
Final Report

PetaScale Application Development Analysis

Grant Number DE-FG02-04ER25629 A003

Robert W. Numrich ∗

June 20, 2008

Summary

The results obtained from this project will fundamentally change the way we look at computer
performance analysis. These results are made possible by the precise definition of a consistent
system of measurement with a set of primary units designed specifically for computer performance
analysis. This system of units, along with their associated dimensions, allows us to apply the
methods of dimensional analysis, based on the Pi Theorem, to define scaling and self-similarity
relationships. These relationships reveal new insights into experimental results that otherwise seems
only vaguely correlated. Applying the method to cache-miss data revealed scaling relationships
that were not seen by those who originally collected the data. Applying dimensional analysis to
the performance of parallel numerical algorithms revealed that computational force is a unifying
concept for understanding the interaction between hardware and software. The efficiency of these
algorithms depends, in a very intimate way, on the balance between hardware forces and software
forces. Analysis of five different algorithms showed that performance analysis can be reduced to a
study of the differential geometry of the efficiency surface. Each algorithm defines a set of curvilinear
coordinates, specific to that algorithm, and different machines follow different paths along the surface
depending on the difference in balance between hardware forces and software forces. Two machines
with the same balance in forces follow the same path and are self-similar.

The most important result from the project is the statement of the Principle of Computational
Least Action. This principle follows from the identification of a dynamical system underlying com-
puter performance analysis. Instructions in a computer are modeled as a classical system under the
influence of computational forces. Each instruction generates kinetic energy during execution, and
the sum of the kinetic energy for all instructions produces a kinetic energy spectrum as a function
of time. These spectra look very much like the spectra used by chemists to analyze properties of
molecules. Large spikes in the spectra reveal events during execution, like cache misses, that limit
performance. The area under the kinetic energy spectrum is the computational action generated by
the program. This computational action defines a normed metric space that measures the size of
a program in terms of its action norm and the distance between programs in terms of the norm of

∗rwn/papers/progressReports/petaFinal/petaFinal.tex

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/71325075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the difference of their action. This same idea can be applied to a set of programmers writing code
and leads to a computational action metric that measures programmer productivity. In both cases,
experimental evidence suggests that highly efficient programs and highly productive programmers
generate the least computational action.

1 Scaling

A major goal for this project was the establishment of a consistent set of units and dimensions
for measurement of both performance and productivity. A well defined system of measurement is
required, first to design reproducible experiments and second to define new metrics to describe the
results of those experiments. The results of this project are a significant extension of my previous
work on the topic [33, 34, 36].

1.1 A system of measurement

The scientific community has defined the International System of Units (SI) [51, 52] with seven
primary units, but the system has not been augmented to include units for computer performance
measurements. Prefixes based on powers-of-two, rather than powers-of-ten, have been proposed [31],
but defining prefixes different from those used by other disciplines leads to confusion and obfuscates
the real issue.

The real issue is the definition of a set of primary units for computer performance analysis.
Except for the unit of time, the SI system contains no other primary unit that applies to computer
performance analysis. We measure length in bytes not meters. We measure work in floating-point
operations not joules. It makes sense, then, to base a system of measurement [36] on the primary
units, length in bytes, work in floating-point operations, and time in seconds, as shown in Table
(1.1).

In a system of measurement based on these primary quantities, some common quantities that
appear in computer performance analysis have the matrix of dimensions,

L (byte) E (flop) T (s)
length 1 0 0

work (energy) 0 1 0
time 0 0 1

frequency 0 0 −1
clock period 0 0 1

velocity (bandwidth) 1 0 −1
force (intensity) −1 1 0

power 0 1 −1
mass −2 1 2

momentum −1 1 1
action 0 1 1

. (1.1)

Computational power, a derived quantity, is measured in units of floating-point operations per sec-
ond, and bandwidth is measured in units of velocity, bytes per second. The quantity commonly
called computational intensity [24, 30, 36, 43, 40] is measured in units of force, floating-point opera-
tions per byte. Computational mass, momentum and action are also well defined quantities as shown

2

in the table. At times it is useful to use the clock period as the unit of time where 1 cp = ν−1 s is
the reciprocal of the machine frequency.

It is certainly possible to pick other primary units for a system of measurement. The only
requirement is that they be used correctly within the system of measurement they define.

1.2 Dimensional analysis

Many of the results obtained during this project depend on dimensional analysis and the application
of its fundamental tool, the Pi Theorem. The Pi Theorem states that, for each particular problem,
there exists a set of scale factors such that all variables become dimensionless and the number of
independent variables is less than the original number. This delicate and beautiful result is based
on the simple fact that the universe doesn’t care what system of measurement is used to observe it.
In other words, the functional relationships among physical quantities are covariant with respect to
changes in units. References [9, 10, 11, 16, 17] discuss dimensional analysis in general and the Pi
Theorem in particular. References [5, 6, 7, 26] discuss dimensional analysis in the special setting of
electromagnetism.

The following description of the subject paraphrases the algebraic approach of Birkhoff [8, Ch.
IV] and others [9, 16]. To establish a system of measurement, first pick k positive primary units,

u = (u1, u2, . . . , uk) , ui > 0 , i = 1, . . . , k . (1.2)

In mechanics, for example, the primary units are length, with dimension L and value u1 = 1 m;
mass, with dimension M and value u2 = 1 kg; and time, with dimension T and value u3 = 1 s. For
computer performance analysis, a good choice for the three primary units are length, with dimension
L and value u1 = 1 byte; work, with dimension E and value u2 = 1 flop; and time, with dimension
T and value u3 = 1 s.

Given a set of n physical quantities

X = (x1, x2, . . . , xn) , (1.3)

the matrix of dimensions, in this system of measurement, is the n × k matrix,

u1 u2 · · · uk

x1 d1
1 d2

1 · · · dk
1

x2 d1
2 d2

2 · · · dk
2

x3 d1
3 d2

3 · · · dk
3

...
...

... · · ·
...

xn d1
n d2

n · · · dk
n

(1.4)

with element di
j equal to the dimension of quantity xj with respect to unit ui. Dimensional analysis

is based on the algebraic properties of this matrix of dimensions. Each physical quantity xj has a
numerical value x̂j relative to this system of units such that

xj = x̂j u
d1

j

1 u
d2

j

2 · · ·udk
j

k (1.5)

with each unit raised to a power equal to its dimension di
j .

3

Dimensional analysis is the study of scaling. Given the k positive scale factors,

α = (α1, α2, . . . , αk) , αi > 0 , i = 1, . . . , k , (1.6)

and the matrix of dimensions (1.3), define the linear operator [8, Ch. IV],

Sαxj = α
d1

j

1 α
d2

j

2 · · ·αdk
j

k xj . (1.7)

or using the compact notation in terms of point-wise exponentiation,

Sαxj = αdj xj . (1.8)

As noted by Birkhoff [8], these operators represent the multiplicative group on the set of positive
vectors α of length k.

The Pi Theorem applies to unit-free relationships according to the following definition.

Definition 1 (Unit-free relationships (Birkhoff [8, p.89])) A functional relationship between
quantities,

F (x1, x2, . . . , xn) = 0 (1.9)

is unit-free if (1.9) implies
F (Sαx1, Sαx2, . . . , Sαxn) = 0 (1.10)

for all choices of the scaling parameters α > 0.

Since relationship (1.10) holds for all choices of the scaling parameters, pick them in such a way
that

Sαxj = 1 , j = 1, k , (1.11)

for k dimensionally independent quantities, permuted to the first k rows in the dimension matrix if
necessary. Take the logarithm of both sides of (1.11), using definition (1.7) for the scaling operators,
to obtain the system of equations,











d1
1 d1

2 · · · d1
k

d2
1 d2

2 · · · d2
k

...
... · · ·

...
dk
1 dk

2 · · · dk
k





















log(α1)
log(α2)

...
log(αk)











=











log(1/x1)
log(1/x2)

...
log(1/xk)











. (1.12)

As long as the quantities xi are dimensionally independent, that is, as long as the matrix on the left
side of (1.12) has rank k, there is a unique solution for the scaling parameters αi. The reciprocals
of the scale factors define a new set of primary units for a new system of measurement.

Using these scale factors, define the dimensionless self-similarity parameters,

πj = Sαxk+j , j = 1, n − k . (1.13)

With these definitions, the relationship (1.10) assumes the form

F (Sαx1, Sαx2, . . . , Sαxk, Sαxk+1, . . . , Sαxn) (1.14)

= F (1, 1, . . . , 1, π1, π2, . . . , πn−k) = 0 .

Define the function,

Φ(π1, π2, . . . , πn−k) = F (1, 1, . . . , 1, π1, π2, . . . , πn−k) , (1.15)

and state the Pi Theorem.

4

Theorem 1.1 (Pi Theorem ([8, p. 93])) Let n positive quantities X = (x1, . . . , xn) transform
under all changes α > 0 in the k primary units u = (u1, . . . , uk) according to (1.7). Let the n × k
matrix of dimensions (1.4) have rank k. Then any unit-free relationship of the form

F (x1, . . . , xn) = 0 (1.16)

is equivalent to a relationship of the form

Φ(π1, . . . , πn−k) = 0 (1.17)

for suitable self-similarity parameters of definition (1.13).

2 Cache behavior

Analysis of the cache-miss ratio as a function of cache size, line size and degree of associativity
provides a good example of how to apply dimensional analysis. The cache-miss ratios measured
by Agarwal, Horowitz and Hennessy [1] provide a specific example. In their paper, they used
two different units of length, bytes and words, where 1 word = 4 byte, requiring extreme care to
interpret their results. They presented cache-miss ratios averaged over eight programs with average
trace length, n = 356000 word and average program working set size, m = 7816 word. In their
Figure 5, they presented cache-miss ratios for two line sizes, l = 4 byte and l = 16 byte, both
for a direct-mapped cache, with d = 1, and for a two-way set-associative cache, with d = 2, for
several cache sizes from c = 210 byte to c = 218 byte. The number of cache misses can be extracted,
with some effort, from their figure by reading the logarithm of the miss ratio, exponentiating, and
multiplying by the average trace length. The uncertainty in the raw data extracted this way is large
because the uncertainty in their original data is compounded with the uncertainty of reading it from
their figure.

If the number of cache misses,
χ = χ(m, c, l, d) , (2.1)

defines a unit-free relationship as a function of the four variables m, c, l and d, with the matrix of
dimensions,

χ n m c l s d
L 1 1 1 1 1 1 0

, (2.2)

the choice of scaling parameter for length such that αLl = 1 implies the scaled relationship,

χ/l = χ(m/l, k, 1, d) . (2.3)

The ratio,
k = c/l , (2.4)

is the cache shape or the number of lines in the cache.
It is reasonable to expect the number of misses to increase with increasing values of the program

footprint m and to decrease with increasing values of the line size l and with increasing values of
the set-associativity parameter d. Since the number of misses often exhibits an inverse power law
with respect to cache size, the heuristic,

χ/l = d−γβ2(m/l)2k−α , (2.5)

5

k

χldγ/m2

101 102 103 104 105

10−4

10−2

10−3

•

∗
•

∗
•

∗
•

∗
•

∗
•

∗
•

∗
•

∗
•

∗

∇

△

∇

△

∇

△

∇

△

∇

△

∇

△

∇

△

∇

△

∇

△

Figure 1: Cache-miss data from [1, Figure 5] scaled according to formula (2.6). The descending solid
line is the straight line predicted for the log-log plot (2.7) with α = 1/2, β = 1/6 and γ = 1/3. The
bullets (•) represent Agarwal’s data for l = 16 byte and the crosses (⊕) represent data for l = 4 byte
for a direct-mapped cache, d = 1. The grads (∇) represent Agarwal’s data for l = 16 byte and the
triangles (△) represent data for l = 4 byte for a two-way set-associative cache, d = 2.

with three constants α, β and γ independent of k and m/l, is a reasonable place to start. If this
heuristic works, the scaled number of misses,

χldγ/m2 = β2k−α , (2.6)

should yield a straight line on a log-log plot,

log(χldγ/m2) = −α log(k) + log(β2) , (2.7)

with slope −α and intercept log(β2). Indeed, the log-log plot of Agarwal’s scaled data, shown in
Figure 1, yields a straight line with the parameters α = 1/2, β = 1/6 and γ = 1/3.

Let χ(k) be the number of cache misses at cache shape k. The function χ(k)/l of formula (2.5)
decreases with k and has a fixed point,

χ(k0)/l = k0 , (2.8)

where the number of line misses equals the cache shape. From (2.5), the cache shape k0 is determined
by the formula,

k1+α
0 = d−γβ2(m/l)2 . (2.9)

The number of cache misses, then, at cache shape k has the simple form,

χ(k) = χ(k0)

(

k

k0

)−α

, (2.10)

6

k/k0

χ(k)/χ(k0)

10010−110−2 101

10−1

101

100

•⊕

•⊕

•
⊕

•⊕

•
⊕

•
⊕

•
⊕

•

⊕

•
⊕

∇△

∇△

∇△

∇△

∇△

∇△

∇

△

∇

△

∇

△

Figure 2: Cache-miss data from [1, Figure 5]. The descending dotted line is formula (2.10) with
α = 1/2, and k0 is the fixed point cache shape from (2.9). The bullets (•) represent Agarwal’s data
for l = 16 byte and the crosses (⊕) represent data for l = 4 byte for a direct-mapped cache, d = 1.
The grads (∇) represent Agarwal’s data for l = 16 byte and the triangles (△) represent data for
l = 4 byte for a two-way set-associative cache, d = 2.

relative to the number of cache misses at cache shape k0.
Figure 2 shows that the heuristic (2.5) works very well. All of Agarwal’s data [1, Figure 5] for

two different line sizes, l = 4 byte and l = 16 byte, and for two degrees of set associativity, d = 1 and
d = 2, fall along the same line with slope equal to -1/2. The scatter in the data is of the same order
of magnitude as the scatter in Agarwal’s original data, and considering the difficulty of extracting
data from the original logarithmic plots, the agreement of the data with the scaled model is quite
remarkable.

The cache shape k0 = c0/l at the fixed point provides a criterion for the critical cache size for a
given line size. Indeed, substitution of the values, α = 1/2, β = 1/6 and γ = 1/3 in formula (2.9)
yields

c0 = d−2/9l−1/3(m/6)4/3 . (2.11)

Notice that the combination of exponents, 4/3 − 1/3 = 1, gives this formula the correct dimension
of length. For smaller caches, the number of line misses is greater than the cache shape. For larger
caches, the number is smaller than the cache shape. For line size l = 32 byte and average working set
size m = 4×7816 byte, the critical cache size has the value, c0 ≈ 28.5×103 byte for a direct-mapped
cache, d = 1, and c0 ≈ 24.4 × 103 byte for a degree-two cache, d = 2.

Finally, formula (2.5) yields the cache-miss ratio,

χ/n = d−γβ2

(

m2

l · n

)

k−α . (2.12)

7

Since α = 1/2, the dependence of this formula on the square root of the cache shape agrees with the
speculation of Hartstein and coworkers [22], although the next example shows that this dependence
is by no means the same for all cases. The formula predicts that the cache-miss ratio decreases to
zero for long traces if the working set grows more slowly than the square root of the trace length,
m(n) <

√
ln, for large n.

As a second example, consider a model for the number of cache misses presented by Singh, Stone
and Thiébaut [49]. They extended a previous model that considered the behavior as a function of
cache size with fixed line size l = 1 byte due to Thiébaut [53, 54]. Their new model includes the
effect of both cache size and line size for fully-associative caches such that d = c/l.

Without going into as much detail for their model, it is possible to show that the number of
cache misses obeys the relationship,

χ(k) = χ(k0)

(

k

k0

)1−θ

, (2.13)

where
k1−θ
0 = (A/lα)−θ . (2.14)

The parameter A is related to the footprint of the program and the parameter θ is called the fractal
dimension of the program.

k/k0

χ(k)/χ(k0)

10−1

100

101

102

103

10−2 10−1 100 101

∇

∇

∇
∇

∇

∇

∇

∇

•
•

•
•

•

•
•

⊕
⊕

⊕
⊕

⊕

⊕

⊕
⊕

Figure 3: Scaled cache-miss data from [49, Figure 9]. The three sets of data represent different line
sizes: (•) for l = 16 byte; (⊕) for l = 128 byte; and (∇) for l = 2048 byte. The value χ(k0) equals the
number of misses at the critical cache shape k = k0 The descending dotted line is the asymptotic
cache-miss function of (2.13) with slope 1 − θ = −2/3. As described in the text, the measurements
for the case l = 2048 byte lie outside the range of validity for the model and are not expected to lie
on the dotted line.

8

Figure 3 shows cache-miss data extracted from Singh [49, Figure 9]. On a log-log plot, the
scaled miss data as a function of the scaled cache shape should be a straight line with slope -2/3.
Singh comments on the fact that the model reproduces the measured data only for large enough
caches. My analysis shows that the model should not be expected to work for cache shapes k < k0.
In fact, the critical shape for l = 2048 is outside the region where the model applies. Most of the
measured data represents points below the critical cache shape. But formula (2.13) clearly represents
the asymptotic behavior of the number of misses for cache shapes greater than the critical cache
shape. All three sets of measured data look as if they approach the asymptote for large values of
k/k0, but more measurements are needed to decide the issue. An important advantage provided by
dimensional analysis is that it provides absolute criteria for what measurements to make to validate
a particular model.

A major goal of dimensional analysis is to identify and state self-similarity relationships. The
two case studies for cache behavior can be summarized as a self-similarity relationship that shows
how the two cases are similar while the specific details for each case are different.

Self-Similarity Relationship 2.1 Let the number of cache misses, χ(k), for cache shape k = c/l,
be defined by (2.5) for the Agarwal data and by (2.13) for the Singh data. Let the critical cache
shape k0 by defined by (2.9) for Agarwal and by (2.14) for Singh. Furthermore, let the exponent
γ = 1/2 for Agarwal and γ = 2/3 for Singh. Then the commutator,

[χ(k), k0] = χ(k)k−γ
0 − k−γχ(k0) , (2.15)

is zero,
[χ(k), k0] = 0 . (2.16)

3 Computational forces in parallel algorithms

Another important result that follows from dimensional analysis is the identification of computa-
tional force as a unifying idea for the analysis of performance for parallel numerical algorithms. I
have applied the analysis to several different algorithms starting with very simple algorithms and
progressing to more complicated, full applications.

3.1 Parallel matrix multiplication

The execution time for parallel matrix multiplication [18, 38] is the sum of three terms,

t(m1, m2, b1, b2, w, r0) = w/r0 + m1/b1 + m2/b2 . (3.1)

For matrices of size n×n on a machine with p× p processors with a blocked data distribution, each
processor holds a block of size n/p× n/p and performs

w = 2n(n/p)2e0 (3.2)

floating-point operations where e0 is the unit of work. For the algorithm described in a previous
paper [38, equation (5.2.5)], each processor moves three blocks from local memory,

m1 = 3(n/p)2l0 , (3.3)

9

where l0 is the unit of length, and 2(p − 1) blocks from remote memory,

m2 = 2(p − 1)(n/p)2l0 , (3.4)

one from each of the p − 1 processors in the same row and another one from each of the p − 1
processors in the same column. If there is no overlap between these three phases of the computation,
the execution time is the sum of three terms,

t =
2n(n/p)2

r0

e0 +
3(n/p)2

b1

l0 +
2(p − 1)(n/p)2

b2

l0 , (3.5)

obtained by substituting (3.2)-(3.4) into (3.1).
Define the locality and bandwidth parameters,

λ = 3/(2(p− 1)) , β = b1/b2 , (3.6)

and the granularity parameters,

Γ =

[

(φ3/f0)/(2n/3) (φ3/f0)/(n/(p− 1))
(φ4/f0)/(2n/3) (φ4/f0)/(n/(p− 1))

]

, (3.7)

where φ3 = r0/b1 and φ4 = r0/b2, are the hardware forces involved, and f0 = e0/l0 is the unit of
force. Then the surface

eλ =
1

1 + λγ12 + γ22

, (3.8)

is the efficiency surface parameterized by the locality parameter λ(p), a property of the algorithm
alone independent of any particular machine. It depends on the number of processors, but is in-
dependent of the problem size. All machines with the same number of processors lie on the same
surface. For the same problem size, however, each machine lies at a different point on the surface
depending on the specific values of its hardware forces. Clearly, since the software forces in the
denominators of the granularity parameters grow linearly with the problem size, the programmer
can overcome the hardware forces on any machine by picking a large enough problem.

Performance analysis reduces to a study of the differential geometry of this self-similarity sur-
face [55, Ch. II]. Define two curvilinear coordinates, u = γ12 and v = γ22, with values from (3.7),

u(n) = (φ3/f0)/(n(p − 1)) (3.9)

v(n) = (φ4/f0)/(n(p − 1)) , (3.10)

functions of the problem size n for fixed number of processors p. As the problem size changes, each
machine follows a path along the surface, described by the vector,

r(n) = [u(n), v(n), eλ(u(n), v(n))] , (3.11)

with

eλ(u(n), v(n)) =
1

1 + λu(n) + v(n)
. (3.12)

The two coordinates are related by the bandwidth ratio,

v = βu , (3.13)

10

as can be seen by dividing (3.10) by (3.9) and comparing with definition (3.6). The efficiency curve,
then, can be written as a function of n and β,

eλ(u(n), β(u(n)) =
1

1 + λu(n) + βu(n)
, (3.14)

for fixed λ(p).
As shown in Figure 4, each machine with the same value of β follows the same path on the

surface as the problem size n changes. Since u(n) by definition (3.9) decreases as n increases, the
path approaches unity for very large problems. Larger values of β push the curves down the surface
to lower efficiencies. For fixed problem size, paths for different values of β cut across these first
paths from high efficiency for low β to low efficiency for high β. Low values of β correspond to high
bandwidth from secondary memory relative to bandwidth from primary memory.

010203040

0

1

2

0

0.2

0.4

0.6

0.8

1

uv

e
λ

Figure 4: The self-similarity surface for parallel matrix multiplication using λ(p) as the surface
parameter for fixed p = 32 or p2 = 1024 processors. Any machine with the same bandwidth ratio
β approaches the summit along the same path as the problem size increases. Higher values of β
define paths lower on the surface. The projection of these paths onto the (u, v) plane are straight
lines with slope β. The machine with smaller β, that is, higher remote bandwidth relative to local
bandwidth, has an easier ascent to the summit. For fixed problem size, paths cut across the first set
of paths, higher to lower, as the value of β increases.

For fixed problem size, the efficiency hops from one surface to another as the number of processors
changes. Figure 5 shows the decrease in efficiency for a fixed problem size n = 1000 for p =
1, 4, 8, 16, 32, 64, 128. The bullets mark the points on the surfaces, but the surfaces themselves are
not shown for clarity of presentation. The projection of these points onto the (u, v) plane is a straight
line with slope β as can be seen by eliminating p from (3.9) for u and (3.10) for v at fixed n.

11

0

5

10
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

u

v

e
λ
(p

)

Figure 5: Efficiency for matrix multiplication for fixed problem size n = 1000 as the the number
of processors increases, p = 1, 4, 8, 16, 32, 64, 128. The efficiency jumps from one surface to another,
parameterized by λ(p), as the number of processors changes. The surfaces are not shown for clarity
of presentation. The projection onto the (u, v) plane is a straight line with slope β = b1/b2. Two
machines are shown, one with β = 0.1 and one with β = 0.5. Higher bandwidth b2 from remote
memory relative to bandwidth b1 to local memory results in lower values for β and consequently
higher efficiency as the number of processors p increases.

3.2 Other parallel algorithms

I have applied dimensional analysis to several other algorithms to show its generality. I started with
very simple programs with simple timing formulas to gain confidence in the methodology [40]. I then
considered increasingly more complicated timing formulas [41, 42, 43] to show that the methodolgy
does not depend on the simplicity of the formula nor on its being continuous or differentiable.

Figure 6, for example, shows the results for a generic algorithm based on the work of Stewart [50].
If we use the same numerical algorithm, the software force φ0 has not changed in the decade and a
half since the publication of Stewart’s paper. But the hardware forces φ1 and φ2 have changed as
shown in the following table,

Machine 1 ca. 1990 Machine 2 ca. 2007
1/α 106 flop/s 109 flop/s
σ 10−4 s 10−6 s

1/τ 106 word/s 109 word/s
φ1 102 flop/word 103 flop/word
φ2 1 flop/word 1 flop/word

(3.15)

Because of these changes, modern machines follow paths lower on the efficiency surface than paths
followed by older machines.

Figure 7 shows a similar result for the parallel QR algorithm analyzed by Henry and van de

12

0

100

200

300

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

e

Figure 6: Two paths along the efficiency surface for Stewart’s generic algorithm for fixed number
of processors, p = q2 = 322 = 1024. The higher path corresponds to the older Machine 1; the
lower path to the modern Machine 2. The problem size increases from n = 500 at low efficiency in
increments of 100. In the limit of very large problem size, both machines approach perfect efficiency.
They approach the limit at different rates along different paths on the surface.

Geijn [23]. The following table, appropriate for their algorithm,

Machine 1 ca. 1990 Machine 2 ca. 2007
α 10−4 s 10−6 s

β−1 106 word/s 109 word/s
γ−1 106 flop/s 109 flop/s
φ1 102 flop/word 103 flop/word
φ2 1 flop/word 1 flop/word

, (3.16)

shows the same change in hardware forces φ1 and φ2 over approximately the last two decades. Figure
11 shows two paths along the efficiency surface, one for each machine in the table. The number
of processors is fixed at p = 512, and each point on a path corresponds to a different problem size
calculated from the curvilinear coordinates u∗(n) and v∗(n) from equation (6.25). For large enough
problem size, both machines approach perfect efficiency. But they follow different paths at different
rates along the surface to reach the summit. The modern machine is clearly less efficient than the
earlier machine.

A third example is the Linpack benchmark analyzed by Greer and Henry [21]. In the ten years
since they described the ASCI Red machine, hardware forces have changed. For example, Table
3.17 compares the ASCI Red machine to the Cray XT3, with values for the hardware parameters G,
B and S reported for the Cray machine on the HPC Challenge website [25], and to the IBM Blue

13

0

10

20

30

40

50

0
0.05

0.1
0.15

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

e

Figure 7: Two paths along the efficiency surface for the QR algorithm for fixed number of processors,
p = 512. The problem size increases from n = 500 at low efficiency in increments of 100. In the
limit of very large problem size, both machines approach perfect efficiency. They approach the limit
at different rates along different paths on the surface. The higher path on the surface corresponds
to Machine 1; the lower path to Machine 2.

Gene/L, with values from the same website.

ASCI Red (1997) [21] Cray XT3 (2007) [25] IBM Blue Gene/L (2007) [25]
G 3.3 × 108 flop/s 44 × 108 flop/s 19 × 108 flop/s
B 3.9 × 108 byte/s 11 × 108 byte/s 1.6 × 108 byte/s
S 30 × 10−6 s 21 × 10−6 s 7.1 × 10−6 s

φH
1 0.85 flop/byte 4.0 flop/byte 12 flop/byte

φH
2 9.9 × 103 flop/byte 92 × 103 flop/byte 13 × 103 flop/byte
p 16 65 64
q 286 80 1024
k 64 60 192

l1/2 1.2 × 104 byte 2.3 × 104 byte 0.11 × 104 byte
n̂ 3.0 × 104 byte 3.7 × 104 byte 1.0 × 104 byte
ê 0.82 0.35 0.25

(3.17)

The software forces have not changed because the algorithm today is much the same as ten years
ago. In fact, their formula, even using the ASCI Red values for α, β and γ, predicts an execution
time within 3% of the measured value for the Cray machine. The formula is only within 31% of
the measured value for the IBM machine implying either that the three parameters α, β and γ are
different for that machine or that a different algorithm has been used.

The hardware forces, on the other hand have changed. The modern machines follow paths along
the efficiency surface quite different from the path followed by the older machine as shown in Figure
8. For large problem sizes, all machines approach perfect efficiency. But the modern machines have
a harder ascent to the summit than the older machine.

The final example is the SAGE benchmark analyzed by Kerbyson and coworkers [27]. Figure

14

0

0.5

1

1.5

2

2.5

3

3.5

4

0
5

10
15

20
25

30
35

40

0

0.2

0.4

0.6

0.8

1

u

v

e

Figure 8: Efficiency as a function of problem size for the Linpack benchmark. The topmost path,
marked in red, corresponds to the ASCI Red machine from the first column of Table 3.16 decomposed
as (p, q) = (16, 286) with block size k = 64; the bottommost path, marked in green, to the Cray
XT3 from the second column of Table 3.16 decomposed as (65,80) with k = 60; and the middle
path, marked in blue, to the IBM Blue Gene/L from the third column decomposed as (64,1024)
with k = 192. All three machines reach high efficiency for large problem sizes. But they approach
the summit along quit different paths determined by the differences in their hardware forces.

9 shows the paths for the four machines studied in the original paper [27]. The red line down the
center of the surface divides it into two halves. A path down the surface on the left side of the red
line corresponds to a machine limited by latency. A path down the surface on the right side of the
red line corresponds to a machine limited by bandwidth.

The four machines separate into three groups. The two Alpha Servers ES40 and ES45 are self-
similar. They follow the same path on the surface marked by the yellow line (ES45) and the green
line (ES40), which fall on top of each other. These two machines are bandwidth limited. The ASCI
Blue machine follows the blue line. It is latency limited for small values of p but becomes bandwidth
limited for large values of p. The ASCI White machine follows the white line. It is bandwidth
limited much like the Alpha Server machines, but it is also latency limited for small values of p,
although less so than the ASCI Blue machine.

3.3 New performance metrics

Since the performance analysis for each of these algorithms reduces to paths followed along an
efficiency surface, the differential geometry of this surface suggests several new performance metrics.
For example, for matrix multiplication, each machine approaches the peak at its own angle defined
by its tangent,

tan θ = β . (3.18)

15

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

e

Figure 9: Paths on the efficiency surface for the SAGE benchmark as a function of the number of
processors. The red line divides the surface into a latency-limited half on the left as the coordinate
u increases and a bandwidth-limited half on the right as the coordinate v increases. The Alpha
Server ES45 follows the yellow path; the Alpha Server ES40 follows the green path, which falls on
top of the yellow path; the ASCI White machine follows the white path; and the ASCI Blue machine
follows the blue path.

A measure of the difference between two machines is the difference between their angles of approach,

tan (θi − θj) =
tan θi − tan θj

1 + tan θi tan θj
=

βi − βj

1 + βiβj
. (3.19)

Two machines with the same value of β are equivalent and approach the summit at the same angle.
Another way to measure the difference between machines is to examine the tangent vector dr/dn

along the path to the summit. The distance from the smallest problem n = p to the hypothetical
infinite problem at the peak is the integral along the surface,

s(p) =

∫ ∞

p

√

|dr/dn|2dn , (3.20)

of the magnitude of the tangent vector [55, Ch. II].
Alternative measures include the distance along the geodesic between points with equal values

of n or the area on the surface between two curves or the area between the triangles projected to
the (u, v) plane.

4 Fixed-time benchmarks

Another application of dimensional analysis resulted in a new way to look at the Linpack bench-
mark [39]. Without going into details, Figure 10 shows that it is possible to pick a fixed time,

16

to determine a problem size for each processor decomposition (p, q) that runs in that fixed time,
and to determine two dimensionless self-similarity parameters (α, β) that are characteristic of each
particular machine. As Figure 10 shows, the analysis made the assymmetry of the algorithm with
respect to processor decomposition very obvious. This assymmetry is not obviously apparent from
the usual way of analyzing this benchmark. I also applied the fixed-time constraint to the SAGE
benchmark [42].

pqβ/α

Gflop/s

100

101

102

20 21 22 23 24 25

Intel Xeon Cluster

p ≤ q

p > q

•

•

•

• •
•
• ••

•
••

••
•••
••
••

•
•

•

•

• •

•

•
•

• •• •
•

Figure 10: Computational power as a function of the number of processors for a Intel Xeon cluster.
The bullets represent measured values. The dotted lines are the least-squares fits of the measured
values.

5 Computational energy spectra

In a series of papers [35, 44, 46], I have described computer performance analysis in terms of the
computational energy spectrum of a program as it executes. This spectrum shows what happens
as a program executes, clock-tick-by-clock-tick, instruction-by-instruction. Characteristic spikes
in the spectrum correspond to important events, such as cache misses, that limit performance.
Measuring the spectrum requires observation of just two pieces of information, the clock-tick when
each instruction issues and the clock-tick when each instruction completes. This information can
be obtained as the program executes in real time or from an execution trace processed through an
instruction-level simulator.

The area under the energy spectrum is the computational action generated during execution.

17

The action defines a norm that measures a program’s size, and this norm defines a metric space with
a distance function between programs. The energy spectra measured so far support the conjecture
that the program that generates the least action is the best program. No proof of the Principle of
Computational Least Action yet exists, but the evidence so far supports the conjecture.

5.1 A dynamical system

Instruction execution can be described as a dynamical system [35, 36, 44, 46] determined by a
hamiltonian function,

H(r, p) =
p2

2m
+ V (r) , (5.1)

and the related equations of motion,

dr

dt
=

∂H

∂p
=

p

m
, (5.2)

dp

dt
= −∂H

∂r
= −dV

dr
, (5.3)

with appropriate boundary conditions. The function r(t) is the position of a particle in an abstract
computational space as a function of time. The function p(t) is its conjugate momentum.

The total energy is set to zero. The initial boundary condition,

r(0) = 0 , p(0) = 0 , (5.4)

corresponds to a particle at rest at the origin at time t = 0, and the final boundary condition,

r(τ) = l , p(τ) = 0 , (5.5)

corresponds to a particle again at rest at final position r = l at time t = τ . Under these constraints,
the motion is determined by the differential equation,

dr

dt
=

√

−2V (r)/m , (5.6)

with the potential,
V (r) = 4e0[(r/l)2 − r/l] . (5.7)

The solution to this equation is the trajectory,

r(t) = (l/2)[1 − cos (νt)] , (5.8)

and the boundary conditions determine the mass,

m =
8e0τ

2

π2l2
. (5.9)

The momentum is the mass times the velocity,

p(t) = (4e0τ/lπ) sin(νt) , (5.10)

18

and the force,
f(r) = −8(r/l − 1/2) · (e0/l) , (5.11)

is the negative derivative of the potential.
It is convenient to measure time in dimensionless clock-ticks. If the machine has frequency ν0,

time t corresponds to clock-tick,
k = ν0t , (5.12)

and an instruction that completes in τ seconds completes in

κ = ν0τ (5.13)

clock-ticks.

k

T/e0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 5.0 10.0 15.0 20.0

Figure 11: Kinetic energy as a function of time. The curve on the left corresponds to a load from
near memory, such as a cache, that takes κ = 5 clock-ticks. The curve on the right corresponds to
a load from far memory that takes κ = 20 clock-ticks.

The kinetic energy assumes the form,

T/e0 = sin2(πk/κ) . (5.14)

As a function of time, it provides a picture of how an instruction executes. Figure 11, for example,
shows the kinetic energy for two different load instructions. The memory address for one of them
hits in cache, and the instruction completes in κ = 5 clock-ticks. The address for the other one
misses cache, and the instruction completes in κ = 20 clock-ticks. Halfway through execution, the
kinetic energy equals the positive unit of energy e0 matching the negative of the potential energy
(5.7) at that point.

19

Twice the area under the kinetic energy curve,

S(k) = 2e0

∫ k

0

sin2(πz/κ)dz , (5.15)

equals the computational action [3, 20, 29, 44, 35, 37] generated by an instruction at clock-tick k.
Evaluation of the integral yields the value,

ν0S(k)/e0 = (κ/π) [πk/κ − sin(πk/κ) cos(πk/κ)] , (5.16)

with the total action generated at completion,

ν0S(κ)/e0 = κ . (5.17)

k

ν0S/e0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 1.0 2.0 3.0 4.0 5.0

κ

κ

Figure 12: The relationship between kinetic energy and action as a function of time. The kinetic
energy, shown as a dotted curve, defines a rectangle of size κ × 1, where κ is the instruction’s
execution time, and divides the rectangle into two pieces of equal area. The case shown corresponds
to κ = 5. The action, shown as a solid curve, is twice the area under the kinetic energy curve,
and grows from zero before the instruction issues to the area of the rectangle when the instruction
completes.

Figure 12 shows the relationship between kinetic energy and action for a typical instruction.
The kinetic energy curve divides the κ × 1 rectangle into two equal areas, and the numerical value
of the action equals the area of the rectangle. In a system of measurement with the unit of work,
e0 = 1 flop, the unit of length, l0 = 1 word, where a word is 8 bytes, and the unit of time, t0 = ν−1

0 s,
the inertial mass associated with the instruction has the value,

m =

(

8κ2

π2(l/l0)2

)

m0 , (5.18)

20

where m0 = e0/(ν0l0)
2. For a machine with frequency, ν0 = 1 GHz, m0 = 10−18 flop · s2/word2.

5.2 A program’s computational energy spectrum

Each instruction in a program generates kinetic energy as it executes, and the sum over all instruc-
tions is the program’s energy spectrum. Consider a set of programs,

P = {P1, P2, . . . , Pn} , (5.19)

each program consisting of a sequence of instructions,

Pi = {I1
i , I2

i , . . . , Ini

i } , (5.20)

with a possibly different number of instructions, ni, for each program. Each instruction, Ij
i , issues

at clock-tick kj
i such that 0 < kj

i < Ki where Ki is the total execution time for program Pi. Each

instruction completes at clock-tick kj
i + κj

i where κj
i is the execution time for the instruction. The

issue time and the completion time depend on the instruction sequence generated by the compiler
and on the issue constraints imposed by the hardware.

For each instruction Ij
i in program Pi, define the dimensionless function,

T j
i (k) =







0 k < kj
i

T (k − kj
i)/e0 kj

i ≤ k ≤ kj
i + κj

i ,

0 k > kj
i + κj

i

(5.21)

where T (k)/e0 is defined by (5.14). The energy spectrum of the program is the sum over all its
instructions,

Ti(k) =

ni
∑

j=1

T j
i (k) . (5.22)

At any given clock-tick, multiple instructions are likely to be executing, and definition (5.22) sums
them all together.

Measurement of the energy spectrum requires two pieces of information, the issue time and
completion time for each instruction as the program executes. This information may be difficult to
obtain for a program running on actual hardware, but it is easy to obtain from an instruction-level
simulation of the hardware. As a specific example, consider the simple program, shown in box (5.23),
that computes the scalar product of two vectors.

#if defined(GNUC)
#include <ppc intrinsics.h>

#endif

int main(){
int i, n=100;
float s=0, x[n],y[n];

for(i=0;i<n;i++) {x[i] = 1.0; y[i] = 1.0;}
(void) mfspr(1023);

for(i=0;i<n;i++) {s += x[i]*y[i];}
(void) mfspr(1023);

} (5.23)

21

The amber tool produces trace files for codes running on an Apple PowerPC G5 processor also
known as the IBM PowerPc 970 processor [14]. The illegal instruction mfspr(1023), inserted
twice into the code, signals the amber tool [13] to start a trace file at the first occurrence and to
stop the trace at the second occurrence of the illegal instruction. From this trace file, the simg5

simulator [2, 48] produces a detailed instruction trace with complete information at all stages of
execution. In particular, it contains the clock-tick when each instruction issues and the clock-tick
when each instruction completes. The instructions generated by the compiler between the two illegal
instructions depend on the optimization level specified at compile-time.

k

T2

0 2000 4000 6000

0.0

10.0

20.0

30.0

40.0

gcc -O3

k

T1

0 2000 4000 6000

0.0

10.0

20.0

30.0

40.0

gcc -O0

Figure 13: The kinetic energy spectra for program 5.23 compiled with different optimization levels.
On the left, the code was compiled with the lowest optimization level, gcc -O0. On the right, the
code was compiled with the highest optimization level, gcc -O3. The high spikes in the spectrum
correspond to cache misses as discussed in the text. The thick, black parts of the spectrum correspond
to floating-point computations. The optimized code not only executes in less time but also generates
less action.

Figure 13 shows two energy spectra for program (5.23). They resemble molecular spectra familiar
to chemists and physicists and contain diagnostic information related to the program’s performance.
On the left, the code is compiled with the lowest optimization level, gcc -O0; on the right, the code
is compiled with the highest optimization level, gcc -O3. They both show an initial startup phase,
of about 1500 clock-ticks, caused by the trap into the amber tool when it encounters the illegal
instruction.

The two spectra are qualitatively the same, because they each represent the same computation,
but quantitatively different, because the instructions generated by the compiler are different for the
two optimization levels. The usual comparison focuses on the time axis where it is clear that the
optimized code executes in less time, K2 = 3120 clock-ticks compared with K1 = 5355 clock-ticks
for the unoptimized code.

22

But the energy axis contains more important information than the time axis. It shows why
the program executes as it does and what causes delays in execution. For example, after the initial
startup phase, each spectrum has three sharp spikes. A quick look at an excerpt from the instruction
trace (5.24) for the optimized version of the program shows that these spikes are caused by cache
misses.

Instruction opcode kissue kcomplete κ
47 bc 1600 1620 20
48 lfs 1602 1621 19
49 lfs 1602 1621 19
50 addi 1602 1621 19
51 addi 1602 1621 19
52 fmadd 1618 1626 8
53 bc 1603 1626 23
54 lfs 1606 1948 342
55 lfs 1606 1948 342
56 addi 1606 1948 342
57 addi 1606 1948 342
58 fmadd 1946 1954 8
59 bc 1607 1954 347

(5.24)

Between branch instructions bc, which mark each trip through the for loop, the optimized code
executes two load instructions lfs to fetch the operands, two integer instructions addi to increment
the address to the next pair of operands, and one fused multiply-add instruction fmadd to compute
the result. At instructions 48 and 49, the addresses used by the load instructions hit in cache, and
the instructions complete in 19 clock-ticks. At instructions 54 and 55, however, the addresses miss
cache, and the instructions complete in 342 clock-ticks. The four instructions, two loads and two
integer adds, issue as a group and complete as a group. A delay caused by a cache miss, therefore
delays all four instructions, and the floating-point instruction cannot issue until the operands have
arrived from memory. Once data resides in the cache, each loop executes in about 20 clock-ticks
represented by the solid black areas of each spectrum.

The height of the spectrum measures approximately how many instructions are in flight at any
given clock-tick. Each instruction contributes one unit of energy to the spectrum as shown in Figure
11. Since the spectrum is the sum of all the contributions, its height measures the number of
instructions active at each clock-tick. The issue queues on the PowerPC are quite large so that
theoretically as many as 215 instructions may be active at the same time [48]. Just considering
that the two floating-point queues can hold 20 instructions, the two integer/load/store queues can
hold 36 instructions, and the branch queue can hold 12 instructions, there might be as many as 68
instructions in flight at any given clock-tick. The spectrum for the unoptimized code, on the left side
of Figure 13, shows spikes about 40 units high indicating that 40 instructions are in flight at that
time. The optimized code, on the right side, only has about 25 instructions in flight at the peak of
its spectrum. The extract from the instruction trace (5.24) shows at least twelve instructions active
between clock-tick 1600 and clock-tick 1954.

Figure 14 shows the energy spectrum decomposed, something like a seismogram or an electrocar-
diogram, into its components for the four instructions that account for 97% of the action generated

23

by the optimized code.
Instruction S2(K2) Fraction

addi 19822 0.43
lfs 14852 0.32
bc 9027 0.20

fmadd 800 0.02
sum 44501 0.97

all 45743 1.00

(5.25)

The spikes in the full spectrum do indeed correspond to spikes for the load instruction and the
instructions that depend on it. The spectrum for the multiply-add instruction shows where the
floating-point work occurs in the program. It contributes almost nothing to the spectrum.

k/K2

T2

0.0 0.2 0.4 0.6 0.8 1.0

addi

lfs

bc

fmadd

total

Figure 14: The kinetic energy spectrum decomposed into component parts for each instruction. The
detailed behavior of the full spectrum at the bottom is clearly explained in terms of cache misses
that occur periodically as the code executes. The contribution from the floating-point instruction
adds little to the overall magnitude of the spectrum. Splitting it out separately clearly shows where
floating-point work occurs during execution and how it is affected by memory delays.

Not surprisingly, the behavior of the code is determined by the memory hierarchy not by the
floating-point units. The energy spectrum is a graphic depiction of where and why the code spends
its time during execution and reveals where attention should be paid to further optimization of the
code and perhaps to further changes to the hardware.

5.3 The metric space and the action norm

The action norm turns the set of programs (5.19) into a normed metric space [35, 44, 47]. The norm
measures the size of each program and induces a distance function between two programs [28, 32].

24

To define the norm, multiply (5.21) by two and integrate to obtain the dimensionless function,

Sj
i (k) =







0 k < kj
i

ν0S(k − kj
i)/e0 kj

i ≤ k ≤ kj
i + κj

i ,

κj
i k > kj

i + κj
i

(5.26)

for each instruction Ij
i in program Pi. The function ν0S(k)/e0 is defined by (5.16), and κj

i =

ν0S(κj
i)/e0 from (5.17) is the total action generated during execution. This function is zero until

the instruction issues, grows according to (5.16) during execution, and retains the constant value
(5.17) after the instruction completes. The total action generated by the program is the sum over
all instructions,

Si(k) =

ni
∑

j=1

Sj
i (k) . (5.27)

From (5.17) and (5.26), the total action generated by program Pi at the end of execution has the
value,

Si(Ki) =

ni
∑

j=1

κj
i . (5.28)

Programs that execute instructions with short completion times generate less action than programs
that execute instructions with long completion times.

Since the total execution time Ki for program Pi is at most the sum of the execution times for
all its instructions, the action generated by the program provides an upper bound,

Ki ≤ Si(Ki) , (5.29)

for the execution time in clock-ticks. If the instructions execute strictly sequentially, equality holds.
If they overlap, the inequality holds. Optimization of generated code, therefore, is an exercise in
scheduling instructions in such a way to minimize the total execution time to a value below the total
action generated.

The next step in the definition of the norm is to shift the time scale to the dimensionless vari-
able [28, p. 113],

z = 1 +
k − Ki

Kmax

, (5.30)

where Kmax is the maximum execution time over the set of programs,

Kmax = max
i

Ki . (5.31)

In this new time scale, all programs finish at z = 1. Programs with maximum execution time, Ki =
Kmax, begin execution at z = 0 while all other programs begin execution later at z = 1−Ki/Kmax.

For each program Pi, define the function,

si(z) =

{

0 0 ≤ z ≤ 1 − Ki/Kmax

Si(Kmax(z − 1) + Ki)/s∗ 1 − Ki/Kmax ≤ z ≤ 1 ,
(5.32)

evaluating each program’s action function at time k = Kmax(z − 1) + Ki and scaling it by the
maximum action generated,

s∗ = max
i

Si(Ki) , (5.33)

25

by any program in the set. The function si(z) remains zero until the program begins execution at
z = 1 − Ki/Kmax and reaches its maximum value when the program finishes execution at z = 1.
The program that generates the most action has the value si(1) = 1 when it finishes and all others
have lower values less than one.

With these definitions, the set (5.19) of programs P becomes a normed metric space [28, 32] with
the norm,

‖Pi‖ =

∫ 1

0

|si(z)|dz , (5.34)

that measures a program’s size. A program’s size, in this context, is not the number of lines of code
or the number of instructions executed or the amount of memory used. Its size measures the action
generated as it moves through computational phase space. The distance function,

‖Pi − Pj‖ =

∫ 1

0

|si(z) − sj(z)|dz , (5.35)

is the natural distance function induced by the norm. It measures how far apart programs are from
each other in terms of the difference in their paths through phase space.

z

s(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

-O0

-O1,2

-O3

Figure 15: Computational action for four different optimization levels. The curves marked -O0 and
-O3 correspond to the area under the kinetic energy spectra shown in Figure 13. The curves marked
-O1,2 correspond to intermediate levels of optimization whose spectra have been omitted. Almost
all the performance improvement has been gained already at the first level of optimization. The
highest optimization level yields a program with the least size that runs in the least time.

Figure 15 shows the action functions for program (5.23) compiled with four different optimization
levels. Turning off all optimization, gcc -O0, yields a program that generates the most action. It
corresponds to the spectrum on the left side of Figure 13. The highest level of optimization, gcc

26

-O3, yields the least action. It corresponds to the spectrum on the right side of Figure 13. The
highest level of optimization is only marginally better than the two intermediate levels, gcc -O1 or
gcc -O2.

As already suggested by the difference in height of the energy spectra shown in Figure 13, the
unoptimized code uses many more instructions than the optimized code. This difference is again
reflected in the action curves shown in Figure 15 where the total action generated by the unoptimized
code, ν0Si(Ki = 5355)/e0 = 79363, is almost twice as big as that generated by the optimized code,
ν0Sj(Kj = 3120)/e0 = 45743. The most important difference in the optimized code is that the
compiler uses the fused multiply-add instruction, fmadd, which it did not use with optimization
turned off.

The norm of each program is the area under its action curve in Figure 15. The program generated
by the highest level of optimization has the smallest norm in this set of four programs and it has
the smallest execution time. The distance between codes is the area between the action curves.
The three programs with optimization levels -O1,2,3 are essentially the same, but all three are quite
different from the unoptimized program.

6 Productivity metrics

In a very similar way, I have applied the idea of computational least action to the definition of new
productivity metrics for software development [45, 47].

6.1 A metric space for programmers

For this case, rather than considering a set of programs, consider a set of programmers,

P = {P 1, P 2, . . . PN} , (6.1)

assigned to a specific project. Let t ≥ 0 represent time measured from the beginning of the project
at time t = 0. Let T i be the time spent on the project by programmer P i and let

T i = [0, T i] (6.2)

be the corresponding time interval.
Programmers spend their time doing different things at different times during the project. To

reflect this changing activity, divide each time interval T i into subintervals,

T i
j = [tij−1, t

i
j] , j = 1, ni . (6.3)

Each programmer starts at
ti0 = 0 , (6.4)

and finishes at
tini = T i . (6.5)

The number of intervals ni is different for each programmer, and the total time spent T i is different
for each programmer. The width of each time interval is

σi
j = tij − tij−1 , (6.6)

27

and the activity performed in each interval is different for each programmer.
In each time interval T i

j , programmer P i is involved in some activity that contributes some work,

W i
j (t), toward finishing the project. Some activities advance the project more than others. For each

activity, the power function of equation (6.27) is the derivative of the work function,

ρi
j(t) =

dW i
j

dt
, (6.7)

the rate of work production for programmer P i in time interval T i
j .

For simplicity, assume that the power function ρi
j is constant in each interval so that

W i
j (t) = ρi

j

∫ t

ti
j−1

ds , (6.8)

and hence work accumulates linearly in each interval,

W i
j (t) = ρi

j(t − tij−1) . (6.9)

At the end of each time interval, the work accumulated over that interval is

W i
j (t

i
j) = ρi

jσ
i
j (6.10)

using the width of the interval from equation (6.6).
As time increases from one interval to the next, work accumulates at different rates at different

times. At time t ∈ T i
k the total accumulated work,

W i(t) = W i
k(t) +

k−1
∑

j=1

ρi
jσ

i
j , (6.11)

is the sum of the work done during all the intervals preceding interval T i
k plus the additional work

done so far in interval T i
k .

The action generated in each time interval is the integral,

Si
j(t) = 2

∫ t

ti
j−1

W i
j (s)ds , (6.12)

with the factor of two inserted for convenience. Substitute the work function from equation (6.9)
into the integral and evaluating the integral to find

Si
j(t) = ρi

j(t − tij−1)
2 . (6.13)

At the end of each interval, the action accumulated over that interval is

Si
j(t

i
j) = ρi

j(σ
i
j)

2 . (6.14)

The total accumulated action in interval T i
k at time t is the sum,

Si(t) = Si
k(t) +

k−1
∑

j=1

ρi
j(σ

i
j)

2 . (6.15)

28

The set of programmers P becomes a metric space [28] by defining a distance function based on
the difference in how each programmer generates action during the project. This function should be
a dimensionless function of a dimensionless variable such that the distance between programmers is
a pure number. It should also measure a programmer’s individual contribution to the project.

First define a set of units. The unit of time, T , is the maximum time spent by any programmer
in the set,

T = max
i

(T i) . (6.16)

The unit of power is ρ and the unit of action is

Ŝ = ρT 2 . (6.17)

To put each programmer onto the same time scale, define the dimensionless time variable,

z = 1 + (t − T i)/T . (6.18)

Define a dimensionless action function si(z) in interval T i
k from the sum in equation (6.15) evaluated

at time
t = Tz + T i − T (6.19)

and scaled by the unit of action Ŝ,

si(z) =
1

Ŝ
·



Si
k(Tz + T i − T) +

k−1
∑

j=1

ρi
j(σ

i
j)

2



 . (6.20)

The dimensionless time variable z spans the interval

1 − T i/T ≤ z ≤ 1 , (6.21)

and the first time interval for each programmer shifts to a new starting point,

z = 1 − T i/T . (6.22)

At this value of z, from definition (6.18), the time, t = 0, corresponds to the left end of the first
interval where the action is zero. Extend the action function continuously to z = 0 by defining

si(z) = 0 , 0 ≤ z ≤ 1 − T i/T . (6.23)

In the variable z, every programmer ends activity at the same time,

z = 1 . (6.24)

The programmer spending the longest time spans the whole interval from z = 0 to z = 1.
With these definitions, define the size of each programmer’s contribution as the L1-norm,

‖P i‖ =

∫ 1

0

|si(z)|dz , (6.25)

29

and the distance between two programmers,

‖P i − P j‖ =

∫ 1

0

|si(z) − sj(z)|dz . (6.26)

This new metric space for productivity in software development [47] is an extension of my earlier
work on computational action metrics [37]. It will change the way we think of productivity in a
fundamental way. This work is also related to two companion papers [44, 46] that shows how to
define a similar metric space based on computational action for programs as they execute.

6.2 Data collection

We collected data from students as they worked on a programming assignment for a graduate-level
course on Grid Computing at the University of Maryland [12]. The assignment was to implement
Conway’s Game of Life [19] to run in parallel on a Beowulf Linux cluster [4]. The students used the
MPI library [15] to implement the parallel program.

We also collected data in collaboration with the DARPA HPCS Project. At the University
of California, San Diego, Alan Snavely included Co-Array Fortran in his graduate-level course in
parallel programming. I presented a Co-Array Fortran tutorial to his class with a live, interactive
demonstration of how to use Co-Array Fortran on the Cray-X1 back at the AHPCRC in Minneapolis.
The students were assigned a Sharks and Fishes problem using both Co-Array Fortran and MPI.

Vic Basili’s students from the University of Maryland measured their programming effort to
compare their productivity using the two programming models. The students reported very favorable
impressions of their experiences with Co-Array Fortran compared with their experiences with MPI.
We performed the same experiment with John Gilbert’s class at the University of California, Santa
Barbara with similar results.

We collected data by instrumenting the compiler. Each time a student compiled a program,
we asked two questions. First, how long have you been working before the compilation? A blank
response indicated that they had been working continuously since the previous compilation. Second,
what kind of work were you doing? The student selected the kind of work from a list of seven
activities, which are listed in the first column of Table 1.

Table 1: Activities and Power Ratings
Activity Power Rating
Tuning 0.9

Parallelizing 0.7
Functionality 0.6

Learning 0.5
Compile-Time Error 0.2

Run-Time Error 0.2
Other 0.1

The instrumented compiler recorded the responses along with a time stamp indicating when the
compilation occurred. From this data, we computed a set of time intervals for each student along
with the activity associated with that interval.

30

A fundamental problem in trying to define a productivity metric in software development is
the definition of work. Each kind of activity in each time interval corresponds to some work that
advances the student toward the solution of a problem. Some activities advance the student more
quickly than others, that is, they produce work at a higher. It is sufficient, for our purposes, to
know the rate at which work accumulates, the power rating, without defining the actual unit of work
itself. One unit of work can be converted to any other unit of work through a suitable conversion
factor. The work associated with each activity can be converted into whatever unit of work we want
without changing our results.

The important quantity for our analysis is the unit of power, ρ, which we define as the maximum
rate at which any programmer can perform work to finish the project. In each interval of time,
each programmer, denoted by superscript i, performs some activity, denoted by subscript j, at some
fraction of peak power,

ρi
j = αi

jρ . (6.27)

The dimensionless parameters 0 ≤ αi
j ≤ 1 characterize the behavior of each programmer. Table

1, in its second column, shows the power ratings, αi
j , assigned to each activity. We have given all

programmers the same power rating for the same activity although we could, with more information,
assign different ratings to each one.

These power ratings are the input parameters to our model. Their values are purely subjective
at this point, and we claim no profound meaning to them. They are dimensionless quantities that
represent the fraction of peak power for each activity.

Figure 16 shows the action functions defined by equation (6.20) for the set of ten programmers we
considered. Each programmer is marked by a symbol at the beginning and end of the corresponding
interval in the dimensionless time variable z. The size of each programmer’s contribution is the
area under the action function. The distance between programmers is the area under the absolute
difference between action functions.

Table 2: Individual contributions in milli-action units, ρT 2 × 10−3. The values on the diagonal are
the individual contributions from equation (6.25). The values below the diagonal are the distances
between contributions from equation (6.26).

1 1.2
2 0.8 1.9
3 5.3 4.7 6.6
4 3.3 3.3 5.4 3.0
5 1.4 0.9 4.4 2.8 2.2
6 3.6 3.4 4.8 0.8 2.8 3.5
7 1.6 1.6 5.2 1.7 1.2 2.2 1.4
8 6.3 5.9 5.9 3.6 5.1 3.0 5.1 6.5
9 5.2 5.0 6.2 2.1 4.4 1.6 3.7 1.6 5.0
10 1.3 1.8 6.3 2.7 2.0 3.3 1.1 6.3 4.8 0.3

1 2 3 4 5 6 7 8 9 10

We can approximate the area under each curve by the area of the triangle determined by the end
points of each curve [37]. Table 2 lists the values obtain this way in milli-action units, ρT 2 × 10−3.

31

z

s(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04
•

•

⊗

⊗

△

△

∇

∇

♦

♦

♥

♥

♣

♣

⋆

⋆
♠

♠

Figure 16: Action as a function of time for ten different programmers as a function of time. Each
programmer is assigned a symbol that marks the beginning and ending of each curve. Time has
been scaled so that the unit of time equals the longest time spent by any programmer in the set.
The time for other members of the set are shifted to the right so that each programmer starts work
at a different time but ends work at the same time.

7 The Principle of Computational Least Action

The two metric spaces defined in Section 5.3 for a set of programs and in Section 6.1 for a set of
programmers, suggests the following principle of least action.

The Principle of Computational Least Action. Given a set of programs (programmers),
P = {P1, P2, . . . , Pn}, each solving the same problem, find a program (programmer) P∗ ∈ P such
that

‖P∗‖ = min
Pi∈P

‖Pi‖ , (7.1)

where the norm ‖Pi‖ measures the action for Pi.
The minimum may, of course, not be unique. There is more than one way to optimize a pro-

gram and more than one good way to produce the code. For example, Figure 8 shows the action
curves for two programmers, number three and number eight in Table 2, whose contributions are
approximately equal. Although the area under the two curves is about the same, indicating that the
two programmers contributed about the same amount to the project, the way they contributed is
quite different. One programmer took a long but steady approach while the other took a short but
steep approach. The quantitative measure of the difference between the two approaches is the area

32

z

s(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04
△

△

♣

♣

Figure 17: Action as a function of time for programmers three and eight from Table 2. The area
under each curve is approximated by the triangle determined by the end points of each curve. The
two programmers contributed about the same to the project, the area under the two curves is about
the same, but they worked in two quite different ways to the same end.

between the two curves, which, from the corresponding entry in the table, equals 5.9 milli-action
units.

This principle provides an entirely new way of measuring program performance and programmer
productivity. It is the most important outcome of this project.

33

8 Publications resulting from the project

8.1 Peer-reviewed publications

Robert W. Numrich, Computer Performance Analysis and the Pi Theorem, Journal of the
ACM, under review, 2008.

Robert W. Numrich, Computational Forces in the SAGE Benchmark, Journal of Parallel and
Distributed Computing, under review, 2008.

Robert W. Numrich, Computational Forces in the Linpack Benchmark, Journal of Parallel
and Distributed Computing, in press, 2008.

Robert W. Numrich, A Metric Space for Computer Programs and The Principle of Computa-
tional Least Action, The Journal of Supercomputing, 43(3):281-298, 2008.

Robert W. Numrich, The computational energy spectrum of a program as it executes, The
Journal of Supercomputing, under review, 2008.

Robert W. Numrich, Dimensional analysis applied to a parallel QR algorithm, Parallel Pro-
cessing and Applied Mathematics: Proceedings of the Seventh International Conference on Par-
allel Processing and Applied Mathematics (PPAM07), September 9-12, 2007, Gdansk, Poland,
Springer Lecture Notes in Computer Science, LNCS 4967, 148-157, 2008.

Robert W. Numrich, Computational force: A unifying concept for scalability analysis, Paral-
lel Computing: Architectures, Algorithms and Applications, Proceedings of the International
Conference ParCo 2007, John von Neumann Institute for Computing (NIC) and Jülich Super-
computing Centre, 107-112, 2008.

Robert W. Numrich, A note on scaling the Linpack benchmark, Journal of Parallel and Dis-
tributed Computing, 67(4): 491-498, 2007.

Robert W. Numrich, Lorin Hochstein, Victor Basili, A Metric Space for Productivity Mea-
surement in Software Development, Proceedings SE-HPCS’05, Second International Workshop
on Software Engineering for High Performance Computing System Applications, St. Louis,
Missouri, May 15, 2005.

Robert W. Numrich, Performance Metrics Based on Computational Action, International
Journal of High Performance Computing Applications, 18(4): 449-458, 2004.

8.2 Conferences, tutorials and workshops

Robert W. Numrich, Computational Forces in the Linpack Benchmark, 13th SIAM Conference
on Parallel Processing for Scientific Computing (PP08), Atlanta, GA, March 12, 2008.

Robert W. Numrich, The Principle of Computational Least Action, Louisiana State University,
CCT Seminar, January 17, 2007.

Robert W. Numrich, Computer Performance Analysis and the Pi Theorem, Louisiana State
University, CCT Seminar, January 18, 2007.

34

Robert W. Numrich, A New Scaling Formula for the Linpack Benchmark, SIAM Conference
on Computational Science and Engineering, Costa Mesa, CA, February 19-23, 2007.

Robert W. Numrich, The Principle of Computational Least Action, Albert Einstein Institute,
Potsdam, Germany, September 14, 2007.

Robert W. Numrich, What Does the Pi Theorem Tell Us about Computer Performance Analy-
sis?, High Productivity Computing Systems Productivity Team Meeting, Marina del Rey, CA,
January 10-11, 2006.

Robert W. Numrich, A Metric Space for Productivity in Software Development, High Produc-
tivity Computing Systems Productivity Team Meeting, Marina del Rey, CA, January 11-13,
2005.

9 Summary and future work

Two very important new results have come from this project. The first important result is the iden-
tification of the balance of computational forces as the key to understanding program performance.
This breakthrough followed directly from the definition of a consistent system of measurement for
computer performance analysis and the application of the methods of dimensional analysis. So far,
I have applied it to a few parallel algorithms starting with very simple ones to help understand the
basic procedure and progressing to more complicated full parallel applications. This procedure can
be applied to any parallel application, and I intend to extend the procedure to as many parallel
applications as possible.

The second important result is the statement of the Principle of Computational Least Action. It
provides an entirely new theoretical framework for thinking about performance and productivity. I
intend to apply it to more complicated programs and to perform detailed analysis of real programs
as they execute. I intend to automate the process of producing energy spectra and the process of
displaying the decomposed energy components, much like a musical score, such as the one in Figure
14.

It would be interesting to prove theorems based on the Principle of Computational Least Action.
For example, is the computational action a minimum if and only if the computational time is a
minimum? Or is it a minimum if and only if the computational work is a minimum? I intend to
investigate these questions.

References

[1] Anant Agarwal, Mark Horowitz, and John Hennessy. An Analytical Cache Model. ACM
Transactions on Computer Systems, 7(2):184–215, May 1989.

[2] IBM alphaWorks. Full-System Simulator for IBM PowerPC 970.
http://www.alphaworks.ibm.com/tech/systemsim970, 2006.

[3] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New York, 2nd
edition, 1989.

35

[4] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
Beowulf: A parallel workstation for scientific computation. In Proceedings of the 1995 Interna-
tional Conference on Parallel Processing (ICPP), 1995.

[5] Raymond T. Birge. On electric and magnetic units and dimensions. American Physics Teacher,
2(2):41–48, May 1934.

[6] Raymond T. Birge. On the establishment of fundamental and derived units, with special
reference to electric units. Part I. American Physics Teacher, 3:102–109, 1935.

[7] Raymond T. Birge. On the establishment of fundamental and derived units, with special
reference to electric units. Part II. American Physics Teacher, 3:171–179, 1935.

[8] Garrett Birkhoff. Hydrodynamics: A Study in Logic, Fact and Similitude. Princeton University
Press, 2nd edition, 1960.

[9] Louis Brand. The Pi Theorem of Dimensional Analysis. Arch. Rat. Mech. Anal., 1:35–45, 1957.

[10] P. W. Bridgman. Dimensional Analysis. Yale University Press, New Haven, 2nd edition, 1931.

[11] E. Buckingham. On physically similar systems: Illustrations of the use of dimensional equations.
Physical Review, 4:345–376, 1914.

[12] J. Carver, S. Asgari, V. R. Basili, L. Hochstein, J. Hollingsworth, F. Shull, and M. V. Zelkowitz.
Studying code development for high performance computing: The hpcs program. In Workshop
on High Productivity Computing, Edinburgh, Scotland, pages 32–36, May 2004.

[13] Apple Developer Connection. CHUD Tools Manual Page for amber(1).
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/amber.1.html.

[14] Apple Developer Connection. Technical Note TN2087: PowerPC G5 Performance Primer.
http://developer.apple.com/technotes/tn/tn2087.html, 2003.

[15] J.J. Dongarra, S.W. Otto, M. Snir, and D. Walker. A message-passing standard for MPP and
workstations. Communications of the ACM, 39(7):84–90, 1996.

[16] S. Drobot. On the foundations of dimensional analysis. Studia Mathematica, 14:84–99, 1954.

[17] C. M. Focken. Dimensional Methods and Their Applications. Edward Arnold and Co., London,
1953.

[18] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algorithms on a hypercube I: Matrix multi-
plication. Parallel Computing, 4:17–31, 1987.

[19] M. Gardner. The fantastic combinations of John Conway’s new solitaire game “Life”. Scientific
American, 223:120–123, 1970.

[20] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1950.

[21] Bruce Greer and Greg Henry. High Performance Software on Intel Pentium Pro Processors or
Micro-Ops to TeraFLOPS. In Proceedings of Supercomputing ’97, pages 1–13, 1997.

36

[22] A. Hartstein, V. Srinivasan, T.R. Puzak, and P.G. Emma. Cache Miss Behavior: Is It
√

2? In
Proceedings of the 3rd Conference on Computing Frontiers, pages 313–320. ACM Press, New
York, May 3-5 Ischia, Italy 2006.

[23] Greg Henry and Robert A. van de Geijn. Parallelizing the QR algorithm for the unsymmetric
algebraic eigenvalue problem: myths and reality. SIAM Journal on Scientific Computing,
17(4):870–883, July 1996.

[24] Roger W. Hockney. The Science of Computer Benchmarking. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1996.

[25] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/.

[26] John David Jackson. Classical Electrodynamics. John Wiley & Sons, 1962.

[27] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Gittings. Pre-
dictive Performance and Scalability Modeling of a Large-scale Application. In Proceedings of
Supercomputing 2001, Denver, CO, November 2001.

[28] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover, revised English edition,
1970.

[29] Cornelius Lanczos. The Variational Principles of Mechanics. University of Toronto Press, 4th
edition, 1949.

[30] Douglas Miles. Compute intensity and the FFT. Proceedings Supercomputing 1993, pages
676–684, 1993.

[31] National Institute of Standards and Technology. Prefixes for binary multiples.
http://physics.nist.gov/cuu/Units/binary.html.

[32] Arch W. Naylor and George R. Sell. Linear Operator Theory in Engineering and Science. Holt,
Rinehart and Winston, Inc., New York, 1979.

[33] Robert W. Numrich. Cray-2 memory organization and interprocessor memory contention. In
Carl Meyer and R. J. Plemmons, editors, Linear Algebra, Markov Chains, and Queueing Models,
volume 48 of The IMA Volumes in Mathematics and Its Applications, pages 267–294. Springer-
Verlag, 1992.

[34] Robert W. Numrich. Memory contention for shared memory vector multiprocessors. In Pro-
ceedings of Supercomputing ’92, pages 316–325. IEEE Computer Society, 1992.

[35] Robert W. Numrich. The computational action norm and the principle of computational least
action. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Philadelphia, March 1997. SIAM Activity Group on Supercomputing, Society for
Industrial and Applied Mathematics.

[36] Robert W. Numrich. Computational Force, Mass, and Energy. International Journal of Modern
Physics C, 8(3):437–457, June 1997.

37

[37] Robert W. Numrich. Performance metrics based on computational action. International Journal
of High Performance Computing Applications, 18(4):449–458, 2004.

[38] Robert W. Numrich. Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax. Parallel Computing, 31:588–607, 2005.

[39] Robert W. Numrich. A note on scaling the Linpack benchmark. Journal of Parallel and
Distributed Computing, 67(4):491–498, April 2007.

[40] Robert W. Numrich. Computational force: A unifying concept for scalability analysis. In Chris-
tian Bischof, Martin Bücker, Paul Gibbon, Gerhard Joubert, Thomas Lippert, Bernd Mohr,
and Frans Peters, editors, Parallel Computing: Architectures, Algorithms and Applications,
Proceedings of the International Conference ParCo 2007, pages 107–112. John von Neumann
Institute for Computing (NIC) and Jülich Supercomputing Centre, 2007.

[41] Robert W. Numrich. Computational forces in the Linpack benchmark. In press, Journal of
Parallel and Distributed Computing, March 2008.

[42] Robert W. Numrich. Computational Forces in the SAGE Benchmark. under review, January
2008.

[43] Robert W. Numrich. Dimensional analysis applied to a parallel QR algorithm. In Parallel
Processing and Applied Mathematics: Proceedings of the Seventh International Conference on
Parallel Processing and Applied Mathematics (PPAM07), pages 148–157, September 9-12, 2007,
Gdansk, Poland, 2008. Springer Lecture Notes in Computer Science, LNCS 4967.

[44] Robert W. Numrich. A metric space for computer programs and the principle of computational
least action. The Journal of Supercomputing, 43(3):281–298, March 2008.

[45] Robert W. Numrich. A metric space for productivity in software development. In High Pro-
ductivity Computing Systems Productivity Team Meeting, Marina del Rey, CA, January 11-13,
2005.

[46] Robert W. Numrich. The computational energy spectrum of a program as it executes. The
Journal of Supercomputing, Under review, 2008.

[47] Robert W. Numrich, Lorin Hochstein, and Victor Basili. A metric space for productivity mea-
surement in software development. In Proceedings SE-HPCS’05, Second International Work-
shop on Software Engineering for High Performance Computing System Applications, St. Louis,
Missouri, May 15, 2005.

[48] Amit Singh. Mac OS X Internals: A Systems Approach. Chapter 3. Addison Wesley Profes-
sional, 2006.

[49] Jaswinder Pal Singh, Harold S. Stone, and Dominique Thiébaut. A Model of Workloads and Its
Use in Miss-Rate Prediction for Fully Associative Caches. IEEE Transactions on Computers,
41(7):811–825, July 1992.

[50] G. W. Stewart. Communication and matrix computations on large message passing systems.
Parallel Computing, 16:27–40, 1990.

38

[51] Barry N. Taylor. Guide for the Use of the International System of Units (SI). Special publication
811, National Institute of Standards and Technology, 1995.

[52] Barry N. Taylor. The International System of Units (SI). Special publication 330, National
Institute of Standards and Technology, 2001.

[53] Dominique Thiébaut. On the fractal dimension of computer programs and its application to the
prediction of the cache miss ratio. IEEE Transactions on Computers, 38(7):1012–1026, 1989.

[54] Dominique Thiébaut, Joel L. Wolf, and Harold S. Stone. Synthetic Traces for Trace-Driven
Simulation of Cache Memories. IEEE Transactions on Computers, 41(4):388–410, April 1992.

[55] T. J. Willmore. An Introduction to Differential Geometry. English Language Book Society.
Oxford University Press, 1959.

39

