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ABSTRACT 
 
The goal of this project was to improve the performance of large scientific and 
engineering applications through collaborative hardware and software mechanisms to 
manage the memory hierarchy of non-uniform memory access time (NUMA) shared-
memory machines, as well as their component individual processors. In spite of the 
programming advantages of shared-memory platforms, obtaining good performance for 
large scientific and engineering applications on such machines can be challenging.  
Because communication between processors is managed implicitly by the hardware, 
rather than expressed by the programmer, application performance may suffer from 
unintended communication – communication that the programmer did not consider 
when developing his/her application. 
 
In this project, we developed and evaluated a collection of hardware, compiler, languages 
and performance monitoring tools to obtain high performance on scientific and 
engineering applications on NUMA platforms by managing communication through 
alternative coherence mechanisms.  Alternative coherence mechanisms have often been 
discussed as a means for reducing unintended communication, although architecture 
implementations of such mechanisms are quite rare. This report describes an actual 
implementation of a set of coherence protocols that support coherent, non-coherent and 
write-update accesses for a CC-NUMA shared-memory architecture, the Stanford 
FLASH machine.  Such an approach has the advantages of using alternative coherence 
only where it is beneficial, and also provides an evolutionary migration path for 
improving application performance. We present data on two computations, 
RandomAccess from the HPC Challenge benchmarks and a forward solver derived from 
LS-DYNA, showing the performance advantages of the alternative coherence 
mechanisms. For RandomAccess, the non-coherent and write-update versions can 
outperform the coherent version by factors of 5 and 2.5, respectively. In LS-DYNA, we 
obtain improvements of 18% on average using the non-coherent version.  We also present 
data on the SpecOMP benchmarks, showing that the protocols have a modest overhead of 
less than 3% in applications where the alternative mechanisms are not needed. 
 
In addition to the selective coherence studies on the FLASH machine, in the last six 
months of this project ISI performed research on compiler technology for the 
transactional memory (TM) programming model being developed at Stanford.  As part of 
this research ISI developed a compiler that recognizes transactional memory “pragmas” 
and automatically generates parallel code for the TM programming model.  
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1  Introduction 
 
Achieving good performance and scalability for scientific and engineering applications 
on large non-uniform memory access time (NUMA) shared-memory machines has been 
the focus of several research projects in the past decade, including the MIT Alewife [1], 
Stanford's DASH [14] and FLASH [12] and the Wisconsin Tempest [19]. NUMA shared-
memory machines have their processors and memory physically distributed and 
interconnected by a scalable communications fabric, yet they provide users with a single 
global address space, a programming model that is easier to use than message-passing. In 
spite of the programming advantages of shared memory, obtaining scalable (and 
machine-independent) performance for large scientific and engineering applications can 
be challenging.  Application performance may suffer from unintended communication -- 
communication that the programmer did not consider when developing her application -- 
because communication between processors is managed implicitly by the hardware, 
rather than expressed by the programmer. 
 
Lately there has been research in improving the performance of large scientific and 
engineering applications through collaborative hardware and software mechanisms. In 
particular, there has been a growing interest in ``selective'' data coherence on cache-based 
shared memory machines, that is, enforcing traditional coherence on selected data 
structures only. Selectively enforcing coherence requires the user or compiler's 
knowledge about how data objects are used throughout the program. For example if the 
user/compiler has knowledge that data objects are private, these local temporaries do not 
need to be written back to main memory once ``not live''.  As another example, if the user 
knows that data with random reference patterns does not have dependences across 
threads, then coherence traffic is unnecessary. By default, coherence is enforced, and one 
can think of designating data structures as non coherent as a performance optimization. 
 
This project explored a collection of hardware, compiler, language and performance 
monitoring tools to achieve high performance on NUMA platforms by managing 
communication. As part of this project, we conducted an experiment on reducing one 
form of unintended communication, coherence traffic between processors, by selectively 
enforcing data coherence using a new set of cache-coherence protocols that allow 
memory accesses to data to be seen as coherent, non-coherent or write-update accesses at 
different times during a computation. A non-coherent access triggers the data's home 
node to ignore normal coherence operations and tag the data as non-coherent. A write-
update access bypasses normal coherence operations and writes data directly to memory.  
 
The protocols developed during this project were implemented in the Stanford FLASH 
hardware testbed. FLASH was developed to explore the efficient integration and support 
of both cache-coherent shared memory and user-level message passing. Unlike prior 
work in cache-coherence protocols, which focus on tuning the hardware implementation 
in a way that is transparent to the application programmer, the programming model for 
selective coherence allows the application programmer to express at a high level which 
data structures and in which portion of the code the alternative protocols should be used.  
This approach permits customization of protocols only where it is expected to be 
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beneficial, and allows an evolutionary migration path for the application programmer to 
achieve high performance. 
 
This report of is organized into five sections, followed by a conclusion. Section 2 
presents an overview of FLASH. Section 3 describes the programming model for 
supporting selective coherence mechanisms. Section 4 discusses the baseline coherence 
protocol and the two selective-coherence protocols developed during this project, as well 
as their semantics and implementation. Section 5 presents results of two computations 
that can benefit from selective-coherence protocols, the RandomAccess benchmark from 
the HPC Challenge Benchmark suite and a forward solver derived from LS-DYNA [15], 
and reports the performance impact of selective coherence when it is not needed, on the 
SpecOMP benchmarks. Finally, Section 6 discusses our work in compiling for 
transactional memory. 

 
2 Background 

The Stanford FLASH system [12] was developed to explore the efficient integration and 
support of both cache-coherent shared memory and user-level message passing.   FLASH 
is a 64-processor NUMA system based on the SGI Origin 2000.  The primary difference 
between the two systems is Stanford’s desire for FLASH to support multiple memory 
models, not just cache-coherent shared memory as implemented by the Origin.  Included 
in the FLASH testbed is Flashpoint, a tool for monitoring the memory behavior of 
specific address ranges, which provides insight into multiprocessor memory behavior.   

 
Figure 1 FLASH block diagram 

 
The FLASH multiprocessor is an ideal machine to use for a study of alternative 
coherence protocols.  The memory behavior of this machine is set by its memory 
controller, MAGIC, which includes an internal programmable processor. It is the code 
that runs on the memory controller processor that sets the operations used to provide 
cache coherence to the R10K main processors.  Thus we can extend the types of memory 
consistency the machine supports by adding additional software for the embedded 
memory controller processor.  Furthermore, the machine was built to give good visibility 
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into the communications that result from the coherence operations.  This allows us to 
analyze slow memory operations and specific operations that are causing problems.  
 
The FLASH memory system presents a unified view of memory to every processor 
through a cache-coherence protocol. This protocol defines the set of operations necessary 
to satisfy memory requests for a given consistency model under various sharing 
conditions.  The cache coherence present in modern multiprocessor systems can be 
significantly more complex because the memory system must handle additional race 
conditions that occur with additional requestors. 
   
At times, cache coherence comes at a large cost.  For example, if data is globally shared 
across the machine it must be invalidated if any write can occur.  Getting ownership of a 
line to allow this write operation is called an upgrade, and Figure 2 shows the rise in 
remote upgrade latency as the number of remote sharers increase across three cache 
coherence protocols implemented on FLASH.  The effect is dramatic.  If data is shared 
across every node on FLASH, the communication latency could be 50 times larger than a 
normal memory access.  Applications that frequently write globally shared data will not 
run efficiently on FLASH-like architectures.  Other examples include occupancy 
overhead required for maintaining the sharing list and cache-to-cache transfer misses. 

 

  

Figure 2. Upgrade versus Total Remote Sharer. 

 
3 Programming Model 

Given our goal of being able to designate accesses to certain data objects as coherent, 
non-coherent or write-update for specific phases of a computation, we now consider how 
this would be supported by the programming model. Conceptually, we want the 
programmer to be able to extend the type of a data structure to designate how accesses to 
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it should be treated by the underlying hardware.  Because we may want accesses to a 
particular object to be treated as coherent in some phases and non-coherent or write-
update in others, we also want the programmer to be able to designate phases in which 
each coherence model can be selected for specific variables. 
 
Similar capability is supported by Unified Parallel C, a global address space language 
that is becoming more available on high-end commercial parallel platforms and clusters, 
and is the subject of significant ongoing academic interest. UPC includes the type 
qualifier relaxed that permits designation of an object as having relaxed memory 
consistency. To express that a particular phase of a computation is to use relaxed memory 
consistency, the programmer can use the #pragma upc relaxed construct prior to that 
block of code†.  
 
Conceptually, the programming model support for the proposed selective coherence 
protocols would assume coherence by default.  Type qualifiers such as relaxed, for the 
non-coherent protocol, or update, for the write-update protocol, would indicate that, for a 
given phase of the computation, a data structure should use an alternative coherence 
approach.  Such type qualifiers would extend common parallel programming languages, 
such as dialects of C and Fortran. 
 
As a pragmatic solution for the purposes of this experiment, we mimic this programming 
model support with a library-based strategy that extends OpenMP C programs. To create 
accesses to a same memory region with distinct coherence protocols in different phases 
of the computation, software calls a special malloc function that fills in a structure 
NCPtr_t with three pointers. The first element is a pointer to a coherent image of 
memory. The second element is a pointer to a non-coherent image of the same memory 
region, and the third is a pointer to a “write-update” image of the memory region. These 
three pointers are virtual address synonyms for the same physical memory location. 
 
Figure 3 shows how to allocate and use memory under these three alternative coherence 
models. In this example, c, nc and wu point to the same physical memory location. 
 

 
 

Figure 3. Malloc-based programming model for selective coherence. 

 
                                                 
† In some sense, these constructs relate to the directives used as input to vectorizing compilers of 20 years 
ago to ignore vector dependences. 

// selective-coherence pointer type
NCPtr_t p; 
malloc_non_coh(size, &p); 
// set the coherent, non-coherent and write-update pointers 
c =  p.cPtr; 
nc = p.ncPtr; 
wu = p.wuPtr; 
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4 Protocols 

Under a cache-coherence protocol, the memory system presents a unified view of 
memory to every processor. A cache-coherence protocol defines the set of operations 
necessary to satisfy memory requests for a given consistency model under various 
sharing conditions.  In this project, in addition to an existing baseline coherence protocol, 
we developed and implemented two alternative coherence protocols (non coherent and 
write update) that are triggered by the special malloc libraries described Section 3. From 
an implementation perspective, accesses to non-coherent or write-update memory are 
distinguished from accesses to coherent memory by special address bits that tell FLASH's 
memory controller, MAGIC, to treat non-coherent and write-update accesses using a 
different set of protocols.  
 
This section describes the baseline, non-coherent and write-update protocols. All 
protocols are implemented using a directory-based system. The directory-based system 
uses a reserved portion of main memory to store coherence state for each cache line.   
The initial read of the directory header represents one potential latency cost of the 
directory-based cache coherence on FLASH, but this cost remains constant when we 
modify the coherence protocol to implement relaxed coherence because the size of 
directory accesses does not change.   
 
The cache-coherence protocol handles all bookkeeping operations to maintain sharing 
lists and directory state after replying to the original requester or forwarding the request 
to a remote processor. This approach minimizes the impact of directory bookkeeping on 
point-to-point latency of cache coherence.  However, the memory controller remains 
occupied or busy while managing the entire handler and this occupancy can significantly 
impact latency through memory contention.     
 
Baseline coherent protocol 
The baseline coherence protocol uses two separate state machines to handle coherence 
transactions. These states are held in the directory in a reserved portion of main memory.    
The memory controller reads both states out of the 64-bit header field and stores updated 
header information back into the directory at the end of each handler if the directory state 
has changed.      
 
The first state machine determines the sharing status of the cache line. Valid states 
include clean, exclusively in another cache, held in the I/O subsystem, or pending another 
transaction. In every state except clean, the transactions required by the protocol to 
satisfy the request are relatively simple because the protocol needs to communicate only 
with the original requester, the local directory, and potentially a remote dirty copy of the 
cache line.  
  
If the cache line is read-only, the protocol reads a second state machine to track the list of 
read-only copies, or sharing list. In programs written well for shared-memory, most 
cache lines are shared only between a few processors.  The coherence protocol, however, 
must still handle cases where cache lines are globally shared in almost every cache.   Our 
64-bit header does not include enough bits to maintain one bit for each processor, so the 
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two-state protocol maintains the sharing list in a separate format depending on the size of 
the sharing list and the distribution of the sharers in the system.    
 
The simplest sharing list formats cover the common cases of non-shared and one-sharer.  
These cases are represented as separate states to optimize common checks in the 
coherence protocol.  For example, the memory controller can send an exclusive copy of a 
cache line immediately if the data is clean and non-shared. Similarly, the memory 
controller can immediately acknowledge an upgrade if the requester is the only sharer on 
the sharing lists.  Both cases are checked quickly in our protocol.  
 
The local-bitvector sharing list state uses 16 bits of the header, 1 bit for each node, to 
track “topologically close” sharers. This set of sharers is defined as the neighboring 
caches with the shortest point-to-point latency across the interconnection network. In 
FLASH, these neighbors are nodes on the local 16-processor meta-cube, but this 
approach could easily be extended to more complicated network topologies.     
 
If the sharing list is distributed among caches that are not all within the local meta-cube, 
the protocol provides a limited pointer sharing-list state that uses 30 bits in the header to 
track up to five remote sharers.  Each sharer requires 6 bits because the maximum node 
number is 63.    
 
If the sharing list does not fall among 16 local neighbors or among 5 more dispersed 
neighbors, the sharing list is represented as a full 64-bit bitvector. Recall that the header 
includes only 64-bits in total and some bits are needed to represent both the coherence 
state and the sharing-list state. Therefore, the protocol allocates reserved protocol 
memory to store the bitvector and uses the header bits as a pointer to the full bitvector. 
Updates to the sharing list now require a pointer indirection, but this sharing-list state 
occurs infrequently in most shared-memory programs.   

 
Non-Coherent Protocol 
The non-coherent protocol adds a “non-coherent'” state to the coherence state machine 
and does not modify the sharing-list state machine. If a coherent memory location is 
accessed as non-coherent, the memory will transform the whole cache line to non-
coherent state. This transformation can be expensive because it requires invalidations and 
interventions to all processors that hold clean or dirty copies.  
 
When the memory controller receives a request for a non-coherent copy, it invalidates all 
outstanding coherent copies and then sends the cache line to the requester. Once all flush 
acknowledgements arrive at the requester, MAGIC sends an acknowledgment to the 
initial requester and sets the cache line to non-coherent. Subsequent non-coherent 
requests to the same cache line will be satisfied by the home node with no coherence 
actions to any cached copies. Additional non-coherent requests update the sharing-list 
state to track potential outstanding non-coherent copies in the system.     
 
The protocol also uses the sharing list to recover coherence if the memory controller 
receives a coherent request for the cache line by invalidating the cache line from all 
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potential cache lines that hold a non-coherent copy. Thus the sharing list reduces the 
number of invalidations because the memory controller does not send invalidations to 
processors that did not request a non-coherent copy.  
 
Write-Update Protocol  
Write-update accesses bypass normal cache coherence operations and write data directly 
to memory. A write-update access is similar to an uncached access because the request 
bypasses the secondary cache entirely. The memory controller sends invalidation 
messages to shared copies or flush operations to exclusive copies and immediately writes 
the update data to memory. This write operation is not sequentially consistent because the 
memory update is not held until all read copies are removed from remote caches. 
However, this violation only occurs when recovering cache coherence from a non-
coherent state, which by definition violates sequential consistency.  
 
The processor issues write updates to the memory controller whenever software writes to 
the update pointer from the previous section.  The current interface does not support 
reads to the update pointer memory.   However, the memory is still read-able through the 
coherent and non-coherent pointers.  

 
5 Performance Studies 

In this section we present an evaluation of the selective coherence protocols using 
RandomAccess, a benchmark from the DARPA HPCS benchmark suite. We also present 
experimental data for a sparse solver from LS-DYNA. Finally we present an 
experimental evaluation of the overhead of selective coherence protocols for applications 
running on a traditional coherent protocol. 
 
5.1 Experiments using the Random Access benchmark 

  
Random Access is part of the DARPA HPCS benchmark suite, and it is designed to stress 
the memory system by performing updates to randomly selected entries of a large table. 
The application can be parallelized such that each processor performs a chunk of the 
updates (a small number of errors due to race conditions between updates is acceptable). 
We chose Random Access for our experiment with relaxed coherence protocols versus 
non-coherent memory protocols because of its characteristics: a large, shared data 
structure that does not fit in the memory of a single node; intrinsic parallelism; potentially 
high memory coherence traffic and false sharing due to random updates to a same table 
entry or cache line. In addition, even though RandomAccess is a synthetic benchmark, its 
data access patterns are found in many scientific applications and benchmarks, as for 
example in LS-DYNA and NAS CG.  

 
We concentrate on the parallel implementation of RandomAccess, where each process 
performs a fraction of the updates and a small number of errors due to race conditions 
between updates is acceptable. For our experiments in FLASH, we developed three 
OpenMP versions of RandomAccess, where the shared table is partitioned so that each 
node keeps a fraction of the table in its local memory, and each thread performs a set of 
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random updates to the table. The sequential code and these three parallel versions are 
shown in Figure 4 and Figure 5. 

 
 

Figure 4. Sequential and baseline RandomAccess code. 

RandomAccess 
{ 

uint64 *Table; 
     malloc (tableSz, Table); 
     // initialize table 
     for (i = 0; i < tableSz; i ++)  
  Table[i] = i; 
     // perform updates 
 ran = Ran(seed); 
     for (i = 0; i < nUpdates; i ++) { 
  ran = (ran << 1) ^ (ran < 0 ? POLY: 0); 
  Table[ran & (tableSz-1)] ^= ran; 

} 
} 

(a) Sequential RandomAccess 
 

CohRandomAcess 
{ 

uint64 *Table; 
     malloc (tableSz, Table); 
     // initialize table 
     for (i = 0; i < tableSz; i ++)  
  Table[i] = i; 
     // parallel threads perform updates in coherent memory 
 omp_set_num_threads(nThreads); 
 tUpdates = nUpdates/nThreads; 
#pragma omp parallel private (threadId, ran) 
{ 

threadId = omp_get_thread_num(); 
ran = Ran(threadId); 
for (i = 0; i < tUpdates; i ++) { 

  ran = (ran << 1) ^ (ran < 0 ? POLY: 0); 
  Table[ran & (tableSz-1)] ^= ran; 

} 
} // end parallel section 
}  
 

(b) Coherent RandomAccess 
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Figure 5. RandomAccess code for non-coherent and write-update protocols. 

 
RandomAccess in Figure 4(a) is the sequential version of the benchmark. The first 
parallel version, CohRandomAccess shown in Figure 4(b), is designed for a cache-
coherent shared memory model. It relies on the cache coherence protocol to ensure that 

NonCohRandomAccess 
{ 

NCPtr_t Table; 
     malloc_non_coh (tableSz, Table); 
 cohTable = Table.cPtr; 
 nonCohTable = Table.ncPtr; 
     // initialize table in coherent memory 
     for (i = 0; i < tableSz; i ++)  
  cohTable[i] = i; 
     // perform updates in non-coherent memory 
 omp_set_num_threads(nThreads); 
 tUpdates = nUpdates/nThreads; 
#pragma omp parallel private (threadId, ran) 
{ 

threadId = omp_get_thread_num(); 
 ran = Ran(threadId); 
     for (i = 0; i < tUpdates; i ++) { 
  ran = (ran << 1) ^ (ran < 0 ? POLY: 0); 
  nonCohTable[ran & (tableSz-1]] ^= ran; 

} 
} // end parallel section 
} 

(a) Non-Coherent RandomAccess 

UpdateRandomAcess 
{ 

NCPtr_t Table; 
     malloc_non_coh (tableSz, Table); 
 cohTable = Table.cPtr; 
 updateTable = Table.wuPtr; 
     // initialize table using write-update accesses 
     for (i = 0; i < tableSz; i ++)  
  updateTable[i] = i; 
     // perform updates to table using write update accesses 
 omp_set_num_threads(nThreads); 
 tUpdates = nUpdates/nThreads; 
#pragma omp parallel private (threadId, ran) 
{ 

threadId = omp_get_thread_num(); 
 ran = Ran(threadId); 
     for (i = 0; i < tUpdates; i ++) { 
  ran = (ran << 1) ^ (ran < 0 ? POLY: 0); 
  tmp = cohTable[ran & (tableSz-1)]; 
  updateTable[ran & (tableSz-1]] = tmp ^ ran; 

} 
} // end parallel section 
} 

(b) Write-update RandomAccess 
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updates to a given entry are performed to a coherent memory location. The order in 
which updates are performed is not relevant for the correctness of the computation 
because the operation performed by the updates is associative (an exclusive-or operation). 
In NonCohRandomAccess, shown in Figure 5(a), the parallel threads perform updates 
in a non-coherent way, since the benchmark tolerates a small amount of errors, and this 
should improve performance associated with coherence traffic due to false sharing. The 
third parallel version, UpdateRandomAccess, uses the write-update protocol 
described in Section 4. In UpdateRandomAccess the table is initialized using write-
update, which avoids caching un-initialized data. During the main computation the read 
operations use the coherent memory pointer, and the writes use the write-update pointer, 
as shown in Figure 5(b).  
 
Figure 6(a), (b) and (c) show the speedups of RandomAccess using the baseline coherent 
protocol, the non-coherent and write-update protocols. We present results for table sizes 
of 8, 16 and 32 MBytes. For each table size the graph shows speedups for 2, 4, 8 and 16 
threads with respect to the single-thread baseline coherent version. The number of 
updates to the global table is configured to be four times the table size, which is the 
default number of updates recommended by the HPC Challenge benchmarks. When using 
multiple threads, each thread runs on a distinct FLASH node and a fraction of the table is 
allocated on each node's local memory. 
 
The coherent version of RandomAccess suffers a slowdown for 2 and 4 threads for table 
sizes of 8 and 16M Bytes, before achieving modest speedups for 8 and 16 threads. As the 
table size grows to 32Mbytes, the slowdowns are eliminated, as the likelihood of local 
accesses increases.  Larger table sizes beyond 32MBytes were not included in the 
experiment due to limitations in this experimental implementation in how the operating 
system maps the memory address space, but it is clear that the trend is similar across 
table sizes. With the 32-MByte table the coherent version achieves speedups of up to 4.1 
for 16 threads -- at best a modest improvement from parallelizing the computation. 
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Figure 6. Speedups of Non-Coherent and Write-Update RandomAccess with respect to Coherent 

RandomAccess baseline. 
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RandomAccess with non-coherent accesses to the global table achieves much better 
speedups, up to 11.35 for 16 threads with the 32 MByte table. Overall, performance is 
always improved, and is as much as 5 times better than the baseline coherence protocol 
for 16 threads.  This result demonstrates the value of the non-coherent protocol for 
improving performance by eliminating coherence traffic on codes with unpredictable data 
access patterns. The reason why the speedup is 11.35 for 16 threads, rather than 
something closer to 16, is as follows. Although coherence is not being enforced, a large 
fraction of the memory accesses of each thread are not local and suffer large remote 
memory latencies. In addition, the costs of transitioning from coherent to non-coherent 
memory (the table is initialized as coherent memory) also limit the speedup. 
 
RandomAccess with write-update to the global table also performs consistently better 
than its coherent version, up to 2.5 times better, but not as well as the non-coherent 
version. Write-update accesses result in more coherence traffic than non-coherent 
accesses because any coherent copies must be invalidated/flushed from cache(s) on each 
write. Subsequently, this data may be read through the coherent pointer, since write-
update reads are not supported.  
 
As an extension to the write-update protocol requiring additional hardware support in the 
memory controller, in place of the write-update protocol we could use a “fire-and-forget” 
protocol that performs the operation on the data within the memory controller of the 
home node, eliminating the need for the read.    
 
5.2 Experiments using the Sparse Solver from LS-DYNA 

 
LS-DYNA [15] is a commercial derivative of DYNA, originally developed at Lawrence 
Livermore National Laboratory. The LS-DYNA solver is a general-purpose, nonlinear 
finite element program capable of solving a vast array of engineering and design 
problems ranging from bioprosthetic heart valve operation to automotive crash and 
earthquake engineering. 
 
The dataset used for LS-DYNA was taken from an automotive metal forming problem, 
the stamping of sheet metal into a hood as shown in Figure 7. Simulation of spring back 
after stamping is handled implicitly, and a symmetric-indefinite direct sparse solver is 
generally required. The computational bottleneck of this transient, non-linear problem is 
the triangular solver, of which the forward solver is the first half.   
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Figure 7. Hood dataset 

 
Figure 8 illustrates the core computation of the forward solver from LS-DYNA, in which 
accesses to array x exhibit a very similar behavior as accesses to the main data structure 
in RandomAccess.  The better-known NAS NPB Conjugate Gradient benchmark [18] has 
a similar construct wherein a large matrix is addressed with unit stride and is used to 
update randomly chosen entries in a smaller, right-hand-side vector. 

 

 
 Figure 8. LS-DYNA forward solver. 

 
We extracted just the code and associated data for the forward solver in LS-DYNA using 
a tool called a code isolator, which was developed for the purpose of facilitating 
performance experiments on large applications [13]. We investigated the performance of 
the forward solver step of LS-DYNA shown in Figure 10 when allocating array x as non-

   // Forward solve 
   p = 1  
   do 10 j = 1, nrhs  
     do 20 k = 1, size  
       p = p + 1  
       reg11 = matrix(p-1) * x(indices(k),j)   
       do 30 i = k+1, ld  
         x(indices(i),j) = x(indices(i),j) – matrix(p) * reg11  
         p = p + 1  
30 continue  
20 continue  
10 continue 

Automotive Hood Inner Panel Springback using LS-DYNAAutomotive Hood Inner Panel Springback using LS-DYNA
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coherent memory.  In the OpenMP parallel version, the code from Error! Reference 
source not found. is nested within an additional loop that is parallelized, with a 
sequential outermost loop.  We omit the details in the figure. While accesses to arrays 
matrix and indices are regular and have spatial locality in the innermost loop, accesses to 
x are irregular. Furthermore, in the parallel version of the loop nest, arrays matrix and 
indices are partitioned so that accesses are local to each thread (FLASH node). Hence the 
irregular accesses to x are responsible for most remote memory accesses, false sharing 
and unnecessary coherence traffic.   
 
Figure 9 shows the speedups of the forward solver step, comparing the baseline coherent 
and non-coherent protocol on the irregular array x.  The graph presents speedups for 1, 2, 
4, 8, and 16 threads with respect to the single-threaded execution under the baseline 
coherent protocol.  The non-coherent version speedups are 18% better on average than 
those of the coherent version.  In both versions the speedups are limited by load 
imbalance and OpenMP parallelization overhead.  Still, the improvements observed when 
using non-coherent accesses to array x indicate that this loop nest benefits from selective 
coherence protocols.  

 

 
 

Figure 9. Speedups of forward solver step with respect to sequential execution. 

 
We envision that write-update accesses to x would prevent caching of data that has no 
inherent locality. Therefore, we expect the benefits of the write-update protocol would be 
the elimination of false sharing and unnecessary coherence traffic.  Unfortunately the 
FLASH machine is no longer available for our experiments (it was decommissioned in 
February 2006), but given the performance of RandomAccess with write-update and the 
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similar access patterns exhibited by these two kernels, we expect that the forward solver 
could also benefit from the write-update protocol.   

 
5.3 SpecOMP Performance Measurements 

Relaxing the shared-memory model augments--but does not supplant--the cache-
coherence model.  We took care to implement our non-coherent protocol extensions to 
minimize the impact on shared-memory transactions. Nevertheless, adding support for 
non-coherent memory requires the memory controller to check the coherency status of 
the cache-line before processing coherent memory requests.  This overhead should be 
small because the coherence protocol must check the directory header anyway to check if 
the cache-lines are dirty or pending. 
 
We expect that the overheads to be even smaller in a hard-wired memory controller. In 
practice, overheads reflect limitations of the MAGIC protocol processor's limited 16-KB 
direct-mapped instruction cache. Large coherence protocols introduce larger occupancy 
penalties because the overall memory footprint of the coherence protocol is larger to 
support non-coherent handlers. 
 
We measure the impact of this architectural change by comparing our non-coherent 
protocols with a base bit-vector coherence protocol [2] that does not support non-
coherence protocol extensions. Each bit in the bitvector represents 2 processors and our 
implementation includes a local bit to differentiate between local and remote sharing. 
This base protocol experiences shorter handler occupancies because it does not need to 
check if the cache-line is non-coherent before handling memory requests.  To compare, 
we execute a subset of the SpecOMP2001 benchmarks using both protocols on a 64-
processor FLASH machine. We use only 56 of the available processors to limit the 
potential impact of parasitic operating system effects.  Table 1 illustrates the overall 
execution time, maximum per-thread occupancies, and average per-thread occupancies 
for both protocols. Base refers to a standard coherence protocol, while Sel refers to the 
non-coherence protocol implementation of Section 4.    
 
Our benchmark selection focuses attention on applications with significant local memory 
traffic because most applications written well for shared-memory experience a degree of 
memory locality.   The SWIM benchmark generates the highest frequency of cache 
misses.  95% of these requests access local memory.  However, any remote request 
introduces contention because local and remote requests compete for access to the 
memory controller.  The WUPWISE and MGRID benchmarks have lower rates of 
incoming memory requests and a higher percentage of remote requests.   About 75% of 
FMA3D's cache misses access local memory and remote memory requests access 2 
remote nodes.   We include APSI as an example of an application with poor memory 
locality.  Only 3% of its cache misses access local memory and remote requests are 
randomly distributed around the machine. More information on these benchmarks can be 
found in [11]. 
 
The non-coherent protocol introduces an average slowdown of 3% and increases the 
maximum occupancy by 2%.  In high-occupancy benchmarks like SWIM, the overheads 
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are more pronounced (4.5% slowdown with a 10% increase in maximum occupancy).  
Larger occupancies introduce contention at communication hot-spots. This contention 
eventually impacts latency in the form of queuing delay.   

 
Overall, the impact of non-coherent support on coherent memory transactions is small. 
Although there is no need to use the non-coherent protocol for the SpecOMP 
benchmarks, these results serve to support the point that the alternative protocol 
implementations will not adversely impact applications that use mixed coherent and non-
coherent protocols. 
 

 
Time(s) Max Occup (%) Ave Occup (%)  

Base Sel Base Sel Base Sel
SWIM 439 459 64 71 56 64
WUPWISE 521 559 40 37 35 30
MGRID 836 831 71 63 62 51
FMA3D 791 816 36 42 26 22
APSI 579 586 46 48 25 18
Average 614 633 50 51 38 33
 

Table 1 SpecOMP2001 overheads of non-coherent versus a base bit-vector coherence protocol. 

 
6 Compiling for Transactional Memory 

The study of transactional memory behavior was performed on the Stanford 
Transactional Coherence and Consistency (TCC) simulation environment, Tassel. Tassel 
is an execution-driven simulator that models the TCC architecture and runs on 
workstations with PowerPC G5 processors. Tassel supports fast forwarding (by direct 
execution on the G5) to speed up the simulation of the initialization code of benchmarks.  

 
USC/ISI provided expertise in applications and compiler technology in the SUIF 
compiler.  SUIF targets shared-memory multiprocessor architectures, including the SGI 
Origin upon which FLASH is based.  USC/ISI’s compiler research program revolves 
around the SUIF infrastructure. This collaboration with Stanford has resulted in an initial 
prototype compiler for TCC, based on SUIF, which translates from a high-level 
programming model to a lower level representation suitable for interaction with 
simulation and hardware. Initial optimizations include reduction and privatization for 
exposing parallelism. In addition the compiler applies loop transformations such as strip-
mining for generating efficient code for parallelized loops with the desired transaction 
granularity and iteration/data distribution (cyclic, block or block-cyclic).    
 
6.1  Transactional Coherence and Consistency (TCC) 

Transactional Memory (TM) is a recent paradigm shift that makes shared-memory 
multiprocessors approachable to the average programmer. Using transactions as the 
central abstraction for designing and programming parallel systems leads to a shared 
memory programming and memory consistency model called Transaction Coherence and 
Consistency (TCC). Transactions simplify parallel programming by providing a way of 
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writing correct and efficient shared-memory programs without locks, semaphores, or 
condition variables. Stanford has produced significant research results on this topic 
[6][7][8][9], and an ongoing collaboration between Stanford and USC/ISI has produced a 
prototype optimizing compiler for high-level TCC constructs.  
 
The compiler developed by USC/ISI supports optimizations for exposing parallelism and 
decreasing the number of violations in reduction computations. Data that is local to a 
transaction can be privatized, and therefore not be part of the state of the transaction that 
is buffered and communicated across transactions (for example, large temporary arrays 
used to store temporary data values).  Further, operations that reduce values to a loop 
carried sum variable are frequently used within loops that are otherwise good targets for 
transactional parallelization. These operations can cause frequent violations on the sum 
variable. However, when such operations are associative, such as addition, multiplication, 
and minimum/maximum, and can therefore be reordered to maximize parallelism, we can 
privatize the sum variable within each processor and only combine these variables to a 
sequential sum after the end of the loop. 
 
In addition, the compiler uses loop transformations such as strip-mining and tiling for 
generating efficient code for parallelized loops with the desired transaction granularity 
and iteration distribution (cyclic, block or block-cyclic). Parallelization at different levels 
of loop nests will have different performance properties that need to be evaluated. Outer 
loops provide large granularity, but can sometimes get too large, because realistic TCC 
systems have finite amounts of per-transaction buffering. Inner loops can often be too 
small to effectively use without combining iterations, due to transaction startup/commit 
overheads. Either may have loop-carried dependencies that prevent it from being a good 
target. In many cases, standard loop transformations can improve performance such as 
tiling (to adjust transaction "chunk" size), and loop fission and fusion. Tuning of 
parallelization granularity involves navigating a complex tradeoff between managing run-
time overheads, avoiding buffer overflows, avoiding violations, and managing the 
relationship between parallelism and data locality.   
 
Future work on the TCC compiler would include data specifications, where high-level 
data specifications or properties proven by the compiler can be used to both reduce 
buffering and/or communication among processors, and support for speculative 
parallelism, where the compiler speculates on the safety of parallelizing a particular 
construct. 
 
7 Conclusion 

In this project we addressed the problem of unintended communication, that is, coherence 
traffic between processors when hardware cache coherence is supported.  Our approach 
for managing unintended communication is based on relaxing data coherence using new 
cache-coherence protocols. To investigate the potential benefits of relaxing data 
coherence, we conducted a series of experiments based on an actual implementation of a 
pair of selective coherence protocols for a CC-NUMA shared-memory architecture, the 
Stanford FLASH hardware testbed. 
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Our experiments demonstrate the advantages of extending the basic shared-memory 
model to improve performance of applications that do not require traditional cache 
coherence for all the data, without harming the performance of more common shared-
memory applications.  For RandomAccess, the non-coherent and write-update versions 
outperform the coherent version up to 5 and 2.5 times, respectively. In LS-DYNA, we 
obtain improvements of up to 35% and on average 18% using the non-coherent version. 
In SpecOMP benchmarks, the protocols have a cost of less than 3% in applications where 
the alternative mechanisms are not needed.  
 
The methods described in this report point the way to greater improvements in 
programming shared memory machines by making focused but orthogonal changes to the 
memory system and cache hierarchy. Traditional approaches focus on system-wide 
changes to the memory model, whereas we target a specific bottleneck. Under our 
approach the user is not required to use our techniques to write correct programs (as in 
message passing or simple NUMA) which improves the portability of applications from 
other cc-NUMA or uniprocessor architectures and eliminates the need to translate the 
entire program to our new non-coherent memory models. 
 
Future architectures that provide orthogonal extensions of the shared memory model 
coupled with software tools to identify opportunities to take advantage of these 
extensions will further improve the attractiveness of the shared-memory model at large 
scale. 
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