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Abstract

The standard two-phase two-fluid model lacks hyperbolicity which results in oscillations 
in the numerical solutions. For the incompressible two-phase flows an exact correction 
term can be derived which when added to the momentum equations makes the model 
hyperbolic. No such straightforward approach exists for the similar compressible flows. 
In the current work, the effect of the compressibility on the characteristic equation is 
analyzed.  It is shown that the hyperbolicity of the system depends only on the slip 
velocity and not on the phasic velocities, independently. Moreover, a slip Mach number 
( sM ) is defined and a non-dimensional characteristic equation is derived. It is shown that 
for the small values of sM , the effect of the compressibility on the hyperbolicity can be 
ignored. To verify the above analysis, the characteristic equation for the two-phase 
compressible flows is numerically solved and the result compared with the value obtained 
with the analytical solution for incompressible flows. Numerical solution of the two-
phase two-fluid model for the benchmark problem is used to further verify the 
abovementioned analysis. Furthermore, the eigenvalues of the characteristic equation are 
obtained as a power series expansion about the point 0sM . These eigenvalues are used 
to develop a choking criterion for the compressible two-phase flows. 
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1. Introduction 

The standard two-phase flow model employed for reactor safety [1] is not hyperbolic. It 
is quite common to rely on the numerical diffusion to deal with this problem [2]. 
However, this approach may not be satisfactory for higher order schemes. Moreover, 
even with the first order schemes, the numerical diffusion may not be sufficient to 
overcome the non-hyperbolicity for the operating regimes of the new reactor designs. 
Therefore, there is a need for the correction in the model in order to make it hyperbolic.  

In the case of isothermal incompressible flows, growth factor due to non-hyperbolicity 
can be obtained analytically [3]. Moreover, for these flows, inclusion of a correction term 
in the two-fluid model results in a model which is hyperbolic. This term can be derived 
exactly for these flows [4].  For the compressible flows, one of the approaches is to use 
the abovementioned correction term (sometimes in conjunction with a virtual mass term) 
[5]. This model is known to fail for the case of compressible flows [6], therefore it is 
necessary to verify that this approach is satisfactory for the likely operating regimes for 
the existing as well as proposed nuclear reactor designs. In the current work, the model is 
analyzed, numerically as well as analytically, for some of the abovementioned operating 
regimes. In order to study the compressibility effect on the hyperbolicity a non-
dimensional characteristic equation is derived. 

The characteristic equation for the compressible two-phase two-fluid model is a quartic 
equation. Although, an analytical solution for the quartic equation exists it is in the 
radical form and is not useful for the analysis. Therefore, a series solution for the non-
dimensional characteristic equation is obtained which is valid for the low slip velocities. 
The results obtained are compared with the results available in the literature [7]. 
Furthermore, a choking criterion for the compressible flows is obtained based on the 
obtained series solution. 

2. Hyperbolic Equations 

Consider a system of first order, quasilinear, partial differential equations given as, 

CFBFA
xt

         (1) 

This system is considered to be hyperbolic if all the eigenvalues of the characteristic 
equation,

0AB             (2)

are real. The systems with complex eigenvalues are non-hyperbolic and results in the 
growing oscillations in the solutions. To avoid such oscillations system needs to be 
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hyperbolic.

3. Characteristic equation for the two-phase two-fluid flow model 

The governing equations for the two-phase two-fluid model are as follows, 

Continuity Equation: 
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Momentum equation (in the non-conservative form): 
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Energy Equation (in the non-conservative form):
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In the above and subsequent equations k is either g (for the gas phase) or l (for the liquid 
phase). The right hand side in the above equations does not have any derivatives and 
hence do not effect the hyperbolicity of the equations.

Using the product rule of the differentiation, continuity equation can be written as, 
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From the equation of state, one can get, 2
kk cP . The continuity equation then 

becomes, 
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Note that since, 

1lg           (8) 

therefore,
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and a similar  relationship exists for the derivatives in space.  

Comparing the system of the equations consisting of Eqs. (7), (4) and (5), with the matrix 
form of the equations [Eq. (1)], the matrices A, B and vector F for the two-phase two-
fluid model can be written as, 
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and

T
lglgg UUuupF         (12) 

The vector, C, consists of the source terms in the equation is irrelevant for the 
hyperbolicity of the model as discussed before. 

The characteristic equation (see Eq.(2)) for the system of equations can be written as,  
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The expansion of the above determinant yields, 
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Two of the eigenvalues for the system are lu  and gu , which are real. Hence, these 
eigenvalues do not have any effect on the hyperbolicity of the system. Therefore, 
eigenvalues of the following equation will determine the hyperbolicity of the system, 
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It should be noted that the above equation is the characteristic equation for the system 
with matrices A, B and F as follows, 
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From the above matrices and Eqs. (4), (5) and (7), it can be inferred that this system 
represent the system of the equation for the isothermal two-phase flows (although source 
terms will be different for the isothermal case, they are irrelevant for the analysis of the 
hyperbolicity). Hence, it can be concluded that the analysis of the hyperbolicity for the 
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isothermal system of the equations is also valid for the system of equations which include 
the energy equations. 

4. Review of eigenvalues of isothermal incompressible two-fluid model  

A review of the eigenvalues of the incompressible isothermal two-fluid two phase model 
is given in this section. The derivations and results given in this section have been 
obtained previously [3,4]. These results are reproduced here for the sake of completeness. 

The characteristic equation of the incompressible case can be obtained by considering the 
case, 011 22

lg cc , Therefore, the characteristic equation can be written as (from Eq. 
(15)),    
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Expanding on the last row, the above equation yields, 

022
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On further simplification, the above equation yields,      

0)(2)( 222
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The solution of the characteristic equation is as follows: 
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It may be noted from the above equation that the eigenvalues are complex except when 
either lg uu or the system approaches single phase ( 0g or 0l ). One more case 
which should be considered is the case when 0xg . In this case, the continuity 
equation becomes, 
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the corresponding matrix B (for incompressible flow i..e. with 011 22
lg cc ) modifies 

to,

llll

gggg

ll

gg

u
u

00
00

000
000

B .       (24)

The matrix A, however, is not changed. 
In view of the modification in matrix B, the characteristic equation becomes.
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The above equation on expansion of the determinant yields, 

0llgggl uu        (26) 

The roots of the above equation are, 
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which are real.

Since, the eigenvalues are complex except for the specific cases discussed above 
( lg uu , 0g , 0l and 0xg ),  hence in general system of the equations for 
the incompressible two-phase flow is non-hyperbolic. 

4.1. Correction term for the hyperbolicity 

In presence of the correction term ( xp ki ) the momentum equation becomes, 
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The matrix B is modified to the following,  
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There is no change in the matrix A. The characteristic equation then can be given as, 
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The above equation can be expanded to, 
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and the corresponding roots become, 

)(

)()(

)(
)( 2

lggl

lggligllglg

lggl

lglglg puuuu
  (32) 

It is obvious from the above equation, that choosing  
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will make the system of the equations hyperbolic. In fact, system is hyperbolic for any 
value larger than the above mentioned value of the correction term. However, minimum 
value of this term is used in order to have minimum possible change in the original 
model. It is also important to note that the choice of the minimum required value will 
keep the real part of the eigenvalues exactly same as the original model while eliminating 
the imaginary part. 

Note that the correction term goes to zero for all the cases in which the original model 
itself is hyperbolic ( lg uu , 0g , 0l and 0xg ).
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5. Compressibility effect on the characteristic equation 

For the compressible two-phase flows the characteristic equation is a quartic equation and 
hence the eigenvalues can not be obtained analytically in the simple form. Characteristic 
equation (Eq. (15)) is expanded and separated into incompressible and compressible parts 
as follows, 
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c

 (34)  

In the above equation these two parts are given in two separate square brackets. It should 
be noted that the first square bracket of the above characteristic equation is zero for the 
incompressible flow. The two square brackets in the subsequent equations also have the 
compressible and incompressible parts, respectively. 
The above equation can be written as follows, 
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5.1. Galilean Transformation 

Substituting,  
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one gets, 
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where,

2)( lg uuu .         (38) 

The above substitution is equivalent to a Galilean transformation such that after the 
transformation one phase moves with the velocity u and the other phase with 
velocity u .  It needs to be emphasized that the imaginary part of the solution  of Eq. 
(37) will be same as that of the original characteristic equation. Therefore, the analysis of 
the hyperbolicity of the system can be carried out using Eq. (37) instead of using Eq (35). 
Since, Eq. (37) is written only in the terms of the slip velocity u , therefore, the 
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hyperbolicity of the system depends only on the slip velocity and not on the phasic 
velocities gu and lu , independently.

Dividing Eq. (37)  by lggl , one gets, 
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Defining a sound speed, 
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5.2. Eigenvalues for the zero slip velocity 

In case 0u  (i.e. lg uu  ) the above equation becomes, 
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The roots of the above equation can be written as
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 The corresponding solutions for the Eq. (35) are, 
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The roots for the zero slip velocity are real and hence the system is hyperbolic for this 
case.

5.3. Non-dimensional characteristic equation 

For the case, 0u , one can define, uYZ , to rewrite Eq. (40) as follows, 
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Dividing by 2u , the above equation becomes, 
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Rearranging the terms in the above equation, one gets, 
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Defining the slip Mach number, sM , as,
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0121 2222 rZZZM s        (49)

It should be noted that 12r . Also, 12r when either g or l  is zero. 

From the Eq. (49) it is clear that for the small slip velocity i.e. 12
sM , the effect of the 

compressibility on the hyperbolicity of the system can be ignored. It needs to be 
emphasized that 222

lmg ccc . Therefore, in the applications in which 22
gcu  , the 

abovementioned compressibility effect can be ignored irrespective of the void fraction.  
In most applications, including the nuclear reactors  2u  is much smaller than 2

gc . Hence,
the compressibility effect on the hyperbolicity can be ignored even if the compressible 
equations need to be solved for the flow simulations. 

3.1 Numerical Analysis of the Compressibility Effect 

In order to verify the above discussion, the minimum value of the ip required for the 
compressible two-phase two-fluid model to be hyperbolic is numerically calculated. 
These calculations are carried out for the steam water mixture assumed to be at thermal 



12

equilibrium (i.e. the values are taken along the saturation curve). The required ip for the 
corresponding incompressible flow is calculated using Eq. (33).  The Table 1 gives the 
values of  which are the ratios of the ip obtained for the compressible flow to those 
obtained for the incompressible flows. It can be seen from the Table that for the small 
values of sM , the value of  is close to 1 showing the compressibility has negligible 
effect on the hyperbolicity of the system when slip Mach number is small.   

|ug–ul | 
g

10m/s 20m/s 30m/s 40m/s 60m/s 80m/s 100m/s 

0.1 1.000
0.011

1.000
0.021

1.000
0.031

1.001
0.043

1.002
0.063

1.003
0.084

1.004
0.105

0.5 1.000
0.011

1.001
0.021

1.002
0.032

1.004
0.043

1.008
0.063

1.015
0.084

1.023
0.105

0.9 1.000
0.011

1.002
0.021

1.004
0.032

1.007
0.043

1.015
0.063

1.027
0.084

1.042
0.105

(a)

|ug–ul | 
g

10m/s 20m/s 30m/s 40m/s 60m/s 80m/s 100m/s 

0.1 1.000
0.009

0.9998
0.018

0.9996
0.027

0.9993
0.036

0.9985
0.054

0.9973
0.071

0.9959
0.089

0.5 1.000
0.010

1.001
0.020

1.002
0.030

1.003
0.040

1.006
0.061

1.011
0.081

1.017
0.101

0.9 1.000
0.011

1.001
0.020

1.003
0.031

1.006
0.042

1.014
0.063

1.024
0.082

1.039
0.103

(b)

|ug–ul | 
g

10m/s 20m/s 30m/s 40m/s 60m/s 80m/s 100m/s 

0.1 1.000
0.009

1.000
0.019

1.000
0.028

0.9999
0.038

0.9999
0.056

0.9999
0.075

0.9998
0.091

0.5 1.000
0.011

1.001
0.022

1.001
0.033

1.002
0.044

1.005
0.066

1.009
0.089

1.014
0.110

0.9 1.000
0.012

1.002
0.022

1.004
0.034

1.007
0.046

1.016
0.068

1.029
0.091

1.046
0.120

(c)
Table 1. Values of  (upper values) and 2

sM  (lower values) at the pressure of (a) 
0.1 MPa (Atm. Pressure); (b) 7.5 MPa (BWR Pressure); (c) 15 MPa (PWR Pressure) 

It should be noted that for the reactor applications the slip velocity even with a 
conservative estimate is less than 20 m/s. Therefore, from the Table 1 it can be concluded 
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that the compressibility effect on the hyperbolicity can be safely ignored for the reactor 
applications. 

6. Numerical Solutions of the Benchmark problem 

6.1.  Water Faucet Problem 

Fig. 1. Schematic of the water faucet problem 

The water Faucet problem devised by Ransom [2] is used to study the analysis carried out 
in the previous sections. The schematic of the problem is shown in Fig. 1. The problem 
consists of a water jet in a cylindrical channel accelerating under the influence of gravity. 
Initially, the void fraction, the liquid velocity, the gas velocity and the pressure are 
considered to be uniform in the problem domain. The inlet values of void fraction, liquid 
velocity, gas velocity and the outlet pressure are constant for the transient. 

6.2. Numerical Results 

Numerical results are obtained for the inlet (and the initial) velocity and the void fraction 
of 5 m/s and 0.2, respectively. The length of the channel is 12 m. The results are obtained 
for the outlet pressures of 7.5 Mpa and 15 Mpa. The traditional numerical scheme for the 
reactor safety (used in the present study) is first order, both in space and time [1].  

The results of the numerical simulations are given in Fig. 2.  The results obtained with the 
lower values of  show large oscillations except in the case of the simulations carried out 
at the atmospheric pressure. The lack of the oscillations for the results with  = 1 confirm 
that this value of the  is sufficient for the making the model hyperbolic. It is also seen 
that  = 0.9 also give quite good results, especially at the lower pressure. However, it 
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should be noted that if the numerical diffusion is decreased, the value of  = 1 will be 
needed.

(a)

(b) 

Fig. 2. The void fraction distribution for the water faucet problem with the inlet pressure 
of (a) 7.5 MPa (BWR Pressure) ;(b) 15 MPa (PWR Pressure). 

7. Series Solution of the characteristic equation for the small slip velocities

An analytical solution of the characteristic equation, which is a quartic polynomial 
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equation, can be obtained. However, this solution is in the radical form and not very 
useful for any physical interpretation. As discussed earlier, for most of the applications 
value of sM  is small. The roots of the characteristic equation can be found as a power 
series expansion about the point 0sM . These roots are useful for obtaining choke flow 
criterion.

For 0sM , the two roots of the characteristic equation, Eq. (49), are as follows,

12rrZ          (50) 

These two roots are complex, except for 12r . (Note that 12r  as discussed before). 
Since these roots are obtained by neglecting the compressible part of the equation these 
are same as those obtained for the incompressible flow. The corresponding values of the 

 (obtained using Eqs. (36), (38) and (48)) are same as that for the incompressible flow 
given in the Eq. (22).

The numerical solution can be obtained for Eq. (49) for given values of  sM  and r.  From 
the roots obtained (using Mathematica®) for small values of sM , it is observed, that two 
of the roots approach the values given by Eq. (50) as 0sM . The remaining two roots 
are real and approach the following values, 

sM
rZ 1           (51) 

The corresponding values of the  can be obtained as (from Eqs. (36), (38) and (48)), 

0)(
)(

m
lggl

glllgg c
uu

        (52) 

Defining,

)(
)(

0
lggl

glllgg
m

uu
u         (53) 

the eigenvalues can be written as, 

00 mm cu           (54) 

in a form similar to single phase eigenvalues. 

It is interesting to note that, for 0g  the above value reduces to ll cu  and for, 
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0l one can obtain that gg cu . These values are the eigenvalues for the single 
phase flows.  Moreover, for lg uu , the above roots reduce to the roots for the zero slip 
velocity case [Eq.(42)].  It is also important to note that the four eigenvalues obtained by 
Trapp and Ransom (1982) [7] are same as those given in Eqs. (22) and (52) if virtual 
mass and thermal non-equilibrium terms are ignored.  

The difference between the roots obtained numerically and those obtained from Eq. (51) 
is plotted in Fig. 3. From the plots it can be seen that error is )( sMO .However, the 
residual R of the non-dimensional characteristic equation, defined as follows 

121)( 2222 rZZZMZR s       (55) 

has the following value 

222 )1(4311
ss

s

MrrMr
M

rR      (56) 

which does not go to zero as 0sM .

Fig. 3. The plot of error in the eigenvalue given by Eq. (51) as a function of sM . The plot 
shows that error is )( sMO .

In order to find higher order terms in the root of the characteristic equation, one can 
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substitute s
s

Mrf
M

rZ )(1
1 in the non-dimensional characteristic equation to yield, 

)()(8)1(4)(213)(1 2
1

2
1

2
1 sss

s

MOrfrrMrfrMrf
M

rR  (57) 

From the above equation it can be seen that choosing, 

2
1 1

2
3)( rrf          (58) 

will make the residual to be )( sMO . The difference in the root obtained with  

s
s

Mr
M

rZ 21
2
31

        (59) 

and the numerical solution is plotted in the Fig. 4. It can be seen that the error is )( 2
sMO .

It is emphasized here that for the approximate root given in the Eq. (59) the error is 
)( 2

sMO  while the residual is )( sMO . The behavior is similar to the root given by Eq. 
(51) in which case root has the error )( sMO  while the residual is )1(O [Eq. (56)]. 
Therefore, it is seen that the error in the root is one order lower than the residual. 

Fig. 4. The plot of error in the eigenvalue given by Eq. (59) as a function of sM . The plot 
shows that error is )( sMO .
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To obtain the next term in the series one can evaluate residual with

2
2

2 )(1
2
31

ss
s

MrfMr
M

rZ        (60) 

and then evaluate )(2 rf such that )( sMO  term in the residual is eliminated. In fact, the 
roots can be found with arbitrary accuracy (as long as 1sM ), by using the above 
process recursively. The first few terms are obtained for the two real roots are as follows,  

)()12)(1(24

)521(1
8
5)1(41

2
31

5422

322222

ss

sss
s

MOMrrr
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M
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7.1. Analysis of the real roots of the characteristic equation 

It can be seen that the third and fifth term in the series have the same sign as the sM1
while the remaining terms do not change sign. Moreover, fourth and sixth term have r as
a factor. In the light of the above observation, the terms in the Eq. (61) are rearranged as 
follows,  
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In the above equation, terms in Eq. (61) are written as two different series. As 0sM ,
the first series goes to –r while the second series approaches sM1 .  

Using equation (36) and (38), the values of the  are obtained corresponding to the Z
values in the Eq. (62) as follows, 
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The definitions of the 0mu  and 0mc used in the above equation are given in Eq. (53) and 
Eq. (47), respectively. The Eq. (63) can be written as,

mm cu           (64) 
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where,

)()12)(1(24)1(4)( 642222
0 sssmm MOMrrMruruu   (65) 

and
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Note that as 0g , 12r , lm uu 0  and lm cc 0 . Therefore, the real eigenvalues 
approach ll cu . (Here, it is assumed that higher order terms also have a factor of 

12r  in them). Similar result can be obtained for 0l . Clearly, the roots approach 
the single phase eigenvalues in the abovementioned limits. Also, in case lg uu , one gets, 

lgm uuu 0  and 0sM . Therefore, the two eigenvalues are given as, 0mg cu
same as those obtained earlier [Eq. (42)].  

7.2. Complex roots of the characteristic equation 

The two complex conjugate roots in the series form can be found in a similar manner as 
the real roots. The roots of the non-dimensional characteristic equation are as follows, 
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It is interesting to note that, the series given in the first bracket in the equation is same as 
the series in the first bracket in the Eq. (62). The corresponding value of the  is as 
follows, 
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 (68) 

7.3. Choke Flow Criterion for the two phase flows 

A choked condition exists when mass flow rate becomes independent of the downstream 
conditions. In other words, no information can propagate in the upstream direction under 
this condition. The real part of the eigenvalue represents velocity of the signal 
propagation and the imaginary part is the growth (or decay) rate of that signal. Therefore, 
if the real part of all the eigenvalues is positive then no signal propagates in the upstream 
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direction (choosing downstream direction to be the positive direction).  From the Eq. 
(64), such condition exists when mm cu .  Hence, this equation defines the choke flow 
criterion.

8. Conclusions

The effect of compressibility on the hyperbolicity of the two-phase two-fluid model is 
analyzed numerically as well as analytically. A non-dimensional characteristic equation 
is obtained for this model. The analysis of this equation shows that the compressibility 
effect on the hyperbolicity is negligible as long as the slip Mach number is small. This 
Mach number is shown to be small for the two-phase flows in the nuclear reactors and 
hence the compressibility effect on the hyperbolicity can be neglected for these reactors. 
Therefore, it can be safely assumed that the Stuhmiller model, which was developed to 
hyperbolize the incompressible two-phase two-fluid model, is sufficient for the low slip 
Mach number flow in the nuclear reactors. The numerical analysis of the water faucet 
problem shows that it is indeed the case.  

Furthermore, the eigenvalues of the characteristics equation of the compressible two-
phase two-fluid model have been obtained as power expansion series. The choking 
condition exists when all the eigenvalues are positive. The abovementioned series 
solution is used to obtain a choking criterion for the two-phase flow. 
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