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Objectives, Experimental Plan, and Outcomes 
 

Project DE-FG02-05ER15648, “Role of a Transcriptional Regulator in Programmed Cell Death 

and Plant Development”, was funded by the Department of Energy from June 2005 to June 2008 at a 
total cost of $354,000.  The long-term goal of the Stone lab research is to understand the role(s) and 
molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development 
and responses to biotic and abiotic stress.  We developed a genetic selection scheme to identify A. 

thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone 
et al., 2005; Khan and Stone, 2008).  The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-
insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain 
transcriptional regulator (Stone et al., 2005; Liang et al., 2008). 

This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant 
growth and development.  The work is being guided by three objectives aimed at determining the 
pathways in which SPL14 functions to modulate PCD and/or plant development: 
1) determine how SPL14 functions in plant development,  
2) identify target genes that are directly regulated by SPL14, and  
3) identify SPL14 modifications and interacting proteins. 

 
We made significant progress during the funding period.  Briefly, some major 

accomplishments are highlighted below: 
 

• To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the 
AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection 
(SELEX) and site-directed mutagenesis (Liang et al., 2008).  This consensus binding site was used to 
analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to 
find possible AtSPL14-regulated genes.  These candidate AtSPL14-regulated genes are providing 
new information on the molecular mechanisms linking plant PCD and plant development through 
modulation of the 26S proteasome. 
• Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the 
AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang and 
Stone, in preparation) 
• Double mutants generated between fbr6 and various accelerated cell death (acd) mutants indicate 
that sphingolipid metabolism is influenced by AtSPL14 and sphingolipidomics profiling supports this 
conclusion (Lin, Markham and Stone, in preparation). 
• A new set of phenotypes have been uncovered in the original fbr6-1 mutant, including a short-root 
phenotype related to auxin signaling and altered photosynthetic parameters related to stomatal density 
and conductance (Lin and Stone, in preparation; Lin, Madhavan and Stone, in preparation).  Additional 
AtSPL14-related mutants and transgenic plants have been generated to effectively dissect the 
functions of AtSPL14, including a dominant negative fbr6-2 allele and transgenic plants 
overexpressing FBR6/AtSPL14 that display an accelerated cell death (acd) phenotype. 
 
Objective #1) Determine how SPL14 functions in plant development and PCD 

The working hypothesis for Objective #1 is that the function of SPL14 in plants is related to one or 
more of the pathways influenced by FB1: cell death, sphingolipid signaling, phase transitions, light 
perception/signaling, and hormone signaling. 
 

Cell death-related double mutants and phenotypic analyses 
Selected lesion mimic mutants that spontaneously form lesions in the absence of pathogen 

infection (accelerated cell death, acd, proposed to act in opposition to fbr6 in regulating PCD) were 
chosen with the hypothesis that the double mutants might regain sensitivity to FB1 and/or suppress 
spontaneous cell death.  We have been unable to recover fbr6 acd11 mutants, but we successfully 
generated double mutants between fbr6 and acd1, acd2 and acd5 (single mutants obtained from Jean 
Greenberg, U. of Chicago).  These double mutants, the single mutants, and wild-type controls were 
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tested for FB1 sensitivity using our fbr phenotype assay (ability to develop when sown on FB1-
containing agar plates) and systemic FB1-resistance assay, leaf infiltration followed by monitoring 
systemic cell death at distal leaves (systemic assay, sys-r).  At the germination/development stage we 
found that fbr6 suppresses the enhanced sensitivity of acd5, but not acd1 nor acd2 (data not shown).  
In the systemic assay, we found that the fbr6 mutant was clearly resistant to systemic cell death (sys-
r).  Similar to the results obtained in the fbr plate assay, the fbr6 acd1 and fbr6 acd2 double mutants 
were supersensitive to systemic cell death (sys-s).  However, the fbr6 acd5 mutant was as resistant to 
systemic cell death as the fbr6 mutant alone (sys-r).  That is, the fbr6 mutation effectively and fully 
suppressed the acd5 cell death phenotype using this assay (Figure 1). 

 
Figure 1. FB1-induced systemic cell death (sys-r/sys-s) in fbr6 acdx double mutants.  Relevant 

genotypes were subjected to the FB1-resistance systemic 
assay.  Fifty plants of each genotype were assayed in four 
independent experiments, and the proportion of plants showing 
systemic cell death was determined.  Different colors indicate 
significantly different values (P<0.05).  Nearly 100% of acd1, 
acd2, acd1 fbr6 and acd2 fbr6 mutants were sys-s, while fbr6 
was sys-r with less than 30% of plants displaying systemic 

lesions.  acd5 was more sensitive than wild-type plants, and the percentage of acd5 fbr6 sys-s plants 
was significantly less than that of acd5 or wild type and not significantly different from fbr6 (sys-r). 
 

We also noted genotype differences in production of reactive oxygen species (ROS) and 
expression of some FB1-induced genes.  ROS accumulation was determined by histochemical 
staining with nitroblue tetrazolium (NBT) or 3,3'–diaminobenzidine (DAB) to detect O2

•- or H2O2, 
respectively.  Four-week-old plants of the relevant genotypes were mock-treated or FB1-treated by 
infiltrating a single lower leaf.  Systemic leaves were stained after 5 days.  In mock-treated plants, faint 
NBT or DAB precipitation was detected for WT, fbr6, acd1 fbr6, acd5 and acd5 fbr6, whereas stronger 
NBT or DAB precipitation was seen in acd1, acd2 and acd2 fbr6 leaves, indicating that introducing the 

fbr6 mutant to acd1 could reduce the O2
•- and H2O2 levels in the double mutant, but the O2

•- and H2O2 
levels in acd2 fbr6 were no different from acd2.  NBT and DAB staining was stronger for all the 
genotypes after FB1 infiltration.  O2

•- and H2O2 levels in fbr6 were lower than those in wild type, and 
there was no difference in O2

•- and H2O2 levels between acd1 and acd1 fbr6 or between acd2 and 
acd2 fbr6.  O2

•- and H2O2 levels were significantly lower in acd5 fbr6 than in acd5.  Therefore, the fbr6 
mutation could effectively suppress ROS accumulation in the acd5 mutant.  For molecular markers, 
we examined expression of PATHOGENESIS-RELATED1 (PR1), a vacuolar processing enzyme 
(gVPE) and a gene encoding a sphingosine-1-phosphate lyase (DPL1) for steady-state transcript 
levels with and without FB1 treatment (Stone et al., 2000; Shimada et al., 2003; Kuroyanagi et al., 
2005; Niu et al., 2007; Tsegaye et al., 2007).  PR1 gene expression levels didn’t correlate with FB1 
sensitivity (data not shown), whereas the fbr6 mutation suppressed accumulation of the other two 
markers in acd5 (Figure 2). 

 
Figure 2.  Semi-quantitative RT-PCR analyses of (A) Vacuolar processing enzyme (gVPE)and 

(B) Sphingoid Long Chain Base-Phosphate 

Lyase (DPL1) steady-state transcript levels.  
Total RNA was isolated from rosette leaves 5 
days after FB1 treatment, reverse transcribed 
with oligo-dT, and used as a template for PCR 
with ACTIN2-, DPL1-, and gVPE-specific 
oligonucleotide primers to determine transcript 

levels.  Relative expression was determined as the ratio of DPL1 or gVPE to ACTIN2 (loading control).  
Different letters indicate significantly different values (P<0.05). 
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The different ability of fbr6 to suppress the cell death susceptibility (and other markers, such as 

ROS accumulation and FB1-induced gene expression) of these distinct lesion mimic mutants might be 
related to differences in tissue expression and/or the nature of the encoded proteins.  Both ACD1 and 
ACD2 encode proteins implicated in controlling PCD-inducing chlorophyll breakdown products, 
whereas ACD5 and ACD11 encode proteins implicated in sphingolipid metabolism, a ceramide kinase 
and a sphingosine transfer protein, respectively (Greenberg et al., 2000; Mach et al., 2001; Brodersen 
et al., 2002; Liang et al., 2003; Pruzinska et al., 2003; Tanaka et al., 2003; Yang et al., 2004; 
Pruzinska et al., 2005; Yao and Greenberg, 2006).  Thus, we conclude that the fbr6 mutation 
influences cell death pathways primarily through sphingolipid signaling, as opposed to inappropriate 
accumulation of chlorophyll breakdown products generated during photosynthesis.  This conclusion is 
supported by our sphingolipidomics profiling data (Figure 3). 
 

 

Sphingolipidomics Profiling Reveals Dramatic Differences in the Response of fbr6-1 to FB1 
 
The ability of the fbr6 mutation to suppress the acd phenotype in a mutant affected in a putative 
ceramide kinase, compelled us to determine sphingolipid profiles for wild-type and fbr6-1 mutant 
plants (+ and – FB1) in our systemic FB1-resistance (sys-r) assay by HPLC/MS at the Danforth 
Center, St. Louis, MO (Markham and Jaworski, 2007).  With more than 200 different plant sphingolipid 
species differing in saturation, hydroxylation and head groups (Dunn et al., 2004; Markham et al., 
2006), these analyses provide massive amounts of data representing a comprehensive snapshot of all 
major classes of sphingolipid species in the analyzed tissue, including ceramides, hydroxyceramides, 
glucosylceramides, glycosylinositolphosphoceramides, sphingoid long chain bases (LCBs) and their 
phosphorylated derivatives (LCB-Ps).  Only the most relevant and interesting results are summarized 
briefly here.  FB1 treatment clearly caused a shift in sphingolipids pools, as predicted given its function 
as a competitive inhibitor of ceramide synthase (sphinganine N-acyl transferase, Figure 4).  In wild-
type plants there was a shift from very long chain fatty acids (VLCFAs; C20 to C26) to shorter chain 
C16 FAs, but this shift was circumvented by the fbr6 mutation.  FB1 treatment also caused significant 
accumulation of saturated LCBs and LCB-Ps, d18:0, t18:0, d18:0-P and t18:0-P, while there was little 
effect on d18:1, t18:1 and t18:1-P accumulation.  The fbr6 mutant, however, accumulated very 
different levels and types of LCBs and LCB-Ps (which Jonathan Markham described as “really 
extraordinary!”), where both of the unsaturated versions (d18:1 and t18:1) are hyper-elevated at the 
expense of the saturated versions (d18:0 and t18:0) relative to wild-type plants (Figure 6).  
Interestingly, the LCB-Ps were reduced relative to wild type, which is not completely consistent with 
our simplified models for why fbr6 might suppress the acd5 (deficient in a putative ceramide kinase, 
CERK) cell death phenotype.  However the in vivo substrate(s) for ACD5 are not yet known (Liang et 
al., 2003), and we should be able to reconcile this model with our pending sphingolipid profiling on 
both acd5 and the acd5 fbr6 double mutant.  Sphingolipidomics profiling on wild-type plants and 
sphingolipid metabolism mutants have revealed an unsuspected complexity to plant sphingolipid 
metabolism/signaling (Liang et al., 2003; Dunn et al., 2004; Chen et al., 2006; Markham et al., 2006; 
Tsegaye et al., 2007; Dietrich et al., 2008). 
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Figure 4.  Generalized scheme of sphingolipid metabolism as it relates to acd5 fbr6 double 

mutant analyses and LCB accumulation in response to FB1.  A) FB1 inhibits ceramide synthase 
(aka sphinganine N-acyl transferase).  Only a few of the well-studied key sphingolipid species in other 
eukaryotes (dihydro versions) most relevant to our acd5 fbr6 double mutant analyses are shown here.  
ACD5 encodes a putative ceramide kinase, DPL1 encodes a sphinganine-P lyase that catalyzes an 
irreversible step in LCB-P catabolism. B) LCBs (e.g., sphinganine d18:0 and sphinganine-1-P d18:0-
P) differentially accumulate in fbr6 and wild-type plants treated with FB1.  Error bars represent 
standard deviation (n=5). 
 

 
Objective #2) Identify target genes that are directly regulated by SPL14 

The working hypothesis for Objective #2 is that SPL14 binds to cis regulatory elements to regulate 
expression of genes that affect PCD and/or plant development. 
 
SPL14 target gene identification – SELEX and gene expression microarrays 

 

SELEX (systematic evolution of ligands by exponential enrichment) 
Three complementary approaches were used to identify AtSPL14 target genes, WGPCR 

(whole genome PCR), SELEX (systematic evolution of ligands by exponential enrichment), and 
microarray gene expression analyses of wild-type and mutant plant tissues stimulated under specific 
conditions (Kehoe and Somerville, 1999; Schenk et al., 2000; Manuel et al., 2002; Wan et al., 2002; 
Kalifa et al., 2004; Ausubel et al., 2006).  We used an affinity-based assay, referred to as SELEX or 
random binding site selection (RBSS), to screen a random pool of dsDNA fragments for sequences 
capable of binding to recombinant AtSPL14 protein to identify an AtSPL14-binding consensus DNA 
motif.   Double-stranded DNA molecules containing a 26 nucleotide completely randomized central 
region were subjected to repetitive cycles of binding to recombinant AtSPL14 bound to a Ni2+-chelating 
affinity resin and PCR amplification.  The individual binders were subsequently tested by 
electrophoretic mobility shift assays (EMSA) and competition with unlabeled probe, yielding twenty 
distinct dsDNA fragments.  Alignment of the twenty individual binders using the web-based multiple 
expectation maximization for motif elicitation (MEME) analysis program (Grundy et al., 1997) yielded a 
consensus DNA binding motif (Figure 5).   Mutational analyses indicated that predominantly the core 
motif, CGTAC, is essential for AtSPL14 protein binding to the DNA in vitro.  In addition, we monitored 
the kinetic features of the AtSPL14 SBP domain binding to DNA by surface plasmon resonance (SPR) 
and compared and contrasted the target sequences we identified and the binding kinetics of AtSPL14 
with those of other SBP domain proteins (Klein et al., 1996; Birkenbihl et al., 2005; Kropat et al., 
2005).  The representative Biochemistry Table of Contents Figure (Figure 5) represents the two Zn-
finger structure proposed for AtSPL14 and our identified consensus DNA binding motif (Liang et al., 
2008).  Using the relaxed consensus DNA-binding motif we identified for AtSPL14 (CGTAC), more 
than 6000 genes with the motif within 500 basepairs of the translation start site were found as possible 
AtSPL14 targets, and one gene of unknown function has sixteen occurrences.  However, after 
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analysis of microarray gene expression data comparing the transcriptomes of the fbr6 mutant to wild-
type plants (see below), a subset of these candidate target genes for AtSPL14 were identified by their 
altered expression in fbr6 mutants. 

 
 

Figure 5.  Representation of the AtSPL14 
SBP binding domain. The presumed Zn2+ ion 
coordinating ligands and the consensus DNA 
binding motif identified by SELEX represented 
by WebLogo (Crooks et al., 2004) are shown 
(Liang et al., 2008). 

 

 
Microarray Gene Expression Analyses of the fbr6 Mutant Indicates AtSPL14 Might Function as 

a Repressor of Select Proteasome Subunit Genes 

 

To aid in determining FBR6/AtSPL14 target genes, the wild-type and fbr6 mutant 
transcriptomes were compared after mock treatment or imparting salicylic acid (SA)-induced oxidative 
stress using both slide-based 70-mer oligonucleotide arrays and Affymetrix ATH1 gene chips.  
Biological duplicates were performed with two genotypes (wild-type and fbr6 mutants) and two 
treatments (mock- and SA-treated).  Specifically, 4 week-old plants were sprayed with either 0.1% 
Silwet (mock) or 1 mM SA in 0.1% Silwet (SA).  Above ground tissues were harvested 8 hours after 
the treatment, flash frozen in liquid N2, total RNA was isolated using TRIzol according to 
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) and further purified using Qiagen 
RNAeasy Min Elute Cleanup kit (catalog # 74204, Qiagen, Valencia, CA, USA).  Fluorescent labeling 
with Cy5 and Cy3, hybridization to Affymetrix ATH1 24K arrays (which represent ~24,000 genes), 
scanning, and data analysis were provided by UNL’s Genomics Core Facility. 

Using an average signal log ratio (SLR) cut-off of 0.5, we found that AtSPL14 expression was 
downregulated (an SLR of -0.85 in mock treated fbr6 mutant plants compared to wild type 
representing ~50% of wild-type levels), consistent with our observations that the fbr6-1 allele is not a 
null mutant, but rather the T-DNA insertion in the 3’UTR results in reduced expression (Stone et al., 
2005).  When a more stringent SLR cut-off value was used (representing > 2-fold difference), we 
found that the other genes downregulated in fbr6 do not tend to cluster into major classes based on 
Gene Ontology (GO) designations with the majority having unknown functions.  However, greater than 

half of the genes with known or predicted functions upregulated in fbr6 are related to proteasome-
mediated protein degradation (16 of 32 genes in mock-treated samples and 27 of 48 genes in SA-
treated samples), primarily encoding subunits of the 26S proteasome.  Therefore, the most obvious 
global difference between the wild-type and fbr6 transcriptomes (in leaf tissue) appears to be 
proteasome-related genes.  Does AtSPL14 normally function to repress a subset of proteasome 

subunit genes? 
Protein degradation plays an important role in plant PCD (Kim et al., 2003; Hatsugai et al., 

2004; Schaller, 2004; Hara-Nishimura et al., 2005; Kuroyanagi et al., 2005; Kim et al., 2006; Vacca et 
al., 2007).  Proteasome-dependent protein degradation has been intimately linked to plant hormone 
signaling pathways, and subsequently cell differentiation, plant development and stress responses, 
(Moon et al., 2004; Smalle and Vierstra, 2004; Brukhin et al., 2005; Abas et al., 2006; Arnaud et al., 
2006; Huang et al., 2006; Jin et al., 2006; Gusmaroli et al., 2007; Vacca et al., 2007; Kurepa et al., 
2008; Staswick, 2008).  Effects of the fbr6 mutation on expression of proteasome subunit genes could 
be due to direct regulation by FBR6/AtSPL14 or indirect regulation due to an overall physiological 
alterations due to the fbr6 mutation.  Indeed, many of the proteasome subunit genes appear to be co-
regulated based on publicly available microarray gene expression experiments (e.g., CressExpress, 
Genevestigator) (Zimmermann et al., 2004; Srinivasasainagendra et al., 2008). 

Several of the fbr6 upregulated genes, including the proteasome-related genes also possess 
the consensus DNA binding motif we identified by SELEX (CGTAC) within 1 kb of the annotated 
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translation start sites.  Promoters for twenty of the altered genes predicted to have the binding motif 
were amplified by PCR and tested for in vitro binding using EMSA as described (Liang et al., 2008).  
We have also confirmed the microarray results for selected genes by semi-quantitative RT-PCR 
(Figure 6), and are attempting to use chromatin immunoprecipitation (ChIP) assays in transgenic lines 
expressing epitope-tagged versions of AtSPL14 to determine whether AtSPL14 binds directly to these 
promoters in vivo.  This approach has been technically challenging, and due to some difficulty with 
reproducibility, results have been inconclusive.   

 
Figure 6.  Proteasome subunits as potential AtSPL14 targets.  Semi-quantitative RT-PCR was 

performed with RNA isolated from fbr6 mutant and “wild-type” (WT) plants 8 
hours after being subjected to either mock (-) or SA (+) treatments by 
spraying until run-off (1 mM SA, 0.01% Silwet).  PCR was performed with 
oligonucleotide primers that anneal to PAE2 or ACTIN2 as an internal control.  
Steady-state PAE2 transcript levels are greater in the fbr6 mutant than in 
wild-type plants regardless of treatment, consistent with the Affymetrix 

microarray gene expression analyses, and four copies of the AtSPL14 consensus DNA binding site 
are present in the PAE2 promoter suggesting that AtSPL14 directly modulates PAE2 expression. 
 

Objective #3) Identify SPL14 modifications and interacting proteins 

The working hypothesis for Objective #3 is that SPL14 regulates gene expression within a 
signal complex involving multiple proteins and is redox sensitive.  
 

Much of the progress on this objective is related to generating the appropriate genetic 
backgrounds and transgenic lines to confirm the in vivo relevance of our in vitro results.  Stable 
transgenic plants that express epitope-tagged versions of SPL14 and the yeast two-hybrid interactors 
are at various stages of development.  In many cases, we are first identifying homozygous knock-out 
insertion lines to uncover phenotypes and/or facilitate the in vivo protein-protein and protein-DNA 
interaction assays.  We cannot express FBR6 under control of a constitutive promoter, but have 
observed some expression now under control of the native promoter.  However, we have determined 
that we can effectively immunoprecipitate NTAPi-, HA- and GFP-tagged proteins (in complex) from 
plant extracts. 
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Summary

The recessive Arabidopsis thaliana fumonisin B1-resistant (fbr6) mutant was identified by its ability to survive

in the presence of a programmed cell death (PCD)-inducing fungal toxin FB1. The fbr6 mutant also displays

altered plant architecture in the absence of FB1, most notably elongated petioles and enhanced leaf margin

serration. These phenotypes are a result of a T-DNA insertion in the SQUAMOSA promoter binding protein

(SBP) domain gene, AtSPL14. AtSPL14 encodes a plant-specific protein with features characteristic of a

transcriptional regulator, including a nuclear localization signal sequence, a plant-specific DNA binding

domain (the SBP box), and a protein interaction motif (ankyrin repeats). A transiently expressed fusion of the

AtSPL14 protein to green fluorescent protein is directed to the plant nucleus. DNA sequences immediately

upstream of the translation start site direct expression of the b-glucuronidase reporter gene primarily in the

vascular tissues, consistent with the phenotypes of the fbr6 mutant. AtSPL14 activates transcription in yeast,

with a transactivation domain residing within the N-terminal region of the protein. Recombinant AtSPL14

protein binds A. thaliana genomic DNA in vitro in the absence of other proteins. These results indicate that

FBR6/SPL14 functions as a transcriptional regulator that plays a role not only in sensitivity to FB1, but also in

the development of normal plant architecture.

Keywords: Arabidopsis thaliana, transcription, SBP domain, fumonisin B1, programmed cell death.

Introduction

Cell fate decisions are essential for the growth, develop-

ment, and survival of multicellular organisms. Programmed

cell death (PCD), the intentional elimination of specific cells,

is critical for proper development and defense against

pathogen infection in both plants and animals. The mech-

anistic details andmolecular components controlling PCD in

eukaryotes are not fully understood. However, the pathways

appear to be evolutionarily and functionally conserved,

given that plant components can function in animals and

vice versa (Chae et al., 2003; Dickman et al., 2001; Kawai-

Yamada et al., 2001; Lacomme and Santa Cruz, 1999; Lincoln

et al., 2002; Richael et al., 2001). In vascular plants, PCD is a

prominent feature of xylem tissue development (Demura

et al., 2002; Fukuda, 2000; Groover and Jones, 1999) as well

as defense responses to pathogen attack (Beers and

McDowell, 2001; Gilchrist, 1998).

Genetic approaches have been used to identify genes

involved in plant PCD pathways. For example, mutations

that cause plant ‘lesion mimic mutants’, which spontane-

ously undergo PCD in the absence of pathogen infection,

have revealed roles for lipid metabolism, light perception,

and hormone signaling in plant PCD (Brodersen et al., 2002;

Gray et al., 2002; Liang et al., 2003; Lu et al., 2003; Mach

et al., 2001; Pruzinska et al., 2003; Rate et al., 1999; Vanacker

et al., 2001; Yang et al., 2004). We reasoned that identifying

plant mutants defective in undergoing PCD in response to

pathogens and/or compounds that mimic pathogen infec-

tion would provide a complementary genetic approach to

investigate the molecular mechanisms regulating PCD.

Fumonisin B1 (FB1) is a fungal toxin that disrupts

sphingolipid metabolism in eukaryotes by acting as a

competitive inhibitor of ceramide synthase (Desai et al.,
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2002). FB1 induces PCD (or apoptosis) in both plants and

animals (Asai et al., 2000; Tolleson et al., 1999; Wang et al.,

1996) and inhibits growth in yeast (Mao et al., 2000). In

Arabidopsis thaliana, FB1 treatment initiates the formation

of ‘apoptotic bodies’ that closely resemble those typically

associated with PCD in animal cells, and this FB1-induced

cell death is dependent on active transcription and transla-

tion, as well as reversible protein phosphorylation (Asai

et al., 2000). Moreover, sensitivity to FB1 is dependent on

light and the hormone signaling pathways mediated by

salicylic acid, jasmonic acid, and ethylene (Asai et al., 2000;

Stone et al., 2000).

We exploited the fact that micromolar levels of FB1 inhibit

growth of A. thaliana seedlings to identify FB1-resistant (fbr)

mutants. These mutants were selected on FB1-containing

agar media at FB1 levels that prevented wild-type plants

from developing (Stone et al., 2000). Because FB1 induces

PCD and PCD functions in responses to pathogen infection,

we predicted that at least some of the A. thaliana fbrmutants

would also exhibit defense-related phenotypes. Indeed, fbr1

and fbr2 mutants showed enhanced resistance to virulent

bacterial pathogen growth and changes in defense gene

induction (Stone et al., 2000). Because FB1 sensitivity is also

impacted by light perception and hormone signaling, which

are important factors in development, we expected that

some A. thaliana FB1-resistant mutants might also display

altered morphology. A subset of the identified fbr mutants

exhibit a characteristic alteration in plant architecture,

including elongated petioles and enhanced leaf margin

serration.

In this paper, we describe the identification of the gene

corresponding to the recessive fbr6 mutant, which displays

altered plant architecture in addition to resistance to FB1.

The fbr6 mutant phenotypes are the result of a T-DNA

insertion in AtSPL14, a member of the SQUAMOSA PRO-

MOTER BINDING PROTEIN-box (SBP-box) gene family.

Functions of SBP-box genes are largely unknown, but they

are predicted to act as transcriptional regulators based on

the presence of a plant-specific putative DNA binding

domain. We further delineate additional functional domains

of AtSPL14, and demonstrate that the protein localizes to the

nucleus, possesses a transcriptional activation domain and

binds Arabidopsis DNA. These data support a role for

AtSPL14 as a transcriptional regulator of genes that function

in plant development and sensitivity to FB1.

Results

Isolation, genetic and phenotypic characterization of the fbr6

mutant

The fbr6 mutant was identified in a high-throughput selec-

tion for A. thaliana mutants resistant to FB1-mediated

growth inhibition. Seeds from enhancer trap T-DNA

insertion lines (Campisi et al., 1999) were plated on MS-agar

supplemented with 0.5 lM FB1, and surviving plants were

transferred to soil (Stone et al., 2000).

The fbr6 mutant was backcrossed to the parental

genotype (Col6 gl1-1), four F1 progeny were self-fertilized,

and the resulting F2 progeny were tested for their ability to

survive selection on agar media containing 0.5 lM FB1.

A chi-square goodness-of-fit test confirmed that the fbr

phenotype of the F2 progeny segregated at the expected 3:1

(sensitive:resistant) ratio for a single recessive mutation

(v2 ¼ 2.466, n ¼ 286). The FB1-resistant plants were trans-

ferred to MS-agar plates lacking FB1 for recovery then

transplanted into soil to collect seed. The FB1-resistant F3
progeny derived from the backcross exhibited the aberrant

plant architecture observed in the original fbr6 mutant (see

below).

In addition to resistance to FB1, the fbr6mutant (grown in

the absence of FB1) displays elongated petioles and

enhanced leaf margin serration compared with wild-type

plants (Figure 1a,b). Transition to flowering occurs a few

days later in the fbr6 mutant than in wild-type plants, but no

significant alterations in inflorescence branching pattern or

floral morphology were observed (Figure 1c). A serrated leaf

margin phenotype is associated with altered phase trans-

ition during rosette leaf development (Clarke et al., 1999;

Prigge and Wagner, 2001). Because developmental phases

can be distinguished by venation pattern and the number of

water pores or hydathodes (Candela et al., 1999; Poethig,

2003; Tsukaya et al., 2000), we compared wild type and fbr6

mutant leaves that had been cleared with ethanol to reveal

venation patterns. The venation patterns of fbr6 and wild-

type cotyledons were similar (Figure 1d). However, whereas

the venation pattern of the fourth true wild-type leaves

generally had five hydathodes as expected for a juvenile leaf

(Candela et al., 1999; Clarke et al., 1999), the fourth fbr6

mutant leaves typically resembled mature wild-type leaves

with seven hydathodes (Figure 1e). In some cases, the fourth

leaf of fbr6 mutants was asymmetrical with six hydathodes

(data not shown). These observations suggest that there is a

slight acceleration of the juvenile to adult vegetative phase

transition in the fbr6 mutant. In contrast to the fbr1 and fbr2

mutants characterized previously (Stone et al., 2000),

growth of bacterial pathogens in fbr6 was not significantly

different from wild-type plants.

The fbr6 phenotypes are due to T-DNA insertion in the

AtSPL14 gene

Genomic DNA flanking the T-DNA insertion in the fbr6

mutant was recovered using TAIL-PCR (Liu et al., 1995). The

DNA sequence of the cloned PCR product indicated that the

T-DNA sequences in fbr6 are inserted on chromosome I in

the 3¢ UTR region (Figure 1f) of a gene formerly designated

as SPL1R2, SQUAMOSA promoter binding protein-like

AtSPL14 functions in plant development 745
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related 2 (Cardon et al., 1999). This gene (At1g20980) cor-

responds to AtSPL14, according to more recent nomencla-

ture for the 16-member squamosa promoter binding

protein-like (SPL) gene family (http://www.bio.uni-frankfurt.

de/botanik/mcb/AFGN/Huijser.htm).

To verify that the phenotypes observed in fbr6were due to

the disruption of the SPL14 gene, fbr6 transgenic plants

harboring a wild-type genomic copy ofAtSPL14 driven by its

native promoter were generated. Several independent

transgenic lines show that both the sensitivity to FB1

(Figure 2a) and normal plant architecture (Figure 2b) were

restored by molecular complementation, indicating that

both fbr6 phenotypes are a result of AtSPL14 disruption.

The T-DNA insertion in fbr6 occurs upstream of the

predicted polyadenylation signal suggesting that matur-

ation of AtSPL14 mRNA might be defective in the fbr6

mutant. As the AtSPL14 transcript was undetectable by total

RNA Northern blot analyses in both wild-type and fbr6

mutant plants, semiquantitative RT-PCR was performed to

determine whether theAtSPL14mRNAwas expressed in the

fbr6 mutant. RNA was isolated from wild type, fbr6 mutant

and complemented fbr6 mutant plants. SPL14 transcripts

were detected in wild-type plants, at diminished levels in the

fbr6 mutant plants, and at wild-type (or greater) levels in the

complemented fbr6 mutant plants (Figure 2c). These data,

together with the recessive nature of the fbr6 mutant, verify

that the fbr6 phenotypes are due to a reduction-of-function

of AtSPL14.

AtSPL14 encodes a putative transcriptional regulator

AtSPL14 (At1g20980) encodes a 1035 aa protein predicted

to function as a plant-specific transcriptional regulator.

Analyses of the predicted AtSPL14 protein sequence

using the InterPro database (http://www.ebi.ac.uk.

InterProScan) revealed that it has a highly conserved SBP

DNA binding domain (IPR004333), a Cys- and His-rich region

(consensus – CX4CX13HX5HX15CQQCX3HX11C) found only in

plant proteins (Cardon et al., 1999). The founding members

of the SBP domain-containing superfamily were originally

identified in Antirrhinum majus, where they were identified

by their ability to bind to the upstream regulatory region of

the SQUAMOSA gene involved in floral meristem identity

(Klein et al., 1996). This suggests that the SBP domain of

AtSPL14 may also function in DNA binding.

Consistent with the presence of a DNA binding domain,

AtSPL14 is predicted to be localized to the plant nucleus. An

amino acid sequence (KRSCRRRLAGHNRRRRK) fitting the

Figure 1. The Arabidopsis thaliana fumonisin

B1-resistant6 (fbr6) mutant has altered plant

architecture and a T-DNA insertion in the 3¢UTR

of the AtSPL14 gene. (a–e) Comparison of the

‘wild-type’ Col6 gl1-1 (left) with the Col6 gl1-1

fbr6 mutant (right).

(a) Rosette morphology of plants grown in soil

with an 8-h photoperiod. The fbr6 mutant dis-

plays enhanced leaf margin serration and elon-

gated petioles.

(b) A close up view of the fifth true leaf shows the

serrated leaf morphology of fbr6.

(c) Inflorescences show no significant difference

in branching pattern or floral morphology, how-

ever, the fbr6 mutant transitions to flowering

somewhat later than wild type.

(d) The cotyledon venation pattern observed in a

dark-field image of cleared tissues displayed no

significant differences.

(e) The venation pattern of the fourth true leaf

shows five hydathodes for the wild-type leaf,

whereas the corresponding fbr6 mutant leaf has

seven hydathodes.

(f) Organization of the AtSPL14 (At1g20980)

gene based on genomic DNA sequence, EST

sequences, and RT-PCR. Exons are represented

as black boxes, and the UTRs are underlined.

The fbr6 mutant was found to have T-DNA

inserted in the 3¢UTR as indicated.
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consensus for a bipartite nuclear localization signal (NLS)

was found within the highly conserved SBP DNA binding

domain (aa 117–193), using PSORT (http://psort.nibb.ac.jp)

for prediction of protein localization (Robbins et al., 1991).

The InterPro analysis also revealed that the AtSPL14

protein possesses ankyrin repeats (IPR002110) in the C-

terminal region of the protein (aa 821–941). Ankyrin repeats

are a common protein–protein interaction motif consisting

of approximately 33 amino acid modules found in transcrip-

tion factors and other eukaryotic proteins (Dechend et al.,

1999; Ely and Kodandapani, 1998; Niggeweg et al., 2000).

These analyses of the predicted protein encoded by the

AtSPL14 gene indicate that it is likely to function as a

transcriptional regulator.

AtSPL14 is expressed in vascular tissues and floral organs

To determine the spatial and developmental expression

pattern of AtSPL14, we generated transgenic plants harbor-

ing the DNA sequence immediately upstream of the transla-

tion start site of AtSPL14 fused to the b-glucuronidase (GUS)

reporter gene. The AtSPL14 ‘promoter’::GUS fusion was

transformed into wild-type (Col-0) plants, and several inde-

pendent transgenic plants homozygous for the transgene

were analyzed by histochemical staining for GUS activity.

Under the influence of the AtSPL14 ‘promoter’ expression

of the GUS gene was detected primarily in the vascular

tissues of aerial portions of the plant. No GUS activity was

detected in the hypocotyl (Figure 3a), while strong staining

was observed predominantly in the leaf petioles and the

primary vascular tissues of both leaves (Figure 3a,b) and

cotyledons (Figure 3c). In leaves, there was intense staining

in the hydathodes (Figure 3b), and somewhat lower levels in

the secondary vascular of leaves (Figure 3b) and cauline

leaves (data not shown). GUS activity was occasionally

detected in root tissues of plants grown on agar, but not in

plants grown in soil. GUS-dependent staining in the vascular

tissues of inflorescences and at the base and tips of

developing siliques post-pollination increased during seed

formation and persisted through maturation (Figure 3d).

AtSPL14 localizes to the nucleus

The presence of a putative bipartite NLS in AtSPL14 sug-

gested that it would be localized to the plant nucleus

(Robbins et al., 1991). The AtSPL14 cDNA was cloned into

the binary vector pEGAD to produce an in-frame fusion

downstream of the green fluorescent protein (GFP) (Cutler

et al., 2000). Transient transformation of Nicotiana tabacum

leaves was achieved by ‘agroinfiltration’ (Yang et al., 2000),

and subcellular localization of GFP was visualized by

confocal microscopy (Figure 4). Controls showed GFP

expressed throughout the cytoplasm (Figure 4a,b), whereas

the GFP-AtSPL14 fusion was targeted to the nucleus

(Figure 4c,d).

AtSPL14 activates transcription in yeast and binds

A. thaliana DNA

AtSPL14 was tested for its ability to activate transcription in

yeast when fused to the GAL4 DNA binding domain. cDNAs

encoding the entire AtSPL14 protein or various deletions

were fused in-frame to sequences encoding the GAL4 DNA

binding domain and transformed into yeast strain AH109

containing GAL4-responsive upstream activator sequence

(UAS) binding sites upstream of different reporter genes.

The ability of these GAL4BD/AtSPL14 fusion proteins to

activate transcription was assessed by the ability to grow in

the absence of histidine (conferred by the HIS3 reporter

gene) and to induce a-galactosidase activity (conferred by

the MEL1 reporter gene). A GAL4BD fusion to AtSPL14

activated transcription in yeast, while the control (GAL4BD

alone) failed. Deletion analyses suggest that the capacity to

activate transcription in yeast resides within the N-terminal

184 amino acid residues of AtSPL14 (Figure 5).

Figure 2. Molecular complementation of the fbr6 mutant with a wild-type

genomic DNA copy of the AtSPL14 gene restores fumonisin B1 sensitivity,

normal plant morphology, and expression of AtSPL14 mRNA.

(a) Growth of the wild-type parent Col6 gl1-1, Col6 gl1-1 fbr6 mutant, and a

homozygous transgenic Col6 gl1-1 fbr6 line transformed with a wild-type

copy of the AtSPL14 gene (fbr6 þ AtSPL14) on MS plates supplemented with

0.5 lM fumonisin B1.

(b) Comparison of 3-week-old soil-grown Col6 gl1-1, Col6 gl1-1 fbr6 mutant,

and a molecularly complemented plant (fbr6 þ AtSPL14).

(c) Semiquantitative RT-PCR was used to detect AtSPL14 transcript accumu-

lation in wild-type, fbr6 mutant, and a molecularly complemented transgenic

line. AtSPL14 mRNA accumulation is reduced in the fbr6 mutant and is

restored by molecular complementation of the fbr6mutant with the wild-type

AtSPL14 gene. Accumulation of transcripts corresponding to UBQ5 was used

as a control.
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To assess whether AtSPL14 binds to A. thaliana genomic

DNA sequences, recombinant fusion proteins were pro-

duced in Escherichia coli. Maltose binding protein (MBP)

and a MBP fusion to the N-terminal 409 residues of AtSPL14

(encompassing the SBP domain) were immobilized on a

PVDF membrane and incubated with 32P-labeled A. thaliana

genomic DNA. The A. thaliana genomic DNA bound to the

MBP-FBR6 fusion protein, but did not bind to the MBP

control protein (Figure 6). Therefore, AtSPL14 binds to

target sequences in the A. thaliana genome in the absence

of other proteins.

Discussion

The existence of small gene families encoding the putative

DNA-binding SBP domain in plants has been known for over

a decade. However, little is known of the physiological

functions of these putative transcriptional regulators beyond

Figure 4. Nuclear localization of a GFP-AtSPL14 fusion protein. Tobacco

leaves were transiently transformed with Agrobacterium tumefaciens carry-

ing either a control vector pEGAD or pEGAD-AtSPL14 to produce an in-frame

GFP-AtSPL14 fusion protein. Images were obtained by confocal laser scan-

ning microscopy and merged Z-series images are shown.

(a, b) Transformation with pEGAD shows expression of GFP throughout the

cytoplasm.

(c, d) Transformation with pEGAD-AtSPL14 shows GFP localized primarily to

the nucleus.

(a) and (c) are low magnification images, while (b) and (d) are high

magnification images (bar ¼ 50 lm).

Figure 3. DNA sequences immediately upstream of the translation start site

for the AtSPL14 gene drives expression of the b-glucuronidase (GUS) reporter

gene in several plant tissues. Histochemical staining for b-glucuronidase
activity was performed on homozygous transgenic T3 and T4 plants harboring

a AtSPL14::GUS fusion construct. The upstream region of AtSPL14 drives

expression of GUS in: (a) the vascular tissues of leaf petioles, but not the

hypocotyl; (b) the vascular tissues of petioles and true leaves, the hydathodes,

and the base of trichomes; (c) the vascular tissue of cotyledons; and (d) the

stigma and base of inflorescences and developing siliques post-pollination.
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their ability to bind DNA (Cardon et al., 1999; Klein et al.,

1996; Riechmann et al., 2000). Only two SBP domain-

containing gene mutants with observable phenotypes have

been previously described. The A. thaliana spl8 mutant has

reduced fertility due to the function of AtSPL8 in pollen sac

development (Unte et al., 2003). The Zea mays liguleless1

mutation affects plant development at the boundary

between the leaf blade and sheath, and the LIGULELESS1

protein was also shown to be nuclear-localized, consistent

with its presumed function as a transcription factor (Moreno

et al., 1997). Our T-DNA insertion in the 3¢UTRof theAtSPL14

gene provides the third example of an observable phenotype

in an SBP domain-containing gene mutant. This insertion

reduces the levels of AtSPL14 mRNA and causes both the

FB1-resistant and altered plant architecture phenotypes

associated with the fbr6 mutant.

The FB1-resistant (fbr) mutant screen was designed to

identify components of plant PCD pathways, which have

been linked to sphingolipid metabolism, light perception,

and hormone signaling (Brodersen et al., 2002; Gray et al.,

2002; Liang et al., 2003; Lu et al., 2003; Mach et al., 2001;

Pruzinska et al., 2003; Rate et al., 1999; Vanacker et al., 2001;

Yang et al., 2004). Several of the identified fbr mutants

(including fbr6) display abnormal plant architecture. How-

ever, because sensitivity to FB1 is influenced by hormone

signaling and light (Asai et al., 2000; Stone et al., 2000),

perturbation of these or other signal transduction pathways

could be responsible for the altered plant architecture of

fbr6.

Analysis of several fbr mutants has revealed differing

phenotypes. For example, the previously characterized fbr1

and fbr2 mutants were less susceptible to the virulent

bacterial pathogen Pseudomonas syringae pv. maculicola

(Stone et al., 2000). In contrast, growth of virulent and

avirulent strains of P. syringae pv. maculicola in the fbr6

mutant was not significantly different from the wild type

using the same assay conditions (data not shown).

The FB1 sensitivity of adult fbr6mutant leaves, assayed by

leaf infiltration (Asai et al., 2000) followed by quantitative

electrolyte leakage measurements, was not significantly

different from wild type, and a subset of the other fbr

mutants fail to show resistance to FB1 in the leaf infiltration

assays (J.M. Stone, unpublished data).

While the fbr mutants were all identified by the ability to

germinate and develop in the presence of FB1, differences

among the fbrmutants in sensitivity to FB1 in mature leaves

and protoplasts might be due to cell type-specific expres-

sion. Only mutations in genes expressed in certain tissues

during early development are likely to be identified in the fbr

selection scheme. But if these genes are not highly

expressed in mature leaf cells, the mutants will fail the FB1

resistance tests in the leaf infiltration and protoplast assays.

Cell type-specific expression of AtSPL14 is a possible

explanation for the observed sensitivity to FB1 and pathogen

infection in mature leaves of the fbr6 mutant.

Expression of AtSPL14 and the fbr6 phenotype

The expression patterns observed for the AtSPL14

‘promoter’::GUS reporter construct are generally consistent

with the leaf abnormalities associated with the fbr6 mutant.

The most obvious morphological defects in the fbr6 mutant

are elongated petioles, serrated leaf margins, and an accel-

erated vegetative phase change. The AtSPL14 ‘promoter’

drives GUS expression in the vascular tissues of petioles, so

reduced levels of this transcription factor are consistent with

altered petiole development. Other A. thalianamutants with

elongated petioles have been described, including light-

sensing phyBmutant linked to hormone signaling pathways

(Genoud et al., 2002; Morelli and Ruberti, 2002; Tsukaya

et al., 2002).

Significant expression was also observed in the leaf

vascular tissues. The two major tissue types of the plant

Figure 5. Transcriptional activation activity of AtSPL14 in a modified yeast

two-hybrid assay. Schematic representation of the protein encoded by

AtSPL14 showing positions of the ‘SBP’ DNA binding domain and the

ankyrin-repeat region (ANK). GAL4 DNA binding domain (BD) fusions to

portions of AtSPL14 expressed in a yeast strain AH109 carrying the GAL4-

responsive upstream activator sequences upstream of the HIS3 and MEL1

reporter genes. Ability to grow in the absence of exogenous histidine (His-)

and a-galactosidase activity (a-GAL) of individual fusion proteins is shown.

Serial dilutions of yeast harboring the indicated GAL4 BD fusions to AtSPL14

were spotted onto plates lacking histidine and supplemented with X-a-GAL.

These data indicate that AtSPL14 can activate transcription in a heterologous

eukaryotic system, and that a transcriptional activation domain resides in the

N-terminal 184 amino acids of AtSPL14.

Figure 6. Recombinant AtSPL14 binds Arabidopsis thaliana genomic DNA in

the absence of additional proteins. Purified recombinant fusion proteins (MBP

andMBP-AtSPL14) were immobilized on amembrane (Hybond-N; Amersham

Biosciences) and incubated with 32P-labeled A. thaliana genomic DNA.

Recombinant fusion protein containing the SBP domain of AtSPL14 binds

to DNA, while the control protein MBP alone fails to bind to DNA.
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vasculature, xylem and phloem, are composed of multiple

cell types. Phloem tissue consists of at least two differenti-

ated cell types – sieve cells and companion cells, whereas

xylem tissue contains tracheary elements that differentiate

from provascular cells by a process of programmed cell

death (PCD) and subsequent lignification (Demura et al.,

2002; Fukuda, 2000; Groover and Jones, 1999). Therefore,

altered xylem differentiation might contribute to the altered

plant architecture of the fbr6 mutant.

The fbr6 mutant appears to have a truncated juvenile

phase, producing ‘adult’ leaves earlier than wild-type plants.

Vegetative phases are distinguished by venation pattern,

hydathode numbers, and the capacity to produce trichomes

(Candela et al., 1999; Poethig, 2003; Tsukaya et al., 2000).

AtSPL14-driven expression in these tissues – leaf vascula-

ture, hydathodes, and the base of trichomes – resembles the

patterns observed with the auxin-responsive marker,

DR5::GUS (Aloni et al., 2003). Hydathode numbers were

used to assess leaf phases, as the fbr6 mutant was isolated

in a trichome-less (gl1-1) background. It will be interesting to

know whether the early ‘adult’ leaves also have trichomes in

a different background. The serrated leaf margin phenotype

is shared with other mutants with accelerated phase chan-

ges (Berardini et al., 2001; Bollman et al., 2003; Candela

et al., 1999; Clarke et al., 1999). Zinc finger transcription

factors, such as SERRATE and JAGGED (Clarke et al., 1999;

Ohno et al., 2004; Prigge and Wagner, 2001), might repre-

sent transcriptional regulators that act in concert with

AtSPL14.

The expression at the base of siliques and in the

stigma does not correlate with any gross morphological

defects in the mutant, however, the base of siliques is the

site of floral organ abscission requiring PCD (Jinn et al.,

2000).

Molecular characterization of AtSPL14

The N-terminal region of AtSPL14 (aa 1–184) exhibited

transcriptional activation in yeast. The structural basis of

transcriptional activation domains is essentially unknown,

however, ‘typical’ transcriptional activation domains such as

glutamine-rich or acidic regions were not detected in this

region. The prevalent proline, serine, and threonine residues

(approximately 20%) might comprise a transcriptional acti-

vation domain functionally similar to those described for

some mammalian transcription factors (Liu et al., 2003;

Prado et al., 2002). AtSPL14 is also rich in hydrophobic leu-

cine residues. Three putative EAR motifs (LXLXL, aa 81–85,

388–392, 459–463), which function as a transcriptional

repression domains in several plant transcription factors

(Hiratsu et al., 2002, 2003; Ohta et al., 2001; Tiwari et al.,

2004), and five LLXXL motifs, which mediate interactions

between transactivation domains and eukaryotic coactiva-

tors (Chen, 1999; Heery et al., 1997) were detected. Further

analyses are necessary to validate the importance of these

motifs in AtSPL14.

Secondary structure predictions of AtSPL14 (aa 120–194)

comprising the SBP domain suggested that this region may

form a helix-loop-helix structure commonly found in many

DNA binding proteins (Massari and Murre, 2000; Tan and

Richmond, 1998). The highly conserved SBP DNA binding

domain (consensus – CX4CX13HX5HX15CQQCX3HX11C) is

particularly rich in Cys and His residues. Although Cys/His-

rich DNA-binding regions of proteins often function to

coordinate zinc, the SBP domain sequence does not corres-

pond to any previously described zinc finger motifs (Dietrich

et al., 1997; Laity et al., 2001). A recent report describing the

solution structures of the SBP domains from SPL4 and SPL7

suggest that these do indeed coordinate two zinc ligands

(Yamasaki et al., 2004). We have verified that recombinant

AtSPL14 is capable of binding to A. thaliana genomic DNA.

However, incubation of recombinant AtSPL14 protein with

metal-chelating compounds, EDTA or o-phenanthroline, had

no significant effect on DNA binding activity (data not

shown), similar to results with the A. majus SBP proteins

(Klein et al., 1996).

AtSPL14 contains a C-terminal extension lacking in

AtSPL8 and LIGULELESS1. This C-terminal extension con-

tains ankyrin repeats, which are found in a number of DNA-

binding transcriptional regulators and partner proteins

(Dechend et al., 1999; Ely and Kodandapani, 1998; Niggeweg

et al., 2000). Because combinatorial control of gene expres-

sion plays a critical role in achieving functional diversity

(Chen and Hampsey, 2002; Messenguy and Dubois, 2003),

AtSPL14 is likely to function in concert with other proteins

through its ankyrin repeats.

Identification of direct target genes of AtSPL14 and

AtSPL14 regulatory partners should enhance our under-

standing of transcription regulation in vegetative develop-

ment and/or FB1 resistance. Moreover, the finding that the

fbr6 mutant phenotypes are due to the T-DNA disruption in

AtSPL14 will facilitate genetic interaction analyses with

other plant mutants to link the developmental alterations

with FB1 resistance.

Experimental procedures

Arabidopsis thaliana growth and isolation of the fbr6mutant

For isolation of the fbr6mutant, seed pools obtained from the ABRC
(CS31087) were surface-sterilized with 50% bleach, 0.02% Tween-20
for 15 min, rinsed three times with sterile H2O, and sowed on
Murashige–Skoog media supplemented with 2% sucrose, 0.8%
phytagar and 0.5 lM fumonisin B1 as described (Stone et al., 2000).
Plants were grown in soil (Metro-Mix 360; Scotts, Maryville, OH,
USA) in a growth chamber (Percival AR36L; Percival, Perry, IA, USA)
at 22�C, 70% RH and approximately 100 lE m)2 sec)1 under cool-
white fluorescent lights supplemented with incandescent lamps,
with either an 8 or 12 h photoperiod.
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Identification of the T-DNA disruption in AtSPL14

The fbr6 mutant was identified from a population of Col-6 gl1-1
plants transformed with the enhancer trap vector pD991 (Campisi
et al., 1999). Thermal asymmetric interlaced PCR, TAIL-PCR, was
used to rescue the DNA flanking the right border sequence using
nested oligonucleotide primers corresponding to the right border of
pD991 (oligo123, oligo124 and oligo86; http://www.dartmouth.edu/
�tjack/) and primer TAIL-AD2 5¢-ngtcgaswganawgaa-3¢ as described
(Campisi et al., 1999; Liu et al., 1995). The PCR product from the
tertiary reaction was cloned into pGEM-TEasy (Promega, Madison,
WI, USA) and subjected to DNA sequencing with T7 and SP6
oligonucleotide primers.

Semiquantitative RT-PCR

Total RNA was isolated from individual 3-week-old plants using the
Qiagen RNeasy midi kit (Valencia, CA, USA) according to manufac-
turer’s instructions. The RNA was treated with DNase I using a
DNA-freeTM kit (Ambion, Inc., Austin, TX, USA). RNA concentration
was determined spectrophotometrically. Reverse transcription was
performed in a 20 ll reaction with 1 lg total RNA, 0.5 lg oligo (dT)18
primer, 40 U RNasin (Promega), 500 lM dNTPs, and 40 U M-MuLV
reverse transcriptase (Fermentas, Hanover, MD, USA), then
diluted to 50 ll. PCR was performed for 40 cycles 94�C 30 sec,
52�C 30 sec, 72�C 1.5 min in a reaction containing 100 lM dNTPs,
1 mM MgCl2, 250 nM oligonucleotide primers. Oligonucleotide
primers were cFBR6F7: ¢5-CCGCTTCAAGTTTTTGCT-3¢; cFBR6STO-
PSma: 5¢-CCTCCCGGGTATAGTTCTCTAGATTGAGCCATAATCC-3¢;
UBQ5-F: 5¢-GTGGTGCTAAGAAGAGGAAGA-3¢; UBQ5-R: 5¢-TCAAG-
CTTCAACTCCTTCTTT-3¢. The AtSPL14 primers were designed
to span an intron to exclude DNA contamination. The primers
correspond to exon 9 and the region encompassing the STOP codon
in exon 10 (154 bp upstream of the T-DNA insertion site in fbr6).

Molecular complementation and promoter::GUS reporter

gene fusions

The wild-type AtSPL14 gene containing 1448 bp upstream
of the ATG start codon and 443 bp downstream of the STOP
codon was amplified from A. thaliana Col-0 genomic DNA by
PCR using oligonucleotide primers ‘prom SmaI F’: 5¢-
CCTCCCGGGTTGAGGTTCGAAATAACGTGGTCAAG-3¢ and ‘polyA
SmaI R’: 5¢-CCTCCCGGGTTATGCATTTTGACTTTCGAGAATAAG-3¢.
A fragment corresponding to only the 1448 bp upstream of the ATG
start codon was amplified from A. thaliana Col-0 genomic DNA by
PCR using oligonucleotide primers ‘prom SmaI F’ and ‘prom SmaI
R’:5¢-CCTCCCGGGATCTCTCGATCTGAGTCTGACCCTTTTTC-3¢. The
resulting fragments were subcloned in pGEM-TEasy (Promega),
and fidelity of the PCR was confirmed by DNA sequencing.

The fragment containing theentirepromoter andcodingsequence
(full-length) for molecular complementation was cloned into pCAM-
BIA 3300, and the FBR6 promoter only (pFBR6) fragment was cloned
into pCAMBIA 3301, both vectors carry a gene that confers resistance
to the herbicide, BastaTM. These constructs were transformed into
Agrobacterium tumefaciens strainGV3101MP90 by electroporation.
Col-6 gl1-1 fbr6 plants and Col-0 plants were transformed with
3300FBR6 ‘full-length’ and 3301pFBR6, respectively, by the floral dip
method (Clough and Bent, 1998). Primary transformants were
selected on soil by sprayingwith a 1:100 dilution of FinaleTM (AgrEvo
Environmental Health, Montvale, NJ, USA). Transgenic lines homo-
zygous for single insertions were selected by analyzing the
segregation of herbicide resistance in T2 and T3 populations.

Molecular complementation of the fbr6 mutant phenotypes was
assessed by sowing wild-type, fbr6 mutant and ‘complemented’
seeds on MS-agar media supplemented with 2% sucrose (w/v) and
0.5 lM FB1. Reversion of the morphological phenotype was
assessed visually in soil-grown plants.

Tissue expression of the AtSPL14 ‘promoter’::GUS construct
was assessed by histochemical staining of several independent
transgenic lines at different stages of development using
5-bromo-4-chloro-3-indolyl-b-glucuronic acid as a substrate
(Jefferson, 1987).

Nuclear localization of FBR6

The AtSPL14 cDNA was amplified from reverse-transcribed RNA by
PCR using oligonucleotide primers with engineered BamHI restric-
tion sites SBPF2: 5¢-GGATCCAAATGGATGAGGTAGGAGCT-
CAAGTG-3¢ and SBPR: 5¢-ACTAGTCCGGATCCGATTGAGCCATA-
ATCCAAACCTCC-3¢. The resulting AtSPL14 cDNA fragment was
cloned into pGEM-TEasy (Promega) and subjected to DNA sequen-
cing. A BamHI fragment was cloned into the appropriately digested
binary vector pEGAD to produce an in-frame fusion to GFP (Cutler
et al., 2000). pEGAD with no insert and pEGAD-AtSPL14 were
transformed into A. tumefaciens strain GV3101 MP90 by electropo-
ration. The resulting strain was grown overnight at 30�C with
shaking in LB supplemented with 25 mg l)1 rifampicin, 50 mg l)1

gentamycin and 50 mg l)1 kanamycin, pelleted at 3000 g 5 min and
diluted to an OD600 of 1 in 10 mM MES pH 5.6, 10 mM MgCl2, 100 lM
acetosyringone (Sigma-Aldrich, St Louis, MO, USA). Transient
transformation of N. tabacum leaves was achieved by ‘agroinfiltra-
tion’ by infiltrating the strains into leaves using a syringe without a
needle (Goodin et al., 2002; Schob et al., 1997; Yang et al., 2000).
After 48 h, GFP was visualized with a laser scanning confocal
microscope (BioRad MRC-1024ES) and analyzed using BioRad
LaserSharp (v3.3) software (Bio-Rad, Hercules, CA, USA). Images
shown were merged from Z-series scans.

Transcriptional activation assays in yeast

The Saccharomyces cerevisiae strain AH109 and the GAL4 binding
domain vector pGBKT7 used to test transcriptional activation in
yeast were obtained from BD Biosciences as part of theMatchmaker
Two-Hybrid System 3 (Clontech, Palo Alto, CA, USA). The full-length
cDNA (a BamHI fragment using engineered restriction enzyme sites)
and various truncated versions (NcoI/BamHI, D1–304; BamHI/PstI,
D473–1035; BamHI/BalI, D185–1035; BalI/BamHI, D1–185) were gen-
erated by restriction enzyme digestions and cloned into appropri-
ately digested vector preparations of pGBKT7 to produce in-frame
fusions to the GAL4 DNA binding domain. Constructs were trans-
formed into yeast strain AH109 that has GAL4-recognized UAS dri-
ving expression of four different reporter genes and selected on
media lacking tryptophan. Yeast were grown at 30�C with shaking.
The ability of the AtSPL14 protein to activate transcription in yeast
was assayed by the ability to grow in the absence of histidine
(conferred by the HIS3 reporter gene) and histochemical detection
of a-galactosidase activity (conferred by the MEL1 reporter gene).
Cell counts of individual strains were determined by with a hema-
cytometer. Serial dilutions were plated on media lacking histidine
and supplemented with 5-bromo-4-chloro-3-indolyl-a-galactopyr-
anoside (X-a-Gal; 40 mg l)1). The GAL4 binding domain fusion
proteins also contained a c-myc epitope. Expression of the various
GAL4BD/FBR6 fusion proteins was confirmed by Western blot
analysis using a monoclonal antibody against the c-myc epitope
(data not shown).
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Recombinant protein expression, purification, and DNA

binding assay

To assess whether the SBP domain of AtSPL14 is capable of binding
to A. thaliana genomic DNA sequences, recombinant fusions pro-
teins were produced in E. coli strain Rosetta (EMD Biosciences, San
Diego, CA, USA). A BamHI/XbaI fragment of the AtSPL14 cDNA
was cloned into vector pMalK (derived from pMalcRI) and affinity-
purified with amylose-agarose (New England Biolabs, Beverly, MA,
USA). pMalK-FBR6s produces a recombinant protein of maltose
binding protein in-frame with the N-terminal 409 amino acids of
AtSPL14, encompassing the SBP domain. Purity was confirmed by
SDS-PAGE analysis (Laemmli, 1970), and protein concentration was
determined with the BCA protein assay according to the manufac-
turer’s instructions (Pierce Biotechnology, Rockford, IL, USA) using
bovine serum albumin as a standard. Dilutions of MBP alone and an
MBP fusion to the N-terminal 409 amino acid residues of FBR6 were
spotted onto a PVDF membrane (Hybond-P; Amersham Bioscienc-
es, Piscataway, NJ, USA) in ‘binding buffer’ (25 mM Hepes-KOH
pH 7.4, 50 mM NaCl, 1 mM DTT). The membrane was blocked in
‘binding buffer’ supplemented with 5% dry milk and probed with
‘binding buffer’ supplemented with 1% dry milk and random-
primed 32P-labeled A. thaliana genomic DNA (Sambrook and
Russell, 2001). The membrane was washed three times with
‘binding buffer’ plus 1%milk and analyzed with a Bio-RadMolecular
FX and QuantityOne software (Bio-Rad).
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ABSTRACT: Proteins with a conserved Cys- and His-rich SQUAMOSA promoter binding protein (SBP)
domain are transcription factors restricted to photosynthetic organisms that possess a novel two Zn-finger
structure DNA-binding domain. Despite the fact that altered expression of some SBP-encoding genes has
profound effects on organism growth and development, little is known about SBP domain protein target
genes. Misexpression of the Arabidopsis thaliana AtSPL14 SBP domain gene confers resistance to
programmed cell death and modifies plant architecture. A consensus DNA-binding motif for AtSPL14
was identified by systematic evolution of ligands by exponential enrichment (SELEX) or random binding
site selection (RBSS). DNA recognized by AtSPL14 contained the core binding motif (GTAC) found for
other SBP domain proteins, but mutational analyses indicated that at least one additional flanking nucleotide
is necessary for effective AtSPL14-DNA interaction. Comparison of several SBP domain amino acid
sequences allows us to hypothesize which specific amino acids might participate in this sequence-specific
DNA recognition. Electrophoretic mobility shift assays (EMSA) with mutant AtSPL14 DNA-binding
domain proteins indicated that not all of the Zn2+ ion coordinating ligands in the second Zn structure are
strictly required for DNA binding. Surface plasmon resonance (SPR) was used to evaluate AtSPL14 in
Vitro binding kinetics for comparison of equilibrium binding constants with other SBP domain proteins.
These data provide a strong basis for further experiments aimed at defining and distinguishing the sets of
genes regulated by the closely related SBP domain family members.

Proper growth and development of multicellular organisms
depend on a delicate balance between cell proliferation and
programmed cell death (PCD).1 In plants, PCD is required
for tracheary element differentiation to form the water-
conducting xylem tissue and accurate formation of various
reproductive organs (1–5). PCD is also an important aspect
of plant defense against pathogen attack (6–8). Despite the
essential nature of PCD, large gaps remain in our knowledge
of the mechanistic details and molecular components con-
trolling plant PCD. Therefore, to identify novel genes that
might participate in plant PCD, we developed a mutant
selection scheme for the model plant Arabidopsis thaliana
using a PCD-inducing fungal toxin fumonisin B1 (FB1), to
identify FB1-resistant (fbr) mutants (9–11). Misexpression
of the AtSPL14 gene in the fbr6 mutant confers the ability
to proliferate in the presence of FB1 and modifies normal
plant architecture, linking the insensitivity to cell death to
altered plant development (9). AtSPL14 has features of a
DNA-binding transcription factor, including a Cys- and His-
rich SQUAMOSA promoter binding protein (SBP) domain
predicted to bind DNA, ankyrin repeats that mediate pro-

tein–protein interactions, nuclear localization, and ability to
bind to A. thaliana genomic DNA (9).

SBP domain proteins are defined by a conserved ap-
proximately 80 amino acid–protein domain (the SBP domain
or SBP box) found only in proteins from photosynthetic
organisms, ranging from single-celled algae (e.g., Chlamy-
domonas reinhardtii) to higher plants (e.g., A. thaliana and
Oryza satiVa). The SBP gene families are comprised of 16
genes in A. thaliana and 19 genes in O. satiVa that encode
proteins that share the highly conserved SBP DNA-binding
domain but are diverse in overall domain structure (12, 13).
To date, only a few functions for SBP domain proteins have
been reported, perhaps due to genetic redundancy of closely
related family members. In all cases, SBP domain proteins
have been implicated in various aspects of plant growth and
development, including metal sensing in algae and directing
development of leaves, embryos, and floral organs in higher
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plants (9, 13–22). Some of these SBP domain proteins may
also be posttranscriptionally regulated by noncoding mi-
croRNAs to control their spatial and temporal expression
(23–25). Despite the obvious importance of these proteins,
the specific genes targeted by individual SBP domain family
members and the molecular consequences of their actions
are largely unknown.

To fully understand the physiological functions of AtSPL14
in regulating plant PCD and/or development, AtSPL14 target
genes, their modes of regulation, and the consequences of
expression/repression need to be determined. As one step
toward that goal, we used an affinity-based assay, referred
to as systematic evolution of ligands by exponential enrich-
ment (SELEX) or random binding site selection (RBSS) to
screen a random pool of dsDNA fragments for sequences
capable of binding to recombinant AtSPL14 protein. From
this analysis, an AtSPL14-binding consensus DNA motif was
derived. Mutational analyses indicated that predominantly
the core motif, CGTAC, is essential for AtSPL14 protein
binding to the DNA in Vitro.

Recent structures of SBP domains determined by nuclear
magnetic resonance (NMR) indicate that SBP domains form
aunique twoZn-fingerstructureDNA-bindingdomain(26,27).
The SBP domain contains eight absolutely conserved Cys
or His residues, some of which are critical for SBP domain
DNA binding (28). We determined that all of the highly
conserved cysteines in the two Zn2+ ion binding structures
of the AtSPL14 SBP domain binding are important for DNA
recognition by electrophoretic mobility shift assays (EMSA)
and surface plasmon resonance (SPR). Yet, an AtSPL14 SBP
domain with one of the Cys residues in the second Zn-finger
structure mutated retained some DNA-binding ability. More-
over, we monitored the kinetic features of the AtSPL14 SBP
domain-DNA binding by SPR. We further compare and
contrast the target sequences and the equilibrium binding
constants we determined for AtSPL14 with those of other
SBP domain proteins (18, 28, 29).

MATERIALS AND METHODS

Recombinant AtSPL14 Protein Expression and Purifica-
tion. Two different truncated and epitope-tagged versions of
recombinant AtSPL14 proteins were used. The full-length
AtSPL14 cDNA was generated by reverse transcription-
polymerase chain reaction (RT-PCR) from RNA isolated from
ecotype Col-0 (the reference genotype for the A. thaliana
genome) using oligonucleotide primers SBPF (5′-GGATC-
CATGGATGAGGTAGGAGCTCAAGTG-3′) and SBPR
(5 ′-ACTAGTCCGGATCCGATTGAGCCATAATC-
CAAACCTC-3′) and verified by DNA sequencing (30).
Engineered BamHI and existing internal SalI restriction
enzyme recognition sites were used to subclone FBR6 short
(FBR6s; aa 1-402) into BamHI/SalI-digested pET-28a(+)
to produce a protein composed of an N-terminal His tag,
thrombin cleavage site, and T7 tag fused to a region of
AtSPL14 encompassing the DNA-binding domain (Novagen,
EMD Chemicals, Inc., Darmstadt, Germany). The His-tagged
FBR6s protein was 447 amino acids with a predicted
molecular mass of 48.8 kDa.

For electrophoretic mobility shift assays (EMSA) and
surface plasmon resonance (SPR) binding assays, recombi-
nant epitope-tagged FBR6 supershort (FBR6ss; aa 111–200)

protein was used. The conserved SBP domain of AtSPL14
was amplified by PCR using oligonucleotide primers oJS86
(5′-CCGAATTCTCTCCGGGAGGGAATTATCCC-3′) and
oJS87 (5′-CCGAATTCTTATGCAACCTCCTCCGGCTGCG-
3′) and verified by DNA sequencing (30). The resulting PCR
product was subcloned into pET-28a(+) to produce a protein
composed of an N-terminal His tag, thrombin cleavage site,
and T7 tag fused to a region of AtSPL14 encompassing the
DNA-binding domain. The His-tagged FBR6ss protein was
126 amino acids with a predicted molecular mass of 14.3
kDa.

The recombinant proteins were expressed in Escherichia
coli by inducing log phase cultures with 0.2 mM isopropyl
�-D-1-thiogalactopyranoside (IPTG) at 37 °C for 2 h, and
proteins were purified on Ni2+-conjugated affinity resin
according to the manufacturer’s instructions (ProBond
Purification System; Invitrogen, Carlsbad, CA). For SELEX
experiments proteins were retained on the resin.

Site-Directed Mutagenesis. The site-directed mutagenesis
was performed according to the Stratagene’s QuickChange
site-directed mutagenesis kit instruction manual (Stratagene,
Cedar Creek, TX). Oligonucleotide primers used to mutate
the nucleotides in the AtSPL14-binding DNA and the
cysteine residues of the AtSPL14 SBP domain are shown in
Tables S1 and S2 of the Supporting Information, respectively.

Systematic EVolution of Ligands by Exponential Enrich-
ment (SELEX) or Random Binding Site Selection (RBSS). A
random pool of oligonucleotides (76 nucleotides) of sequence
5′-GCTGCAGTTGCACTGAATTCGCCTCN26CGACAGG-
ATCCGCTGAACTGACCTG-3′, where N26 represents 26
randomized nucleotides, was synthesized by equimolar
incorporation of A, G, C, and T at each “N” position
(Integrated DNA Technologies, Coralville, IA). The two sets
of 25 nucleotides flanking the 26-nucleotide random core
were designed for amplification by PCR. To make double-
stranded DNA (dsDNA), the random pool of oligonucleotides
(100 ng) was subjected to PCR using the forward primer
and Taq polymerase enzyme (94, 68, and 72 °C, 1 cycle),
and the PCR products were purified by agarose gel electro-
phoresis (1.5% MetaPhor agarose; Cambrex Bio Science
Rockland, Inc., Rockland, ME) to yield ds-R76, the substrate
in the initial binding reaction.

The binding reactions were carried out on ice essentially
as described with a few modifications (31). The recombinant
protein T7-His6-FBR6s was purified using a His tag purifica-
tion kit (ProBond; Invitrogen, Carlsbad, CA) and retained
on the resin. The resin with immobilized protein (200 µL)
was washed twice with binding buffer (20 mM Tris-HCl,
pH 7.6, 50 mM NaCl, 1 mM MgCl2, 0.2 mM EDTA, 5%
glycerol, 0.5 mM DTT, 50 µM PMSF), mixed with 50 µg/
mL poly(dIdC) (Amersham Biosciences, Cleveland, OH) to
reduce nonspecific binding for 10 min, and incubated with
ds-R76 DNA (200 ng) for 60 min, with gentle tapping every
10 min. The immobilized protein-DNA complexes were
washed with TN buffer (10 mM Tris-HCl, pH 7.4, 150 mM
NaCl) five times, and the DNA was eluted with 200 µL of
dissociation buffer (0.5 M Tris-HCl, pH 7.4, 20 mM EDTA,
10 mM NaCl, 0.2% SDS). The bound DNA was amplified
by PCR using 250 nM oligonucleotide primers that anneal
to the defined terminal sequences of the 76-nucleotide
oligonucleotide for 20 cycles. The resulting product was used
as the substrate in the second round of SELEX. After five
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serial selection rounds, the amplified DNA was cloned into
vector pGEM-TEasy (Promega, Madison, WI) and subjected
to DNA sequencing (University of NebraskasLincoln,
Genomics Core Facility). Effective DNA binding was
verified by electrophoretic mobility shift assay (EMSA)
competition assays.

Electrophoretic Mobility Shift Assay (EMSA). DNA frag-
ments were fluorescently labeled by PCR amplification in a
reaction containing 100 µM dNTPs, 1× PCR buffer, 1.5 mM
MgCl2, 2 ng of DNA template (pGEM-TEasy subclones
selected from SELEX), 300 nM 5′-IR-dye 700 GTACCT-
TCGTTGCCGCTAG-3′ corresponding to the T7 promoter
(Li-Cor, Lincoln, NE), 300 nM primer R or primer F, and
Taq polymerase enzyme. The resulting PCR product was
quantified using gel electrophoresis. Electrophoretic mobility
shift assay binding reactions were performed in the same
binding buffer used in the SELEX (exception: 1 mM DTT
and no PMSF) in a total volume of 20 µL containing 60 nM
protein and 4 nM labeled DNA and incubated for 30 min at
25 °C in darkness prior to electrophoresis. The protein-DNA
binding mixture was electrophoretically resolved for 45 min
at 4 °C in the dark on a prerun 8% nondenaturing polyacry-
lamidegel (polyacrylamide-bis ratio)37.5:1) inTris-borate-
EDTA buffer (89 mM Tris, 89 mM boric acid, and 2.5 mM
EDTA) at constant voltage (15 V/cm). Gels were analyzed
using an Odyssey Infrared Imager (Li-Cor, Lincoln, NE).

Immobilization of Biotinylated DNA on the SA Sensor
Chip. Cognate and noncognate DNA fragments (156 bp)
containing dsR76 used in the SELEX experiments were
biotinylated by PCR amplification with dsDNA cloned in
pGEM-TEasy as templates, 5′-biotin-GTACCTTCGTTGC-
CGCTAG-3′ oligonucleotide corresponding to the T7 pro-
moter (IDTDNA, Cedar Rapids, IA), and either primer R or
primer F. The PCR products were purified by the QIAquick
PCR purification kit (Qiagen, Valencia, CA), and DNA was
immobilized on streptavidin (SA) sensor chips (Biacore AB,
Uppsala, Sweden).

5′-Biotin-labeled DNA (the random binding site selected
DNA 14 containing the consensus FBR6ss binding site,
CCGTAC, Figure 1) was immobilized onto the SA sensor
chip surface [450 resonance (response) units, RU] to provide
the maximal level of RU associated with protein binding in
the range of 50–100 RU. SA chips were conditioned with
three consecutive 1 min injections of 1 M NaCl and 50 mM
NaOH prior to immobilization. Two reference cells were
used as controls for background subtraction: reference 1 was
the surface alone (no bound DNA), and reference 2 had a
noncognate DNA (a random DNA that did not possess the
consensus binding motif) immobilized to the reference cell
at the same concentration as the cognate DNA.

Surface Plasmon Resonance (SPR) Analysis. The purified
His-FBR6ss protein was desalted and equilibrated in HBS-
EP buffer using Centricon-mediated centrifugal filtration (10
kDa cutoff; Millipore, Billerica, MA). The protein was
diluted in HBS-EP buffer to yield several different concen-
trations ranging from 3.25 to 300 nM. Varying protein
concentrations were injected at a 75 µL/min flow rate. The
chip surface was regenerated by injection of 0.1% SDS and
3 mM EDTA buffer for 1 min after each protein injection.
Responses from the reference cell(s) were subtracted to
correct for refractive index changes and nonspecific binding.

SPR Data Analysis. Data were analyzed with BIAevalu-
ation 3.0 software (Biacore, Piscataway, NJ), which auto-
matically calculates binding parameters taking into account
control and experimental results allowing for quantitative
kinetic analyses. Association (ka) and dissociation (kd) rates
and overall affinity, the equilibrium dissociation constant
(KD), were calculated using a simple bimolecular 1:1
Langmuir isotherm binding model (A + B T A-B) and a
mass transfer model that accounts for mass transfer limita-
tions due to rapid association and/or dissociation rates (32).
Nonspecific binding effects were subtracted using the sen-
sorgram generated from the control reference cell(s). Experi-
ments were replicated in triplicate with similar results.

FIGURE 1: The consensus target site for the AtSPL14 SBP DNA-
binding domain determined by SELEX. Double-stranded DNA
molecules containing a 26-nucleotide completely randomized central
region were subjected to repetitive cycles of binding to recombinant
AtSPL14 bound to a Ni2+-chelating affinity resin and PCR
amplification. The individual binders were subsequently tested by
electrophoretic mobility shift assays (EMSA) and competition with
unlabeled probe (as in Figure 2A), yielding 20 distinct dsDNA
fragments capable of binding to the AtSPL14 SBP domain. (A)
An alignment of the 20 individual binders based on the results of
the web-based multiple expectation maximization for motif elicita-
tion (MEME) analysis program (36). The core consensus sequence
nucleotides are in color, the adjacent random nucleotides are in
black, and the nonrandom nucleotides derived from the fixed
sequence immediately flanking the random nucleotides in the
dsDNA pool are in gray. (B) A representation of the consensus
DNA target binding motif (disregarding the fixed nucleotides
flanking the random core) using WebLogo (37). The degree of
conservation is indicated by the height of the letters. The core
sequence “CCGTAC” was found in all dsDNA-binding fragments.
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RESULTS

Identification of a Consensus Binding Site for the AtSPL14
SBP Domain by Systematic EVolution of Ligands by Expo-
nential Enrichment (SELEX). SELEX or random binding site
selection (RBSS), an in Vitro oligonucleotide binding and
PCR amplification method, was used to define consensus
DNA-binding sequences for the AtSPL14 SBP DNA-binding
domain (33–35). The AtSPL14-binding DNA was selected
from a pool of 76 bp of double-stranded DNA (dsDNA) with

a central core of 26 random nucleotides by repeated cycles
of binding to the hexahistidine-tagged FBR6s protein (en-
compassing the SBP DNA-binding domain) immobilized on
Ni2+-chelating affinity resin. Fifty-seven individual clones
that were derived from five serial rounds of selection were
subcloned and subjected to DNA sequencing, revealing that
identical clones were identified multiple times. All of the
unique clones were tested for binding to FBR6ss using
EMSA assays and competition with unlabeled dsDNA probe.

FIGURE 2: Specific AtSPL14 DNA binding by electrophoretic mobility shift assays (EMSA) and competition assays. (A) An example of the
initial competition assays by EMSA used to determine binding of the individual dsDNA fragments identified by SELEX. The double-
stranded DNA probe was generated by PCR with IRDye 700 fluorescently labeled (probe) or unlabeled (competitor) oligonucleotide primers.
The probe (4 nM) was incubated without (-) or with (+) recombinant His-tagged AtSPL14 SBP domain protein (FBR6ss, 60 nM). For
testing specificity, increasing amounts of unlabeled competitor were included in the binding reaction; the ratio of competitor:probe is
indicated. “Complexes” were separated on an 8% nondenaturing polyacrylamide gel and visualized by infrared imaging. Lanes: (1) free
probe; (2) probe plus AtSPL14 SBP domain protein; (3–6) probe plus increasing amounts of unlabeled competitor. (B) For EMSA competition
assays, single nucleotide substitutions in the core consensus binding site of a selected dsDNA-binding fragment were generated by site-
directed mutagenesis. The core consensus motif is in color with flanking nucleotides in black for the wild-type (wt) dsDNA, and individual
nucleotide changes for the mutated (M1–M13) dsDNA are indicated. (C) EMSA competition assays with the wild-type (WT) or mutated
(M1–M13) dsDNA fragments. For the binding reactions, “FP” indicates free probe with no protein, “0” indicates no competitor, and the
triangles represent increasing amount of competitor in the binding reaction (20× or 40× molar ratios). (D) Band intensities corresponding
to bound complexes were determined by infrared imaging (Odyssey; Li-Cor, Lincoln, NE). Binding efficiencies were normalized to a
control binding reaction with no competitor on each gel (“0” in panel C). Binding levels with a 20× molar ratio (black bars) and a 40×
molar ratio (white bars) of unlabeled competitor are shown. Error bars represent 95% confidence levels from experiments performed in
triplicate.
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The final outcome of these analyses was 20 individual
sequences. The consensus binding site was identified using
the web-based multiple expectation maximization for motif
elicitation (MEME) analysis program with manual manipula-
tion to optimize the output and is represented using
WebLogo (36, 37).

Alignment of the 20 unique sequences indicated CCG-
TAC(A/G) as the optimal binding site for the AtSPL14 SBP
domain (Figure 1). Nucleotides of the core consensus binding
motif in a selected individual SBP domain binder (14 in
Figure 1A) were mutated to several different nucleotides
(Figure 2B). The wild-type (WT) and mutant (M1-M13)
DNAs were then tested for binding to FBR6ss in EMSA
competition assays. These experiments revealed that the C
in position 1 and the A or G in position 7 are dispensable
for binding, as dsDNA fragments with mutations in these
nucleotides could still effectively compete in EMSA com-
petition assays (Figure 2). Positions 2, 3, and 4 (CGT) are
critical for DNA binding, and even conservative changes (i.e.,
pyrimidine-to-pyrimidine changes in the C and T) effectively
abolished the ability of these mutated dsDNAs to compete
for binding. Mutation of the A and C in positions 5 and 6
indicated that these nucleotides are also important, as they
markedly reduced competition for AtSPL14 SBP domain
binding (Figure 2). These mutational analyses support that
the AtSPL14 SBP domain recognizes a core consensus
binding motif of CGTAC.

AtSPL14 SBP Domain-DNA Interactions by Surface
Plasmon Resonance (SPR). SPR analysis was performed
using a BIAcore 2000 instrument to measure real-time
interactions between DNA coupled to a sensor chip and an
analyte (recombinant FBR6ss) in constant flow. A biotin-
labeled 156 bp DNA containing the CCGTACA consensus

binding motif identified by SELEX (clone 14, Figure 1A)
was immobilized to the SA sensor chip. For controls,
reference cells were either surface (no immobilized DNA)
or noncognate (with a 156 bp random DNA lacking the
consensus motif immobilized). The AtSPL14 SBP domain-
DNA interactions were then analyzed by SPR.

To determine ideal conditions for kinetic analyses, 15 nM
recombinant protein was injected at two different flow rates,
15 and 75 µL/min. We found significant variation with flow
rate, suggesting a mass transfer limitation (data not shown).
Varying concentrations of recombinant protein (5, 10, 15,
20, 25, 30, and 50 nM) were injected at the higher flow rate
(75 µL/min). The SPR response data were then fit to various
models using BIAevaluation 3.0 software (Biacore). Non-
specific binding was not observed when the protein concen-
tration was less than 300 nM, and the noncognate DNA
reference cell subtraction method was used (Figure S1 of
the Supporting Information). The sensorgram data did not
fit well to the simple bimolecular 1:1 Langmuir isotherm
binding model (Figure 3A) but fit well using the binding
with mass transfer model (Figure 3B). According to these
data, the AtSPL14 SBP domain has extremely rapid associa-
tion and dissociation rates with cognate DNA possessing the
consensus binding motif; ka ) 2.5 × 107 M-1 s-1 and kd )
7.4 × 10-2 s-1 with equilibrium binding constant KA ) ka/
kd ) 3.3 × 108 M-1.

Because of the mass transfer limitation, equilibrium
dissociation constants were evaluated by the steady-state
binding kinetics (Req). Nine different protein concentrations
were injected at 15 µL/min for 10-15 min to ensure that
the binding reaction reached equilibrium. The equilibrium
binding constant (KA) was obtained by fitting the protein
concentration corresponding to the steady-state binding level

FIGURE 3: Global analysis of SPR biosensor data for AtSPL14 SBP domain protein-DNA interaction kinetic analyses. Top panels: The
dotted lines represent SPR sensorgrams (resonance units, RU) obtained by injecting different concentrations of the AtSPL14 SBP domain
protein (5, 15, 20, 25, 30, and 50 nM; bottom to top) onto a SA sensor chip coated with a representative 156 bp cognate dsDNA fragment
identified by SELEX that bound in EMSA competition assays. Binding data were collected at a flow rate of 75 µL/min. Signals from the
control reference cell (coated with a noncognate DNA) were subtracted. Bottom panels: Residual plot showing the difference between
measured and calculated responses. (A) Best fits of the binding data to a simple bimolecular 1:1 Langmuir binding model are represented
by solid black lines.A residual plot showing the difference between measured and calculated responses indicated that the 1:1 Langmuir
binding model is not a good fit ((10 RU). (B) Best fits of the binding data to a simple bimolecular 1:1 mass transfer binding model are
represented by solid black lines. A residual plot showing the difference between measured and calculated responses indicated that the 1:1
mass transfer binding model is a good fit ((3 RU). Kinetic binding constants were determined for the mass transfer binding model: the
association rate constant ka ) 2.5 × 107 M-1 s-1, the dissociation rate constant kd ) 7.4 × 10-2 s-1, and the equilibrium binding constant
KA ) ka/kd ) 3.3 × 108 M-1.
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to a simple 1:1 binding model (Figure 4), resulting in an
equilibrium binding constant KA ) 3.8 × 108 M-1. Experi-
mental error was determined by performing the experiment
in triplicate; KA ) 3.1 × 108 ( 1.0 × 108 M-1 (SEM).
Therefore, the binding affinities obtained from determining
both kinetic rate constants and steady-state equilibrium
analyses were similar.

Amino Acids Required for AtSPL14 SBP Domain-DNA
Interactions. Multiple sequence alignments of SBP domains
from A. thaliana, Antirrhinum majus, and C. reinhardtii
indicate that this is a highly conserved protein domain, with
sequence identity ranging from 50% to 96% (Figure S2 of
the Supporting Information). The consensus sequence is CX4C-
X9YX3HX2CX16RXCQQCX3HX4FDX4SCRX2LX2HNXRR,
where “X” is not absolutely conserved. The six absolutely
conserved Cys residues and two of the absolutely conserved
His residues have been shown to coordinate two Zn2+ ions

to form a novel two Zn-finger structure (26, 27). The
presumed coordinating amino acids of the AtSPL14 SBP
domain are shown in Figure S2 of the Supporting Informa-
tion. To explore whether these six Cys amino acids are
required for the AtSPL14 SBP domain to bind DNA, all six
amino acids were individually mutated to Ala and Ser, and
the mutant proteins were assayed for DNA-binding efficiency
by EMSA. All 12 Cys substitutions almost completely
abolished the ability of the AtSPL14 SBP domain to bind
DNA, with the exception of C164-A and C164-S, which
exhibited very weak binding at high protein concentrations
(Figure 5). We also tested the ability of the mutant proteins
to bind DNA by SPR. The binding of the mutant AtSPL14
SBP domain proteins was markedly reduced compared to
the wild-type protein (Figure 5). Therefore, all six highly
conserved Cys amino acids are important for DNA binding,
but weak affinity is retained when one of the Cys amino

FIGURE 4: Steady-state binding affinity for the AtSPL14 SBP domain protein-DNA interaction. (A) SPR sensorgram of different concentrations
of the AtSPL14 SBP domain protein (3.125, 6.25, 12.5, 25, and 50 nM; bottom to top) injected onto a SA sensor chip coated with a
representative 156 bp cognate dsDNA fragment identified by SELEX that bound in EMSA competition assays. Binding data were collected
at a flow rate of 25 µL/min for 10 min to ensure steady-state equilibrium was reached. The response value at equilibrium (Req) was calculated
from “fitting” straight lines to a chosen section of sensorgrams where the binding response was stabilized (steady state). (B) Plot of the
response value (resonance units, RU) at equilibrium (Req) versus the concentration of analyte. Data were fit to a steady-state affinity model;
the equilibrium binding constant KA ) 3.8 × 108 M-1 and �2 ) 0.758.

FIGURE 5: Effects of mutating the highly conserved cysteine residues in the AtSPL14 SBP domain on DNA-binding capacity. (A) The
ability of wild-type (WT) and mutant (CXXX-A or CXXX-S) AtSPL14 SBP domain proteins to bind to a representative 156 bp cognate
dsDNA fragment identified by SELEX was analyzed by electrophoretic mobility shift assays (EMSA). “FP” is free probe (no protein), and
triangles represent increasing amounts of proteins in the binding reaction (60, 300, and 600 nM). (B) SPR sensorgrams showing wild-type
(WT) AtSPL14 SBP domain protein binding to a cognate dsDNA immobilized on a SA sensor chip (top) compared to the SBP domain
mutants (C120-A to C180-A, bottom). Binding data were collected with 50 nM protein injected at a flow rate of 75 µL/min for 90 s.

3650 Biochemistry, Vol. 47, No. 12, 2008 Liang et al.



acids predicted to coordinate a Zn2+ ion in the second Zn-
finger structure is mutated.

DISCUSSION

Our interest in determining the AtSPL14 SBP domain
DNA-binding motif and binding kinetics derives from
identification of an A. thaliana mutant with a disruption in
the AtSPL14 gene (At1g20980). The A. thaliana FB1-
resistant (fbr6) mutant was originally identified by selecting
for mutants capable of growth and development on media
containing the fungal toxin fumonisin B1 (FB1). FB1 disrupts
sphingolipid metabolism in eukaryotes (38) and induces
PCD, dependent on transcription, translation, reversible
protein phosphorylation, light, and hormone signaling path-
ways in A. thaliana (10, 11). In addition to resistance to FB1,
the fbr6 mutant also exhibits altered plant architecture,
including elongated petioles and enhanced leaf margin
serration (9). Knowledge of the AtSPL14 DNA-binding site
(and potentially regulated genes) is critical to fully under-
standing the physiological functions of this sequence-specific
DNA-binding transcription factor.

The AtSPL14 SBP Domain Binds to the Core GTAC
Consensus Target Site but Requires an Additional Flanking
Nucleotide for EffectiVe Interaction. AtSPL14 (At1g20980)
encodes a 1035 amino acid–protein with an SBP DNA-
binding domain (http://srs.ebi.ac.uk; IPR004333), a bipartite
nuclear localization signal (aa 117–193), and ankyrin repeats
that mediate protein–protein interactions (IPR002110; aa
821–941) in the C-terminal region of the protein (9, 13, 39, 40).
The highly conserved SBP DNA-binding domain is a Cys-
and His-rich region (consensus: CX4CX13HX5HX15CQQCX3-
HX11C) found only in proteins from photosynthetic orga-
nisms (12, 13, 18, 28). The founding members of the SBP
domain gene family (SBP1 and SBP2 from A. majus) were
identified by their ability to bind to the upstream regulatory
region of the SQUAMOSA floral meristem identity gene (29).
Previous reports indicated that A. majus proteins and some
A. thaliana SBP domain proteins bind DNA encompassing
a ten nucleotide motif common to cis regulatory elements
in the orthologous A. majus SQUAMOSA and A. thaliana
APETALA1 gene promoters and a similar motif in the A.
majus DEFH84 promoter in Vitro (13, 17). Alignment of
these sequences revealed a putative consensus DNA-binding
motif of TNCGTACAA (13). It appears that GTAC is the
core DNA-binding motif for all SBP domains described so
far, but nucleotides flanking the core motif are preferred by
different SBP domain proteins.

We used a completely random approach, referred to as
systematic evolution of ligands by exponential enrichment
(SELEX) or random binding site selection (RBSS), to
identify the consensus DNA-binding site for AtSPL14. These
analyses revealed CCGTAC(A/G) as the optimal binding site
for the AtSPL14 SBP domain (Figure 1). We found no
evidence for a palindromic binding motif, which would
suggest that binding occurs as a dimer, consistent with a
previous report that other SBP domains bind DNA with a
1:1 stoichiometry (26). To verify the importance of the
consensus motif, we mutated the individual nucleotides of
the predicted binding site CCGTAC(A/G) to obtain both
conserved and nonconserved substitutions of each base
except the 3′-end A/G (Figure 2B). Mutations in the CGTAC

core markedly reduced competition for AtSPL14 binding,
but the C at the 5′-end and the A/G at the 3′-end were
dispensable (Figure 2). Therefore, each individual nucleotide
of the core motif CGTAC is necessary for effective AtSPL14
SBP domain DNA binding (Figure 2).

Birkenbihl et al. (28) recently used a similar random
binding site selection with G and T fixed at positions 7 and
8 (of 16 total “random” nucleotides) to identify binding sites
for AtSPL3 and AtSPL8 SBP domains. A high preference
for at least one more C at the 5′-end of the core consensus
GTAC motif was found for AtSPL3 (83%), but not for
AtSPL8. Therefore, the recognition site we determined for
AtSPL14 is more similar to that of AtSPL3 than AtSPL8.
The preference for a C flanking the GTAC core must be
due to a specific amino acid-nucleotide interaction. The
overall sequence identities between the AtSPL14 SBP
domain and those of AtSPL3 (70%) and AtSPL8 (74%) are
quite similar (Figure S2 of the Supporting Information), with
only three amino acid differences in the Zn2 region proposed
to interact directly with DNA (27). AtSPL14 and AtSPL3
have a Glu, Arg, and Gly whereas AtSPL8 has Asn, Lys,
and Asp, respectively (Figure S2 of the Supporting Informa-
tion). Whereas no simple universal code has been elucidated,
specificity is imparted in most protein-DNA contacts by
hydrogen bonding in the major groove (41). Statistical
analysis of atomic interactions in 139 protein-DNA com-
plexes analyzed from the Protein Data Bank (PDB) revealed
favored amino acid-nucleotide pairs (42). The authors
categorized direct amino acid-nucleotide contacts, including
hydrogen bonds and electrostatic, hydrophobic, and other van
der Waals interactions. Whereas contacts with the sugars or
phosphates of DNA contribute to DNA–protein stability, only
H-bonds to nucleotide bases can confer sequence specificity.
In interactions with nucleotide bases, the most commonly
observed interaction was Arg with G (42). Therefore, it seems
most likely that the substitution of Lys in AtSPL8 for Arg
in AtSPL14 and AtSPL3 renders the 5′ nucleotide flanking
the core GTAC motif unimportant. This hypothesis will need
to be tested experimentally.

Simple pattern matching searches for the consensus
binding sequence reported for the A. majus SBP proteins
“TNCGTACAA” (13, 29) upstream of annotated A. thaliana
genes identified 331 and 640 putative SPL-regulated genes
with the pattern within 500 and 1000 base pairs of the
translation start site, respectively. Using the consensus DNA-
binding motif, we identified for AtSPL14 (CGTAC) more
than 6000 genes with the motif within 500 base pairs of the
translation start site as possible AtSPL14 targets, and one
gene of unknown function has 16 occurrences. Combined
with microarray gene expression data comparing the tran-
scriptomes of the fbr6 mutant to wild-type plants, a subset
of candidate target genes for AtSPL14 were identified (data
not shown). Whereas some of these promoter sequences also
bind to AtSPL14 in Vitro, additional experiments, such as
chromatin immunoprecipitation (ChIP), will be required to
verify that these are true targets for AtSPL14 in ViVo.

The Kinetic Binding Parameters of SBP Domains Differ.
The SBP domain DNA binding is dependent on the presence
of Zn2+ ions (18, 28). The NMR-resolved structures of SBP
domains revealed that the SBP domain forms a novel two
Zn structure DNA-binding domain (26). The two Zn2+ ions
are coordinated by three Cys residues and one His residue,
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forming two Zn structures in CCCH (Zn1) and CCHC (Zn2)
configurations (Figure S2 of the Supporting Information).
We mutated all six highly conserved Cys to Ala and Ser
and determined the SBP-DNA binding efficiency by EMSA
and SPR. All 12 mutations markedly reduced the AtSPL14-
DNA interaction (Figure 2), verifying that all six conserved
Cys in the AtSPL14 SBP DNA-binding domain are important
for AtSPL14 protein-DNA interaction and consistent with
the supposition that these Cys residues participate in Zn2+

ion binding (26, 28). However, the C164-A and C164-S
(corresponding to the second Cys in Zn2) mutant proteins
retained some weak binding ability (Figures 2 and S2 of the
Supporting Information). The second Cys and the His in Zn1
and the first and fourth Cys in Zn2 were reported to be critical
for AtSPL1 DNA binding (28). In that study the second Cys
in Zn2 was not mutated, but the His in Zn2 was found to be
somewhat dispensable (28). Therefore, we independently
determined that all of the Zn1 coordinating residues are
essential, but two of the presumed Zn2 coordinating residues
(the His and second Cys) are not absolutely required for SBP
domain DNA binding. These findings support the conclusions
derived from the NMR structure of a truncated SBP domain
protein (AtSPL12). The Zn1 structure is critical for overall
structure, and removal of part of the Zn2 domain affected
DNA binding but had little effect on overall folding (27). It
is not yet clear whether proteins with mutations of the Zn2+

ion coordinating amino acids (His and second Cys) in the
Zn2 structure can still bind a second Zn2+ ion. Another His
residue is absolutely conserved in SBP domains (His187 in
AtSPL14, Figure S2 of the Supporting Information) and
might serve as a substitute fourth ligand. Alternatively, acidic
residues or a water molecule might serve as the fourth
coordinating ligand (43).

The AtSPL14 DNA-binding kinetics was analyzed by
surface plasmon resonance (SPR). The mass transfer limita-
tion due to the rapid association (>107) and dissociation rates
(>10-2) made determination of reliable kinetic constants
difficult using conventional SPR (32). Therefore, we also
evaluated steady-state binding at equilibrium. The determined
equilibrium binding constant, KA (3.8 × 108 M-1), is similar
to the reported values (9.6 × 107 M-1 and >5 × 108 M-1)
for the AtSPL4 and AtSPL12 SBP domains, respectively,
and 1 order of magnitude greater than the value (2.8 × 107

M-1) reported for the AtSPL7 SBP domain (26, 27). Kinetic
rate constants were not reported for other SBP domain
proteins.

The different KA values determined for different SBP
domains might be due to the different salt concentrations in
the analyte. Our data were generated in HBS-EP buffer
(containing 150 mM NaCl), whereas the KA of binding for
AtSPL4, AtSPL7, and AtSPL12 was assayed in the presence
of 100 or 300 mM KCl. The KA for AtSPL12 and AtSPL4
at 100 mM KCl (>5 × 108 M-1 and 2.8 × 107 M-1,
respectively) was higher than those determined at 300 mM
KCl (3.2 × 107 M-1 and 2.1 × 106 M-1, respectively),
suggesting that salt concentration affects SBP domain-DNA-
binding affinity. Therefore, electrostatic forces contribute to
the SBP-DNA interaction, as was also observed in other
protein-DNA interactions (44, 45).

Conclusions. In summary, different SBP domain proteins
display different binding affinities to the same DNA and
different selectivity for DNA targets. Even though they

contain the same core consensus binding motif (GTAC), the
A. thaliana APETALA1 gene-derived DNA and DNA con-
taining the C. reinhardtii copper-responsive element (CuRE)
had different affinities for several SBP domain proteins (28).
Our results revealed that AtSPL14-DNA binding is highly
sequence selective and allow us to hypothesize which
particular amino acids may confer that specificity. Moreover,
the well-conserved SBP domains possess diverse DNA-
binding affinities for similar DNA sequences. These observa-
tions will be useful, in conjunction with additional experi-
mentation, to identify the gene targets for individual SBP
domain family members to understand their physiological
functions in the context of whole organisms.
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SUPPORTING INFORMATION AVAILABLE

SPR data analysis comparing the subtraction of the signals
from a blank reference cell and a reference cell coated with
a noncognate DNA indicates that subtracting data from a
reference cell coated with noncognate DNA is the preferred
control (Figure S1). An amino acid alignment of the SBP
DNA-binding domains encoded by the 16 A. thaliana genes,
the 2 A. majus genes, and the CuRE-binding C. reinhardtii
gene is provided with a schematic of the Zn2+ ion coordinat-
ing residues (Figure S2). The oligonucleotide primers used
for site-directed mutagenesis of both the DNA target and
the AtSPL14 SBP domain protein are shown in supplemen-
tary tables (Tables S1 and S2). This material is available
free of charge via the Internet at http://pubs.acs.org.
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FIGURE S1:  Comparison of surface and noncognate dsDNA-coated reference cell subtraction 

methods.  SPR sensorgrams of different concentrations of the AtSPL14-SBP domain protein 

(3.125, 6.25, 12.5, 25, 50, 100, 200 and 300 nM; bottom to top) injected onto a SA sensor chip 

coated with a representative 156 bp cognate dsDNA fragment identified by SELEX that bound in 

EMSA competition assays.  Binding data were collected at a flow rate of 25 μL/min.  A)  

Sensorgram with signals from the control surface reference cell (no DNA) subtracted.  B)  

Sensorgram with signals from the control reference cell (coated with a noncognate dsDNA) 

subtracted. 

 

FIGURE S2:  Multiple sequence alignment of several SBP DNA-binding domains and Zn2+ ion 

coordination.  A) SBP domain sequences were aligned using the Clustal method with DNAStar 

software (Madison, WI).  Residues that match the consensus sequence are shaded in black, 

numbers on the left refer to the starting amino acid, protein designations are indicated on the 

right (organisms: At, Arabidopsis thaliana; Cr, Chlamydomonas reinhardtii; and Am, 

Antirrhinum majus), and asterisks and amino acid numbers indicate the positions of the six 

highly conserved cysteines that were mutated in the AtSPL14 SBP domain.  B)  The 

coordinating Cys and His residues for Zn2+ ions are indicated for the Zn1 (CCCH) and Zn2 

(CCHC) structures. 

 

 
 







Table S1. Oligonucleotide primers used for site-directed mutagenesis of SELEX binders

Mutant Sense oligonucleotide primer (5’�3’) Antisense oligonucleotide primer (5’�3’)

M1 CGGGATCAGATATTAGACTAAGTGTACGTAGGCGAATTCAGTGC GCACTGAATTCGCCTACGTACACTTAGTCTAATATCTGATCCCG

M2 CGGGATCAGATATTAGACTAAGTGTACGAAGGCGAATTCAGTGC GCACTGAATTCGCCTTCGTACACTTAGTCTAATATCTGATCCCG

M3
M4

CGGGATCAGATATTAGACTAAGTGTACHGAGGCGAATTCAGTGC GCACTGAATTCGCCTCDGTACACTTAGTCTAATATCTGATCCCG

M5
M6
M9
M10

CGGGATCAGATATTAGACTAAGTGNANGGAGGCGAATTCAGTGC GCACTGAATTCGCCTCCNTNCACTTAGTCTAATATCTGATCCCG

M7 CGGGATCAGATATTAGACTAAGTGTKCGGAGGCGAATTCAGTGC GCACTGAATTCGCCTCCGMACACTTAGTCTAATATCTGATCCCG

M8 CGGGATCAGATATTAGACTAAGTGTGCGGAGGCGAATTCAGTGC GCACTGAATTCGCCTCCGCACACTTAGTCTAATATCTGATCCCG

M11
M12

CGGGATCAGATATTAGACTAAGTHTACGGAGGCGAATTCAGTGC GCACTGAATTCGCCTCCGTADACTTAGTCTAATATCTGATCCCG

M13 CGGGATCAGATATTAGACTAAGRGTACGGAGGCGAATTCAGTGC GCACTGAATTCGCCTCCGTACYCTTAGTCTAATATCTGATCCCG

Note: D = A, G, T; H = A, C, T; K = G, T; M = A, C; N = A, C, G, T; R = A, G; Y = C, T



Table S2. Oligonucleotide primers used for site-directed mutagenesis of AtSPL14 SBP domain

Mutant Sense oligonucleotide primer (5’�3’) Antisense oligonucleotide primer (5’�3’)

C120A CCGGGAGGGAATTATCCCATGGCTCAGGTTGATAATTG CAATTATCAACCTGAGCCATGGGATAATTCCCTCCCGG

C125A CCCATGTGTCAGGTTGATAATGCTACTGAAGATTTGTCTCATGC GCATGAGACAAATCTTCAGTAGCATTATCAACCTGACACATGGG

C142A CATAGAAGGCATAAAGTTGCTGAAGTTCATAGTAAAGCTA GTAGCTTTACTATGAACTTCAGCAACTTTATGCCTTCTATG

C161A GGTAAACAGATGCAGAGGTTTGCTCAACAGTGTAGCAGG CCTGCTACACTGTTGAGCAAACCTCTGCATCTGTTTACC

C164A CAGATGCAGAGGTTTTGCCAACAGGCTAGCAGGTTTCATCTGC GCAGATGAAACCTGCTAGCCTGTTGGCAAAACCTCTGCATCTG

C180A GAGGGGAAGAGAAGTGCTAGGCGTAGATTGGCTGG CCAGCCAATCTACGCCTAGCACTTCTCTTCCCCTC

C120S CCGGGAGGGAATTATCCCATGTCTCAGGTTGATAATTG CAATTATCAACCTGAGACATGGGATAATTCCCTCCCGG

C125S CCCATGTGTCAGGTTGATAATTCTACTGAAGATTTGTCTCATGC GCATGAGACAAATCTTCAGTAGAATTATCAACCTGACACATGGG

C142S CATAGAAGGCATAAAGTTTCTGAAGTTCATAGTAAAGCTAC GTAGCTTTACTATGAACTTCAGAAACTTTATGCCTTCTATG

C161S GGTAAACAGATGCAGAGGTTTTCTCAACAGTGTAGCAG CCTGCTACACTGTTGAGAAAACCTCTGCATCTGTTTACC

C164S CAGATGCAGAGGTTTTGCCAACAGTCTAGCAGGTTTCATCTGC GCAGATGAAACCTGCTAGACTGTTGGCAAAACCTCTGCATCTG

C180S GAGGGGAAGAGAAGTTCGAGGCGTAGATTGGCTGG CCAGCCAATCTACGCCTCGAACTTCTCTTCCCCTC




