relationship in which the pressure difference between the two phases drove the phase 
change.  If the phases had the same pressure there would be no change in volume fraction.  The 
denominators on the right hand side, i.e. combinations of the phenomenological coefficients for 
the two phases would determine how “fast” pressure equilibrium was attained.  The phasic 
advection equation, or volume fraction propagation equation, also exhibited an advection 
velocity that was a weighted combination of phasic velocities (weighted with the 
phenomenological coefficients). 

In March 1983, Passman and Nunziato at SNL and Walsh at U. of Florida published a report 
[Passman, Nunziato, and Walsh 1983], later to become Appendix 5C of Truesdell’s classical 
work on rational thermodynamics [Truesdell, 1984].  In their elegant work, in addition to the 
traditional axioms of balance, an additional balance axiom was postulated which describes 
changes in volume fraction.  They utilized the idea of workless constraints to describe a method 
of accounting, in the entropy inequality for the mixture, for the constraint requiring that the 
mixture be saturated.  This resulted in a volume fraction propagation equation, which they called 
balance of equilibrated force, which accounts for the fact that the constituent volume fractions 
can change without affecting the gross motion.  As they point out, this equation, in a sense, 
models the microstructural force systems operative in multiphase mixtures. 

{Note: This approach has not seen much acceptance in the two-phase fluid flow community, 
probably because the equation derivation was postulational [Truesdell, 1984] (as opposed to 
using some type of averaging) and because of the lack of physical familiarity with the 
terminology.  However, some years later, Dobran at New York University published a 
monograph [Dobran, 1991] in which rigorous volume averaging is utilized, along with a basic 
material deformation postulate, to derive additional transport equations for multiphase mixtures 
that are very similar.} 

In December 1983 Baer and Nunziato of SNL released a two-phase mixture theory describing 
the deflagration-to-detonation transition (DDT) in reactive granular materials [Baer and Nuziato, 
1983].  This research was published later in the open literature [Baer and Nunziato, 1986].  
However, perhaps because of the application context, in addition to its postulational derivation, 
this method received little attention from the two-phase fluid dynamics community.  In this work 
the entropy inequality for the two-phase mixture was utilized to directly establish a constitutive 
volume fraction propagation equation, which (in the context of their application) they called the 
compaction equation (with phase change) 

s gs s s
s s g s

c s

cv p p
t z

 (36) 
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where s  is a configuration pressure which resists changes in the packing of the bed or 
compaction and the coefficient c  is a compaction viscosity (again in their application context) 
which controls the rate at which pressure equilibrium is reached.  Though derived in a different 
manner, this equation can also be viewed as a simpler, special case of Passman et.al.’s balance of 
equilibrated force equation, mentioned above.  This 7-equation compressible two-phase model of 
Baer and Nunziato was hyperbolic and well-posed.  They also constructed apparently successful 
numerical solution algorithms for this equation set.  While the motivating applications for this 
model are far different from those of the two-phase fluid dynamics community, the foundational 
principles are very similar.  Notice the similarities between their volume fraction propagation 
equation and that of Nguyen over two years earlier. 

Baer and Nunziato’s volume fraction evolutionary equation can be more generally stated as 

,

a ja a a
a a a j j

j j a a

cv p p
t z

 (37) 

where a  are configuration pressures and exchange coefficients ,j a  reflect interactions between 
the phases.  These rate equations, which provide closure of the mixture model, are force balances 
involving the configurational pressures, phase pressures, and a viscous-like stress associated with 
rate-dependent volume fraction changes.  The relaxation coefficients, ,j a  , have the units of 
viscosity.  Moreover, like Nguyen’s (but unlike Passman et.al.’s), these equations are 
constitutive equations, not field equations.  As pointed out in [Baer, 1997], they reflect boundary 
conditions at the microscale.  [Saurel et.al. 1994] recast the volume fraction evolution equation 
as a microscopic mass density evolution equation {see notes}.  [Kashiwa and Gaffney, 2003] 
derive a mass density evolution equation having a somewhat different character. 

To more easily see the need for a dynamic volume fraction evolution equation let us consider a 
cell mixture-intuitive physics model for two-phase flow.  Consider a fixed volume V  with two 
immiscible constituents present (e.g. the two constituents may have been advected into a fixed 
cell volume).  They have masses 1m  and 2m  occupying volumes 1V  and 2V  , respectively, such 
that

1 2V V V  . 

Each constituent phase has material density 1  and 2  , so 

1 2

1 2

1 2

V V V
m m

or
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1 2

1 2

1 2

1 2

1 V V
V V

m m
V V

where 1
1

V
V

 and 2
2

V
V

 are volume fractions of each phase.  For each constituent 

1 2
1 2

1 2

m mand
V V

 (38) 

and

1 1 1 1

1
1 1

1

,

,

p f I

mf I
V

 (39) 

2 2 2 2

2
2 2

2

,

,

p f I

mf I
V

 . (40)

Now if 1V  and 2V  are adjusted (subject to the 1 2V V V  constraint) until the phase pressures are 
equal to 

1 2
1 1 2 2

1 2

, ,m mp f I f I
V V

 (41) 

with the equilibrium (or equilibration) pressure, p  .  At this equilibrium pressure the 
corresponding phase volumes yield the equilibrium volume fractions 

1
1
e V

V
2

2
e V

V
 . 

This can be accomplished more generally in a dynamical fashion as follows.  First, note that 
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1 1 1 1

1
1 1

1

,

,

p f I

mf I
V

2 2 2 2

2
2 2

2

,

,

p f I

mf I
V

and also that 

1 2d d
dt dt

2 2
1 2

2 2

d d
dt dt

.

Intuitively, we now consider the dynamical equation 

1 1 2d p p
dt

 . (42)

If 1  is compressed too much 1 2p p  then 1  will increase with time (relax) letting 1p
reduce while 2  decreases letting 2p  increase.  This process ends when 1 2p p p  and thus 

1 0d
dt

 .  The relaxation rate,  , controls the rate at which the phases (pressures) equilibrate. 

More generally yet, we could even write 

2
1 1

2

d dmicroinertia compaction viscosity microstructural forces
dt dt

F
 (43) 

The microstructural force F  is a relaxation term that is intended to model the driving force or 
“resistance” exhibited by the mixture to changes in its configuration.  For example, if we were 
compacting a gas-solid particle bed, 

0

0
s g s g s s s

s g g s s

p p for p
F

p for p
 (44) 
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in accordance with the view of compaction as an irreversible process.  s  is the “configuration 
pressure” of the bed. 

If we set the “microinertial” and the “configuration pressure” to zero we are left with 

1
1 2 1 2

d p p
dt

or
1 2 1 21 p pd

dt
 (45) 

Note the multiplicative coefficient 1 2  in the driving force F  .  This term is included for a 

couple of reasons:  (1) 1 2  is roughly proportional to the interfacial area per unit volume, iA
V

 . 

and (2) better behavior results in the limit of single phase occurring due to disappearance of the 
other phase, i.e. 1 20 1  or 2 10 1  . 

In 1998, Saurel and Abgrall [Saurel and Abgrall, 1999], who had used Baer and Nunziato’s 
model with some slight reformulation for similar applications, and who had begun to generalize 
it and apply it to other multiphase mixtures of interest in a fluid dynamics context, published 
their 7-equation compressible multifluid/multiphase flow model.  Neglecting microinertia, 
surface tension, and covariance terms (and assuming no mass transfer between phases) their 
variant is state as,

0k
k ku

t
 (46) 

k k
k k k k I k m k

u u u p p u u
t

 (47) 

k k
k k k k k I I k m k I k m I

E E u p u p u u u u p p p
t

 (48) 

k
I k k mu p p

t
 (49) 

where k , k k k , ku , k k kp p , and kE  represent the fluid phase k  “volume fraction”, 
mass density, velocity, pressure, and total energy, respectively.  The non-equilibrium two-phase 
flow model derived in [Saurel et. al., 2003], a variant of the original [Baer and Nunziato, 1986] 
model, is preferred because of its symmetric formulation.  In these models each phase is assumed 
compressible with its own thermodynamics. The system involves 7 partial differential equations 
(volume fraction and mass, momentum, and energy balance for each phase) and is hyperbolic.
These equations, which represent the balance of mass, momentum, and total energy, and volume 
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fraction evolution, respectively, with specific interphase transfer terms placed on the right-hand 
sides.  In these equations, (for a two-phase flow) 1,2k  and correspond, respectively, with 

2,1m ; Ip  and Iu  represent the interfacial pressure and velocity.  In the Baer-Nunziato model, 
these variables are chosen as 2Ip p  and 1Iu u , while the Saurel model utilized the following 
interfacial values: 

1,2

1,2
1,2

k k k
k

I I k k
kk k

k

u
u and p p  (50) 

This model contains relaxation parameters  and  that determine the rates at which the 
velocities and pressures of the two phases reach equilibrium.  These equations are closed by two 
equations of state, the saturation constraint for the volume fractions and the stiffened gas 
equation of state (which holds approximately for a broad range of gases and liquids) 

1 2 1 (51) 

1k k k k k k kp e q  (52) 

where ke is the internal energy and k , kq , and k are constants, specific for each phase k .
Their model is unconditionally hyperbolic and well-posed, and is to be able to solve physical 
situations for which other models fail.  In the original Baer and Nunziato model, which has 
become more popular in the literature and even has become known as the BN-model, iu  is taken 
equal to the velocity of the less compressible phase and ip  , the interphase pressure, is taken 
equal to the pressure of the most compressible phase.  In Saurel and Abgrall, ip  is taken equal to 
the mixture pressure and iu  to the velocity of the center of mass.  In [Lallemand and Saurel, 
2000] new and enhanced pressure relaxation procedures are presented for this method. 

New variants of this theory have appeared in the literature such as the novel Discrete Equation 
Method (DEM) [Abgrall and Saurel, 2003].  In the traditional approach which has been 
presented above, notice that we first averaged the microscopic level, single phase, partial 
differential equations (PDE’s) over an assumed phase topology distribution   to obtain 
macroscopic level multiphase equations.  Then appropriate simplifying assumptions were made 
for the macroscopic level PDE’s.  Finally, though not discussed yet, the macroscopic multiphase 
flow equations are numerically discretized and the resulting equations solved, using finite 
difference, finite volume, or finite element methods, to obtain “standard” numerical solutions.  
With the DEM approach one first assumes a generic phase distribution topology.  Then a 
discretized solution is developed within the computational cell using, for example, Riemann and 
approximate Riemann relations.  Finally, this partial solution is averaged over the cell volume 
and time to obtain a meaningful solution.  The DEM method carries a pressure and velocity for 
each phase, and because it effective only solves Euler equations locally, the method hyperbolic 
and well-posed, and it gives correct wave dynamic solutions.  But it offers an additional bonus; 
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for example, [Chinnayya, Daniel, and Saurel, 2004] use this new homogenization method (DEM) 
to obtain, not only the seven equation model above, but also explicit closure formulas for ip  and 

iu  that are symmetric, compatible with the second law of thermodynamics, and responsible for 
the fulfillment of interface conditions when dealing with contact/interface problems; they also 
provide a general explicit formula for  .  Furthermore, in the acoustic, continuous limit this 
method leads to the equation system (for simplicity with no mass transfer) 

1
1 1 2( )Iu p p

t
1

1
( ) ( ) 0u

t
1

1 1 2 1
( ) ( ) ( )I

u u u pI p u u
t
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where , , u , p, E  ( 1
2

E e u u ), and e  represent the volume fraction, density, velocity, 

pressure, total energy, and internal energy, respectively. 

The interfacial variables have been determined in [Saurel et. al., 2003] to be 
1 1 2 2 1 2 1

1 2 1 1 2
I

Z u Z u p pu
Z Z Z Z

2 1 1 2 1 2 1
2 1

1 2 1 2 1

( )I
Z p Z p Z Zp u u

Z Z Z Z
  .    

These variables correspond to the interface velocity of, and pressure exerted on, the surface of a 
two phase control volume, i.e. at locations where volume fraction gradients are present.  The 
average interfacial velocity and pressure acting inside the two-phase control volume are given by 

1 1 2 2

1 2
I

Z u Z uu
Z Z

21

2112

ZZ
pZpZpI .

Mechanical non-equilibrium is represented with a relaxation process whose rate is controlled by 
the following parameters: 

212
1 ZZ  (velocity relaxation rate) 
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21 ZZ
AI     (pressure relaxation rate), 

where IA  represents the specific interfacial area and kZ  the acoustic impedance of phase k , i.e. 

kkk cZ .

In Chapter 6 the DEM method will be applied to investigate one-dimensional, variable cross-
section, two-phase flows which are both fully compressible.  In Chapter 7 advanced DEM 
methods, which utilize the Reactive Riemann Problem to derive the cell-level solutions, will be 
explored.  I also gives a good review of the DEM method in general. 

Reduced or Relaxed Equation Forms

The single velocity pressure equilibrium model corresponds to the one of [Kapila et al., 2001]. It 
has been obtained as the asymptotic limit of the [Baer and Nunziato, 1986) model in the limit of 
both stiff velocity and pressure relaxation. In involves 5 partial differential equations, one of 
them being non-conservative. Its resulting speed of sound corresponds to that of [Wood, 1930] 
which exhibits a non-monotonic variation with volume fraction. These two difficulties (non-
conservativity and non-monotonicity) present serious computational challenges. To circumvent 
them, a pressure non-equilibrium 6-equation model is constructed (first reduced model in Kapila 
et al., 2001), also non-conservative, but easier to solve with a relaxation method. This model is 
presented in Chapter 3. 

The [Kapila et al., 2001] model is the zero-order approximation of the Baer and Nunziato model 
with stiff mechanical relaxation. In one dimension (with no mass transfer), with consideration of 
only two fluids, the model is given as: 
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where , , u, p, E  ( ²u
2
1eE ), and e  represent respectively the volume fraction, the 

mixture density, the velocity, the mixture pressure, the mixture total energy and the mixture 
internal energy.  
The mixture internal energy is defined as 

)p,(eY),p,(eYe 222111         (II.2) 
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and the mass fraction is given by: k
k

)(
Y .

The mixture density is defined by 21 )()( .
Each fluid is governed by its own convex equation of state (EOS), 

)p,(ee kkk ,
which allows the determination of the phases’ sound speed, 

)p,(cc kkk .
The mixture pressure p is determined by solving equation (II.2). In the particular case of fluids 
governed by the stiffened gas EOS, 

kkkkkk pe1p , (II.3)
the resulting mixture EOS reads, 
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It is straightforward to obtain the entropy equations: 

0
dt

dsk , 2,1k .

Consequently, this model needs specific relations for its closure in the presence of shocks. In the 
limit of weak shocks, appropriate shock relations have been determined in [Saurel et al., 2007]: 

0
kk YY ,

m)u()u( 00 ,
0)vv²(mpp 00 ,          (II.5) 
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*
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kk ,

where denotes the shock speed and the upperscript ‘0’ represents the unshocked state. 
These relations have been intensively validated against a large experimental data base for weak 
and strong shocks in the same reference.  

Also of interest, [Guillard and Murrone, 2005] use asymptotic analysis, in the limit of zero 
relaxation time, to reduce the 7-equation two-phase equation model (which contains relaxation 
terms that drive the system toward pressure and velocity equilibrium) to a five equation reduced 
hyperbolic system.  In Chapter 3 we present a new equation system, relaxed (reduced) from the 
seven equation model, and numerical method to efficiently perform DNS-like simulations with 
the diffuse interface approach (DIM). 

This whole approach is gaining momentum.  It is important to get the correct wave behavior 
during transients and mathematical formulations as well as numerical methods must be clean.  
The methods discussed above provide this behavior and insure well-posedness, for both averaged 
multiphase flow models and DNS-like models. 
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Appendix:  Moment Evolution Equation

It is critical that special attention be given to functional dependencies in deriving the moment 
evolution equation.  Let us begin first by defining the ensemble average of some property 0Q  as 

0 0 0 0 0Q x,t Q f x,t , d ,  (A.1) 

where, for example, 0 0 0 0 1 2,u ,e ,X ,X , .  Note that, while 0Q  depends explicitly upon the 

state 0 , its average value 0Q  depends upon position x  and time t , which it acquired from the 

probability function 0f x ,t , .  In fact, 0Q  loses its explicit dependence upon 0  by its very 
definition as an integral over all possible states 0 .

The variation of the probability is 

0
0

f f fdf dt dx d ,
t x

so the time variation of the probability can be written 

0 0
0

df f fu f .
dt t

 (A.2) 

If we now multiply this equation by 0 0Q  and integrate over 0 -space we get 

0 0 0 0 0 0 0 0 0 0
0

df f fQ d Q d Q u f d Q d .
dt t

 (A.3) 

Let us now further examine each term of this expression.  Since 0Q  does not depend explicitly 
on time, t ,
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Similarly, since 0Q  is independent of x  , we have 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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We also know that the 0  are independent of 0  , so 

0

0 0 0 0 0 0
0 0

0 0
0 0 0

0 0

0
0 0 0 0limit of 

0

0
0

0

0 0

0
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f fQ d Q d

Q f Qd f d

QQ f f d

Q

Q d
dt

dQ Q x,t .
dt

As long as the 0Q  are physically conserved quantities we also have 

0 0 0dfQ d .
dt

Putting all these expressions back into the integral equation above gives the moment evolution 
equation (11) 
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Notice:  By comparison with Equation (1.1) of [Kashiwa and Rauenzahn 
1994],

0 0
0 0 0 0 0

0

Q Q DfQ u Q d ,
t Dt

theirs should read 

0 0
0 0 0 0 0 0 0

0

0 0 0 0 0

Q Q DfQ u Q u Q d
t Dt

DfQ Q u Q d
Dt

to be correct.
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Chapter 3 
Simple and Efficient Relaxation Methods for 

Interfaces Separating Compressible Fluids and 
Cavitating Flows

[A preprint of an article accepted (November 2008) for publication in Journal of 
Computational Physics under slightly different title: “Simple and efficient relaxation 
methods for interfaces separating compressible fluids, cavitating flows and shocks in 
multiphase mixtures,” Richard Saurel, Fabien Petitpas, and Ray A. Berry.] 
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Simple and efficient relaxation methods for interfaces 
separating compressible fluids and cavitating flows

Richard Saurel 1,2, Fabien Petitpas 1 and Ray A. Berry 3

1 Polytech'Marseille, Aix-Marseille University and SMASH Project UMR CNRS 6595 – 
IUSTI-INRIA , 5 rue E. Fermi, 13453 Marseille Cedex 13, France 

2 University Institute of France, same address 
3 Multiphysics Methods Group, Advanced Nuclear Energy Systems Department, 

 Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID  83415-3885 

Abstract
Numerical approximation of the five-equation two-phase flow of Kapila 

et al. (2001) is examined. This model has shown excellent capabilities for the 
numerical resolution of interfaces separating compressible fluids as well as 
wave propagation in compressible mixtures (Murrone and Guillard, 2005, 
Abgrall and Perrier, 2006, Petitpas et al., 2007). However, its numerical 
approximation poses some serious difficulties. Among them, the non-
monotonic behavior of the sound speed causes multiple sonic transitions in 
the numerical diffusion zones at interfaces. Moreover, volume fraction 
variation across acoustic waves results in difficulties for the Riemann 
problem resolution, and in particular for the derivation of approximate 
solvers. Volume fraction positivity in the presence of shocks or strong 
expansion waves is another issue resulting in lack of robustness. To 
circumvent these difficulties, the pressure equilibrium assumption is relaxed 
and a pressure non-equilibrium model is developed. It results in a single 
velocity, non-conservative hyperbolic model with two energy equations 
involving relaxation terms. It fulfills the equation of state and energy 
conservation on both sides of interfaces and guarantees correct transmission 
of shocks across them. This formulation considerably simplifies numerical 
resolution. Following a strategy developed previously for another flow model 
(Saurel and Abgrall, 1999), the hyperbolic part is first solved without 
relaxation terms with a simple, fast and robust algorithm, valid for 
unstructured meshes. Second, stiff relaxation terms are solved with a Newton 
method that also guarantees positivity and robustness. The algorithm and 
model are compared to exact solutions of the Euler equations as well as 
solutions of the five-equation model under extreme flow conditions, for 
interface computation and cavitating flows involving dynamics appearance of 
interfaces. In order to deal with correct dynamic of shock waves propagating 
through multiphase mixtures, the artificial heat exchange method of Petitpas 
et al. (2007) is adapted to the present formulation. 

Key words: hyperbolic systems, multifluid, multiphase, real gases, 
cavitation, multiphysics, Godunov
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I. Introduction 

Compressible multi-material flows and multiphase mixtures arise in many natural and industrial 
situations including bubble dynamics, shock wave interaction with material discontinuities, 
detonation of high energetic materials, hypervelocity impacts, cavitating flows, combustion 
systems to name only a few. The motivation of the present work is the accurate and 
computationally efficient resolution of interface problems in extreme flow conditions (high 
pressure ratios  107, high density ratios  103), as well as the computation of dynamic 
appearance of interfaces, that occur in cavitating flows and spallation phenomena. These 
interfaces are often separating pure media but also mixtures of materials in which wave 
dynamics is also important. Such situations appear frequently in astrophysics, physics of 
explosives, nuclear physics, powder engineering and many other applications. The aim of the 
present paper is to develop a general formulation and algorithm to solve interface problems 
separating compressible media or mixtures in extreme situations. 

Godunov-type schemes and variants have now reached a level of maturity to solve single phase 
flows in the presence of discontinuities. However, the presence of large discontinuities of 
thermodynamic variables and equations of state at material interfaces result in numerical 
instabilities, oscillations and computational failure (Karni, 1994, Abgrall, 1996).  To circumvent 
these difficulties, two classes of methods have been developed: 

Methods that consider the interface as a sharp discontinuity (Sharp Interface Methods 
- SIM). 
Methods that consider the interface as a diffuse zone, like contact discontinuities in 
gas dynamics (Diffuse Interface Methods - DIM). 

The Lagrangian class of SIM is the most natural (see for example Hirt et al., 1974, Farhat and 
Roux, 1991). In this context, the computational mesh moves and distorts with the material 
interface. However, when dealing with fluid flows, deformations are unbounded and resulting 
mesh distortions can make the Lagrangian approach unpractical (Scheffer and Zukas, 2000). 
Eulerian methods use a fixed mesh with an additional equation for tracking or reconstructing the 
material interface. In the volume of fluid (VOF) approach (Hirt and Nichols, 1981), each 
computational cell is assumed to possibly contain a mixture of both fluids and the volume 
occupied by each fluid is represented by the volume fraction, transported with the flow. This 
method is widely used for incompressible flows as there is no special thermodynamics to 
compute in mixture cells (Gueyffier et al., 1999). For compressible flows, extra energy equations 
are used as well as pressure relaxation procedures (Benson, 1992, Miller and Puckett, 1996). 
These methods seem efficient as a result of subtle management at the discrete level of the various 
equations. The literature doesn’t provide a clear link of this discrete management to a given 
system of continuous partial differential equations. In the present paper, an attempt to clarify, 
improve and generalize these methods will be developed.   

Another class of popular Eulerian methods is based on the level-set equation (Dervieux and 
Thomasset, 1980, Mulder et al., 1992, Osher and Fedkiw, 2001, Sethian, 2001) to locate the 
interface. Again, for compressible flows, special management of the interface is needed to 
guarantee interface conditions. Relevant work in this direction was done by Fedkiw et al. (1999) 
with the Ghost Fluid Method, Abgrall and Karni (2001) with a simplified version of this method 
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and Khoo et al. (2005). This method is attractive for its apparent simplicity and versatility versus 
various problems of physics. However, its use in arbitrary conditions, with large pressure and 
density ratios doesn’t seem obvious. Moreover, it is non-conservative regarding mixture 
variables (momentum and energy). The last class of SIM corresponds to Front Tracking 
methods, where the interface is explicitly tracked over a fixed Eulerian mesh. Considerable 
efforts have been done to develop computational codes employing this approach (Glimm et al., 
1998, LeVeque and Shyue, 1996).  It is worth mentioning that none of these methods is able to 
dynamically create interfaces, and to solve interfaces separating pure media and mixtures.  

The second type of methods (DIM) considers interfaces as numerically diffused zones, like 
contact discontinuities in gas dynamics. Diffuse interfaces correspond to artificial mixtures 
created by numerical diffusion. A pioneering work in this direction was performed by Abgrall 
(1996). Determination of thermodynamic flow variables in these zones is achieved on the basis 
of multiphase flow theory (Saurel and Abgrall, 1999, Abgrall and Saurel, 2003, Saurel et al., 
2003, Murrone and Guillard, 2005, Abgrall and Perrier, 2006, Saurel et al., 2007a, Petitpas et al., 
2007). The challenge is to derive physically, mathematically, and numerically consistent 
thermodynamic laws for the artificial mixture. The key issue is to fulfill interface conditions 
within this artificial mixture. This second category possesses several advantages: 

The same algorithm is implemented globally in both pure fluids and in mixture zones. An 
extended hyperbolic system is used to solve every location of the flow. 
These models and methods are able to dynamically create interfaces that are not present 
initially, e.g. in cavitating flows where gas pockets dynamically appear in a liquid (Saurel 
and Le Metayer, 2001, Le Metayer et al., 2005, Saurel et al., 2008). 
These methods are also able to deal with interfaces separating pure fluids and fluid 
mixtures, e.g. in the computation of detonation waves in condensed explosives where 
chemical decomposition produces multiphase mixtures of materials (Saurel and Le 
Metayer, 2001, Chinnayya et al., 2004). 

Methods in this second category are based on hyperbolic multiphase flow models, consisting of 
two main classes: 

Models for mixtures in total non-equilibrium: Baer and Nunziato (1986) model and its 
variants, and 
Models for mixtures in mechanical equilibrium (Stewart and Wendroff, 1984, Kapila et 
al., 2001). 

This paper deals with the building of a simple, robust, fast and accurate formulation for single 
velocity and single pressure multiphase flows. The Kapila et al. (2001) model is of particular 
interest for the computation of interfaces separating compressible fluids, as well as barotropic 
and non-barotropic cavitating flows. Specific numerical schemes have been derived recently in 
Murrone and Guillard (2005), Abgrall and Perrier (2006), Saurel et al. (2007a), Petitpas et al. 
(2007).

This model is apparently simple. In the context of two fluids it is composed of two mass 
equations, a mixture momentum equation and a mixture energy equation. These equations 
express in conservative formulation. The closure is achieved by the pressure equilibrium 
condition that results in a differential transport equation for the volume fraction containing a non 
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conservative term, involving the velocity divergence and phasic bulk moduli.  However this last 
equation poses serious computational challenges which include: 

Shock computations within the context of a non-conservative model. 
Volume fraction positivity, when dealing with shocks and strong expansion waves. The 
term involving a velocity divergence in the volume fraction evolution equation is 
particularly difficult to approximate (Petitpas et al., 2007). This is particularly important 
for the dynamic appearance of interfaces in cavitating flows. 
Non-monotonic behavior of the sound speed (Wood, 1930) which produces multiple 
sonic points in the numerical diffusion zones at interfaces. As it is very difficult (and  
expensive) to solve exactly the Riemann problem (Petitpas et al., 2007), approximate 
Riemann solvers are used resulting in sampling errors (with multiple sonic points) in the 
flux computations as well as in the non-conservative equation evolution. These 
difficulties in the Riemann problem solution are due to volume fraction variations across 
shocks and expansion waves.

Moreover, in order to consider future extensions with additional physics to reach multiphysics 
modeling of continuous media with a multiphase approach, the computational efficiency of 
existing algorithms must be improved. The multiphysics challenge we consider deals with: 

Sophisticated equations of state (EOS): Mie-Gruneisen for condensed materials, JWL for 
explosive products (Lee et al., 1968). 
Granular materials that involve extra EOS expressing contact granular energy and contact 
pressure (Bdzil et al., 1999). 
Capillary effects modeling (Perigaud et al., 2005) with eventually phase transition (Saurel 
et al., 2008). 
Interfaces separating compressible fluids and elastic solids in extreme deformations 
(Miller and Colella, 2001, Titarev et al., 2007, Gavrilyuk et al., 2008, Favrie et al., 2008). 
This instance is particularly difficult as the EOS for solids depends on the deformation 
tensor.

The present paper doesn’t deal with all these extensions, but it is clear that such a goal needs 
simple and robust multiphase formulations. The present paper addresses this issue in the context 
of the simplest version of the Kapila et al. (2001) model. 

The main difficulty with this model comes from the pressure equilibrium condition, which 
results in the non-conservative equation for the volume fraction. A conservative formulation can 
be obtained with the help of the entropy equations. However, this conservative formulation is 
untenable in the presence of shocks.  To circumvent these difficulties, pressure non-equilibrium 
effects are restored in the Kapila et al. (2001) model. This results in a 6-equation model with a 
single velocity but with two pressures and associated relaxation terms. This extended model was 
already presented as a first reduction of the Baer and Nunziato (1986) model in Kapila et al. 
(2001), but never considered for the description of diffuse interfaces. A seventh equation is 
added describing the mixture total energy in order to guarantee a correct treatment of shocks in 
the single phase limit. This apparent complexity with an extended model actually leads to 
considerable simplifications regarding numerical resolution. Indeed, this model remains 
hyperbolic with only three characteristic wave propagation speeds, volume fraction positivity is 
easily preserved and multiple sonic points no longer appear during hyperbolic evolution. The 
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building of a simple and efficient method for the numerical approximation of this flow model in 
the context of diffuse interfaces is the aim of the present paper. 

When relaxation terms are omitted the volume fraction remains constant across acoustic waves 
and the Riemann problem is easily solved with approximate Riemann solvers (acoustic and 
HLLC-type solvers, Toro, 1997). With this non-equilibrium pressure model, the sound speed has 
a monotonic behavior versus volume fraction and multiple sonic points no longer appear inside 
the numerical diffusion zone at interfaces. This feature provides robustness when considering 
cavitating flows (Koren et al., 2002, Sinibaldi, 2006, Petitpas et al., 2007).  This hyperbolic step 
is then followed by a relaxation step that consists in the determination of the asymptotic solution 
of a differential problem in the limit of infinitely fast relaxation. This asymptotic solution results 
in resolution of an algebraic system.  The combination of these two steps (hyperbolic + 
relaxation) guarantees convergence of the method to solutions of the Kapila et al. (2001) reduced 
model.

This paper is organized as follows. In Section II the Kapila et al. (2001) model is recalled and the 
non-equilibrium 6-equation model is presented. This 6-equation model tends to the 5-equation 
model of Kapila et al. (2001) in the limit of stiff pressure relaxation. Basic properties of these 
models are presented: Entropy inequality and hyperbolicity. In Section III the numerical method 
is built. Approximate Riemann solvers are presented for the hyperbolic part and a Godunov type 
scheme is built. The pressure relaxation algorithm is also presented in this Section. Special 
attention is given to the role of the seventh equation used to correct the computation of non-
conservative energies in the single phase limit, on both sides of an interface. Various test cases 
are presented in Section IV, together with validations against exact solutions of the Euler 
equations and of the 5-equation model of Kapila et al. (2001). Some examples consider 
interfaces initially present in the flow, while others involve the dynamic appearance of 
interfaces. Section V presents the extension of the method to shock propagation in physical 
multiphase mixtures. This extension is not important for interfaces separating pure (or nearly 
pure) fluids. But it has importance when the interface separates pure fluids and mixtures of 
materials. In Section VI, comparisons of the 6-equation model are given with existing barotropic 
cavitating flow models (van Brummelen and Koren, 2003). These models are recovered as 
limiting cases of the present 6-equation model. Moreover, a simple algorithm is proposed to 
solve cavitating barotropic flows. Finally, conclusions and future investigations are discussed in 
Section VII.

II. Pressure equilibrium and non-equilibrium single velocity multiphase flow models 

The single velocity pressure equilibrium model corresponds to the one of Kapila et al. (2001). It 
has been obtained as the asymptotic limit of the Baer and Nunziato (1986) model in the limit of 
both stiff velocity and pressure relaxation. In involves 5 partial differential equations, one of 
them being non-conservative. Its resulting speed of sound corresponds to that of Wood (1930) 
which exhibits a non-monotonic variation with volume fraction. These two difficulties (non-
conservativity and non-monotonicity) present serious computational challenges. To circumvent 
them, a pressure non-equilibrium 6-equation model is constructed (first reduced model in Kapila 
et al., 2001), also non-conservative, but easier to solve with a relaxation method. Both models 
are presented hereafter.

55



II.1 Five-equation model 

The Kapila et al. (2001) is the zero-order approximation of the Baer and Nunziato (1986) with 
stiff mechanical relaxation. It reads in the context of two fluids: 
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where , , u, p, E  ( ²u
2
1eE ), and e represent respectively the volume fraction, the mixture 

density, the velocity, the mixture pressure, the mixture total energy and the mixture internal 
energy.

The mixture internal energy is defined as 
)p,(eY),p,(eYe 222111         (II.2) 

and the mass fraction is given by: k
k

)(
Y .  The mixture density is defined by

21 )()( .

Each fluid is governed by its own convex equation of state (EOS), 
)p,(ee kkk ,

which allows the determination of the phases’ sound speed, 
)p,(cc kkk .

The mixture pressure p is determined by solving equation (II.2).  In the particular case of fluids 
governed by the stiffened gas EOS, 

kkkkkk pe1p , (II.3)
the resulting mixture EOS reads, 
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It is straightforward to obtain the entropy equations: 
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0
dt

dsk , 2,1k .

Consequently, this model needs specific relations for its closure in the presence of shocks. In the 
limit of weak shocks, appropriate shock relations have been determined in Saurel et al. (2007b): 

0
kk YY ,

m)u()u( 00 ,
0)vv²(mpp 00 ,          (II.5) 

0)vv(
2
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*
k

0
0
kk ,

where denotes the shock speed and the upperscript ‘0’ represents the unshocked state. These 
relations have been intensively validated against a large experimental data base for weak and 
strong shocks in the same reference.  

Even equipped with these relations, this apparently simple model involves many difficulties: 
With the help of relations (II.5), it is possible to solve exactly or approximately the 
Riemann problem (Petitpas et al., 2007). Even when this solution is exact, it is shown in 
the same reference that convergence of a numerical scheme to the exact solution is 
extremely difficult as the system is non-conservative: The cell average of non-
conservative variables has no physical sense. Cell averages were replaced by a relaxation 
procedure in Saurel et al. (2007a) and Petitpas et al. (2007).  To reach convergence for 
shock propagating in multiphase mixtures, artificial heat exchanges were needed in the 
shock layer (Petitpas et al., 2007). 
Another issue is related to the volume fraction positivity in the presence of shocks and 
even in the presence of strong rarefaction waves. Indeed, when dealing with liquid-gas 
mixtures for example, the liquid compressibility is so weak that the pressure tends to 
become negative, resulting in computational failure in the gas sound speed computation. 
Such situation occurs frequently in cavitation test problems.  
An extra difficulty is related to the mixture sound speed that obeys the Wood (1930) 

formula 
2
22

2
2
11

1
2
eq ccc

1 . The mixture sound speed has a non-monotonic variation with 

volume fraction, as shown in Figure 1. Here eqc represents the mechanical equilibrium 
mixture sound speed. 
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Figure 1: Representation of the mixture speed of sound (
2
22

2
2
11

1
2
eq ccc

1 ) of the 5-equation 

model for the liquid water – air mixture under atmospheric conditions. 

This non-monotonic behavior has serious consequences for the computation of interfaces 
separating compressible fluids. Consider for example the advection of a liquid-gas interface, 
corresponding in this model to a volume fraction discontinuity. During numerical resolution, this 
discontinuity will become a mixture zone. In this zone, the sound speed has a non-monotonic 
behavior which may result in the presence of two sonic points even if the flow is subsonic in the 
two pure fluids. Capturing sonic points for this model poses difficulties as Riemann invariants 
cannot be integrated explicitly (Petitpas et al., 2007). Using an approximate Riemann solver 
where the left and right facing waves are treated as discontinuities is possible. When embedded 
in an Eulerian method a sampling error in the solution for the flux computations occurs. This 
error occurs twice (for each sonic point) in the interface mixture zone at each time step. As a 
result, computational difficulties and even failures occur. 

To illustrate the difficulties related to the non-monotonic sound speed in this model, numerical 
results obtained with the method of Petitpas et al. (2007) are recalled. This method solves 
interfaces as diffuse numerical zones with the help of a Lagrange-relaxation algorithm. A one-
meter long shock tube containing two chambers separated by an interface at the location m8.0x
is considered. Each chamber contains a mixture of water and air. The initial density of the water 
is 3

water m.kg1000 and the stiffened gas EOS parameters are 4.4water  and Pa10.6p 8
water, .

The initial density of air is 3
air m.kg10  and EOS parameters are 4.1air and Pa0p air, . The

left chamber contains a very small volume fraction of air 6
air 10 and the pressure is equal to

109 Pa. The right chamber contains the same fluids but the volume fractions are reversed. Its 
pressure is equal to 105 Pa. In both chambers the initial velocity is zero. The exact solution of the 
single phase Euler equations and the multiphase flow model with 5 equations are compared in 
Figure 2 at time t=220 s.
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Figure 2:  Liquid/Gas shock tube. The Lagrange-relaxation method (symbols) of Petitpas et 
al. (2007) is compared to the exact solution (solid). A 1000 cells mesh is used. The density ratio 
is 100 and the pressure ratio is 10 000 at the initial discontinuity. A Mach oscillation appears in 

the numerical diffusion zone at the interface and is due to the non-monotonic behavior of the 
speed of sound of this model. 

The method developed in Petitpas et al. (2007) is able to deal with the non-monotonic speed of 
sound and sonic transitions at interfaces because it uses a Lagrange-relaxation algorithm. With 
this method, there is no need to consider sonic points. This method is very efficient on Cartesian 
grids but difficult to extend to unstructured grids. This is one of the reasons why a new 
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formulation is developed in the present paper. This difficulty is reported in the literature for 
barotropic flows with the same non-monotonic sound speed, used for example in cavitating flows 
(Koren et al., 2002, Coutier-Delgosha et al., 2005, Sinibaldi, 2006). These references report this 
problem in the simpler context of a conservative cavitation model that will be examined in 
Section V. 

To circumvent these difficulties and develop a simple algorithm able to deal with multiphysics 
extensions, a pressure non-equilibrium model is considered.  

II.2 Six-equation model 

The 6-equation model is also derived from the 7-equation model of Baer and Nunziato (1986) in 
the asymptotic limit of stiff velocity relaxation only (first reduced model in Kapila et al., 2001). 
Pressure non-equilibrium effects are maintained. The 6-equation model should not be considered 
as a physical model, but more as a step-model to solve the 5-equations model (second reduced 
model of Kapila et al., 2001). Indeed, the model with 6-equations has better properties for 
numerical approximations than the mechanical equilibrium one: 

Positivity of the volume fraction is easily preserved. 
The mixture sound speed has a monotonic behavior. 

These two properties are key points for the building of a simple, robust and accurate hyperbolic 
solver. Moreover, with proper treatment of relaxation terms, solutions of the 5-equation model 
will be recovered.  

Flow model 

The 6-equation model reads:  
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The interfacial pressure Ip is obtained as the asymptotic limit of the interfacial pressure of the 
symmetric non-equilibrium model with 7-equations of Saurel et al. (2003). This estimate in the 
limit of equal velocities reads: 

21

2112
I ZZ

pZpZ
p ,

where kkk cZ represents the acoustic impedance of phase k. 
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The combination of the two internal energy equations with mass and momentum equations 
results in the additional mixture energy equation:  
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 (II.7) 

This extra equation will be important during numerical resolution, in order to correct 
inaccuracies due to the numerical approximation of the two non-conservative internal energy 
equations in the presence of shocks. 

There is no difficulty to check that the second law of thermodynamics is fulfilled by this model. 
The phasic entropy equations are readily obtained, 
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insuring that the mixture entropy ( 2211 sYsYs ) always evolve with positive or null variations. 

This model exhibits a nice feature with respect to the mixture sound speed. The mixture sound 
speed,

2
22

2
11

2
f cYcYc  ,

has a monotonic behavior versus volume and mass fractions and represents the frozen mixture 
sound speed. 

The model is thus strictly hyperbolic with waves speeds: fcu , fcu , u . A more detailed 
analysis of hyperbolicity and sound speed will be carried out in Section III with the approximate 
acoustic Riemann solver. 

About shock relations 

As with the previous 5-equation model, the new model is also non-conservative, and shock 
relations have to be prescribed. However, the preceding remarks about shock relations for the 
five equations model and numerical approximation of shocks with non-conservative systems 
yield the following conclusion: 

Even when shock relations are known or accepted for a non-conservative system, it is 
very difficult to make the numerical solution converge naturally to the end shock state 
solution.

‘Natural convergence’ means without artifact such as artificial heat exchanges (Petitpas et al., 
2007). There is thus no need to determine precise shock relations for the 6-equation model, in 
particular since it is intended only to approximate the 5-equation model for which shock relations 
are known. 

However, some admissibility conditions have to be respected by a given Hugoniot approximate 
model. Jump conditions must at least respect (Saurel et al., 2007b): 

Energy conservation of the mixture, 
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Tangency of the mixture Hugoniot curve and mixture isentrope, 
Single phase limit for which jump conditions are unambiguously known, 
Symmetry , 
Entropy production. 

Jump conditions for the mass equations are 
1
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0
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222 m)u()u( .

Let us denote the mixture pressure by 2211 ppp  and the shock mass flow rate by 
21 mmm . With these notations, the momentum jump condition can be written  

0)vv²(mpp 00  . 

The mixture energy jump condition is: 
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In the absence of relaxation effects the volume fraction jump is simply: 
0
11 .

The non-conservative internal energy equations are not adapted to the determination of jump 
conditions. Following the preceding admissibility conditions the following jump conditions are 
proposed:
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The conditions that must be satisfied include: 
Energy conservation

The sum of the internal energy jump equations yields: 
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With the volume fraction jump relation, this equation becomes 
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This result guarantees that the phasic energy jump conditions are compatible with the mixture 
energy conservation.
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Tangency of the mixture Hugoniot curve and isentrope 
This is a mandatory property for the Riemann problem solution. As the volume fraction is 
constant across shocks and rarefaction waves (in absence of relaxation effects) and the phasic 
Hugoniots are tangent to phasic isentropes, the mixture Hugoniot is necessarily tangent to the 
mixture isentrope. 

Single phase limit 
When one of the phases disappears the energy jump condition of the remaining fluid is in 
agreement with the single phase energy jump. 

Symmetry
Symmetry in the formulation allows an easy extension to an arbitrary number of fluids. 

Entropy production 
As each phase evolves along its own Hugoniot (II.8) there is no doubt that the mixture entropy 
evolves positively. 

Through application of these relations, the Riemann problem can now be solved. Numerical 
issues pertaining to the Riemann solution are addressed in the next section. Let us insist on the 
fact that jump conditions are not the key to shock computation in multiphase mixtures. It has 
been shown that even when shock relations are known, the convergence of a numerical scheme 
to the exact solution is very difficult. This is due to the lack of definition for cell averages of 
non-conservative variables (Petitpas et al., 2007).

Asymptotic limit 

As the method will solve the 6-equation model with stiff relaxation terms, it is important to 
check that in the limit of infinitely fast pressure relaxation the 5-equation model is recovered. 
This proof is given in Appendix A. 

III. Numerical method 

Numerical resolution of the 6-equation model in the limit of stiff pressure relaxation is addressed 
in the present section. In regular zones, this model is self consistent. But in the presence of 
shocks the internal energy equations are inappropriate. To correct the thermodynamic state 
predicted by these equations in the presence of shocks, the total mixture energy equation will be 
used. This correction will be valid on both sides of an interface, when the flow tends to the single 
phase limits. The details of this correction will be examined further. For now, the 6-equation 
system is augmented by a redundant equation regarding the total mixture energy. The system to 
consider during numerical resolution thus involves 7 equations: 
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This system is equipped with the approximate shock relations of the preceding section, in 
particular relation (II.8).

III.1 Approximate Riemann solvers 

Two types of approximate Riemann solvers will be considered: 
acoustic linearized Riemann solver, 
HLLC Riemann solver. 

These two solvers are detailed in the context of the Euler equations in Toro (1997). 

Acoustic solver

This approximate solver assumes that shocks are absent or sufficiently weak. The last equation 
of system (III.1) can thus be suppressed. Indeed, this last equation is only used to correct some 
deficiencies of the numerical resolution of phase’s internal energy equations in the presence of 
shocks. The 6-equation system free of relaxation terms can thus be written with the following 
variables:
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The monotonic frozen sound speed introduced in Section II is now established.
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The acoustic solver is based on characteristic equations that are readily obtained: 
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These relations are used to solve the linearized Riemann problem. By assuming weak variations 
across left- and right-facing waves, the acoustic impedance  cZ  (with c defined by III.2 and 

 the mixture density) are assumed constant. The corresponding jump relations are: 
Across a right-facing wave, 
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The upperscript ‘*’ stands for the perturbated state. 

The velocity and pressure solution of the Riemann problem are thus easily obtained with the help 
of the interface conditions: 
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Thus, the velocity and pressure solution of the Riemann problem read: 
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Relations (III.3) are the same for the 6-equation model and for the Euler equations. The 
differences appear through the definitions of the mixture pressure, mixture sound speed and 
mixture density. 

Once the pressure is determined in the star region the phase’s densities are determined with the 
help of the entropy jumps.  
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This solver is simple and efficient for subsonic flows or flows in absence of strong shocks.  
Characteristic relations are also useful for boundary conditions treatment. But we prefer a solver 
able to deal with arbitrary shocks, genuinely positive (and consequently robust), able to deal with 
arbitrary convex EOS. The HLLC solver of Toro et al. (1994) fulfils these requirements.  

HLLC type solver

Consider a cell boundary separating a left state (L) and a right state (R). The left- and right-
facing waves speeds are readily obtained, following Davis (1988) estimates: 

RRLLR cu,cumaxS , RRLLL cu,cuminS  , 
where the sound speed still obeys to Relation (III.2).

The speed of the intermediate wave (or contact discontinuity) is estimated using the HLL 
approximation 
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with the mixture density and mixture pressure defined previously.

From these wave speeds, the following variable states are determined 

MR

RR
Rkk

*
Rkk SS

uS ,

ML

LL
Lkk

*
Lkk SS

uS ,

RMM
*
RRRRRR

* SSSSuupp , with 
k

*
Rkk

*
R ,

)SS(
Spup)Su(E

E
RM

*
R

M
*

RRRRRR*
R ,

)SS(
Spup)Su(E

E
LM

*
L

M
*

LLLLLL*
L , with 2

2211 u
2
1eYeYE .

The volume fraction jump is readily obtained as, in the absence of relaxation effects, the volume 
fraction is constant along fluid trajectories 
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*
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As the volume fraction is constant across left- and right-facing waves, the fluid density is 
determined from the preceding relations to be 
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Internal energy jumps are determined with the help of the Hugoniot relation (II.8). Let us 
consider the example of fluids governed by the stiffened gas EOS (II.3). With the help of the 
EOS, the phasic pressures are constrained along their Hugoniot curves to be functions only of the 
corresponding phase density:
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The phase’s internal energies are then determined from the EOS : ),p(ee *
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Equipped with these approximate Riemann solvers, the next step is to develop a Godunov type 
scheme.  

III.2 Godunov type method 

For the sake of simplicity, the method is presented at first-order. The extension to second-order 
is detailed in Appendix B.

First-order method

In the absence of relaxation terms, the conservative part of System (III.1) is updated with the 
conventional Godunov scheme: 
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The volume fraction equation is also updated using the Godunov method for advection 
equations: 

)uu()u()u(
x
t *

2/1i
*

2/1i
n
i1

*
2/1i1

*
2/1i1

n
i1

1n
i1

This scheme guarantees volume fraction positivity during the hyperbolic step. Other options are 
possible, like for example, VOF type methods (Miller and Puckett, 1996). Using a reconstruction 
algorithm may have nice features when dealing with interfaces only, these interfaces having to be 
present at the initial time. As we also deal with dynamic appearance of interfaces, a capturing 
method is preferred. This is not the only difference between the Miller and Puckett (1996) 
method and the present one. The mixture pressure and sound speed used in the present 
formulation are very different from the single phase estimates used by these authors.  

Regarding the non-conservative energy equations, there is no hope to determine accurate 
approximation in the presence of shocks (Hou and Le Floch, 1990). Therefore, we use the 
simplest approximation of the corresponding equations by assuming the product n

ikp  constant 
during the time step: 
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The lack of accuracy in the internal energy computation resulting from the present scheme is not 
so crucial. The internal energies will be used only to estimate the phase’s pressure at the end of 
the hyperbolic step, before the relaxation one. The relaxation step will give a first correction to 
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the internal energies, in agreement with the second law of thermodynamics. A second correction 
will be made with the help of the total mixture energy. The details of these two steps are 
described in the next two subsections. Before giving these details, let us examine a basic 
situation of fundamental importance when dealing with interface problems; namely uniform flow 
conditions.

Uniform flow test 

The main difficulty in solving interface problems as diffused numerical zones lies in the building 
of a flow model and a numerical scheme that preserve interface conditions. This test problem 
was examined by Abgrall (1996) in the context of the Euler equations. Let us consider a one-
dimensional flow in mechanical equilibrium. A volume fraction discontinuity propagates at 
constant velocity u in a constant pressure flow field ppp 21 . This flow system is initially in 
mechanical equilibrium and therefore must remain in mechanical equilibrium during its time 
evolution.
Let us examine the behavior of the present Godunov method for the conservative part of this 
model in the particular case of uniform pressure and velocity fields. The Godunov method for the 
mass equations is: 

2/1i
*
k2/1i

*
k

n
ik

1n
ik uu

x
t    ,      2,1k  . 

Because the velocity is uniform we have: 
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The mixture density thus obeys to the discrete formula: 
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The discrete momentum equation under the same uniform flow conditions becomes: 
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Thus the flow will necessarily retain its uniform velocity at the next time step: uu 1n
i .

The adopted numerical scheme for the internal energies becomes in the present situation 
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Consider, for example, the stiffened gas (SG) EOS (II.3):
1
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The discrete approximation of the internal energy now becomes 
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As the EOS parameters are constant in each fluid, this expression simplifies to: 
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which can be rewritten as 
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The adopted numerical scheme for the volume fraction evolution, in uniform velocity flow 
conditions becomes: 
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Using this, the internal energy equation reduces to: 
pp 1n

ik

The adopted numerical approximation thus preserves interface conditions in mechanical 
equilibrium flows.  

When the EOS are more sophisticated than the SG one, i.e. Mie Gruneisen EOS for example that 
can be written under the form, 

1
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e
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the same properties of interface preserving are observed experimentally. The reason is that 
Godunov type methods used for mass and volume fraction equations result in prolonged density 
field through the interface. Locally, these more sophisticated EOS thus reduce to the SG one.

III.3 Relaxation step 

This step is of major importance to fulfill interface conditions in non-uniform velocity and 
pressure flows. It also forces the solution of the 6-equation model to converge to that of the 5-
equation model.  

In the relaxation step we must solve 
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After some manipulations the internal energy equations become: 
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This system can be written as an integral formulation 
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Determination of pressure averages Ikp̂ has to be done in agreement with thermodynamic 
considerations. By summing the internal energy equations we have:
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The mixture mass equation can be written as: 
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Using these relations the mixture energy equation becomes 
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11112I1I
0  . 

In order that the mixture energy conservation be fulfilled it is necessary that: I2I1I p̂p̂p̂ .
Possible estimates are 0

II pp̂  or *
I pp̂ , the initial and relaxed pressures respectively. These 

estimates are compatible with the entropy inequality (Saurel et al., 2007a). With regard to the 
choice of one or the other estimate, upon computation of the relaxed state the resulting difference 
in practical computations is negligible. This negligible influence will be illustrated in the results 
section. The system to solve is thus composed of equations 

00000 )vv(p̂)v,p(e)v,p(e k
*
kIkkk

*
k

*
k , 2,1k

which involves 3 unknowns, *
kv ( 2,1k ) and *p . Its closure is achieved using the saturation 

constraint
1

k
k ,

 or 
1v)(

k
kk  . 

Here the k)( are constant during the relaxation process. This system can be replaced by a single 
equation with a single unknown ( *p ). With the help of the EOS (II.3) the energy equations 
become 

Ikkk
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and thus the only equation to solve (for *p ) is 
1)p(v)(

k

*
kk           (III.4) 

Once the relaxed pressure is found, the phase’s specific volumes and volume fractions are 
determined. 
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In the Miller and Puckett (1996) method, the relaxed pressure is used to advance the solution to 
the next time step. However, there is no guarantee that the mixture EOS or the mixture energy be 
in agreement with this relaxed pressure. In order to respect total energy and correct shock 
dynamics on both sides of the interface, the following correction is employed.  

III.4 Reinitialization step 

As the volume fractions have been estimated previously by the relaxation method, the mixture 
pressure can be determined from the mixture EOS based on the mixture energy which is known 
from the solution of the total energy equation. Because the mixture total energy obeys a 
conservation law, its evolution is accurate in the entire flow field and in particular at shocks.  

Again considering fluids governed by the stiffened gas EOS, the mixture EOS in this context 
relates mixture energy, density and volume fractions (II.4): 
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This EOS is valid in pure (or nearly pure) fluids, and in the diffuse interface zone. The volume 
fraction has very weak variations in nearly pure fluids, so that the computed pressure is nearly 
exact on both sides of the interface. This guarantees correct and conservative wave dynamics on 
both sides of the interface. Inside the numerical diffusion zone of the interface, numerical 
experiments show that the method is accurate too, as the volume fractions used in the mixture 
EOS (II.4) have a quite accurate prediction from the relaxation method.  

Once the mixture pressure is determined from (II.4) the internal energies of the phases are 
reinitialized with the help of their respective EOS before going to the next time step 

),,p(ee kkkkk           (III.5) 

III.5 Summary 

The numerical method can be summarized as follows: 
At each cell boundary solve the Riemann problem of System (III.1) with favorite solver. 
The HLLC solver of Section (III.1) is recommended. 
Evolve all flow variables with the Godunov type method of Section (III.2). 
Determine the relaxed pressure and especially the volume fraction by solving Equation 
(III. 4). The Newton method is appropriate for this task. 
Compute the mixture pressure with Equation (II.4). 
Reset the internal energies with the computed pressure with the help of their respective 
EOS (III.5). 
Go to the first item for the next time step. 
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IV. Tests and validations  

IV.1 Advection of an interface in a uniform pressure and velocity flow 

A discontinuity of volume fraction (thus a mixture density discontinuity) is moving in a uniform 
pressure and velocity flow at 100 m/s. Initially the discontinuity is located at x=0.5m in a 1 m  
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Figure 3: Advection of a volume fraction discontinuity in a uniform pressure and velocity 
flow. Comparison of the relaxation method with Superbee slope limiter (symbols) and the exact 

solution (solid). A 200 cells mesh is used. An excellent agreement is observed. 

72



length tube. This discontinuity separates two nearly pure fluids, liquid water on the left defined 
by 3

water m.kg1000 , and the stiffened gas EOS parameters 4.4water , Pa10.6p 8
water,  and 

air on the right defined by 3
air m.kg10 with the ideal gas EOS parameters 4.1air and

Pa0p air, . In the left chamber, the water volume fraction is set to 1water  and in the right 
chamber its value is water  , with 810 .  The uniform pressure is set equal to Pa10p 5 .

The numerical solution is plotted in Figure 3 at time ms79.2t  and is compared to the exact 
one.  A mesh with 200 uniform cells is used with a second-order extension of the method of 
Section III (see Appendix B for details).

The agreement between the numerical and analytical solutions is excellent and the numerical 
solution is oscillation free, except for the Mach number, computed with the equilibrium sound 
speed eqc . The present method has no difficulty resolving the sonic transition at the interface as 
the hyperbolic step is computed with the frozen sound speed, where this oscillation is absent.

For this test case, the flow being in mechanical equilibrium, relaxation terms present in the 
volume fraction and energy equations have no importance, as well as the pressure relaxation 
step. The respect of interface conditions is just a consequence of the clean numerical 
approximation with the Godunov method of conservative and non-conservative equations of 
Section III.2. 

VI.2 Shock tube with Mie Grüneisen type EOS 

In order to show the method’s capabilities, in particular when dealing with more general 
equations of state, a test involving the Cochran-Chan (1979) EOS (CC EOS) is considered. This 
EOS is of Mie-Grüneisen type. The same shock tube problem presented in Saurel et al. (2007a) 
is considered. In this example, a single fluid is considered governed by CC EOS, with a density 
discontinuity in a shock tube. As there is a single fluid, the Godunov method is expected to be 
valid. However, it was shown in the same reference that due to the nonlinearity of )(p  in the 
EOS, the Godunov method produced pressure and velocity oscillations. A cure to these 
difficulties was proposed in that same reference. Here, with the help of the multiphase flow 
model, these difficulties can be solved by considering the single fluid as a two-phase media with 
the initial discontinuity in the shock tube separating the two states. 

Initially, the high pressure chamber is set to 20 GPa, while the pressure is set equal to 0.2 MPa in 
the low pressure chamber. Both chambers are filled with liquid nitromethane, governed by the 
CC EOS in which densities are respectively set to 1134 kg/m3 and 1200 kg/m3. In the high 
pressure chamber, volume fraction of the first phase is set to 11  and in the right chamber 
its value is 1  ( 810 ). Thus, the model is used in the single phase limit, i.e. the same EOS 
is used for both fluids but with different initial densities:  

)(p))(ee()e,(p kk ,
with,
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The data used in the present simulation are: =1.19, 3
ref m/kg1134 , A1 =0.819181 109 Pa, A2

=1.50835 109 Pa, E1=4.52969 and E2=1.42144.

The solution is presented at time t = 67 s in Figure 4. The present relaxation method is 
compared to the exact solution of the Euler equations. Results are similar to those of Saurel et al.
(2007a) but the present algorithm is easier to implement. A magnified view of pressure and 
velocity around the contact discontinuity is given in Figure 5. It presents a solution free of 
oscillations.
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Figure 4: Shock tube with Mie-Grüneisen type EOS. The present relaxation method based 
on the 6-equations model (symbols) is compared to the exact solution of the Euler equations 

(solid). A 500 cells mesh is used. Results are in perfect agreement. 
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Figure 5:  Shock tube with Mie-Grüneisen type EOS. Magnified view of pressure and 
density around the contact discontinuity. Results are in perfect agreement with the exact 

solution and the solution is oscillation free.

IV.3 Water-Air shock tubes

Water – Air shock tube with moderate pressure ratio and high density ratio 
A 1 m long shock tube containing two chambers separated by an interface at the 
location m75.0x  is considered. Each chamber contains a nearly pure fluid. The initial density of 
water is 3

water m.kg1000 and the stiffened gas EOS parameters are 4.4water  and 
Pa10.6p 8

water, . The initial density of air is 3
air m.kg1  and EOS parameters are 

4.1air and Pa0p air, . The left chamber contains a very small volume fraction of air 
6

air 10 and the initial pressure is set equal to 1 GPa. The right chamber contains the same 
fluids but the volume fractions are reversed. The initial pressure is set equal to 0.1 MPa. In both 
chambers the initial velocity is equal to 0. 

The numerical solution of the 6-equation model is compared to the exact solution of the Euler 
equations. A mesh employing 1000 uniform cells is used in Figure 6 and a mesh employing 100 
cells is used in Figure 7. Comparison with the exact solution is shown in both figures at time 
t=240 s.  Again this test poses no computational difficulty. 
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Figure 6:  Liquid/Gas shock tube. The present relaxation method is used to solve the 6- 
equation model. Numerical results are shown with symbols and compared to the exact solution 

(solid). A 1000 cell mesh is used. The density ratio is 1000 and the pressure ratio is 10 000 at the 
initial discontinuity. A second order extension of the method with van Leer limiter is used. 

Results are in excellent agreement. 
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Figure 7:  Same liquid/Gas shock tube as those of Figure 6 with 100 cells. Numerical results 
are shown with symbols and compared to the exact solution (solid). A second order extension of 

the method with van Leer limiter is used. Results are in good agreement. 

In this test case and in all subsequent tests, strong pressure waves propagate.   Relaxation terms 
present in the volume fraction and energy equations become important, as well as the pressure 
relaxation step. Robustness and convergence of the algorithm in the unsteady building of the 
solution are improved by pressure relaxation. 

Water-Air shock tube in extreme conditions 
The same shock tube problem is solved, but initially, the left chamber pressure is set to 1 TPa (10 
Mbars) and the density of air is set to 10 kg.m-3. The exact solutions of the single phase Euler 
equations and the multiphase flow model with 6 equations are compared in Figure 8 at time t=8.3 

s.  This test illustrates the robustness and convergence of the algorithm. 
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Figure 8:  Liquid/Gas shock tube. The present relaxation method is used to solve the 6 
equations model. Numerical results are shown with symbols and are compared to the exact 

solution (solid). A 1000 cell mesh is used. The initial density ratio is 100 and the initial pressure 
ratio is 107. This test illustrates robustness and convergence of the algorithm. 

IV.4 Influence of Ip̂ in the relaxation method  

During the relaxation step, we have highlighted different possible estimates for the pressure 
average Ip̂ . In order to demonstrate the weak influence of the estimate, the liquid/gas shock tube 
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test presented in Figure 6 was run with different estimates of Ip̂ . In Figure 9, results are 
presented and compared with two possible estimates:  0

II pp̂  or *
I pp̂ . No differences are 

visible.
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Figure 9:  Comparison of two different pressure averages estimates. The test case of Figure 6 
is rerun with 0

II pp̂  on the left the and *
I pp̂ on the right. From top to bottom, pressure, 

velocity and mixture density remains unchanged. 
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IV.5 Cavitation test 

A 1 meter length tube is filled with liquid water at atmospheric pressure and with density =
1000 kg/m3. A small volume fraction of air ( 2

air 10 ) is initially present everywhere.  An initial 
velocity discontinuity is located at x = 0.5 m. On the left, the velocity is set to u = -100 m/s and 
on the right, u = 100 m/s. Solution is shown in Figure 10 at time t = 1.85 ms, using 1000 uniform 
mesh cells. 

Strong rarefaction waves propagate in the tube and the liquid pressure decreases. As gas is 
present, the pressure cannot become negative. To maintain positive pressure, the gas volume 
fraction increases and creates a cavitation pocket. This results in the dynamic appearance of two 
interfaces that were not present initially. Excellent agreement with the exact solution of the 5-
equation model (Petitpas et al., 2007) is obtained. Interface creation is readily handled by the 
present algorithm. 
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Figure 10:  Expansion tube with cavitation pocket appearance. The present relaxation method 
is used to solve the 6-equation model. Numerical results are shown with symbols and are 

compared to the exact solution (solid) of the 5-equation model (Petitpas et al., 2007). A 1000 
cells mesh is used.
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IV.6 Multidimensional validation: Shock-Bubble interaction 

Multidimensional finite volume extension of the method is presented in Appendix C. The 
method is validated against shock tube experiments of shock-bubble interaction. The experiment 
is one of those proposed in Layes and Le Métayer (2007) where full description of the 
experimental setup is provided. The configuration under study consists in a shock wave

Figure 11: Initial configuration of the interaction shock - bubble. 

Figure 12: Shock-bubble interaction test. Experimental results (left) and computed results (right) 
are compared at different times. Because of the difference in gas properties, the transmitted 

shock wave is faster than the incident one in air. Pressure and density gradients induce vorticity 
generation which develops at long time scale. 

Shock wave 
propagation

t = 134μs 
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propagating at Mach number 1.5 into air at atmospheric conditions and interacting with a helium 
bubble. The initial density of air is 3

air m.kg29.1 and the initial density of helium is 
3

helium m.kg167.0 . In the simulation both fluids are considered as ideal gases with polytropic 
coefficients 41.air  and 671.helium . The initial configuration is represented in Figure 11. 
Computed results are compared with experimental ones in Figure 12. 

IV.7 Cavitating Richtmyer-Meshkov instability (RMI) 

To illustrate the method capabilities a 2D test involving a RMI is considered. As the liquid is not 
pure, new interfaces will appear during the development of the instability, due to cavitation 
effects. The shape of the resulting interface and the entire flow field show a non-conventional 
behavior, that was never computed before, as the model and method must deal with liquid gas 
interfaces and dynamic appearance of gas pockets in severe conditions. 
The left part of the computational domain is filled with nearly pure water and the right part with 
nearly pure gas. They are initially separated by a curved interface. It is a portion of circle with 
0.6 meter radius centered at x = 1.2 m , y = 0.5 m. The physical domain is 3 m long and 1 m 
high. The mesh contains 900 cells along x-direction and 400 cells along y-direction. Both water 
and gas have an initial velocity of -200 m/s. Top, bottom and left boundaries are treated as solid 
walls. The initial density of water is 3

water m.kg1000 and the stiffened gas EOS parameters are 
4.4water  and Pa10.6p 8

water, . The initial density of gas is 3
gas m.kg100  and EOS 

parameters are 8.1gas and Pa0p gas, . The left chamber contains a very small volume fraction 

of gas 6
gas 10 and the right chamber contains a very small volume fraction of water 
6

water 10 .

The initial configuration is represented in Figure 13. Results are shown in Figure 14. 

Figure 13:  Initial configuration of the water-gas Richtmyer-Meshkov instability. Both liquid 
and gas have initial velocity of -200 m/s.

Nearly pure liquid 610gas  Nearly pure gas 610liquid

-200 m/s

P0=1 atm 
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Figure 14:  Water-gas Richtmyer-Meshkov instability. Mixture density contours are shown at 
time t0=0 ms, t1=1.9 ms, t2=3.9 ms, t3=5.8 ms, t4=7.8 ms. Blue is high density, white is low, and 
other colors are intermediate. New interfaces appear dynamically near the solid boundary as a 
result of expansion waves focusing. They result in cavitation pockets that considerably modify 

the jet and spike shape. 

When the flow impacts the left wall, a right-facing shock propagates in the domain through the 
water/gas discontinuity. A conventional RMI appears first. Then expansion waves are produced 
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as the jet elongates. It results in expanded zones near the solid boundary where gas 
inhomogeneities grow, producing dynamic appearance of gas pockets. As the pressure is very 
low in these zones, the jet dynamics is modified compared to conventional RMI with pure fluids. 
The various gas pockets near the solid boundary and in the jet core are clearly visible in Figure 
15 where the gas volume fraction is shown. Relaxation terms present in the volume fraction and 
energy equations are responsible for the dynamic appearance of these gas pockets.

Figure 15:  Water-gas Richtmyer-Meshkov instability. Volume fraction contours of gas are 
shown at time t5=8.6 ms. The gas volume fraction increase into the liquid jet and near the solid 

wall boundary. The spike shape is also modified.

The link between the 6-equation model and conventional barotropic cavitating flows that are the 
most popular in cavitation modeling is detailed in Appendix D. These models are composed of 
one or two mass conservation equations and one momentum equation. They consist in hyperbolic 
systems of conservation laws. These models involve an important difficulty related to the non-
monotonic behavior of the sound speed versus volume fraction (Koren et al., 2002, Coutier-
Delgosha, 2005, Sinibaldi, 2006). It is thus interesting to examine how the various ingredients 
developed in the context of the 6-equation model can be used for these barotropic models in 
order to solve this difficulty.  

V. Method extension for shocks in multiphase mixtures – Artificial heat 
exchanges

The present refinement of the algorithm is needed only when shock propagation in real 
multiphase mixtures is under study. For other situations with interfaces separating pure fluids or 
cavitating flows, there is no need to account for the artificial heat exchanges detailed hereafter. 
The artificial heat exchange is used to correct the partition of the energies in the various phases 
in the mixture and to propagate shocks in these mixtures at the correct speed with the correct 
shocked state.

Some preliminary observations of numerical schemes in the context of single phase flows are 
first necessary to introduce the numerical issues associated with multiphase shocks.  Consider a 
shock wave propagating in a pure material, governed by the Euler equations. Shock capturing 
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schemes produce a smearing of discontinuities and it is interesting to compare the 
thermodynamic path followed by the fluid in the shock layer to the theoretical Hugoniot curve. 
Such comparison is shown in Figure 16.  
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Figure 16: Comparison of the numerical Hugoniot curve (symbols) and the theoretical one 
(lines) in the numerical diffusion zone for single phase flows. The two thermodynamic paths are 

different but the end states are the same. 

It appears clearly that the thermodynamic paths are very different. This is due to the succession 
of numerical weak shocks that propagate into the cell that do not impose the same 
thermodynamic transformation as a single strong shock (Courant and Friedrichs, 1948). The 
successive cell averages produce also transformations in disagreement with the single shock 
Hugoniot.  However, this numerical phenomenon has no consequence on the computation of the 
shocked state for single phase flows. As shown in Figure 16, the end of the shock layer merges 
with the theoretical Hugoniot state. This is a consequence of conservation properties of the Euler 
equations.

When dealing with multiphase mixtures, the same deviation from the theoretical Hugoniot 
appears and has more serious consequences. The reason is that for each weak shock that enter the 
cell, the equation of state changes. Indeed, for multiphase mixtures, there is an extra degree of 
freedom characterized by the volume fraction. At a given point of the numerical shock, as shown 
in Figure 16, there is no hope that this point belongs to the theoretical mixture Hugoniot curve. It 
follows that the corresponding volume fraction is in error. Consequently the mixture EOS (II.4) 
is in error too. These errors cumulate in the shock layer and, contrary to that of single-phase 
flow, the end state does not belong to the mixture Hugoniot.  To illustrate these difficulties, 
consider the following test cases. 

Epoxy – Spinel mixture shock tube with moderate pressure ratio
A tube of one meter length contains two chambers separated by an interface at the location x = 
0.6m. Both chambers of the tube are filled with the same mixture of epoxy and spinel. The initial 
density of the epoxy is 3

epoxy m/kg1185 and its stiffened gas EOS parameters are 

43.2epoxy and Pa103.5p 9
epoxy, . The initial density of spinel is 3

spinel m.kg3622  and EOS 

parameters are 62.1spinel and Pa10141p 9
spinel, . The initial volume fraction in both 

chambers are epoxyspinelepoxy 15954.0 . The pressure at the left of the interface is equal to 
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10101  Pa, while the right chamber is at atmospheric pressure. All the materials are initially at 
rest. Using a 500 cell uniform mesh the solution of the multiphase flow model with 6 equations 
is compared with the exact solution of the 5-equation model (Petitpas et al., 2007) in Figure 17 at 
time t = 80 s.  As the shock is of moderate strength, the present method converges to the exact 
solution without any artificial heat exchange. 
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Figure 17:  Epoxy-Spinel shock tube problem with moderate pressure ratio. The present 
relaxation method is used to solve the 6 equations model. Numerical results are shown with 

symbols and are compared to the exact solution of the five equations model (solid). A 500 cells 
mesh is used. The pressure ratio is 100 000 at the initial discontinuity. 
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Epoxy – Spinel mixture shock tube under extreme conditions 
We consider now the same shock tube problem as previously, but the initial pressure ratio is set 
to 2 ·106. Results are shown in Figure 18. 
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Figure 18:  Epoxy-Spinel shock tube problem with extreme pressure ratio. The present 
relaxation method is used to solve the 6-equation model. Numerical results are shown with 

symbols and are compared to the exact solution of the five equation model (solid). A 500 cells 
mesh is used. The pressure ratio is 2 000 000 at the initial discontinuity.

Important differences appear between solutions as the shock is now very strong. The numerical 
solution does not converge to the exact solution of the 5-equation model, equipped with the 
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shock relations summarized in System (II.5). This is due to the incorrect partition of internal 
energy in the shock layer (Petitpas et al., 2007). In order to partition the energies correctly, 
artificial heat exchanges are now introduced. 

Artificial heat exchanges in the 6-equation model 

The correct partition of the shock energy among the various phases can be achieved by shock 
tracking methods. Shock tracking methods have been intensively studied by Glimm et al. (1998), 
LeVeque and Shyue (1996), Massoni et al. (1999). Another option is to correct partition of the 
energies in the shock layer by introducing artificial heat transfers.  

Artificial heat exchanges have been introduced in Petitpas et al. (2007) in the context of a 
Lagrange-relaxation method. In the present Eulerian formulation context they correspond to an 
extra pressure that appears in the internal energy equations:  
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The artificial heat exchange term 
x
uq  is active only in the shock layer as it is defined by 
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It is more convenient and also accurate (regarding mesh independence of the results) to rewrite 
these equations into the form 
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The function )v(  also expresses heat exchange and must be predetermined for a given two-
phase mixture. A method for its determination is given in Petitpas et al. (2007). 

An example of the effects of function )v( is shown in the following example.  

Epoxy – Spinel mixture shock tube with artificial heat exchanges 
The test problem of Figure 18 is rerun with the artificial heat exchanges. The procedure 
developed in Petitpas et al. (2007) is used to determine the heat exchange function. This function 
depends on: 

The initial state of the mixture in which the shock propagates, 
The numerical smearing of the shock front that is inherent in a given method.  
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For the present algorithm, the heat exchange function has been determined and is shown in 
Figure 19. 
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Figure 19: Values of the approximate piecewise linear function of  (symbols) and fitting 
curve 25.6v105.34v105.64-expv 327  in the specific volume range (2.65 ·10-4~4.61 ·10-4

m3/kg) corresponding to piston velocity range of 0 ~ 4200 m/s and pressure range of 1 ~ 880 000 
atm. 

Artificial heat exchanges are used in the shock layer only. With this correction, the algorithm 
converges to the exact solution, as shown in Figure 20. 
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Figure 20:  Epoxy-Spinel shock tube problem. The present relaxation method is used to solve 
the 6-equation model. Numerical results are shown with symbols and are compared to the exact 

solution of the 5-equation model (solid). A 500 cells mesh is used. The pressure ratio is 2 
000 000 at the initial discontinuity. Artificial heat exchanges are used in the shock layer only. 

Convergence of the results is obtained.

It is significant to note that the heat exchange function of Figure 19 provides converged results 
for any shock strength in the pressure range of 1 ~ 880 000 atm. Moreover, mesh independence 
of the solution is guaranteed. 
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VII. Conclusion 

A relaxation hyperbolic model with 6 equations was built to solve interface problems, cavitating 
flows and shocks into mixtures. This model considerably simplifies the numerical approximation 
of the 5-equation model of Kapila et al. (2001). A simple, efficient and robust algorithm has been 
derived to solve the relaxation model. The various ingredients used by this method are general 
enough to consider future extensions to problems involving complex physics and large 
hyperbolic systems. In particular, solid-fluid coupling will be examined with the present 
multiphase modeling of diffuse interfaces in the context of the elastic model of Gavrilyuk et al. 
(2008).
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Appendix A. Asymptotic limit of the 6-equation model in the presence of stiff 
pressure relaxation 

To perform the asymptotic analysis it is assumed that each flow variable f  obeys the following 
asymptotic expansion: 1o fff  where of  represents the equilibrium state and 1f  a small 
perturbation around this state. Inversely to the perturbations, pressure relaxation coefficient 

0  is assumed stiff with 0  .
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With this transformation, the equations that do not contain any relaxation parameter will be 
unchanged. The three equations to consider are thus the internal energy equations and the 
volume fraction equation. These are rewritten under following form: 
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d represents the Lagrangian derivative. 

Some transformations of these equations with appropriate variables are necessary before doing 
the asymptotic analysis. Consider the internal energy equation of phase 1. It can be written as a 
pressure evolution equation as )p,(ee 1111  : 
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With the help of sound speed definitions, 
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The phase 1 pressure evolution equation is obtained:
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Regarding phase 2, a similar result is obtained: 
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The asymptotic analysis is now carried out on the following system.  
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By expanding each flow variable as 1o fff  we get: 
- At order 1  : 

00
2

0
1 ppp

It implies on the one hand, 
00

I pp ,
and on the other hand:

20
1

20
1I cc  and 20

2
20

2I cc .
- At zero order the two pressure equations become:  

1
2

1
10

1

20
1

0
1

0
20

1
0
1

0

pp
c

x
u

c
dt

dp

1
2

1
10

2

20
2

0
2

0
20

2
0
2

0

pp
c

x
u

c
dt

dp

By taking the difference of these two equations, the pressure fluctuation difference is readily 
obtained:
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and the volume fraction equation thus becomes:  

x
u

cc

cc

dt
d 0

0
2

00
2

0
2

0
1

20
1

0
1

20
1

0
1

20
2

0
2

0
1 .

Consequently the 5-equation model with mechanical equilibrium is recovered as the asymptotic 
limit of the 6-equation model in the presence of stiff pressure relaxation.

Appendix B. Extension to second-order 

The first-order numerical method for the hyperbolic step presented in Section III is extended to 
second-order. It consists in solving the two-pressure 6-equation model (B.1) with a MUSCL type 
method: 

95



0
x

u
t

11

0
x

u
t

1111

0
x

u
t

2222 (B.1)

0
x

)pp(u
t
u 2211

2

0
x
up

x
ue

t
e

11
111111

0
x
up

x
ue

t
e

22
222222

In the MUSCL method, the solution is assumed regular enough so that a primitive variable 
formulation can be used: 
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Under compact form, this system reads: 
0

x
W)W(A
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With t
21211 p,p,u,,,W  and 
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Second-order extension consists in applying the following sequence of operations. 

Gradients limitation 
In a cell i, at instant tn, primitive variables n

iW are known. Let us denote by i  and i  the 
gradients vector respectively on the left and right boundaries of cell i. They are defined by: 
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A slope limiter function  is used to prevent local extrema. Minmod, van Leer or Superbee 
limiters can be used. The limited slope is now iii , .

Variables extrapolation
Within a given cell extrapolated primitive variable vectors L,iW  and R,iW  corresponding to the 
left and right boundary of cell i respectively are computed.  

i
n
i

n
L,i 2

xWW  and i
n
i

n
R,i 2

xWW

These variables are evolved during a half time step by: 
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Riemann problem resolutions 
The Riemann problem is now computed at each cell boundary 2/1i  allowing flux 
vectors *

/iF 21 computation for conservative variables: 
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*
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It also provides the cell boundaries non-conservative variables: 
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Evolution step 
Once the inter-cells fluxes and non conservative variables are determined, the solution is evolved 
on the entire time step: 
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where the “*” variables are given by (A.3) and (A.4). 

Appendix C. Extension to multi-dimensions 

The method is extended to multi-dimensions by a finite volume method able to deal with 
structured and unstructured meshes. Thus, let us consider a control volume Vi enclosed by a 
boundary surface A of normal unit vectorn . The conservative part of system (III.1) under 
integral form reads:

0dAnU
t

AVi

         (C.1) 
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with T
21 E,v,u,)(,)(U  the conservative variable vector, and G,F  the tensor of 

fluxes where:
T

11 u)pE(,uv,p²u,u)(,u)(F ,
T2

11 v)pE(,pv,uv,v)(,v)(G ,

with 22
2211 v

2
1u

2
1eYeYE  and 2211 ppp .

Boundary A of Vi is the union of N straight segments 1ssAA , where 11 AA N .

The first term of equation (C.1) is simply interpreted as time-rate of change of the average of the 
conservative vector U  inside volume V: 

t
UVU

t i
Vi

.

As the normal unit vector is expressed by ssS sin,cosn , the second term of (C.1) becomes: 
N

1s

A

A ss
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s
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Assuming that the fluxes are constant along each segment, it becomes: 
N

1s
sssss

A

sin.Gcos.FLdAn

where sL is the length of segment 1ssAA .

After time integration, the evolution of the conservative part of system (III.1) is given for cell i 
by the scheme: 

Vi

ssS sin,cosn
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R
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Where *
sF and *

sG represent the fluxes solution of the Riemann problem between states L and R 
separated by the segment 1ssAA  with respect to normal n .

The scheme for the non-conservative volume fraction equation becomes, 
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and for the non-conservative energy equations it is: 
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Appendix D.  The link between the 6-equation model and conventional 
barotropic cavitating flows 

Barotropic flow models are very popular in cavitation modeling. They are composed of one or 
two mass conservation equations and one momentum equation. They consist in hyperbolic 
systems of conservation laws. These models involve an important difficulty related to the non-
monotonic behavior of the sound speed versus volume fraction (Koren et al., 2002, Coutier-
Delgosha, 2005, Sinibaldi, 2006). It is thus interesting to examine how the various ingredients 
developed in the context of the 6-equation model can be used for these barotropic models in 
order to solve this difficulty.  

A well posed barotropic flow model for cavitating flows can be obtained by simplifying the 5-
equation model of Kapila et al. (2001). In cavitating flows, shocks are assumed absent or weak, 
even if there is no evidence regarding this assumption. A first simplification consists in replacing 
the volume fraction and energy equations by entropy equations: 
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This system is closed by the pressure equilibrium condition:  
p)s,(p)s,(p 222111 .                   (D.2) 

Solution of this equation gives the volume fraction, and consequently the pressure p. 
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An extra assumption is used in conventional barotropic cavitating flow models. The entropies are 
assumed constant in the entire domain and not only along fluid’s trajectories. The two entropy 
equations thus reduce to 

0
kk ss , 2,1k .

The barotropic flow model thus reduces to three conservation equations: 
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t

)( 11
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)( 22 (D.3)
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.

To illustrate the thermodynamic closure of this model, let us assume that each phase obeys the 
stiffened gas EOS (II.3). The isentropes become, 

kk
k0

k0

k

kk pppp  , 

and correspond to the Tait EOS. 

The isentropic stiffened gas EOS (or Tait EOS), can be derived for any pure liquid and any ideal 
gas. It is a function of the phase density only 
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k
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S
kk p)pp()(pp

k

 .  (D.4) 

System (D.3) is thus closed by the relation 
)(p)(p 2

S
21

S
1  .  (D.5) 

In other words, the mixture evolves in mechanical equilibrium with isentropic evolutions for 
each phase. This assumption is valid provided that boundary layers, heat and mass transfer, and 
shock waves have negligible influence. 

With the use of the isentropic stiffened gas EOS the equilibrium condition (D.5) reduces to a 
function the volume fraction only: 
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 .  (D.6) 

Its resolution gives 1 , then 1  as well as the pressure with the help of one of the EOS (D.4).  

This model assumes that cavitation does not result from mass transfer. Cavitation pockets appear 
as the volume fraction increases for a small amount of gas present initially. Cavitation is thus 
modeled as a mechanical relaxation process, occurring at infinite rate, and not as a mass transfer 
process. This corresponds to a simplified limit situation compared to reality. It also presents a 
deficiency when pure liquid is present.  Heat and mass transfers have been introduced in the 5-
equation model (Saurel et al., 2008) in order to deal with more realistic cavitating situations. 
Furthermore, the barotropic flow model, in reduced form (D.3), involves the same numerical 
difficulties as the 5-equation model. The sound speed for this model still obeys Wood’s 
formulas, whose non-monotonic behavior was shown in Figure 1. 
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To circumvent these difficulties, especially due to the non-monotonic behavior of the sound 
speed, we adapt the strategy developed in the context of the 6-equation model to this simplified 
situation.  

A relaxation model for the barotropic cavitating flow model 

The non-monotonic behavior of the sound speed that causes computational difficulties comes 
from the equilibrium condition (D.5). Following the analysis of Section II, a relaxation model 
can be built: 
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Because the model includes pressure non-equilibrium effects, the momentum equation involves 
pressures from both phases. This model is the isentropic analogue of the 6-equation model. 
Unlike the preceding models, the present one has a monotonic sound speed given by: 

2
22

2
11

2
f cYcYc .

It is not difficult to show that in the asymptotic limit  this model corresponds to system 
(D.3) with thermodynamic closure (D.5). 

The numerical method to solve System (D.7) is a simplification of the method developed in 
Section III.  It can be summarized as follows: 

At each cell boundary solve the Riemann problem of System (D.7) without relaxation 
terms with favorite solver. The HLLC solver of Section III.1 is recommended. 
Evolve all flow variables u,)(,)(,W 211  with the Godunov type method of 
Section (III.2). 
Determine the relaxed pressure and especially the volume fraction by solving Equation 
(D. 6). The Newton method is appropriate for this task. 
Go to the first item for the next time step. 
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Chapter 4 
Toward a Low-Speed Flow Solver for Diffuse 

Interface Models 
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1 Introduction 

The multiphase formulations developed in the RS2N Company have the ability to solve problems 
involving both heterogeneous mixtures of materials and interfacial flows involving shock waves, 
explosions, cavitation, phase transition, combustion etc. These formulations, and in particular the 
ones used for the direct numerical simulation (DNS) of interfacial flows present interests in the 
frame of nuclear reactor safety and optimization. The aim is to compute the critical heat flux 
conditions that involve a competition between bubble growth, surface tension, contact angle effects, 
heat and mass transfers at interfaces. Contrarily to the approach developed by other authors, a 
general model is expected, that accounts in particular complete thermodynamics in both phases.  

This topic is of prime importance for the nuclear industry and it is the reason why collaboration 
between RSN2 and INL started a few months ago. INL has a large experience of low speed flows 
and also in Finite Element Methods (FEM), and its knowledge in multiphase flow is very 
complementary with RS2N knowledge.  

In this context, the aim is to couple both competences for the building of a simple and accurate 
numerical scheme able to solve DNS models of interfacial flows at low speed. It poses the difficult 
question of the numerical approximation of compressible flow models in the incompressible limit.  

In this report we present the first results of the collaboration between both parts (INL and RS2N): 
the main idea is to verify that the low speed flow methods developed at INL [1] can be adapted to 
Finite Volume framework. This last family of methods is more suitable for the numerical 
approximation of hyperbolic models of diffuse interfaces with complex physics. 

In a first step, a single-phase flow study is conducted to verify the possible extension of low speed 
flow model in FV methods. The extension is done on the basis of mixed Godunov type and PCICE 
[1] ingredients. The obtained results are quite excellent: both low speed and high speed flows can be 
computed accurately.  

The second part deals with a more sophisticated hyperbolic model of diffuse interface, also 
examined with the combined Godunov-PCICE method.  

2 Basis of Finite Volume methods 

2.1 Introduction
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The PCICE method described in Ref. [1] has very appealing characteristics, the most important 
being its ability to solve low speed flows with fully compressible models. Regarding diffuse interface 
formulation of two-phase flows, a Finite Volume formulation is preferred to the original Finite 
Element one in which the PCICE method was developed. Indeed, with FV method based on 
Riemann solvers, a simpler control of numerical diffusion can be done. This control is particularly 
important with diffuse interface formulations, when each fluid is governed by a specific equation of 
state.

2.2 The basis of Finite Volume method

We suppose a general system of equations – for example the Euler equations – that can be written in 
a conservative form: 

0
x
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t
U )(            (1) 

The solution is computed over a domain  in the x-direction, in the range [0,L]. The domain  is 
divided in control volumes; the length of each volume being equal to x. U is the vector of 
unknowns depending on the space coordinates x and the time t, F is the flux vector. 

The solution is sought as the result of the integral over  and over the time range T=[t1:t2]. For any 
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Figure 1 : Mesh and timestep used in Finite Volume methods 

This integral can be calculated as follow: 
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Let us pose that 12 xxx and we assume that in this volume the quantity U is constant, we 
can then define: 
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Then, the integral (3) is: 
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By the same way as for the conservative variables, let us define an average flux: 
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We obtain the explicit finite volume scheme: 

n
i

n
i

n
i

n
i FF

x
tUU 2121

1
//         (5) 

n
iF 21 / is the numerical flux at the intercell located at the index i+1/2. The value of this quantity is 

obtained by the means of exact or approximate Riemman solvers, which depends on the system of 
equations.

It is noticeable that a restriction condition exists for the value of the timestep t . We admit that the 
system of equations (1) is hyperbolic, it means that we can find as many different and real 
eigenvalues as the number of unknowns. Each eigenvalue is named k  and corresponds to the 
velocity of waves. For example, it is well-known that the Euler equations admit 3 eigenvalues which 
are u, u+c and u-c with u the fluid velocity and c is the sound speed. The conservative variables may 
vary only across theses waves.

Let us consider a numerical cell at the index i, delimited by the intercell i-1/2 and i+1/2. The 
quantity inside the cell is n

iU  which is a constant.  Consider the wave evolving with the highest and 
the lowest speed, max and min respectively from a cell boundary as depicted in figure 2.  These 
both waves define a triangle of influence underneath the state is not perturbated.  
It can be demonstrated a stability condition for a hyperbolic system, meaning that the wave from i-
1/2 must not go further than the opposite cell boundary at i+1/2. This yields a timestep condition: 

max

xt            (6) 

In the case of the Euler equations, it is the well-known CFL condition: 

cu
xt            (7) 
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Figure 2 : General wave pattern for an hyperbolic system 

Because of the definition of the average quantities, it also implies for the value of the flux calculated 
at time t* remains constant as soon as the time t* is in the range ttt, .

These considerations about the timestep are of prime importance. Indeed, when compressible flows 
are consider the timestep must obey the CFL condition (7). The problem for low speed 
compressible flows is that the order of magnitude of the material velocity u can be much lower than 

the sound velocity. The numerical solution is then driven by the acoustic wave 
c
x

cu
xt

although the physical problem is driven by the material velocity. Such scheme is often not accurate 
enough.

The main advantage of the PCICE method is that the time step is restricted by a convective Courant 
condition:

u
xt

The aim of this study is to translate the PCICE formulation in a Finite Volume formulation, to 
benefit advantages of both methods.

3 The PCICE method ant its extensions for Euler equations 

3.1 Introduction

The PCICE method for solving the Euler equations is based on 3 stages. The Euler equations are: 

0u
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0dIpuu
t
u .

         (8) 
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where E is the total energy : 2

2
1 uE with ),( p .

In the original PCICE method the first stage consists in solving a modified system of equations: 
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From the discrete formulation of this system combined with the EOS one can obtain a Poisson 
equation for the pressure: The knowledge of the pressure at the final stage leads to the correction of 
the quantities that have been predicted in the predictor stage. 

The main goal of this study is to use a Finite Volume scheme to solve the predictor stage, with the 
help of Godunov type ingredients. The corresponding method will be called PCICE-VF.

3.1 The PCICE-VF method

The target system is the following: 
11

2
nnnn uut .        

11 nnnn
ptuutuu .                    (10) 

11 nnnn putEuEE .       

The Predictor stage – (Transport Stage) 

The first major change is the predictor stage: in the target system there is no pressure term and the 
system to solve only concern the transport of conservative variables. 
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This system of equations is hyperbolic but not strictly: it has three times the same eigenvalue u .
This system is frame invariant which is not the case for the system (9). The semi-discrete solution 
for (11) is: 

nn u.*         
nn

uuuu .*                   (12) 
nn EuEE .*         

This system is solved by the means of a Finite Volume scheme.  The advantage of this new system is 

that the timestep is only restricted by a convective criterion: 
u
xt  because u is the only 

eigenvalue. The FV volume scheme is n
i

n
i

n
i

n
i FF

x
tUU 2121

1
//  as presented in the previous 

paragragh.

The Rusanov solver is used to compute the flux vector: 
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uU  and 

Eu
u
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F 2  and the wave speed is evaluated according to:  

1ii2/1i u,umaxS  .         (13) 

The correction stage 

We develop now this stage because we can deduce the Poisson equation. Actually, because the mass 
conservation equation is a transport equation, the target equation can be used directly: 

11

2
nnnn uut .

In this equation we use the predicted value *  to obtain: 
n1n*1n uu.

2
t          (14) 

In this last equation, the momentum at time n+1 should be removed. We use the corrected equation 
for the momentum. To obtain this equation, we note that in the predictor stage, only the pressure 
terms are not present so we naturally pose: 

11 nn
ptuu .

*
         (15) 

The same way for the energy equation leads to: 
11 nn uptEE .*          (16) 

By combining (14) and (15) we get: 
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At this time, another difference between the original PCICE method and the new version (PCICE-
VF) is introduced: 

n
uu ..
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This assumption is justified by the fact that 
*

u. in the time range tt,t  is constant, under the 
convective time step. Indeed the fluxes computed at each cell boundary are constant by definition 
during the time step according to the property given in paragraph 2. 

Then, assuming the pressure at n+1 is known the correction stage reads: 
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11 nn uptEE .*          (21) 

The correction step needs the pressure determination at time 1nt .

Poisson equation for the pressure 

The solution for the pressure must be established. The equation of state is here used in a general 
differential form. In equation system (8), the closure relation is given by ),p(  which we can 
rewrite ),(pp  . Differentiation of this equation reads: 

dpdpdp           (22) 

This differential form is approximated in time variation between time *t  and the time 1nt :
*ffdf 1n

so

*p*p*pp 1n1n1n  .       (23) 

The coefficients of this equation depend on the equation of state. We have to evaluate the terms 
*1n  and *1n  . To do this we use the associated correction equation (19): 
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There is no exact expression for the internal energy at time n+1. The internal energy obeys the 
following partial differential equation: 

0u.p
dt
d            (24) 

 During the predictor step, all the transport terms have been taken into account, so in this equation 
the convective term of the time derivative have already been considered in the predictor step. The 
remaining part reads: 

0u.p
t

A new improvement of the method is now done thanks to this equation. Its approximation between 
predicted state and new time reads: 

nnnn upt
~*~~ 11

         (25) 
The pressure equation now reads: 
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The tilde quantities are evaluated as the arithmetic average between time * and n. The use of the 
ideal gas equation of state 1p leads to the coefficients: 

1p    and 1p  . 

The Poisson equation for the pressure is: 
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Summary of the method 

Predictor step
nn u.*
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uuuu .*

nn EuEE .*

Poisson equation

nnnn uptpptp 1
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1 1
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1 *~
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Corrector step

1
2

1

2
nn pt*

11 nn
ptuu .

*

11 nn uptEE .*

4 Single-Phase results 

4.1 Introduction

The results presented in this section are obtained with the new method at first order in time and 
space. No change was done for the various test cases meaning that there is no tuning coefficient. 
The first test case is about the propagation of an interface moving with a constant velocity, in a 
constant pressure field. This test case is very important to asses the ability of the code to treat 
interfacial problems, which is very important for multiphase flows. The pressure and the velocity 
must remain constant while a density profile is propagating.

The two other test cases consider shock tube problems. All compressible effects are involved in 
these test cases: material interfaces, acoustics, expansion and shock waves. The numerical results are 
compared with exact solutions. The first test deals with strong shock: it indicates robustness of the 
method. The second is a weak shock tube problem, which is a simple way to obtain a low speed 
flow.

The fluid is supposed to obey the ideal gas law with a polytropic coefficient 4.1 and a specific heat 
at constant volume K/kg/J700Cv .

4.2 Interface problem

Let us consider a 1D domain, 1m length. This domain contains a gas moving at constant velocity 
u=10ms-1 and at atmospheric pressure 101325 Pa. A density discontinuity is initially located at the 
abscissa x=0.5m, this discontinuity is the interface between a gas at higher density L  (at the right) 
and the same gas at low density at the right of this initial interface R .
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Uniform pressure :  101325 Pa
Uniform velocity : 10 m/s

L

1 m, 1000 cells

R

Uniform pressure :  101325 Pa
Uniform velocity : 10 m/s

L

1 m, 1000 cells

R

Figure 3 : Presentation of the test case for the advection 

The mesh involves 1000 cells. In the first computation we consider a density jump equal to 2: 

3
L m/kg1 and 3

R m/kg5.0 .  The time step is equal 
cu

xt 16  and that is the largest we can 

use for the given conditions. 

In Figure 4 the density profile at time 5.44ms that corresponds to a 300 timesteps calculation is 
shown. The plateau values are perfectly respected and the velocity of the interface is also perfectly 
recovered. The front is smeared over a large number of cells, the main reason is the low order in 
space and time of the method. 
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Figure 4: Advection test case : Jump density  equal to 2, t = 16 CFL: Comparison of the analytical (straight line) and 
the numerical (symbols) solution for the density. 

In the following figure 5, we plot the difference between the final pressure inside the tube and the 
initial pressure which was set at 101325 Pa. The order of magnitude of the error is equal to 10-9Pa 
which is very close to the numerical zero. The same plot concerning the difference between the final 
and the initial velocity show errors of the order of magnitude equal to 10-11 m/s. 
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Figure 5: Advection test case : Jump density  equal to 2, t = 16 CFL: Profiles of the difference between the initial 
pressure and the final time step pressure. 

The results are quite excellent. It is noticeable that the time step, which is equal to 16 CFL, 
corresponds to the upper limit of the scheme as proposed in Ref. [2] that is to say 

u
x

cu
xt 3016 .

.
Increasing the jump of the density at the interface leads to good results but the timestep is reduced. 
In Table 1, the largest timestep is reported according to the ratio of left and right density: 

R

L 2 10 100 1000 

CFL 16 12 8 3.85 
Table1: Evolution of the largest timestep versus the jump of density 

For large density ratios the CFL number decreases but is always larger than the time step one can 
use with explicit methods. This problem is possibly due to the treatment of boundary conditions 
that is quite simplified in our code. 

4.3 Strong shock tube problem

The strong shock tube problem consists in solving the flow created by the jump of pressure between 
a left and a right state initially set in a tube. This test case is interesting because every kind of waves 
(expansion waves, interface, shock wave) are present in the flow: the ability of a solver for 
compressible flows is evaluated through only one test case.

The initial pressure jump is set to 106: The low pressure chamber pR=101325 Pa and the high 
pressure is equal to RL pp 610 (Fig. 6). 
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Figure 6: Presentation of the shock tune test case 

The final time of the simulation is equal to 0.93ms. The timestep is CFLt 51.  which seems to be 
low compared to the time step in the previous test case. Actually, it is not so low and this time step 

is larger that the one proposed in Ref. [2] for the PCICE method: 
u
xt 50. . In Figure 7 the 

pressure, density and velocity profiles are plotted and compared to the exact solutions.

The flow solver reproduces very well the expected solution. In this case the CFL number is limited 
to 1.5. With these initial conditions, the acoustic wave and the convective wave are the same order 
of magnitude (around 180 000 m/s): so the acoustic phenomena have at least the same importance 
as the transport phenomena. This test case clearly shows the robustness of the method. 
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Figure 7:  Comparison between analytical and numerical results for strong shock tube RL pp 610

4.4 Weak shock tube problem

The same shock tube problem as the one presented in the previous paragraph is computed, but we 
consider here a very low pressure jump. The low pressure chamber is set to PapR 101325 and the 
high pressure is equal to pL=1.05pR. In the figure 8, the numerical solution is compared to the 
analytical one at time 1ms.  
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Figure 8 :  Comparison between analytical and numerical results for strong shock tube RL pp 051. . CFLt 10 ,
number of timestep computed is 40 for a final time 1ms. 

The final velocity is quite low, about 5m/s. The time step used in this simulation is CFLt 10 .
The final time is obtained after 40 time steps. The solution for the pressure and the velocity is in 
very good agreement with the analytical solution. The numerical solution for the density is also very 
good except at the interface where some spurious oscillations are present.

In figure 9, the solution obtained with CFL equal to 1 is plotted and is almost perfect for all the 
variables but we can already observe a small undershoot of the density at the interface.
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Figure 9 :  Comparison between analytical and numerical results for strong shock tube RL pp 051. . CFLt 1 ,
number of timestep computed is 400 for a final time 1ms. 

4.5 Concluding remarks for the single-phase solver

Based on the PCICE method we have developed a new solver for single-phase flows. The objectives 
have been reached: a low speed flow solver is built, allowing larger timestep than conventional 
methods for compressible flow.
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The main possible improvements for solver consist in higher-order extension and different 
equations of state. The results are encouraging and the first attempt to two-phase flow solutions are 
presented in the next section. 

5 Diffuse-interface flow solver 

5.1 Introduction

Our goal is to solve the single velocity pressure equilibrium model of Kapila et al. (2001). It has been 
obtained as the asymptotic limit of the Baer and Nunziato (1986) model in the limit of stiff velocity 
and pressure relaxation. In involves 5 partial differential equations, one of them being non-
conservative. Its resulting speed of sound corresponds to that of Wood (1930) which exhibits a non-
monotonic variation with volume fraction. These two difficulties (non-conservation and non-
monotonicity) present serious computational challenges. To circumvent them, a pressure non-
equilibrium 7-equation model is constructed, also non-conservative, but easier to solve with a 
relaxation method (Saurel, Petitpas and Berry, 2008). Both models are presented hereafter. The aim 
of the relaxation model is to obtain at the end of each time step a unique pressure for each phase: 
considering a numerical timestep starting at the mechanical equilibrium there is a time during each 
phase obeys its own equation of state leading to a non equilibrium state, then a relaxation occurs to 
obtain a new mechanical equilibrium. 

The diffuse interface model are first presented. Then we briefly remind the algorithm based on the 
PCICE-VF method we use. In this work in progress, we have only done the needed changes in the 
method to take into account for the multiphase features of the flow model. The basic elements of 
the algorithm just developed in the context of the Euler equations are here again employed. 

 5.2 Diffuse interface models

5.2.1 Five-equation model 

The Kapila et al. (2001) model is the zero-order approximation of the Baer and Nunziato (1986) with 
stiff mechanical relaxation. In the context of two fluids it reads 
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where , , u , p, E  ( 2

2
1 uE ), and  represent respectively the volume fraction, the mixture 

density, the velocity, the mixture pressure, the mixture total energy and the mixture internal energy. 

The mixture internal energy is defined as 
),(),( 22221111 pYpY         (29) 

and the mass fractions are given by k
kY . The mixture density is defined by 1 1 2 2 .

Each fluid is governed by its own convex equation of state (EOS), ( , )k k ke e p , which allows the 
determination of the phases’ sound speed, ( , )k k kc c p .  In the particular case of fluids governed 
by the stiffened gas EOS: 

kkkkkk pp 1          (30) 
the resulting mixture EOS reads 
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Thus, while this model maintains mechanical equilibrium, it provides for thermal non-equilibrium, 
which is what physically occurs through a phase interface. 

5.2.2 Seven-equation model 

The 7-equation model we intend to solve is as follows: 
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with

2 1 1 2

1 2
I

Z p Z pp
Z Z

.

If this 7-equation model is pressure-relaxed ( ) the phasic pressures become equal 
( 1 2p p p ) and the system of equations tends asymptotically to the 5-equation system above.  
Our task herein is to design a PCICE-VF numerical scheme to solve this 7-equation model, as it 
presents better properties for the design of numerical schemes (Saurel et al., 2008) and because in 
the limit of stiff pressure relaxation, the 5-equation model solutions are recovered. 

5.3 PCICE-VF multiphase solver

Predictor stage 

The novelty compared to the one-phase flow solver is a new second sub-step. The system 
considered here is (32) in absence of pressure relaxation term, considered latter. In order to clarify 
the presentation by comparison with one-phase flow solver, the solved equations are written as: 
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The mass equations of each phase have been replaced by evolution equations for the mass fractions. 
The interest of this formulation will appear during the building of the Poisson equation.  

Relaxation stage 

The relaxation substep will give a correction to the internal energies, in agreement with the second 
law of thermodynamics.  A second correction will be made with the help of the total mixture energy. 
Up to this point, the following system has been solved: 
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Due to the velocity divergence in the mass and energy equations, pressure disequilibrium occurs.  
The pressure relaxation is thus necessary, which will determine the relaxed or equilibrium pressure 
with the corresponding phasic volume fractions and densities.  It is this pressure relaxation substep 
to which we now turn. 

This step is of major importance to fulfil interface conditions in non-uniform velocity and pressure 
flows. It also forces the solution of the 6-equation model to converge to that of the 5-equation 
model.

In the relaxation step, we must solve: 
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After some manipulations the internal energy equations become 
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e vp
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.

where kv  are the phasic specific volumes.  This system can be written as an integral formulation 
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To determine the pressure averages Ikp̂ begin by summing the internal energy equations 
0 0 0 0
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The mixture mass equation can be written as 
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Using these relations the mixture energy equation becomes 
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In order that the mixture energy conservation be fulfilled it is necessary that: 1 2ˆ ˆ ˆI I Ip p p . Possible 
estimates are *

II p̂p̂  or ˆ R
Ip p , the initial and relaxed pressures respectively. These estimates are 

compatible with the entropy inequality. With regard to the choice of one or the other estimate, upon 
computation of the relaxed state the resulting difference in practical computations is negligible. The 
system to solve is thus composed of equations 
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k

 are constant during the relaxation process. This system can be replaced by a single 
equation with a single unknown ( Rp ). With the help of the EOS the energy equations become 

0
0 ˆ( 1)( )

ˆ( 1)
R R k k k k I
k k R

k k k I

p p pv p v
p p p

 , 

and thus the only equation to solve (for Rp )  is 
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Once the relaxed pressure is found, the phase’s specific volumes ( )R R
kv p  and volume fractions 

( ) ( )R R R
k k kv p  corresponding to this pressure relaxed state are determined.

At the end of the relaxation step, we have solved 
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And now 1 2p p p .

Poisson equation 

At this point, we have solved a mixture model characterised by a unique pressure. The Poisson 
equation can be obtained by the same way as for the Euler equations. The mixture equation of state 
has changed and we now have ),,,,,( 2121 YYp . Then the differential form of the pressure is: 
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We assume that the mass fraction Yk will remain constant during the acoustic relaxation (the mass 
fraction is constant through any elemental wave). We also assume that during the first stage, the 
volume fraction have been transported and require no correction. This assumes that the right hand 
side of the volume fraction is neglected. The corresponding sub-model is also able to solve interface 
problems (Massoni et al., 2002). 

So we have during this stage:  

dpdpdp           (40) 

The Poisson equation is then formally the same as in the single-phase flow solver. 

Correction stage 
Some quantities are corrected thanks to the mixture pressure at time n+1 according: 
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We also correct the volume fraction according: 

)uu(K
x
t 1n

2/1i
1n

2/1i
newR

k
1n

k       (45) 

Each phase quantity can be deduced from these relations (41)-(45) with the help of the equation of 
state.

5.4 Summary of the two-phase PCIC-VF algorithm

Predictor stage 
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Relaxation procedure 

To obtain p1=p2=p.
Poisson equation 

Correction stage 

5.2 Results

In this work-in-progress we had time to only obtain results for the propagation of a two-phase 
interface in a uniform flow at constant velocity and constant pressure. The solutions presented in 
this section are obtained with no correction for the volume fraction, meaning that the term Knew in 
(45) is set equal to zero. The time step used in this calculation is equal to 1 CFL. 
 The problem simulated is shown in Figure 10: 
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Figure 10 : Propagation of a material interface in a multiphase flow 

It is noticeable that the interface concerns the mixture density as well as the volume fraction. The 
solutions are plotted at time 1 ms for the mixture density (Figure 11) and the volume fraction of 
phase 1 (Figure 12). The solution is in very good agreement with the exact one. 
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Figure 11 : The density of the mixture in a 10m/s moving flow. In symbol the numerical results compared to the 
analytical solution 
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Figure 12 : Evolution of the volume fraction of phase 1 in the advection test case. 

6 Concluding remarks 

We have developed a Finite Volume version of the PCICE method. Some changes have been done 
compared to the original version to obtain a pressure and velocity oscillation free method. Extra 
work is needed to extend the method at higher order in space and time. Also, very large density 
ratios at interfaces induce time step restrictions that have to be understood in order to improve 
computational efficiency in these conditions. 

Some first results are presented concerning the two-phase model of diffuse interface. Extra efforts 
are needed to succeed with shock tube test cases with interfaces. 
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Examination of the PCICE Method in the Nearly Incompressible, as 

well as Strictly Incompressible, Limits 
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Abstract 
The conservative-form, pressure-based PCICE numerical method (Martineau and 
Berry, 2004) (Berry, 2006), recently developed for computing transient fluid flows 
of all speeds from very low to very high (with strong shocks), is simplified and 
generalized. Though the method automatically treats a continuous transition of 
compressibility, three distinct, limiting compressibility regimes are formally defined 
for purposes of discussion and comparison with traditional methods — the strictly 
incompressible limit, the nearly incompressible limit, and the fully compressible 
limit. The PCICE method's behavior is examined in each limiting regime. In the 
strictly incompressible limit the PCICE algorithm reduces to the traditional MAC-
type method with velocity divergence driving the pressure Poisson equation. In the 
nearly incompressible limit the PCICE algorithm is found to reduce to a 
generalization of traditional incompressible methods, i.e. to one in which not only 
the velocity divergence effect, but also the density gradient effect is included as a 
driving function in the pressure Poisson equation. This nearly incompressible 
regime has received little attention, and it appears that in the past, strictly 
incompressible methods may have been conveniently applied to flows in this 
regime at the expense of ignoring a potentially important coupling mechanism. This 
could be significant in many important flows; for example, in natural convection 
flows resulting from high heat flux. In the fully compressible limit or regime, the 
algorithm is found to reduce to an expression equivalent to density-based methods 
for high-speed flow. 

Key words: compressible, incompressible, strictly incompressible, nearly 
incompressible, fully compressible 

1. Introduction 

Single phase flows of practical import for current and future nuclear reactor systems cover a wide range of flow 
speeds and compressibilities. Seldom do they belong exclusively to the restrictive class of strictly incompressible 
flow. Most reactor flows are of a mixed nature meaning that they possess regions dominated by, for example, nearly 
incompressible flow as well as regions dominated by strongly compressible effects. Or, for transients, during part of 
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the time compressible effects will dominate while at different time the flow will be nearly incompressible. To be 
able to handle such flows, the pressure-corrected variant of the implicit continuous-fluid Eulerian (ICE) (Harlow and 
Amsden, 1971), or PCICE numerical method has been developed and presented (Martineau and Berry, 2004) as a 
finite element method, PCICE-FEM, for computing fluid flows of all speeds from low subsonic or nearly 
incompressible to high supersonic compressible. PCICE is a predictor-corrector method for approximating the 
solution of the conservative form of the Euler/Navier-Stokes equations: 
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t
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uh u k T i T
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where , ,u p, and T represent the fluid mass density, velocity, pressure, and temperature, respectively. In these 

equations,  is the shear stress, 
2t

u ue e  is the total energy density (where e is the internal energy density), 

t
t

e ph  is the specific total enthalpy, and i(T) is a temperature-dependent energy source term. Fourier's law for 

thermal conduction has been assumed with k denoting the thermal conductivity. These equations represent the 
balance of mass, momentum, and total energy, respectively. Because the PCICE method is not restricted to any 
specific equation of state, the general functional form 

( , )p f e  (4) 

will be utilized throughout this development. 

The objectives of this short note are two-fold. First, as in (Berry, 2006), it presents a simplified, yet generalized, 
description of the PCICE method, independent of specific spatial discretizations and equations of state. Second, the 
behavior of the PCICE method is examined in the strictly incompressible limit, the nearly incompressible limit
(c t>>l, where c is the acoustic wave speed, t represents the time resolution of interest, and l represents the 
characteristic length of interest), as well as in the fully compressible limit (c t<<l).

2.0 PCICE ALGORITHM 

The pressure-corrected implicit continuous-fluid Eulerian, or PCICE algorithm (Martineau and Berry, 
2004)(Berry, 2006), is an ideal basis with which to construct a fully coupled unified physics computer analysis code. 
This scheme, developed for all-speed compressible and nearly incompressible flows, improves upon previous 
pressure-based methods in terms of accuracy and numerical efficiency and gives a wider range of applicability. 
Because of the need to simulate flows with shocks it is essential that both the governing equations and their 
discretized approximations be in conservative form (Lax and Wendroff, 1960)(Leveque, 1990). Unlike other ICE 
variants that have been proposed in the past, most of which are entirely or partially in primitive form, the PCICE 
algorithm solves the conservative form of the governing equations. 

Other researchers have coupled, to varying extent, energy effects into ICE-type algorithms (Casulli and 
Greenspan, 1984)(Liles and Reed, 1978)(Westbrook, 1978) (Xiao, et al., 1997), but most have utilized, entirely or 
partially, nonconservative forms which led to algorithms which are restricted to smooth transient solutions (no 
discontinuity waves) or to steady solutions with sonic- and lower speeds. Patnaik, et. al. (Patnaik, et al., 1987) 
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developed a “barely implicit” ICE-type algorithm in conservative form which primarily couples the momentum and 
energy equations, similar to that of Cassuli and Greenspan (Casulli and Greenspan, 1984). The PCICE algorithm 
efficiently incorporates an even higher degree of implicitness into a very general conservative framework which can 
be utilized with either finite difference, finite volume, or finite element spatial representations. In the PCICE 
algorithm, the total energy equation is sufficiently coupled to the pressure Poisson equation to avoid iteration 
between the pressure Poisson equation and the pressure-correction equations. The pressure Poisson equation then 
has the time-advanced internal energy information it requires to yield an accurate implicit pressure. At the end of a 
time step, the conserved values of mass, momentum, and total energy are all pressure-corrected. As a result, the 
iterative process usually associated with pressure-based schemes is not required. This aspect has been found 
advantageous when computing transient compressible flows, including flows with significant energy deposition, 
chemical reactions, or phase change. 

The pressure-based PCICE solution algorithm is composed of two fractional steps. The first fractional step is 
composed of an explicit predictor-corrector Heun's method applied without the pressure gradient term present in the 
momentum equation (projection-type approach). In the second fractional step an implicit pressure correction is 
employed — an elliptic Poisson equation is solved for new-time pressures followed by an explicit correction with 
the new pressures. The pressure, momentum, and density in the governing hydrodynamic equations are treated in an 
implicit fashion. The so-called mass-momentum coupling is obtained by substituting the momentum balance 
equations into the mass conservation equation to eliminate time-advanced momentum-density (or mass flux) as an 
unknown. The time rate of density change in the mass conservation equation is then expressed in terms of pressure 
and internal energy change by employing the equation of state. These substitutions result in a single second-order 
elliptic differential equation in terms of pressure (pressure Poisson equation). This semi-implicit treatment has two 
advantages over explicit schemes. First, the acoustic component from the explicit time step size stability criteria is 
removed, thus eliminating the time integration stiffness that results from slow flows. Second, the pressure obtained 
with this semi-implicit treatment corrects the momentum to satisfy mass conservation requirements. This allows 
nearly incompressible flows to be simulated with compressible flow equations, which can be used to simulate flows 
from very low speeds to supersonic, including mixed flows with all flow speeds present. 

Though our original description of the PCICE algorithm was in the context of a finite-element based method, 
PCICE-FEM (Martineau and Berry, 2004), with an ideal gas equation of state, it can be generally implemented 
within the context of other spatial discretization methods (finite-difference, finite-volume, grid-free, etc.) (Berry, 
2006). Therefore, the description of the PCICE algorithm given here will be kept free of specific spatial 
discretizations and equations of state. 

3.0 TEMPORAL DISCRETIZATION 

The PCICE algorithm is a predictor-corrector method for solving the following time discretization of balance 
Eqns. (1), (2), and (3) for mass, momentum, and energy, respectively (for illustration, here simplified to the Euler 
equations): 

1 1( ) ( )
2

n n n nt u u  (5) 

11 12
2

n n n n ntu u t u u p p  (6) 

1 1 1 .
2

n n n nn n
t t t t

te e u h u h  (7) 
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The divergence term in the momentum equation is at a partially time-advanced level obtained by utilizing an 
explicit two-step, modified Heun’s method which will be described subsequently. In the original PCICE-FEM 
method (Martineau and Berry, 2004), an efficient Taylor-Galerkin method was used, however the modified Heun’s 
method exhibits lower phase errors near discontinuities. These equations are approximated with the following 
fractional two-step process. 

3.1 Fractional Step 1 
The first fractional step solves a portion of Eqns. (5)-(7), with a predictor step: 

* nn t u  (8) 

* n nu u t u u  (9) 
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followed by a corrector step: 
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It is important that the quantities , ( )u , and ( )te , for both the predictor (*) and corrector (**) steps, be 
advanced with high-order monotonic algorithms such as FCT, TVD, ENO, etc. or that they be smoothed with 
another appropriate smoother such as the variable diffusion method of Swanson and Turkel (Swanson and Turkel, 
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1992) used in the finite element version PCICE-FEM (Martineau and Berry, 2004). 

As with projection-type schemes, the pressure gradient is not included in the partial momentum balance Eqns. 
(9) and (13). Instead, it will be included implicitly in the next fractional step. Therefore the time step stability 
restriction for this fractional step is the satisfaction of the material Courant condition, or the Courant condition based 
on flow speed. If the shear stress, heat transfer, or energy source terms are included and treated explicitly, a stable 
time step based on these terms may be too restrictive. To obtain additional stability with larger time steps, such terms 
can be treated implicitly, either here in this fractional step, or in an additional (subsequent or previous) fractional 
step.

3.2 Fractional Step 2 
This fractional step seeks to solve the following portion of the original discretized Eqns. (5)-(7) to obtain new 

time pressure. 

Momentum 

1 ** 1

** 1

2

2

n n n

n n n

tu u p p

tu p p t p
 (16) 
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1 ** 1 *( ) ( )
2
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Total Energy 

1 ** 1 1 * *( ) ( ) ( ) ( )
2

n n n
t t t t

te e u h u h . (18) 

Eqn. (16) is required to achieve the target discretization, and is obtained by subtracting Eqn. (13) from Eqn. (6) 
using 

1 *
2

1
2

n nu u u u u u .

Similarly, Eqn. (17) is obtained by subtracting Eqn. (12) from (5) and Eqn. (18) results from subtracting Eqn. 
(14) from (7). 

The solution to Eqns. (16) – (18) is accomplished in a couple of steps, first by constructing a pressure Poisson 
equation which is solved to obtain pressures at the new-time level, then correcting the dependent variables with 
these new-time pressures. 
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The pressure Poisson equation is constructed by first substituting Eqn. (16) into Eqn. (5) 

**1 1

2 2
nn n n n nt tu p p t p u

or with rearrangement 

2 2
1 1

**

4 2

2

n n n n n
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t tp p p

t u u
. (19) 

From the equation of state (EOS) 

( , )p f e

one can obtain 

1
f
ep ef f

where  just indicates a perturbation or change in a quantity. This leads to the simple approximation 

**

1 1 **
** **

1 .n n n n n

f
ep p e e

f f
 (20) 

The pressure Poisson equation, in terms of 1n np p p , is finally obtained by substituting Eqn. (20) into 
Eqn. (19) giving 
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 (21) 

Numerical solution of this equation by an efficient, elliptic partial differential equation solver yields the new 
pressure distribution, 1np .

The other dependent variables are then updated, or corrected, with the new-time pressures as follows, in order:
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Momentum 
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4.0 COMPRESSIBLE AND INCOMPRESSIBLE LIMITS 

The objective here is to identify and examine various compressible limiting forms of the PCICE algorithm. 
Dividing the pressure Poisson Eqn. (21) by t , noting that the isentropic sound speed c  is given by 

2
2 ,p f fc

e

and introducing 

2
2

1 1 ,
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transforms pressure Poisson equation into 
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If Eqn. (26) is multiplied by a characteristic length, l , and a characteristic time,  
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The characteristic time c  approximates the time it takes an acoustic wave (traveling with velocity **c  to 
propagate the distance ( l ) characterizing the portion of our solution domain of interest and effecting the solution 
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change. While incompressible fluids don't physically exist, such a mathematical model can be conceived by 
supposing the time resolution of interest corresponds to t . Thus if the case is desired in which c t , then 
necessarily the resolution of the physical acoustic waves which produce the solution change is not of interest. 

Furthermore, a characteristic time u
l
u

 can be identified which approximates the time it takes to advect the 

solution a distance l .

4.1 Nearly Incompressible Limit  

In the nearly incompressible limit c ut , or in other words *c t l , which implies that 0c

t
 and 

the pressure Poisson Eqn. (27) effectively reduces to  
**2 1 22 .nn np u u p

t
 (28) 

Obviously the nearly incompressible limit also implies that * 1
u u t

lc
, or the Mach Number <<1.

4.2 Strictly Incompressible Limit 
Substituting the gradient of the equation of state 

2 2

1
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Ae ep e p e
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into the expanded third term on the right side of Eqn. (27) gives 
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In the strictly incompressible limit, 0, 0n
c c  (because sound speeds are infinite), so Eqn. (30) becomes 
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**0 0
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lc u u
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 (31) 

and the pressure Poisson Eqn. (27) reduces to 

2 1 ** ** 22 .n n np u u p
t

 (32) 

Note that 0 0n
c cand  imply, physically, that the characteristic length scale of interest l  is very 

small relative to the sound speed, as opposed to considering incompressible flow to possess an infinite sound speed, 
as some researchers choose. If 0nu , Eqn. (32) can be compared directly with the corresponding, traditional 
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MAC-type pressure Poisson equation (Harlow and Welch, 1965), without convective terms, 
**

2 1 .
n

n up
t

 (33) 

In these two equations, the computed pressure field will be consistent with the requirement for incompressible 
flow fields that the velocity fields be divergence-free. It is, however, an advantage to have density included at a 
partially updated time as in Eqn. (32) instead of being evaluated at old time as in the MAC-type Eqn. (33). 
Moreover, in the nearly incompressible limit Eqn. (28) additionally allows for potentially important spatial gradients 
in the density field to drive the pressure Poisson equation, and thus to be coupled with the pressure and velocity 
fields. This could be important, for example, in natural convection flows. It is apparent that if a primitive variable 
strictly incompressible approach is adopted along with a Boussinesque approximation, the only way bouyant forces 
could enter the pressure Poisson equation is via the velocity divergence term in Eqn. (32), which in turn comes from 
an explicit velocity (momentum) predictor equation. Unlike the nearly incompressible limit Poisson Eqn. (28), the 
density gradient effects would then be neglected. 

4.3 Fully Compressible Limit 
On the other end of the spectrum, for fully compressible flows **, ,u c t or c t l  and the pressure 

Poisson Eqn. (27) can be rewritten as 
**

1 **
**

** **

1 n n n
f

p p e ee u
t tf f

 (34) 

(as seen from Eqn. (17)) which is effectively a density-based compressible flow algorithm since it is easily 

recognized that the left side of this equation is an approximation for the term .
t

 In fact, the combination of 

fractional step 1 above with pressure Eqn. (34) and the correction Eqns. (22)-(25), to which the PCICE methods 
reduces in this limit, constitutes an explicit, predictor-corrector algorithm for fully compressible flows. 

5.0 EXAMPLES 

We give here three example simulations computed with PCICE-FEM in two spatial dimensions, one for each of 
the three limiting classes discussed above: strictly incompressible, nearly incompressible, and fully compressible. 
For the strictly incompressible regime we utilize the thermally driven flow in a square cavity. A von Karman vortex 
street behind a cylinder will be used as an example illustrating the nearly incompressible regime. For the fully 
compressible regime we simulate an intense spherical explosion, sometimes known as the Sedov blast wave 
problem. 
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Figure 1. THERMALLY DRIVEN CAVITY, Ra=106, Wall Temperature Difference=12K. 

5.1 Strictly Incompressible Example 
We consider the thermally driven, circulatory flow of air in an upright square domain (Heuveline, 2003). The 

two horizontal walls are defined as no-slip, adiabatic solid walls and the two vertical walls are defined as no-slip 
isothermal walls, 606 K on the left wall and 594 K on the right. Fig. 1 shows the Mach number isolines (color 
shading) along with the streamline contours for a Raleigh number of 106. This agrees very closely with the results 
obtained by (Heuveline, 2003) as well as those obtained assuming strictly incompressible flow with the Boussinesq 
approximation. Note, however, that if we changed the temperatures, e.g. to 960 K and 240 K keeping the Raleigh 
number the same (thus, viscosity must be raised), the heat flux would be much higher and density gradients would 
play a much more dominant role. Then the flow would be within the nearly incompressible regime, and the results 
would not agree with those obtained assuming incompressible flow with the Boussinesq approximation. This case is 
also shown in (Heuveline, 2003). 

5.2 Nearly Incompressible Example 
A common benchmark problem for transient algorithms employing the incompressible Navier-Stokes equations 

is the low Reynolds number flow around a cylinder in a cross flow. Beyond a Reynolds number of 40, the solution 
becomes unsteady and a periodic shedding of vortices occurs, known as the von Karman vortex street. These 
vortices are laminar for Reynolds numbers up to approximately 5000. Here we use our compressible, all-speed 
PCICE-FEM formulation with a free stream velocity equivalent to a Mach number of M=0.05. For a free stream 
temperature of 300 K and a free stream pressure of 101325 Pa, the free stream velocity is 17.36 m/s. The top and 
bottom walls are set to free-slip. Fig. 2 shows an instantaneous computed Mach number distribution. At this same 
time, the corresponding instantaneous computed temperature distribution is shown in Fig. 3. Note the small Mach 
number and the small temperature differences, due to the slight compressibility effects, are resolved on the vortex 
street, even though the flows are very slow. An incompressible solution would not be able produce this result. 
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Figure 2. VON KARMAN VORTEX STREET MACH NUMBER SOLUTION, time=4.0 s. 

Figure 3. VON KARMAN VORTEX STREET TEMPERATURE SOLUTION, time=4.0 s. 

5.3 Fully Compressible Example 
The Sedov blast wave Sedov, 1959) problem is characterized as an intense point explosion in a uniform ideal 

gas, initially at rest, with negligible initial pressure and finite initial density. This axisymmetrical PCICE-FEM 
(Martineau, 2007) simulation incorporates the initial conditions of the 1945 Trinity fission bomb in New Mexico and 
is compared to Sedov's analytical solution. A 100 m radius hemispherical domain is represented by one quadrant of a 
circular region integrated about the axis of symmetry (x-axis). The estimated explosion energy of the Trinity test is 
7.19 × 1013 J. To approximate this explosion, 3.595×1013 J (one-half the explosion energy for one-half of the sphere) 
is instantly deposited in the finite elements with an elemental distance less than 4.5 m from the origin. The balance 
of the domain is at atmospheric conditions, where pressure is initially set to P =9.41831×1010 Pa and temperature is 
initially set to T =2.62497×108 K. This constitutes a 941,831 to 1 drop in pressure for the first time step. The Sedov 
analytical solution for this explosion energy instantly deposited at the origin with an initial density of 0 =1.25kg/m3
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results in a shock wave location of 84.57 m from the origin at 8.0×10-3s after the explosion is initiated. Fig. 4 shows 
computed density distribution ( 0/ ) at this time and Fig. 5 shows a comparison of this density and the pressure 
solutions with Sedov's analytical solutions along the coordinate axis. Both compare very favorably with Sedov's 
solution.

Figure 4. SEDOV BLAST WAVE MASS DENSITY SOLUTION, time=8.0  10-3 s. 

Figure 5. SEDOV BLAST WAVE COMPUTED DENSITY AND PRESSURE 
COMPARISON TO ANALYTICAL, time=8.0  10-3 s. 

141



6.0 CONCLUSIONS 

The PCICE method has been shown to reduce to a variant of the traditional MAC-type method for strictly 
incompressible flows. However, most single phase flows of practical interest in nuclear energy systems do not fall 
within this narrowly defined restrictive class. Rather, they can be classed as nearly incompressible or fully 
compressible. For nearly incompressible flows (e.g. in natural convection flows where heat flux is significant the 
strictly incompressible flow assumption coupled with a Boussinesq approximation is physically unrealistic) the 
PCICE method has been shown to reduce to an appropriate generalization in which density gradients directly serve 
as a driving mechanism in the flow field. Unlike most other pressure-based methods which claim to allow for 
compressibility effects, the PCICE method is formulated in conservative form so that supersonic flows and flows 
containing strong shock waves can be easily considered. The PCICE method has been shown to approximate a 
conservative-form density-based method for such fully compressible flows. Since the method automatically treats a 
continuous transition or continuum of compressibility, mixed flows with low speed, even incompressible, in one 
region and high speed or shock waves in another can be treated. 
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1 Introduction

The aim of this report is the derivation of a diffuse interface model for the direct
numerical simulation of liquid-vapor interfaces appearing, for example, in the
vapor bubble growth due to the phase transition. The model accounts for the
phase compressibility, in particular that of the gas phase, surface tension effects
and phase transitions.

First, a rational derivation of the conservative part of the multiphase model is
elaborated by using Hamilton’s principle of stationary action. Then, dissipation
terms which are compatible with the entropy inequality, are introduced (see
examples of such a derivation in Gavrilyuk & Gouin (1999), and Gavrilyuk &
Saurel (2002)). The model generalizes the capillary model of Perigaud & Saurel
(2005) with the introduction of heat and mass transfer relaxation terms to
describe phase transition. The introduction of relaxation terms follows Saurel,
Petitpas & Abgrall (2008).

Two main classes of methods are commonly used for description of interfaces
separating fluids. One of them considers the interfaces as sharp discontinuities
: Lagrangian approaches (Hirt et al, 1974, Farhat & Roux, 1991), level-set
methods (Osher & Fedkiw, 2001, Sethian, 2001), tracking methods (Glimm et
al, 1998) and boundary integral methods ( Hou et al, 2001).

In the second approach the interfaces are diffused. The study of diffused
interfaces in compressible fluids is usually based on the second gradient theory
(also called in the literature as the theory of Korteweg-type fluids). This theory
works quite well in the vicinity of the thermodynamic critical point where there
no difference between a liquid and its vapor. The fluid density is considered
as the order parameter, and the fluid internal energy is then a function of the
density and the density gradient. There has been considerable efforts in this
direction (see a survey by D. M. Anderson, G. B. McFadden & A. A. Wheeler,
1998). Our aim is to study the interfaces far from the thermodynamic critical
point, hence the density can not be considered as the order parameter. A new
approach is needed.

2 Variational principle

Consider the following transport equation for a sharp interface given by the
equation φ(t,x) = 0 and having the interface velocity ui :

φt + ui · ∇φ = 0 (1)

In general, φ(t,x) is not discontinuous (Heaviside step function), but represents
a rather smooth transition zone. In this case, the following modified equation
should be resolved (Brackbill, Kothe & Zemach (1992), Sethian (1999), J. A.
Sethian & P. Smereka (2003)):

Dφ

Dt
= φt + u · ∇φ = 0 (2)
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Here u is the extension of the interface velocity ui off the interface. Now we have
to couple the equation (2) with the governing equations of non-equilibrium com-
pressible mixtures. First, we will construct a dissipation-free equilibrium model
by using Hamilton’s principle of stationary action (Gavrilyuk & Gouin, 1999,
Gavrilyuk & Saurel, 2002). Consider the Lagrangian which is the difference
between the kinetic and the potential energy of the mixture :

L = ρ

( |u|2
2

− ε

)
− λ

m
|∇φ|m (3)

Here u is the velocity (we will use a one-velocity description of the interfaces),
ρ is the mixture density, ε is the mixture specific internal energy :

ρ = α1ρ1 + α2ρ2, ε = y1ε1 + y2ε2

The volume fractions αi and the mass fractions yi are defined by

α1 + α2 = 1, y1 + y2 = 1, yi =
αiρi

ρ
= αiρiv, v =

1
ρ
.

The Gibbs identity is verified for each phase

θidηi = dεi + pid

(
1
ρi

)

where ρi , pi, εi, θi, ηi are the densities, pressures, specific energies, temper-
atures, and specific entropies of each component, respectively. The capillarity
parameter λ characterizes the diffuse interface. The interface is sharp if m = 1,
and thick if 1 < m < ∞. In other words, if m = 1, and φ is the Heaviside
step function, the integral of |∇φ| over the volume occupied by the mixture
is the total area of the interface separating the phases, and the constant λ is
the surface tension. In the case 1 < m < ∞ the separate interpretation of the
integral of |∇φ|m and the parameter λ is less obvious. Only the combination
λ
m |∇φ|m has a sense, it is a volume capillary energy.

Consider the Hamilton action

a =
∫ t2

t1

∫
D

LdtdD (4)

The Hamilton principle expresses that the particle trajectories are stationary
curves of (4) submitted to the following constraints

ρt + div (ρu) = 0, ηit + u · ∇ηi = 0, yt + u · ∇y = 0, φt + u · φ = 0. (5)

We will obtain now the governing equations by calculating the first variation
of Hamilton’s action submitted constraints (5). The variations of unknown
variables in Eulerian coordinates in terms of virtual displacements δx are given
by (Gavrilyuk & Gouin, 1999) :

δρ = −div (ρδx) , δηi = −∇ηi·δx, δy2 = −∇y2·δx, δu =
Dδx
Dt

−∂u
∂x

δx, δφ = −∇φ·δx
(6)
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In particular, the definition of δφ implies

δ (|∇φ|) =
∇φ · ∇ (δφ)

|∇φ| ,

δ

( |∇φ|m
m

)
= |∇φ|m−2∇φ · ∇ (δφ) =

= div
(
δφ|∇φ|m−2∇φ

) − div
(|∇φ|m−2∇φ

)
δφ =

= div
(
δφ|∇φ|m−2∇φ

)
+ div

(|∇φ|m−2∇φ
)∇φ · δx

But

div
(|∇φ|m−2∇φ

)∇φ = div
(|∇φ|m−2∇φ ⊗∇φ

) − |∇φ|m−2φ
′′∇φ =

= div

(
|∇φ|m−2∇φ ⊗∇φ − |∇φ|m

m
I

)
Hence,

δ

( |∇φ|m
m

)
= div

(
δφ|∇φ|m−2∇φ

)
+ div

(
|∇φ|m−2∇φ ⊗∇φ − |∇φ|m

m
I

)
· δx
(7)

By using (6) we can present the variation of (4) as a linear functional of the
virtual displacement δx :

δL = δρ
|u|2
2

+ ρu · δu−δE =

= −div (ρδx)
|u|2
2

+ ρu ·
(

dδx
dt

− ∂u
∂x

δx
)
−δE

This implies

δL =
∂

∂t
(ρu · δx)+div

((
ρu ⊗ u − ρ

|u|2
2

I

)
δx

)
−∂ρu

∂t
·δx−div(ρu⊗u)·δx−δE

(8)
The variation of the Lagrangian (8) contains also the the variation of the volume
energy δE which is not yet estimated.

E = ρε +
λ

m
|∇φ|m

The thermodynamic volume energy verifies the identity

d (ρε) = hdρ + ρ(h2 − h1)dy2 − (p2 − p1)dα2 + ρ
2∑

i=1

yiθidηi,

where
h = ε +

p

ρ
, p = α1p1 + α2p2, hi = εi +

pi

ρi
.
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This identity can also be written in the form

ρdh = dp + ρ(h2 − h1)dy2 − (p2 − p1)dα2 + ρ

2∑
i=1

yiθidηi (9)

Finally, the variation of the energy E is given by

δE = hδρ + ρ(h2 − h1)δy2 − (p2 − p1)δα2 + ρ

2∑
i=1

yiθiδηi + λδ

( |∇φ|m
m

)

Since δα2 varies independently (it is not related with the virtual displacement
δx), one has the equilibrium condition

p2 − p1 = 0 (10)

Then the variation of the the total internal energy simplifies :

δE = −hdiv (ρδx) − ρ(h2 − h1)∇y2 · δx − ρ
2∑

i=1

yiθi∇ηi · δx + λδ

( |∇φ|m
m

)
=

= −div (hρδx)+ρ∇h ·δx−ρ(h2−h1)∇y2 ·δx−ρ

2∑
i=1

yiθi∇ηi ·δx+λδ

( |∇φ|m
m

)

Using (9) we get

δE = −div (hρδx) + ∇p · δx + λδ

( |∇φ|m
m

)
=

= −div
(
hρδx+λ|∇φ|m−2∇φ (∇φ · δx)

)
+∇p·δx+λdiv

(
|∇φ|m−2∇φ ⊗∇φ − |∇φ|m

m
I

)
·δx.

Finally, taking into account (7) the variation of the Lagrangian will be

δL = −
(

∂ρu
∂t

+ div

(
ρu ⊗ u+pI + λ

(
|∇φ|m−2∇φ ⊗∇φ − |∇φ|m

m
I

)))
· δx+

+
∂

∂t
(ρu · δx) + div

((
ρu ⊗ u − ρ

|u|2
2

I

)
δx+hρδx+λ|∇φ|m−2∇φ (∇φ · δx)

)
,

The terms
∂

∂t
(ρu · δx)

and

div

((
ρu ⊗ u − ρ

|u|2
2

I

)
δx+hρδx+λ|∇φ|m−2∇φ (∇φ · δx)

)
are linear with respect to δx, and hence they vanish after using the Gauss-
Ostrogradsky theorem or integration with respect to time, because δx|∂D = 0
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and δx|t=t1
= δx|t=t2

= 0.To satisfy the condition δL = 0 for any δx, the
momentum equation should be verified :

∂ρu
∂t

+div (ρu ⊗ u − T ) = 0 (11)

with the following symmetric stress tensor :

T = −pI − λ

(
|∇φ|m−2∇φ ⊗∇φ − |∇φ|m

m
I

)
, p = α1p1 + α2p2 = p1 = p2.

(12)
T can be given into the following equivalent form :

T = −
(

p + λ
m − 1

m
|w|m

)
I + λ|∇φ|mΠ = −PI + λ|∇φ|mΠ.

Here we introduced the total pressure

P = p + λ
m − 1

m
|w|m. (13)

and the projector operator on the surface φ = const in the normal direction :

Π = I − ∇φ

|∇φ| ⊗
∇φ

|∇φ| , Π = Π2. (14)

In the case of sharp interfaces (m = 1) the stress tensor is

T = −pI + λ|∇φ|Π, Π = I − ∇φ

|∇φ| ⊗
∇φ

|∇φ| .

A non-conservative form of the momentum equation can be written by using
the identity

∇ (|∇φ|) =
φ′′∇φ

|∇φ| =
∂w
∂x

w
|w| =

(
∂w
∂x

)T w
|w|

because
∂w
∂x

−
(

∂w
∂x

)T

= 0.

Then
divT = −∇P + λdiv (|∇φ|mΠ) =

= −∇P + λdiv

(
|∇φ|mI − |∇φ|m−1 ∇φ

|∇φ| ⊗ ∇φ

)
=

= −∇P + λ(m − 1)|∇φ|m−2φ′′∇φ − λdiv

(
|∇φ|m−1 ∇φ

|∇φ|
)
∇φ =

= −∇P+λ(m−1)|∇φ|m−2φ′′∇φ−λ|∇φ|m−1div

( ∇φ

|∇φ|
)
∇φ−λ (m − 1) |∇φ|m−2 (∇ (|∇φ|) · ∇φ)

|∇φ| ∇φ =
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= −∇P−λ|∇φ|m−1div

( ∇φ

|∇φ|
)
∇φ+λ(m−1)|∇φ|m−2

(
φ′′∇φ − (∇ (|∇φ|) · ∇φ)

|∇φ| ∇φ

)
=

= −∇P−λ|∇φ|m−1div

( ∇φ

|∇φ|
)
∇φ+λ(m−1)|∇φ|m−2

(
φ′′∇φ − ((φ′′∇φ) · ∇φ)

|∇φ|2 ∇φ

)
=

= −∇P−λ|∇φ|m−1div

( ∇φ

|∇φ|
)
∇φ+λ(m−1)|∇φ|m−2

(
I − ∇φ

|∇φ| ⊗
∇φ

|∇φ|
)

φ′′∇φ =

= −∇P − λ|∇φ|m−1div

( ∇φ

|∇φ|
)
∇φ + λ(m − 1)|∇φ|m−2Πφ′′∇φ.

Consequently, another useful form of the momentum equation is :

∂ρu
∂t

+div (ρu ⊗ u + PI) = −λ|w|m−1div

(
w
|w|

)
w+λ(m−1)|w|m−2Π

∂w
∂x

w ≡λdiv (|∇φ|mΠ) .

The conservative form of the equation of energy following from the entropy
equations is : (

ρ |u|2
2

+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, (15)

E = ρε +
λ

m
|∇φ|m.

Another useful form of the energy equation is :(
ρ |u|2

2
+ E

)
t

+div

(
u

(
ρ |u|2

2
+ E

)
+ Pu

)
= div(λ|∇φ|mΠ)·u+λ|∇φ|mtr

(
Π

∂u
∂x

)
.

Taking into account the isentropic character of motion, the equilibrium condition
(10) can also be rewritten in the form :

Dα2

Dt
+ Kdivu = 0, K =

ρ2c
2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

.

Here c2
i are sound velocities of each component :

c2
i =

∂pi(ρi, ηi)
∂ρi

∣∣∣∣
ηi=const

The system of equations governing compressible fluids with capillary effects is :

ρt + div (ρu) = 0,

y2t + u · ∇y2 = 0,

φt + u · ∇φ = 0,
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∂ρu
∂t

+div (ρu ⊗ u − T ) = 0, T = −PI + λ|∇φ|m
(

I − ∇φ

|∇φ| ⊗
∇φ

|∇φ|
)

,

α2t + u · ∇α2 + Kdivu = 0, K =
ρ2c

2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

,

ηit + u · ∇ηi = 0,

with the energy equation :(
ρ |u|2

2
+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, E = ρε +

λ

m
|∇φ|m.

The initial conditions for ∇φ can be taken the same as for ∇y2 : the order
parameter φ can be identified with the mass fraction. If we introduce

w =∇φ

then, taking the gradient of the transport equation for φ, we can write it in the
form

wt + ∇(w · u) = 0.

It means that the equation for φ can be eliminated and replaced by the following
set of equations :

wt + ∇(w · u) = 0, rot (w) = 0.

An alternative formulation of the equilibrium model describing diffused inter-
faces is :

ρt + div (ρu) = 0, (16)

wt + ∇(w · u) = 0, rot (w) = 0,

∂ρu
∂t

+div (ρu ⊗ u − T ) = 0, T = −PI + λ|w|mΠ, Π = I − w
|w| ⊗

w
|w| ,

α2t + u · ∇α2 + Kdivu =0, K =
ρ2c

2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

,

y2t + u · ∇y2 = 0,

ηit + u · ∇ηi = 0.

It admits the same energy equation :(
ρ |u|2

2
+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, E = ρε +

λ

m
|∇φ|m.

The present model generalizes the model in Perigaud & Saurel (2005) where the
volume fraction was taken as the order parameter while here the mass fraction
is the order parameter.
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3 Hyperbolicity of the diffuse interface equilib-
rium model

The aim of this Section is to study the hyperbolicity of the model (16). Without
loss of generality, we consider the one-dimensional case where the constraint
rot (w) = 0 is automatically verified. In one-dimension, the model reads :

Dρ

Dt
+ ρux = 0, ηit + uηix = 0, y2t + uy2x = 0, wt + (uw)x = 0, (17)

Dα2

Dt
+ Kux =0, K =

ρ2c
2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

.

ρ
Du

Dt
+

(
p +

λ (m − 1)
m

|w|m
)

x

= 0,

It can also be rewritten in terms of variables ρ, u, ηi, y2, w and p. Indeed, we
have :

dp = d (α1p1 + α2p2) = (p2 − p1) dα2+α2c
2
2d

(
y2ρ

α2

)
+α1c

2
1d

(
y1ρ

α1

)
+

∂p1

∂η1
dη1+

∂p2

∂η2
dη2 =

= α2y2c
2
2d

(
ρ

α2

)
+α1y1c

2
1d

(
ρ

α1

)
=

(
y2c

2
2 + y1c

2
1

)
dρ+

(
y1c

2
1ρ

α1
− y2c

2
2ρ

α2

)
dα2 =

=
(
y2c

2
2 + y1c

2
1

)
dρ +

(
y1c

2
1

α1
− y2c

2
2

α2

)
ρdα2.

But
Dα2

Dt
− K

ρ

Dρ

Dt
= 0, K =

ρ2c
2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

. (18)

Taking into account (18) we finally obtain :

dp = c2
wdρ,

where the Wood sound velocity cw is defined by

1
ρc2

w

=
α1

ρ1c2
1

+
α2

ρ2c2
2

.

Consequently, the one-dimensional system reads :

pt + upx + ρc2
wux = 0, (19)

ut+uux+
px

ρ
+

λ (m − 1)
ρ

|w|m−1 sgn(w)wx = 0,

wt + uwx + wux = 0,

α2t + uα2x + Kux = 0,
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y2t + uy2x = 0,

ηit + uηix = 0, i = 1, 2

We introduce the vector of unknowns

UT = (p, u, w, α2, y2, η1, η2)

and present (19) in a condensed form :

Ut + AUx = 0

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρc2
w 0 0 0 0 0

1
ρ u λ(m−1)

ρ |w|m−1 sgn(w) 0 0 0 0
0 w u 0 0 0 0
0 K 0 u 0 0 0
0 0 0 0 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The eigenvalues of the matrix A are :

μ1,2,3,4,5 = u

μ6,7 = u ±
√

c2
W +

λ (m − 1)
ρ

|w|m

It can be shown that there exist exactly seven independent eigenvectors of A.
Hence, the system is hyperbolic.

4 Jump relations across discontinuities

The system of conservation laws for unknowns (ρ, y2,w = ∇φ,u,p, η1, η2) can
be rewritten in the form :

ρt + div (ρu) = 0, (ρy2)t + div (ρy2u) = 0,

wt + ∇(w · u) = 0,

rot w = 0,

∂ (ρu)
∂t

+div (ρu ⊗ u − T ) = 0, T = −PI + λ|w|mΠ,(
ρ |u|2

2
+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, E = ρε +

λ

m
|w|m.
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The volume fraction and entropies are related by

p1

(
(1 − α2) (1 − y2)

ρ
, η1

)
= p2

(
α2y2

ρ
, η2

)
= p

It follows from here that on discontinuities with the normal vector n and the
tangent vectors τ , and propagating with the normal velocity Dn we have :

[ρ (u · n−Dn)] = 0, (20)

[ρy2 (u · n−Dn)] = 0,

[w · τ ] = 0, [(w · u)n−Dnw] = 0,

[ρu (u · n−Dn) − Tn] = 0,[
(u · n−Dn)

(
ρ |u|2

2
+ E

)
− n·Tu

]
= 0.

We distinguish two types of discontinuities : contact discontinuities (or inter-
faces) where u · n−Dn = 0 and shock waves where u · n−Dn �= 0. Moreover,
in the following we will always consider a simplified case where the direction of
the normal vector to the discontinuity coincides with the vector w :

n =
w
|w|

In particular,
w · τ = 0, w = (w · n)n.

We call these discontinuities homogeneous in tangential direction.

4.1 Contact discontinuities

We consider first the interfaces u · n−Dn = 0. The first relation

[w · τ ] = 0

and the second relation for w

[(w · u)n−Dnw] = 0

are automatically verified. Indeed,

[w · u−Dnw · n] = [w· ((u · n)n+ (u · τ) τ)−Dnw · n] = [(w · τ) (u · τ)] = 0.
(21)

On the contact interface we may have the discontinuity of y2 and w · n. The
momentum equation on the contact discontinuity gives :

− [Tn] =
[
Pn + λ

(|w|m−2w (w · n) − |w|mn
)]

= [P ]n = 0.
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The energy equation gives a relation which is automatically fulfilled :

− [n·Tu] = − [u·Tn] =
[
u· (Pn + λ

(|w|m−2w (w · n) − |w|mn
))]

=

= [(u · n) P ] = 0.

Finally, the relations on the contact discontinuity are :

w · τ = 0, [u · n] = 0, [P ] = 0. (22)

However, a priori,

[y2] �= 0, [u · τ ] �= 0, [w · n] �= 0.

5 Compressive discontinuities

Let us consider the Rankine-Hugoniot relations for shocks : u · n−Dn �= 0 at
the condition

w · τ = 0.

The mass conservation laws imply :

[ρ (u · n−Dn)] = 0,

[y2] = 0.

The same representation of n can be taken :

n =
w
|w|

The momentum equation is then equivalent to

[ρu (u · n−Dn) + Pn] = 0

It gives two relations[
ρ (u · n−Dn)2 + P

]
= 0, [u · τ ] = 0.

Then the equation for w

[w · u−Dnw · n] = [w· ((u · n)n+ (u · τ) τ)−Dnw · n] =

= [(w · n) ((u · n) − Dn) + (w · τ) (u · τ)] =
[
(w · n)

ρ
ρ ((u · n) − Dn)

]
.

implies [
w · n

ρ

]
= 0
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Or [ |w|
ρ

]
= 0.

Finally, the energy equation[
(u · n−Dn)

(
ρ |u|2

2
+ E

)
+ n·Tu

]
= 0

can be transformed to[
E + p + λm−1

m |w|m
ρ

+
(u · n−Dn)2

2

]
=

[
E

ρ
+

P

ρ
+

(u · n−Dn)2

2

]
= 0,

E = ρε +
λ

m
|∇φ|m, P = p + λ

m − 1
m

|w|m.

To summarize, the shock relations in the case w · τ = 0 are

[ρ (u · n−Dn)] = 0, [y2] = 0, (23)

[u · τ ] = 0,

[
w · n

ρ

]
= 0,

[
ρ (u · n−Dn)2 + P

]
= 0,[

E

ρ
+

P

ρ
+

(u · n−Dn)2

2

]
= 0.

We will introduce the mass flux through the shock surface

q = ρ (u · n−Dn)

Let index “0” means the state before the front. We obtain then the equation of
the Rayleigh line (generalized)

P − P0 + q2(v − v0) = 0

and the Hugoniot curve (generalized)

E

ρ
− E0

ρ0
+

1
2

(P + P0) (v − v0) = 0,

or, equivalently,

ε +
λv

m
|w|m − ε0 − λv0

m
|w0|m +

1
2

(P + P0) (v − v0) = 0.
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5.1 The case of sharp interfaces (m = 1)

It follows from (13) that in the case of sharp interfaces (m = 1) the Rankine-
Hugoniot relations for the shocks are :

p − p0 + q2(v − v0) = 0, ε − ε0 +
1
2

(p + p0) (v − v0) = 0,

because
P = p, v|w| = v|w · n| = v0|w0·n| = v0|w0|.

5.2 General case (m > 1)

In general case, we have

P − P0 + q2(v − v0) = 0, P = p + λ
m − 1

m
|w|m = p + λ

m − 1
m

(
ρ

ρ0

)m

|w0|m,

and the Hugoniot curve (generalized) is :

ε − ε0 +
λ|w0|mv

m

((
ρ

ρ0

)m

− ρ

ρ0

)
+

1
2

(P + P0) (v − v0) = 0.

In both situations, one more relation is necessary to determine the volume
fraction after the shock.

5.3 Additivity principle

As mentioned before, one more relation is needed to determine the volume
fraction jump. This problem is well known in the mechanics of the heterogeneous
mixtures, and its solution is given through the “additivity principle” which is
mainly due to Russian experimentalists Altschuler, and Dremin and Karpukhin
(see the article by Saurel et al 2007 where this principle is discussed and its
partial justification proposed). This principle says that in a multiphase shock
front (which is indeed dispersed) each material follows its own Hugoniot. This
principle was verified experimentally in a large scale of pressures and densities.
We will generalize the additivity principle to our case :

εi − εi0 +
λ|w0|mvi

m

((
ρ

ρ0

)m

− ρ

ρ0

)
+

1
2

(P + P0) (vi − vi0) = 0, i = 1, 2.

(24)
Summing (24) multiplied by yi we obtain the conservation of the total energy.
In the case of sharp interfaces (m = 1) this corresponds exactly to the classical
additivity principle (see Saurel et al 2007).

If we take the internal energies of components in the form :

εi = εi (vi, p) = εi

(
vi, P − λ

m − 1
m

(
ρ

ρ0

)m

|w0|m
)

,
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we can find implicitly from (24)

vi = vi (P, v)

Then we can determine the Hugoniot curve v as a function of P from the implicit
equation :

v = y1v1 (P, v) + y2v2 (P, v) .

6 Mechanical relaxation

The mechanical equilibrium model has several disadvantages which are dis-
cussed in the paper by Saurel, Petitpas & Berry (2008). The main disadvan-
tage is related to the fact that the equilibrium sound speed is not a mono-
tone function with respect to the volume fraction. Another issue is related to
the non-conservative volume fraction equation that yields to positivity preserv-
ing difficulties when rarefaction or compression waves are present at interfaces.
This is why a pressure non-equilibrium model is preferred. The pressure non-
equilibrium models seem more complex, but it simplifies numerical resolution
with operator splitting strategies. The corresponding non-equilibrium model is
:

ρt + div (ρu) = 0, (ρy2)t + div (ρy2u) = 0, (25)

wt + ∇(w · u) = 0,

rot w = 0,

∂ρu
∂t

+div (ρu ⊗ u − T ) = 0,

T = −PI + λ|w|mΠ = −
(

p + λ
m − 1

m
|w|m

)
I + λ|w|m

(
I − w

|w| ⊗
w
|w|

)
,

(
ρ |u|2

2
+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, E = ρε +

λ

m
|w|m,

Dα2

Dt
= μ (p2 − p1) .

The initial conditions for w should be agreed with those of ∇y2 :

w|t=0 = ∇y2|t=0 .

It implies that for any time
w =∇y2

Closure of system (25) needs an additional energy or entropy equation, that has
to be determined. To this aim, let us note that the energy equation can be
transformed :

ρ
Dε

Dt
+pdiv (u)+

λ

m
((|w|m)t + div (u|w|m))+λtr

((
|w|m−2w ⊗ w − |w|m

m
I

)
∂u
∂x

)
= 0.
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But
1
m

((|w|m)t + div (u|w|m)) + tr

((
|w|m−2w ⊗ w − |w|m

m
I

)
∂u
∂x

)
=

= |w|m−2w · wt + |w|m−2u·
(

∂w
∂x

)T

w+|w|m−2w·∂u
∂x

w =

= |w|m−2

(
w · wt + u·

(
∂w
∂x

)T

w + w·∂u
∂x

w

)
= 0

because (
∂w
∂x

)T

−
(

∂w
∂x

)
= 0.

Hence,

ρ
Dε

Dt
+ pdiv (u) = 0.

But

dε = y1dε1 + y2dε2 = y1 (θ1dη1 − p1dv1) + y2(θ2dη2 − p2dv2) =

= y1θ1dη1 + y2θ2dη2 − p1d (y1v1) − p2d (y2v2) =

= y1θ1dη1 + y2θ2dη2 − pdv + (p1 − p2) vdα2.

Hence, it is equivalent to :

ρ

(
y1θ1

Dη1

Dt
+ y2θ2

Dη2

Dt

)
= (p2 − p1)

Dα2

Dt
= μ (p2 − p1)

2 ≥ 0. (26)

The equations for the entropy of each component can be taken in the form (for
any pI) :

ρy1θ1
Dη1

Dt
= (p1 − pI)

Dα1

Dt
, ρy2θ2

Dη2

Dt
= (p2 − pI)

Dα2

Dt

Summing them, we obtain (26).
The following definition of pI is proposed in Saurel, Gavrilyuk and Renaud,

2003 :
pI =

Z2p1 + Z1p2

Z1 + Z2
,

where Zi are acoustical impedances. Then

p1 − pI =
Z1 (p1 − p2)

Z1 + Z2
, p2 − pI =

Z2 (p2 − p1)
Z1 + Z2

we obtain

ρy1θ1
Dη1

Dt
=

μZ1

Z1 + Z2
(p1 − p2)

2
, ρy2θ2

Dη2

Dt
=

μZ2

Z1 + Z2
(p2 − p1)

2

These two equations achieve the closure of system (25) . The entropy inequality
is fulfilled :

ρ

(
y1

Dη1

Dt
+ y2

Dη2

Dt

)
=

μ

Z1 + Z2

(
Z1

θ1
+

Z2

θ2

)
(p2 − p1)

2 ≥ 0.
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6.1 Hyperbolicity of the non-equilibrium model

As in the case of the pressure equilibrium model, it is sufficient to study the
one-dimensional case. The equations are

ρt + (uρ)x = 0, (27)

ut+uux+
px

ρ
+

λ (m − 1)
ρ

|w|m−1 sgn(w)wx = 0,

wt + uwx + wux = 0,

α2t + uα2x = μ (p2 − p1) ,

y2t + uy2x = 0,

ηit + uηix = 0, i = 1, 2

We introduce the vector of unknowns

VT = (ρ, u, w, α2, y2, η1, η2)

Taking into account the relation

px =
(
y1c

2
1 + y2c

2
2

)
ρx +

(
p2 − p1 + ρ1c

2
1 − ρ2c

2
2

)
α2x + ρ

(
c2
2 − c2

1

)
y2x,

we present (27) in the matrix form

Vt + BVx = 0,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρ 0 0 0 0 0
y1c2

1+y2c2
2

ρ u λ(m−1)
ρ |w|m−1 sgn(w) p2−p1+ρ1c2

1−ρ2c2
2

ρ c2
2 − c2

1 0 0
0 w u 0 0 0 0
0 0 0 u 0 0 0
0 0 0 0 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The system is hyperbolic with eigenvalues of the matrix B given by :

μ1,2,3,4,5 = u, μ6,7 = u ±
√

c2
f +

λ (m − 1)
ρ

|w|m,

where
c2
f = y1c

2
1 + y2c

2
2

is a frozen sound speed. The sound speed presents a monotonic behavior versus
the mass and volume fraction. This facilitates numerical resolution (Saurel,
Petitpas & Berry, 2008). The Riemann solver can be constructed in the same
way as in this reference. The corresponding shock relations take into account
the conservation of the volume fraction.
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7 Computational results

To illustrate the method capability to treat capillary flows, two test cases are
proposed. An oscillating square droplet is presented to highlight surface tension
effects. An impact between two droplets is then presented to show that the
method is able to deal with interface disappearance and interface creation. No
phase transition is considered. In both computations, the liquid is governed
by the stiffened gas equation of state with parameters γliq = 2.1 and p∞,liq =
107 Pa. The surrounding air is governed by the ideal gas equation of state with
polytropic exponent γair = 1.4.

7.1 Oscillating droplet

Consider a square liquid droplet placed in air. Initially, the pressure is set 1 atm
every where in the computational domain. A 100x100 cells mesh is used. The
initial shape of the droplet is given hereafter:

Figure 1: Initial condition for the square droplet

Due to surface tension effects λ = 1000 N/m, the droplet tends to decrease
its surface energy. This implies oscillations up to the equilibrium state. Results
are presented at different instants.

At steady state, the droplet finds a circular shape of radius 0.11 m with an
average pressure of 8600 Pa. This is in agreement with the Laplace law which
predicts a pressure jump of 9090 Pa. The error in the pressure jump is lower
than 6%.

7.2 Droplets impact

A collision between two liquid droplets is presented. The two droplets move at
the relative velocity 10 m/s. The surface tension coefficient λ is taken equal to
850 N/m . A 150x150 cells mesh is used. The two droplets first merge. Then,
the intensity of the impact induces an expansion phase. During this expansion,
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Figure 2: Oscillation of the droplet due to surface tension effects. Results are
shown at instants t1 = 15 ms, t2 = 34 ms, t3 = 53 ms and t4 = 72 ms

the droplet breaks up and two new droplets appears. Then, the droplets oscillate
to restore a circular shape.

7.3 Phase transition modelling

The following natural splitting can be done when both phenomena – relaxation
and phase transition – are present. At the first step, the relaxation takes place.
When the mechanical equilibrium is attained :

p1 (ρ1, η1) = p2 (ρ2, η2)

then the phase transition takes place. The first step being described previously
(relaxation towards to equilibrium), we need only to describe the second step.
We will take the equations of mass in the form (see Saurel, Petitpas & Abgrall,
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2008) :
∂ (ρyk)

∂t
+ div (ρyku) = ρ

Dyk

Dt
= ρẏk, (28)

The gradient w of the order parameter φ verifies the equation :

wt + ∇(w · u) = 0.

The initial condition for w can be agreed with those of ∇y2 at t = 0 :

w|t=0 = ∇y2|t=0

However, now it does not guarantee that for any time

w =∇y2.

When mass transfer terms are added in equation (28), the next step is to de-
termine the associated volume fraction transfer. They are determined at the
basis of the entropy production analysis in each phase and in the mixture. To
determine entropy equations, the following analysis has to be done. The energy
equation (

ρ |u|2
2

+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0

can be transformed to

ρ
Dε

Dt
+pdiv (u)+

λ

m
((|w|m)t + div (u|w|m))+λtr

((
|w|m−2w ⊗ w − |w|m

m
I

)
∂u
∂x

)
= 0.

But

1
m

((|w|m)t + div (u|w|m)) + tr

((
|w|m−2w ⊗ w − |w|m

m
I

)
∂u
∂x

)
=

= |w|m−2w · wt + |w|m−2u·
(

∂w
∂x

)T

w+|w|m−2w·∂u
∂x

w =

= |w|m−2

(
w · wt + u·

(
∂w
∂x

)T

w + w·∂u
∂x

w

)
=

= |w|m−2

(
w · wt + u·

((
∂w
∂x

)T

− ∂w
∂x

)
w + u · ∂w

∂x
w + w·∂u

∂x
w

)
= 0

Hence,

ρ
Dε

Dt
+ pdiv (u) = 0.

Since
dε = y1θ1dη1 + y2θ2dη2 − pdv + (h2 − h1) dy2,
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the energy equation is equivalent to :

y1θ1
Dη1

Dt
+ y2θ2

Dη2

Dt
+ (h1 − h2) ẏ1 = 0. (29)

Taking the material derivative of the pressure equilibrium condition we obtain :

Dp1

(
ρy1

α1
, η1

)
Dt

−
Dp2

(
ρy2

α2
, η2

)
Dt

= 0.

It is equivalent to

c2
1

(
ρ

α1

Dy1

Dt
+

y1

α1

Dρ

Dt
− ρy1

α2
1

Dα1

Dt

)
+ ρ1θ1Γ1

Dη1

Dt
= (30)

= c2
2

(
ρ

α2

Dy2

Dt
+

y2

α2

Dρ

Dt
− ρy2

α2
2

Dα2

Dt

)
+ ρ2θ2Γ2

Dη2

Dt

Here Γi are the Grüneisen coefficients :

Γi =
1

ρiθi

∂pi

∂ηi

We can solve equations (29), (30) to find finally

ρy1y2θ1

(
Γ1

α1
+

Γ2

α2

)
Dη1

Dt
=

= y2

(
c2
2

(
ρ

α2

Dy2

Dt
+

y2

α2

Dρ

Dt
− ρy2

α2
2

Dα2

Dt

)
− c2

1

(
ρ

α1

Dy1

Dt
+

y1

α1

Dρ

Dt
− ρy1

α2
1

Dα1

Dt

))
−

−ρ2Γ2 (h1 − h2) ẏ1,

ρy1y2θ2

(
Γ1

α1
+

Γ2

α2

)
Dη2

Dt
=

= −y1

(
c2
2

(
ρ

α2

Dy2

Dt
+

y2

α2

Dρ

Dt
− ρy2

α2
2

Dα2

Dt

)
− c2

1

(
ρ

α1

Dy1

Dt
+

y1

α1

Dρ

Dt
− ρy1

α2
1

Dα1

Dt

))
−

−ρ1Γ1 (h1 − h2) ẏ1.

Taking the volume fraction equation in the form :

Dα1

Dt
= Kdiv (u) +

(
Γ1
α1

+ Γ2
α2

)
ρ1c2

1
α1

+ ρ2c2
2

α2

Q1 +
ρ

ρI
ẏ1,

K =
ρ2c

2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

, Q1 = H(θ2 − θ1), H = const, ρI =
ρ1c2

1
α1

+ ρ2c2
2

α2

c2
1

α1
+ c2

2
α2

,
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ẏ1 = ν (g2 − g1) , gi = hi − θηi, θ =
θ1θ2

θI
, θI =

Γ1θ1
α1

+ Γ2θ2
α2

Γ1
α1

+ Γ2
α2

we obtain the governing equations in the form presented in Saurel, Petitpas and
Abgrall (2008). After each step of calculation, we have to re-initialize the initial
conditions for w by taking

w = ∇y2.

For completeness, we present the full system of governing equations describing
the equilibrium phase transitions :

∂ (ρyk)
∂t

+ div (ρyku) = ρẏk, (31)

wt + ∇(w · u) = 0,

∂ρu
∂t

+div (ρu ⊗ u − T ) = 0,

T = −PI + λ|w|mΠ = −
(

p + λ
m − 1

m
|w|m

)
I + λ|w|m

(
I − w

|w| ⊗
w
|w|

)
,

(
ρ |u|2

2
+ E

)
t

+ div

(
u

(
ρ |u|2

2
+ E

)
− Tu

)
= 0, E = ρε +

λ

m
|w|m,

Dα1

Dt
= Kdiv (u) +

(
Γ1
α1

+ Γ2
α2

)
ρ1c2

1
α1

+ ρ2c2
2

α2

Q1 +
ρ

ρI
ẏ1,

K =
ρ2c

2
2 − ρ1c

2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

, Q1 = H(θ2 − θ1), H = const, ρI =
ρ1c2

1
α1

+ ρ2c2
2

α2

c2
1

α1
+ c2

2
α2

,

ẏ1 = ν (g2 − g1) , gi = hi − θηi, θ =
θ1θ2

θI
, θI =

Γ1θ1
α1

+ Γ2θ2
α2

Γ1
α1

+ Γ2
α2

.

8 Conclusion

Two mathematical models corresponding to two steps in calculation of diffused
liquid-gas interfaces have been built. The first step corresponds to the model
(25) where only the pressure relaxation is calculated. The phase transition is
“frozen” at this step. During the second step, where the mechanical equilibrium
is achieved, the phase transition takes place. Compared with ill-posed mathe-
matical models based on the Van-der-Waals type equations of state, our model
is hyperbolic and uses the equations of state of individual components. The
ability of the model to describe correctly physical phenomena is demonstrated
on the non-equilibrium motion of droplets in a gas. The capability of the model
to describe phase transition phenomena was previously demonstrated in Saurel,
Petitpas & Abgrall (2008).
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Figure 3: Impact of two droplets moving at relative velocity of 10 m/s. Results
are shown at instants t0 = 0 ms, t1 = 21 ms, t2 = 52 ms, t3 = 98 ms,
t4 = 120 ms and t5 = 155 ms
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Chapter 6 
DEM Model for Flows in Ducts of Variable 

Cross-Section
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DEM model for flows in ducts of variable cross sections 

Typically, multiphase modeling begins with an averaged (or homogenized) system of partial 
differential equations (traditionally ill-posed) then discretizes this system to form a numerical 
scheme.  This presents problems for the numerical approximation of non-conservative terms at 
discontinuities (interfaces, shocks) as well as unwieldy treatment of fluxes with seven waves.  To 
solve interface problems without conservation errors and to avoid this questionable 
determination of average variables and the numerical approximation of the non-conservative 
terms in conjunction with 2 velocity mixture flows we employ a new homogenization method 
known as the Discrete Equations Method (DEM).  Contrary to conventional methods, the 
averaged equations for the mixture are not used, and this method directly obtains a (well-posed) 
discrete equation system from the single-phase system to produce a numerical scheme which 
accurately computes fluxes for arbitrary numbers of phases and solves non-conservative 
products.  The method effectively uses a sequence of single phase Riemann equation solves.  
Phase interactions are accounted for by Riemann solvers at each interface.  Flow topology can 
change with changing expressions for the fluxes.  Non-conservative terms are correctly 
approximated.  Some of the closure relations missing from the traditional approach are 
automatically obtained.  Lastly, we can sometimes identify the continuous system induced by the 
discrete equation.  This can be very useful from a theoretical standpoint.  In this chapter we 
outline the construction of a DEM model for 1-D  two compressible phases in ducts of spatially 
variable cross-section to test this approach.  For the first time, we demonstrated on a converging-
diverging two-phase nozzle that this well-posed 2 pressure, 2 velocity model could be integrated 
to a meaningful steady-state with both phases treated as compressible.  In the following chapter 
we give a review of the general DEM method and investigates the modeling of mass transfer 
between compressible multiphase flows within the context of DEM through the development of 
a Reactive Riemann solver (RDEM) for phase change. 

Simple, efficient and robust algorithms are needed to solve the well-posed models. The various 
ingredients employed in methods to be developed should be general enough to consider future 
extensions to problems involving complex multiphysics.  Using the fractional step methods 
typically applied, and miss-applied, to calculate these types of initial value problems, that consist 
of different kinds of physics with multiple time-scales, some of which should be treated 
implicitly, requires some precautionary measures to avoid splitting and conditioning errors.  
With the exception of the PCICE method, all of the methods developed so far, and documented 
in this report, utilized explicit time integration.  To relieve time step restrictions due to stiffness 
and to achieve tighter coupling of equations, we believe that a fully implicit treatment may not 
only be advantageous, but indeed necessary.  An appropriate fully implicit approach will allow 
integration over the fast time scales for slow speed flows.  We anticipate that using a Jacobian-
Free Newton-Krylov method with physics based preconditioning will allow tightly coupled 
solutions of the multiphysics phenomena inherent in nuclear reactor core applications.  Toward 
that objective, a significant effort has been expended toward development of a method of lines 
(MOL) approach to the integration of the equation system.  With the MOL we discretize 
separately the space and time domains, effectively converting to a large system of ordinary 
differential equations (ODE) that can be integrated with previously developed, highly refined 
special purpose software.  Though not documented in this report, we are currently incorporating 
the 1-D variable area, two-phase DEM algorithm to be described below into this framework.  
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Thus this explicit model, to be described, also serves as a necessary beginning for the subsequent 
implicit methods development.  We will test and report on the fully implicit integration of this 
system at a later date. 

We will assume here that each phase obeys the single phase Euler equations 

0)u(div
t

0)P(grad)uu(div
t
u        (1) 

0)u)PE((div
t
E

with the following notation 

 density, 

u  velocity vector,

P pressure,

E total energy,  

e internal energy.  

Total energy is defined by : u.u2/1eE .

Each phase is characterized by its phase function kX that obeys the following evolution equation: 

0)X(gradu
t

X
kI

k

where Iu represents the local interfacial velocity. 

The DEM proceeds in a sequence of steps: 

fluid selection, 

integration over a control volume, 

determination of the phase contacts at cell boundaries, 

…

The first step consists in the fluid selection. We have to multiply the Euler equations, 

corresponding to a system of conservation laws by the characteristic (or phase) function: 
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0)F(div
t
UX k

Where the extended system of conservative variables is : 
TE,u,,1U

and corresponding flux : 
Tu)PE(,IPuu,u,0U

After some calculations we get : 

)X(grad)UuF()FX(div
t
UX

kIk
k

The second step consists in the space integration of this equation: 

dV)X(grad)UuF(dV))FX(div
t
UX

(
V

kI
V

k
k

The control volume being time invariant, the first term becomes : 

t
UXV

UdVX
t

dV
t
UX k

V
k

V

k

with the following definition of cell averages : 
V

kk UdVX
V
1UX .

The second term can be transformed thanks to the Gauss theorem: 

dSn.FXdV)FX(div
S

k
V

k

This surface integral transforms to a sum of fluid surfaces intergrals and solid surfaces integrals: 

dSn.FXdSn.FXdSn.FX
Ss

k
Sf

k
S

k

The integral over fluid surfaces needs particular attention and will be achieved with the DEM. The 

solid surface one can be simplified by noting that the flux expresses: 

dSn.

u)PE(
IPuu

u
0

XdSn.FX
Ss

k
Ss

k

By using boundary conditions on solid surfaces we have : 
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0

dSnPX
0
0

dSn.

u)PE(
IPuu

u
0

X

Ss
k

Ss
k

Consider the following example : 

Part of the wall is occupied by phase 1 , the rest being occupied by phase 2.  We assume that phase 1 

is occupying the upper wall with the same concentration as with the lower wall.  On a part only of 

the wall the pressure of phase 1 acts.  Thus we have to compute: 

Ssk
k

Ss
k dSnPdSnPX

where Ssk represents the wall surface occupied by phase k. 

Assuming the pressure is uniform in the given phase: 

SskofComplement
k

Ssk
k dSnPdSnP

Thus,

i)AA(PdSnP in,kout,kk
Ssk

k

The two surfaces koutA  and kinA  are included in the two phase control volume: 
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These two surfaces close the k phase control volume when all bubbles present at the walls are in 

contact.  Let us denote by L the distance between these two cross sections. These intermediate 

surfaces are related to the fluid control volume surfaces by: 

x
AA

L
AA 2/1i2/1iin,kout,k

Consequently : 

)AA(
x

LAA 2/1i2/1iin,kout,k

Assuming the two phase mixture homogenous enough : 

kx
L

Consequently, 

i)AA(PdSnP 2/1i2/1ikk
Ssk

k

The solid surface integral thus reads 

0
i)AA(P

0
0

dSn.

u)PE(
IPuu

u
0

X
2/1i2/1ikkSs

k

Akin
Akout
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The fluid surface integral has now to be considered: dSn.FX
Sf

k .

Consider for example the inflow cross section 2/1iA . We thus have to compute dSn.FX
2/1iA

k .

The inflow and outflow sections are perfectly determined, for example with relations like 

)A,Amin(A i1i2/1i .

Each cross section is partly occupied by a given phase. Indeed, several types of contact are present, 

as summarized in the next table: 

Type of Contact Contact area Indicator function 1 Convective flux
1-1 ),(MinAS i,11i,12/1i11 1)1,1(X1 )1,1(F

1-2 )0,(MaxAS i,11i,12/1i12

otherwise0
0)2,1(uif1

)2,1(X
*

1
)2,1(F

2-1 )0,(MaxAS 1i,1i,12/1i21

otherwise0
0)1,2(uif1

)1,2(X
*

1
)1,2(F

2-2 ),(MinAS i,21i,22/1i22 0)2,2(X1 )2,2(F

The fluid integral is thus obtained from the preceding table: 

lm

**
1lm

A
1 )m,l(F)m,l(XSdSn.FX

2/1i

It remains to compute the last integral associated to interaction effects : dV)X(grad)UuF(
V

kI .

For the sake of simplicity we consider only this integral at cell boundaries, where volume fraction 

jumps are present. Inside the control volume we already know that these terms correspond to 

relaxation terms, that have been determined previously (see Chinnayya et al., 2004 for example). 

We now note that at each point where )X(grad k  is non zero, the difference )UuF( I  is necessarily 

localy constant (this difference correspond to the Rankine Hugoniot conditions, or interface 

conditions in the present context).

Therefore, the volume integral (here a surface integral, as we consider a 2D flow) transforms: 
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dS)X(grad)UuF(dV)X(grad)UuF(
S

kI
V

kI  (we have just changed notations, S is V in two 

dimensions).

2/1i

2/1i

2/1i

2:1i

2/1i

2/1i

2/1i

2:1i

x

x

H5.0

H5.0y
kI

x

x

H5.0

H5.0y
kI

S
kI dxdy)X(grad)UuF(dxdy)X(grad)UuF(dS)X(grad)UuF(

Here two integrals only are present because internal bubbles are omitted. The two integrals 

correspond to the two boundary surfaces.

We now transform one of these surface integrals into a contour one, by using the fact that the 

interface conditions are local constants: 

2/1i

2/1i

2/1i

2:1i

2/1i

2/1i

2/1i

2:1i

x

x

H5.0

H5.0y
kI

x

x

H5.0

H5.0y
kI

S
kI dxdy)X(grad)UuF(dxdy)X(grad)UuF(dS)X(grad)UuF(

Where 0 . We now focus on one of these two integrals : 

2121k2/1i,21I1212k2/1i,12I

x

x

H5.0

H5.0y
k2/1iI

x

x

H5.0

H5.0y
kI

SX)UuF(SX)UuF(

dxdy)X(grad)UuF(

dxdy)X(grad)UuF(

2/1i

2/1i

2/1i

2:1i

2/1i

2/1i

2/1i

2:1i
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Type of 
Contact

Surface of Contact Jump of the indicator function 1 Lagrangian flux

1-1 ),(MinAS i,11i,12/1i11 0)1,1](X[ *
1 )1,1(F *,lag

1-2 )0,(MaxAS i,11i,12/1i12

otherwise0
0)2,1(uif1

)2,1](X[ 1
1
* )2,1(F *,lag

2-1 )0,(MaxAS 1i,1i,12/1i21

otherwise0
0)1,2(uif1

)1,2](X[
*

* 1
1

)1,2(F *,lag

2-2 ),(MinAS i,21i,22/1i22 0)2,2](X[ *
1 )2,2(F *,lag

Summary

0
i)AA(P

0
0

SX)UuF(SX)UuF(SX)UuF(SX)UuF(

)m,l(F)m,l(XS)m,l(F)m,l(XS
t

UXV

2/1i2/1ikk

2/1i2121k21I1212k12I2/1i2121k21I1212k12I

2/1ilm

**
1lm

2/1ilm

**
1lm

k

0

i)
x
AA

(P

0
0

x

SX)UuF(SX)UuF(SX)UuF(SX)UuF(
x

)m,l(F)m,l(XS)m,l(F)m,l(XS

t
UXA

2/1i2/1i
kk

2/1i2121k21I1212k12I2/1i2121k21I1212k12I

2/1ilm

**
1lm

2/1ilm

**
1lm

k

0

i)
x
AA

(P

0
0

x
AF

x
)AF(

t
AU

2/1i2/1i
kk
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The continuous system (without relaxation terms and with no heat and mass transfer between 
phases) can be written from the above as : 
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RESULTS

In the following we first present results for single phase, 1-D variable area simulation with the 
compressible Euler equations using a stiffened gas equation of state (liquid water).  This 1-D, 
volume-centered, finite volume method uses the HLLC approximate Riemann solver to 
determine the fluxes at cell faces.   The scheme uses explicit time stepping to brute for the 
solution to steady state.  This steady state solution is used as an initial benchmark solution for the 
initial two phase DEM results (described next). 

The DEM two phase methods is then employed with this same compressible liquid and with a 
compressible gas.  Again stiffened gas EOS is used for each phase.  First relaxation is turned off, 
which means that the phases do not interact with each other.  That is two independent, variable 
area solutions should evolve, one for each phase.  The volume fractions should not change.  The 
solution for the liquid phase should be identical to the single phase result first presented. 

Then two different degrees of relaxation are turned on via specification of the specific interfacial 
area (SSV=1 and SSV=100), i.e. interfacial area per unit volume.  Results are successively 
presented for each phase.  Finally, relaxation is left on, specific interfacial area SSV=100, and 
crude (not physically correct, but which still add a qualitatively similar effect) mass and heat 
transfer models are added for a first look at their effects.  Results are then displayed for each 
phase (plots with blue background) on the same page for comparison. 

180



Single Phase, 1D EULER STIFFENED GAS (1-D Finite Volume, Benchmark Solution) 

      data kmax/1000000/,kprint/10000/ 
c      data kmax/1/,kprint/1/       
      data ltube/1.d0/,dt/1.d-12/ 
c    Indices des raccords 
 data idisc1/100/,idisc2/300/,idisc3/500/
c  Conditions initiales 
 data rho0l/1000.d0/,rho0r/1000.d0/ 
 data u0l/0.d0/,u0r/0.d0/ 
      data pg0l/1.d5/,pg0r/1.d5/ 
c   Donnees geometriques des troncons 
      data sent1/0.2d0/,ssort1/0.2d0/ 
      data sent2/0.2d0/,ssort2/0.15d0/ 
      data sent3/0.15d0/,ssort3/0.2d0/
c  Thermo 
      data gamma/4.4d0/,pinf/6.d8/ 
c  Donnees de controle 
      data cfl/0.5d0/,temps/0.d0/ 
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TWO PHASE DEM CODE 

c~~~~~~~~~~~~~~~~~~~~ INPUT DATA  ~~~~~~~~~~~~~~~~~~~~~
      data kmax/1000000/,kprint/10000/ 
c     kmax   : number of time steps 
c     kprint : printing frequency 
      data dt/1.d-10/ ! initial time step 
      data cfl/0.5d0/ ! CFL used for the computations   
c
      data irelax/0/ ! irelax=0 --> no relaxation is used 
c                      irelax=1, finite rate relaxation is done 
      data   ssv/1.d0/
c     specific interfacial area, necessary when irelax = 1 
c     Water-air thermodynamic data 
      data gamma1/4.4d0/,pinf1/6.d8/ ! water 
      data gamma2/1.4d0/,pinf2/0.d0/  ! air 
c     Initialisation of a few constants 
c     temps = time 
c     cmax= maximum wave speed in the entire domain (used for CFL) 
      data cmax/0.d0/,temps/0.d0/ 
c GEOMETRY     
      data ltube/1.d0/ ! tube lenght 
c     Indexes for the geometric junctions
 data idisc1/100/ ! index at which the first segment ends 
        data idisc2/200/ ! index at which the second segment ends 
 data idisc3/300/ ! index at which the first segment ends 
        data idisc4/500/ ! index at which the second segment ends         
c      Inlet and outlet cross sections for the first segment 
c      sent= inlet cross area 
c      ssort= outlet cros area 
 data sent1/0.2d0/,ssort1/0.2d0/ 
c      Same informations for segment 2  
        data sent2/0.2d0/,ssort2/0.15d0/       
c      Same informations for segment 3 
        data sent3/0.15d0/,ssort3/0.1d0/       
c      Same informations for segment 4  
        data sent4/0.1d0/,ssort4/0.2d0/              
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LIQUID VARIABLES 
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COMPARISON EULER SINGLE-PHASE (Left) AND TWO-PHASE LIQUID-GAS 
 CODE (Right).  THE COMPARISON IS DONE ON LIQUID VARIABLES. 
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TWO ¨PHASE WITH RELAXATION 
(BOTH PRESSURES AND VELOCITIES WITH SSV=1) 

LIQUID PHASE VARIABLES 
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TWO ¨PHASE WITH RELAXATION 
(BOTH PRESSURES AND VELOCITIES WITH SSV=100) 

LIQUID PHASE VARIABLES 
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HEAT AND MASS TRANSERS (SIMPLIFIED VERSION) 

             heatex=1.d6 
             lvap=2.d6 
             qdot=heatex*(t2-t1)
             mdot=qdot/lvap 
c

      pinter=(zk(1)*pk(2)+zk(2)*pk(1))/(zk(1)+zk(2))
      vinter=(zk(1)*uk(1)+zk(2)*uk(2))/(zk(1)+zk(2))
c
      source(1,1)=mu*(pk(1)-pk(2))-mdot/rhoi 
      source(1,2)=-mdot 
         source(1,3)=lambda*(uk(2)-uk(1))-mdot*ui 
      source(1,4)=-pinter*source(1,1)
     s            +vinter*lambda*(uk(2)-uk(1)) 
     s                   -mdot*ei+qdot 

      source(2,1)=-source(1,1) 
      source(2,2)=-source(1,2) 
         source(2,3)=-source(1,3) 
      source(2,4)=pinter*source(1,1) 
     s            -vinter*lambda*(uk(2)-uk(1)) 
     s                   +mdot*(ei-lvap) 
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LIQUID PHASE VARIABLES 
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GAS PHASE VARIABLES 
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Steady State Volume Fractions.  SSV=100, Simplified Heat and Mass Transfer.  
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Steady State Mass Densities.  SSV=100, Simplified Heat and Mass Transfer.  
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Steady State Temperatures.  SSV=100, Simplified Heat and Mass Transfer.  
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Steady State Pressures.  SSV=100, Simplified Heat and Mass Transfer.  
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Steady State Velocities.  SSV=100, Simplified Heat and Mass Transfer.  
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Steady State Mach Numbers.  SSV=100, Simplified Heat and Mass Transfer.  
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Chapter 7 
Modeling Phase Transitions in 

Non-Equilibrium Multiphase Compressible 
Flow Models 
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