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Abstract 

The objective of t h i s  program was to investigate new eazyme-based iechnologes for upgradmg of 
heavy oils. Enzymes were selected for screening h m  those capable of conversion of potyaromatic 
hydrocarbons (PAHs) reported in the literature. Oxidalive reactions of PAHs using hydrogen 
peroxide as an oxidant with conversion to partially oxidized products were used. The enzymes 
(lignin peroxidase, cytochrome c) were tested in various organic solvents and found to loose 
activity in pure organic solvents. A thermodynamic analysis revealed lack of effective interaction 
between h e  substmte and enzyme as the cause for low activity. The protein cytochrome c was 
modified to work in organic media by chemicat hydrophobic group attachment. Two different 
modifications were made: attachment of polyethylene glycol (PEG) and alkyl groups. Alkyl groups, 
being small could be attached at interior locations w i t h  he core of he enzyme and possibly near 
the aciive siie. lncrease in the threshold solvenl concentration where maximum enzyme activity 
occurred indicated potential of h s  strategy for effective enzyme-substme interaction. Further 
improvements in enzyme activity called for other diverse methods due to the unavailability of 
sufficient chemical modification sites. Genetic techniques were therefore explored for further 
improvements. These experiments focused on cloning of a gene for the h g a l  enzyme ligmn 
peroxidase (lip) into yeast Pichia pastoris, whch would allow easy manipdation of the gene. 
However, differences in the fungal and yeast cellular m a c h e r y  impeded sigruficant expression of 
the fungal enzyme. Several smteges were explored to allow higher-level expression of the enzyme, 
whch was required for enzyme improvement. The strategies used in ths investigation are described 
in the report. 

Industrial in-kind support was available throughout the projecl period. Review of the research 
results was carried out on a regular basis (bimonthly reporis and annual meetings) followed by 
suggestions for improvement in ongoing work and direction for future work. A significant 
porlion of the industrial support was in the form of technical consultation and expert advice via 
meetings and phone conversations. 

1. Statement of Objectives 

The following goals were pursued in this project: 
1 .  Assess the potential of enzymatic upgrading of heavy oils 
2. Identify ways to activate and stabilize enzymes in organic media 
3. Study improvement of enzyme performance via genetic engineering 

2. Benefits to the Funding DOE Office's Mission 

Due to the increasing APT gravity of crudes being produced in the United States and elsewhere, 
there i s  a need to develop methods to use such crudes in the petroleum industry. This wil l  help 
reduce the reliance of US on foreign oil for energy needs. The goal of this project was to 
investigate the applicability and potential of enzyme-based processes for upgrading of heavy 
crudes. Improving yetd and efficiency of producing transportation fuels from heavy crudes is 
part of DOE Fossil Energy's mission. Developing biotechnology-based solutions and finding the 
niche areas where biotechnology can be beneficially applied in the peholeum industry is a long 
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term goal of this projecl, 

3. Technical Discussion of Work 

The project involved demonstration of proof of principle of enzyme-based processes for crude oil 
applications. Enzymes capable of oxidizing polyaromatic hydrocarbon (PAHs) molecules present 
in petroleum were selecled for developmen1 as biocatalysts. The enzymes were modified with 
hydrophobic groups and polymers to make them aclive and stable in organic media. lnitial tests 
were conducted with pure solvents to facilitate identification of produch and trachng of reaction 
progress. A thermodynamic analysis of the enzymatic process was conducted to understand the 
limiting factors of biotransformation in organic media. The modified enzymes were tested in 
various aqueous mixtures of organic solvents to demonshate improvement in activity. To obtain 
fiulher improvemenb, more versatile and effective techniques were required. The e v e  lignin 
peroxidase was selected as a candidate for improvements via genetic engineering. This enzyme js 
originally expressed in a fungal host, and therefore, il was necessary to clone it  into another host 
to allow genetic manipulations. Pichio pustoris was selected as the host to express the enzyme, 
due to its capability to express heterologous proteins. However, very low levels of expression 
were obiained and therefore, methods such as directed evolution had to be explored. The details 
of these experiments are described i n  the following sections. 

4. Introduction 

Heavy crudes are commonly recalcitrant to conventional methods of refining due to the chemical 
stability of the asphaltentic groups as well as the viscosity of the oil. This recalcitrance is 
impaned largely by polyaromatic linkages within the asphaltentic moieties. The exact shucture of 
the asphaltenic fraction of heavy crudes and how thls structure contnbutes to increased viscosity 
has no1 been fully elucidated due to ils complex character. It has been speculated thal the highly 
aromatic asphaltenic p u p s  may “layer” upon lhemsehes to increase their stability and the 
macroscopic viscosity [ I ) .  Strausz [2] identified components of asphaltene as fluorenes, alkanes, 
and alkyl substituted benzenes, naphthalenes, biphenyls, anthracenes and  phenanthenes. 
Organic sulfur within these asphaltenic groups occurs as cyclic sulfides and alkyl and 
pol yaroma tically subslituted thiophenes. Biocalalysls such as Rhodococcus IGTS8 are capable of 
removing sulfur from dibenzothiophene and alkyl subslituted dibenzothiophenes [3], [4] but are 
unable to affect desulfunzalion activity upon the majority of higher molecular weight sulfur 
compounds present jn the crude oil [ 5 ] .  This recalcitrance to biological action is perhaps 
attributable to both the steric proteclion of the organic sulhr via aromatic substitution of 
lhiophenic groups and the high viscosity due Lo asphaltenic stabjlization. 

Biological processing of petroleum feedstocks offers an attractive alternative LO hemnochemical 
beatment due to the comparatively mild conditions, high substrate and product specificity, and 
resistivity to catalyst fouling agents afforded by biologcal systems. Indeed, enzymes have been 
demonstrated to be capable of selectively oxidizing a number of the polyaromatic structures 
comprising asphaltene. Some of these reactions are actually the initial steps in the natural 
biodegradation of aromatic compounds. Such reaction pathways lead to break down of the 
molecules one carbon at a lime. Use of enzymes from the initial steps in the pathway can potentially 
lead to opening of the ring s h c t u r e  and possibly molecular weight reduction of the large 
polyaromatic structures. In addition, the partial oxidation of these structures may destabilize the 
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stacking of asphaltenic layers, serving to demease the oil’s vjscosity. Parhal oxidation may also 
render S, N, Ni, and V groups more susceptible to further biological or conventional treatment. 

The pdyaromatic structures and PAHs are substrates for the enzyme ligninase from the white-rot 
fungus Pkonerochaele chrysosporium [6]. The reaction products contain hydroxyl and keto 
groups which may serve to de-stabilize asphaltene stacking. While such reactions have been 
demonstrated using the native lignin peroxidase in water miscible solvents such as methanol, the 
stability of the native enzyme in these solvents is limited. Crude oil presents a much harsher 
environment for the enzyme causing very timited enzymatic activity and rendering an enzymatic 
process for crude oil upgrading unrealistic. Previous research in our group has demonstrated that 
chemical modification of enzymes can render them both soluble and active in organic solvents 
[ 7 ] .  By attaching polyethylene glycol groups to the enzyme hydrogenase, it has been 
demonstrated that the enzyme retained activity in pure toluene and was more than 10-fold active 
than the same enzyme in water [8]. Further modification of ligninase has demonstrated an 1 t -  
fold augmentation in the dechlorination of pentachlorophenol in acetonitnle / water [7]. 

The objective of this work was to evaluate the ability of enzymes, which have been modified to 
make them catalytically active and chemically stable in crude oil to upgrade both the quality of 
heavy crudes and decrease their recalcitrance to further processing. Peroxidases, which have been 
shown to convert polyaromatics to their respective quinones were investigated for bioconversion 
of polyaromatic structures in organic media. Two enzymes from the peroxidase class of enzymes 
were used, ligninase and cytochrome c. The first year of the work was focused on chemical 
modification of the enzymes to demonstrate improved activity in organic media. In the second 
part of the project genetic modification of the enzyme ligninase was undertaken. Due to the 
difficulty of working with the original fungal host, P. chqaosporizrm, the enzyme was cloned 
into the yeast Pichia pustoris. The gene was then modified via directed evolution to improve 
expression. 

5. Materials and Methods 

5.1 Enzymatic assay for peroxidase activity 

5.1.1 Cytochrome c with pinacyanol chloride: The activity of cytochrome c was determined 
using a spectropholometric assay. Change i n  absorbance of the substrate, pinacyanol chloride 
(0.0013 mM) at 603 nm in a 1 m L  reaction mixture containing potassium phosphate buffer was 
measured. The reaclion was started by adding either of 1.62 pM cytochrome c or 1.0 mM 
hydrogen peroxide. Extinction coefficient for pinacyanol chloride used was 82.35 mM-’ cm-’. 

5.1.2 Cytochrome c with pyrene: The reaction was conducted in a 1 mL spectrophotometer 
cuvette containing pyrene (0.01 mM), cytochrome c (1.62 IM), potassium phosphate buffer (50 
mM, pH 6.1) and hydrogen peroxide ( 1  mM). The absorbance was measured at 335 nm using an 
extinction coefficient of 32.6 mM-’ cm-I. 

5.1.3 Ligninase with veratryl alcohol: This is the standard assay used for lignjnase. Reaction 
was conducted in a 1 mL volume of succinate buffer (40 mM, pH 4.0) with 2 mM veratryl 
alcohol, 0.26 Ligninase and 0.4 mM hydrogen peroxide. Absorbance was measured at 3 10 
nm using an exlinction coefficjenl of 9.3 mM-’ cm”. 
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5.1.4 Ligninase with pyrene: Reaction was conducted in succinate buffer (40 mM, pH 4.0) with 
0.01 mM pyrene, 0.26 pM Ligninase and 0.4 mh4 hydrogen peroxide. The change in absorbance 
of pyrene was measured at 335 nm. 

5.1.5 Horseradish peroxidase WRP) witb guaiacol: Reaction was conducted in 50 mM 
phosphate buffer, pH 6.1, with 0.0.5 mM guaiacol, 30 nM HRP, and 0.5 m M  hydrogen peroxide. 
The increase in absorbance at 470 nm (formation of product) was measured. 

5.1.6 Enzyme assay in organic media: Enzyme assays in organic solvents were conducted using 
the same protocol given above, except for the buffer. h expcrimenb w i h  aqueous-miscible 
organic solvents, the solvent concentration ranged from 5 -100% of the solvent and [he rest 
being the assay buffer. In experiments with immiscible solvents, two types of experiments were 
conducted. The first experiment was done using a solvent saturated with the buffer, and the 
second experimenl was done using 5-1 0 % buffer as a second phase. The PAHs used in the 
expenmenis were anthracene, dibenzorhiophene, pyrene and methyl anthracene. 

5.2 Chemical modification of enzymes: 

The chemical modification was done using primarily three different agents: PEG, alkyl aldehyde 
and benzaldehyde. The protocols are given below. 

5.2.1 PEG modification: The activated from of polyethylene glycol was purchased from 
Shearwater polymers, Huntsville, AL. Two different activated PEGS were used: methoxy PEG 
succinimidyl succinate (MPSS) and PEG nitrophenyl carbonate (n-PEG). The protein, 
cytochrome c was mixed with MPSS in a ratio of 1 :SO or 1500 (molar ratio, 0.1 m g  of protein + 
19 mg of MPSS) in a phosphate buffer at pH 8.0 and stirred for 48 hours at doc. The modified 
protein was separakd from the unmodified protein using size exclusion column chromatography 
(Sephadex G-75). Deionized water was used as the mobile phase. The fraction containing the 
modified enzyme was lyophilized as stored at -2OoC. The modification with n-PEG was done as 
follows: The protein (6.8 mg cytochrome c) was mixed with 66 mg of n-PEG in a pH 8.6 
phosphate buffer and stirred for 2 hours at room temperature. The product WE, washed with pH 
6.1 phosphate buffer in an ultrafiltration cell with 10k Da membrane to remove the byproduck I 
salts and then lyophilized and stored at -2OoC. 

5.2.2 Alkyl modification: The attachment of alkyl group was carried out using a reductive 
alkylation procedure [ 9 ] .  Two agents were used for modification: acetaldehyde and 
propionaldehyde. The modification reaction consisted the following: 2.5 m g  of enzyme, 1 m L  of 
40 mg/ml alkyl aldehyde solution in ethanol, 30 mg sodium cyanoborohydride and 10 mL of 
phosphate buffer pH 6.1. The reaction mixture was stirred for 16 hours, followed by 
ul~~afiltraiion through a 10k Da membrane lo separate the reagents. The purified enzyme was 
lyophilized and stored at -2OoC. 

5.2.3 Benzyl modification: This modification procedure was very similar to the alkyl 
modification. instead o f  h e  alkyl aldehyde, benzaldehyde was used. The modified protein was 
found lo precipitate in aqueous solution and was therefore was easily separaled by cenkifugation. 
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5.3 Genetic modifications o f  lignin peroxidase: 

The gene for !he enzyme Iigmn peroxidase from Phoenerocheote chrysosporium was obtained 
from Dr. Nancy Da'Silva, University of California, b i n e .  The lignin peroxidase gene (lip) was 
originally isolated by Dr. Tien, Penn State University, who was also notified regarding the 
exchange. The gene was provided as a plasmid pBSH2 i n  E. coli (Figure 1 and 2). The enzyme i s  
not expressed in an active form in E. coli, therefore, it was necessary to express i l  in a host that 
would allow heterotogous expression. The host chosen for cloning h e  lip gene was Pichia 
posloris. The advantages of t h ~ s  host include 10-100 fold higher expression of heterologous 
proteins, capability to do post-translational rnodificalions such as glycosylation and successfd 
expression of a variety of heterologous proteins with appropriate protein folding (based on 
literature reporis, [lo]). 

"r, 
A,,;' 

\.-, 1. ': 

Figure 1. Plasmid DNA carrying the lip gene (obtained from Dr. Da'Silva) 
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G tcgc t tgccccgacggcg tgcACACTGCl7CCAacgcggcg tgctg tgca tggttcccgg tcctcg a 
tgat 
AtccagcagaacctcttccacggtggccagtgcggtgcCgaggcccacgaggcccttcgt~tggtcttcca 
cgact 
Ccatcgctatct cgcccaagcttcagtcgcagggcaagTttggcggcggcggcgcggacggctcgatcat 
cacctt 
CtcctcgatcgagaccacgtaccacccgaacatcggcCtcgacgaggt~g~~gccatccagaagc~gttca 
tcgc 
GaagcacggcgtcacgcccggcgacttcatcgcgttcGccggtgccgtcggcg~gag~aactgcccggg 
cgcg 
Ccgcaga t g  cag ttcttcctcggccgccccgaggcg aCgcaggc tgcccccgacgg t c t  cgtgcccgagc 
cc t t  
Ccacacca tcgatcaggttctcgctcgcatgcttgatgctGgcggcttcgacgagatcgagactgtctggct 
gctc tc 
TgcccactccatcgcggctgcgaacgacgtcgacncgAacatctccggcctgccgttcgactccaaccct 
w c c a  
GttcgactcccagttcttngtcgagacgcaGCTCCGCGGTACCGCA-TTCCCtggcaagaccggcat 
Ccagggcaccg tcatgtccccgctcaagggcgagatgcg tctgcagacggaccacttgttcgcgcgcgac 
tcgc 
Gcacggcg tgcgagtggcagtccttcgtcaacaaccagacgaagctgcaggaggacttc~agttcatcttc 
acg 
Gcgctctcgaccctcggccacgacatgaacgccatgatcgactgctccgaggtcatccccgcgcccaagc 
ccg 
Tcaacttcggcccgtcgttcttccccgccggcaagacgcacgccgacatcgagcaggcctgcg~gtccac 
gccg 
ttcccgacgctcatcaccgcccctggtccctctgcgtccgtcgctcgcatcccgccgccgccgtcccccaa 
ctaa 

Figure 2. The Eerie sequence of lip cDNA from Dr. Mine, Tien. 

5.3.1 Cloning of lip into E. coli DH5a: Standard molecular biology techniques [ 111 were used 
to isolate plasmid DNA from E. coli . Initial preparations were made with the boiling method, 
followed by restriction with enzyme EcoRI to isolate the l ip gene. The vectors pPICZ and 
pPtCZo! series obtained from hvitrogen, Carlsbad, CA were restricted with EcoRI and 
dephosphorylated with Calf intestinal phosphatase and ligated to the l ip gene obtained from 
pBSH2.The ligation mixture contained 2 pL lip gene, I td- vector, 1 pL IOX ligation buffer and 
1 pt ligase enzyme + 5 p l  sterile water. The mixture was incubated at 37°C for one hour and 
hansfomed into E. cold DHSa. 

5.3.2 Cloning of lip via PCR: Polymerase chain reaction (PCR) was used to generate the lip 
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gene from pBSH2. The primers used were as follows: I Table 1 .  Primers used for generating lip gene product. 1 
Primer name 
H2DLXI ALPHA 
H2DR 

Primer sequence 
5'-GAATTCgtcgc ttgccccgacggcgtg-3' 
5'-GAATTCTAa t g . ~ ~ g t t c a a ~ c a ~ c t c c t ~ - 3 '  

H2REv ALPHAB 
H2REV AC 

The protocol for PCR was as follows: Reaction volume: 30 mL containing 1 mL IO0 m M  dNTP, 
3 mL 1OX Signa PCR buffer, 50 pmol of each primer, 5 fmol DNA template pBSH2, 1 mL 
Sigma or Thermopol Taq polymerase and 19.5 rnL sterile water. The PCR program was as 
follows: 5 min 95 "C followed by 35 cycles of 1 min 95 'C, 1 min 5652,  1 min 30 sec 72 "C 
followed by a 5-min extension at 72 "C. The gene product was ligated into pCR2.1-TOP0 or 
pBAJ3-TOP0 from hvitrogen vectors using the A overhangs. The ligated plasmids were then 
transformed into E.  coli DH5ol or Top10 strain by chemical transfornation. 

S'-tctagattggggg acggcggc~gg-3' 
5'-ctcga@tattagttggpgg acggcgg-3' 

5.3.3 DNA analysis: Plasmid DNA was isolated from E. cofi strains by either boiling method or 
by Promega's wizard prep method. The isolated DNA was then restncted using restriction 
enzymes and analyzed by gel electrophoresis (0.7% agarose gel) to identify presence of lip gene 
or to determine the orientation of the cloned gene. 

5.3.4 Cloning of lip in Pichia pastoris: After successhl cloning of LIP in E. coli (as determined 
by analysis gene insert isolated from E. coli plasmid by gel electrophoresis), the gene was 
transferred From the hvitrogen plasmid into a vector pPICZ, which could be transformed into the 
yeast Picha pastoris. This plasmid carries the inducible AOXl promoter which is used for 
protein expression. The plasmid was linearized using Sac1 prior to transformation to allow its 
recombination into the Pichia genome. 

5.3.5 Error prone PCR experiments for Lip mutation 
The goal of this subtask was to modify the lip gene and create molecular diversity starting from 
one gene. Error-prone PCR was used to create point mutalions in the gene. The procedure was a 
modification of that provided by Zhao etal, 1997 [ 121, [ 131. The protocol was as follows: 

1. 
2. 

3. 

4. 

5 .  
4. 

7 .  

8. 

Prepare purified plasmid DNA 
Prepare a 5X mutagenic buffer containing 17.5 m M  MgC12, 100 
mM Tris (pH 9.5,23"C) 
Prepare a 25X deoxynucleoside triphosphate (dNTP) mix 
containing 5 mM dGTP, 5 m M  dATP, (dAGTP) 
Prepare a second 5X deoxynucleoside triphosphate (dNTP) mix 
containing 5 mM dCTP, 5 mM dTTP, (dCTTP) 
Prepare a 5 mM solution ofMnC12 
Prepare a 1OX solution of DNA template, i.e., - 6 ng/pl soution of 
the plasmid DNA. 
Prepare a 6X primer mix containing IOpmoYpJ of reverse and 
forward primers. 
Combine 6 rnl mutagenic buffer, 6 ml dCTTP, 1.2 ml dAGTP, 3.0 
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rnl DNA template, 5 ml primer mix, and make it  up to 30 ml with 
sterile distilled water. Mix the contents by gentle tapping. 

9. Add 0.9 UL MnC12, and mix well by tapping. 
I O .  Add 0.3 ml Taq polymerase and mix gently. 
t 1. Add an drop of oil to cover liquid surface and start PCR with the 

following parametex : 5 min 94 "C followed by 35 cycles of 1 
min 94 T, 1 rnin 50°C, J min 30 sec 72 "C followed by a 30-min 
extension at 72 "C 

The mutation frequency defined as average mutations per gene is a function of Mn concentration. 
Lip gene has 3.3k base pairs. A 0.5% frequency means 6-7 mutations. For the above PCR, the 
mutation frequency chosen was O . l 5 % ,  resulting in about 2 mutations per gene. 

6.0 Results and Discussion 

6.1 Activity of enzymes in organic solvents 

Partial oxidation of pyrene to pyrenediol by cytochrome c was studied in non-polar and aqueous- 
miscible organic solvents. Conversion of polyammatic hydrocarbons such as pyrene by 
cytochrome c was reported to occur in 10% acetonitrile-water mixtures previously [ 141. This was 
confirmed in our laboratory (Figure 3). Experiments were conducted to investigate the 
conversion of PAHs at higher solvent concentmttions and in pure organic solvents using 
lyophilized proteins. Pyrene conversion did not occur in pure toluene, acetonitrile and kerosene. 
Addition of up to 1 %  water did not improve conversion. Further experiments were conducted at 
various acetonitrile fractions in a solvent-buffer mixture. The results are shown in Figure 4. Such 
behavior h a s  been observed by Vazquez-Duhalt [ 141 for similar reactions using pinacyanol 
chloride as the substrate and cytochrome c as the catalyst. Deactivation of cytochrome c at 50% 
acetonitrile is one of the possibilities which can explain the behavior, however, our results 
(Figure 4) as well as that reported elsewhere [ 141 show that cytochrome c is catalyically active in 
at least up to 80% acetonitrile. This suggests that the reason for lack of pyrene conversion at 50% 
is not protein deactivation. 

rtr.... P)ml&l 

I Figure 3.  Biochemical reaction of partial oxidation of pyrene by cytochrome c. 
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a 

0 20 40 60 80 100 

O/o Acetonitrile 

b 

Figure 4. (a) Conversion of pyrene in acetonitrilebuffer mixtures at room temperature. 
Error bars show the standard deviation for a set of tripIicate runs. (b) Conversion of 
pinacyanol chloride under same conditions. Conversion in mixtures of up to 70% 
acetonitrile indicates that the protein is not inactivated by the solvent in  at least up to 70% 
acetonitrile. 

6.2 Thermodynamic analysis of enzymatic reactions 

In order to investigate the reasons for lack of pyrene conversion above 50% acetonitrile, a 
detailed themlodynamic analysis of the enzymatic reaction was conducted. Consider the reaclion 
given below: 

E + S H ES t) ES' + Products 1 

The rate canstant for the reaction is given as kcat/Km [ 151. In terms of the transition state theory, 
the equilibrium constant between E + S and the transition state ESf is proportional to the 
activation energy A&' of kcau'Km. 

The observed fiee energy for an enzymatic reaction can be determined experimentally from 
kcat/Km via the Arrhenius relationship, where K i s  the transmission coefficient, k is  the 
B o ~ ~ z ~ ~ M ' s  constant, T is the absolute temperature, h is the Planck's constant and R js the gas 
constant. 

. . .2  

Substituling for AGDbSf, we have, 
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. . .3 

4.0 '- 

1 . 5  

Plotting In{kca&) vs. inverse temperature (Figure 5 )  gives a straight line with a slope and y- 
intercept as follows: 

Whf Slope = - 
R 

t 
and y-intercept = In K + In 

R 

- 3.0 
E 

2 . 5  - - 
: 2.0 
t: 
2 I . 5  

1.0 ; 
0 . 5  I 

- _  - - 

Arrehenius plots in MeCN-H20  m k u r e s  

- . 

y = - 1 9 4 4 . 5 ~  + 10.43 

y = - 4 6 8 2 x  + 18.67 

M e C N  

M cCN 

M eCN 
0.0 I 
0.003) 0.0032 0 0 0 3 3  0.0034 0.0035 0 . 0 0 3 6  0.0037 

In- 

. . .4  

... 5 

Figure 5. Arrehenius plots for pyrene conversion in various acetonitrile-water 
mixtures. 

The effect of  the change in the transmission coefficient due to the solvent and the temperature on 
the observed change in entropy is lumped into the apparent entropy change parameter 
( Muppum I ) .  ne frequency [v = ( k T / h ) ]  at room temperature (22OC) is 6.14 x 10l2 sec-I. The 
change in free energy for the enzymatic conversion of  pyrene at various solvent concentrations 
was calculated using equation 6 and is given in Table 2. 

Table 2. The observed free energy chanRe for pyrene conversion. I 1 
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I 5% acetonitrile' I 15-01 
10% acetonitrile 
15% acetonitrile 
20% acetonitrile 

15.62 
16.10 
16.59 

* The solvent mixture contained pH 6.1 potassium phosphate buffer in addition to acetonitrile. 

The results show that the observed free energy of activation increases as the solvent 
concentration increases. This can be explained by the following analysis. Let us consider the 
various processes that have to occur for the enzymatic reaction to take place. As shown in Figure 
6, the first step is the binding of the substrate to the enzyme active site. A favorable bjnding 
interaction between the two entities, substrate and e n m e  is  necessary for the first step to occur. 
The observed hee energy change for the reaction AGobst i s  a sum of the binding energy and the 
intrinsic activation energy for transition state formation (Equation 7). A negative value of the 
binding energy indicates good substrate-enzyme binding. Such a favorable binding energy will 
result in a decrease in the observed activation energy AG,b, t . 

= A G ~  + A G ~ ~  

A =  s o l v e a  

A A~ 

A A A  

A s  A r 
E n z y m  e - s u b s t r a t ,  

c o r n  p l e x  

I 
4QA 

7 

T r n r t ~ . ~ . . ~ , .  s t a t e  
in t e r m  e d i a t e  [E S $ 1  

Figure 6. Pictorial representation of substrate partitioning between solvent and 
enzyme active site followed by the transition state formation and finally, conversion 
to products. 

Figure 7 hows the effect of changmg binding energy on the observed activation energy. The 
binding energy i s  a function of the solvent or solvent mixture used. In case of pyrene conversion 
in organic solvents or aqueous-solvent mixtures, increasing the concentration of acetonitrile in 
the solvent mixture will resull in increased solubility of pyrene. This creates an unfavorable 
situation for the partitioning of pyrene into the enzyme active site from the solvent phase. It is 
difficult to calculate the binding energy, especially since the structure of pyrene-cytochrome c 
complex has not been determined and i s  out of the scope of this work. The bansfec free energy 
(A&) for pyrene transfer from one solvent to another, however, can be calculated. Table 3 shows 
the transfer free energies for pyrene using pure acetonitrile as a reference. The AGs represents a 
change in free energy for lransfer of pyrene From a given solvent to the reference solvent 
(Equation 3). 
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Figure 7. Free energy plot for enzymatic conversion of pyrene. AGg = binding free 
energy, AGobrr = Measured free energy change, A G  = Free energy change for 
transition state formation, The subscripts 1 to 4 represent different 
solven tdrnixtures. 

Transfer of pyrene from say, 5 % pyrene to pure acetonitnle has a AGs of -5.32 indicating a 
favorable partitioning into the pure acetonitrile phase. Use of AGs in place of AGe gives a 
qualitative comparison of the effect of solvent on observed free energy. In order to determine the 
relationship between the two terms, A&, AG-? and the observed free energy change, Linear free 
energy relationships (LFER) were plotted wiih solvent concentration as the variable (Figure 8) 
The plot shows that an increase in the observed activation energy is proportional to the change in 
AGs t h e  transfer free energy, which is equivalent to the binding free energy. This suggesls that h e  
change in reaction rates (and therefore the observed activation energy) is due to the effect on the 
ground state of the reactants. A solvent mixture with higher pyrene solubility essentially keeps 
the substrate fiom partitioning into the enzyme active site. 
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Figure 8. Observed activation energy for pyrene conversion (squares) and transfer 
free energy (diamonds) for solvation of pyrene from a given solvent / mixture to 
pure acetonitrile. 

Further, an increasing trend in the observed activation energy with the acetonitrile concentration 
suggests that at some threshold acetonilrile concentration, the reaction wjll stop occurring due to 
a very high activation energy requirement. This has been observed experimentally at 50% 
acetonitrile. The intrinsic activation energy for the reaction was also determined by using AGs in 
place of A G ~  (equation 7) .  A relatively conslant A G ~ ~  over the solvent concentrations studied 
suggests that the transition state is relatively unaffected by the change in acetonitrile 
concentraLion. T h e  intrinsic differential activation energy (MG*) was also calculated based on 
the approach of &m et.al., [16] using 20% acetonitrile as the standard solvent, and a similar 
result was obtained. Since the solvent mixtures used had different dielectric constants (Table 3), 
the lack of change in the intnnsic activation energy indicates that the solvent polarity has little 
effect on the transition state intermediate compared to its effect on the ground state of the 
reactants. Thus, for enzymatic bansformation of pyrene in organic media, the substrate binding to 
[he catalytic aclive site is the controlIing factor in determining the feasibility of the reaction. 

6 3  Chemical modification of peroxidases 

Cytochrome c was modified by various methods to improve its activity in organic media. The 
goal was to either make the protein soluble in organic phase by attachment of hydrophobic 
polymers or to make i t s  active site hydrophobic by attachment of small groups near the active 
site. 
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5% a c e t o n i ~ l e  

Sdubiljty of AGs AGT' M G *  E 
pyrene (JW 
0.001 I -5.32 20.33 3.74 76.48 

1 1  0.00 I 
6.3.1 PEG modification: 

10% acetonitrile 
15% acetonitrile 
20% acetoniwile 
30% acetonibile 

Modification of cytochrome c (bovine heart) was done using a methoxy polyethylene glycol 
succinimidyl succinate (MPSS) at a 50 molar excess of MPSS. The reaction vessel contained 4 g 
cytochrome c + 94 g M P S S  f 4 mM pH 6.1 phosphate buffer 60 mM. The contents were mixed 
for 48 hours at doc. The modified cytochrome c was then purified using size-exclusion 
chromatography. The sample was passed through a 1 . 5 ~ 4 5  cm Sephadex G75 column at a flow 
rate of 0.5 muminute. About SO fractions were collected, two mL each and the absorbance at 
280 and 409 nm was measured. About 90% of the cytochrome c was modified. The peak with 
modified cytochrome c (MPSS-cyt c) was pooled and lyophilized over a 24 hour period. The 
solubility of the MPSS-cyt c was determined by dissolving 2 mg of lyophilized powder in 1 mL 
of toluene. The mixture was shaken for one minute and held for one hour, after which a spectrum 
of the solution was measured. A spectrum similar to an aqueous solution of cytochrome c was 
observed giving a peak corresponding to the heme at 409 nm quantified at 2 mg/ml. This 
indicates that the MPSS-cyt c was soluble in toluene up to 2 mg/ml. 

0.00 I 2  -5.27 20.88 4.29 74.47 
0.0025 -4.83 20.93 4.34 72.45 
0.0064 -4.29 20.83 4.29 70.43 
0.0532 -3.04 

The modified cy l  c was assayed using the pinacyanol chloride and the pyrene assay. The results 
of the pinacyanol chloride assay are shown in Figure 9. The PEG bound to cytochrome c 
apparently keeps h e  enzyme from being inactivated by the solvent beyond 50% acetonitn'le and 
prevents reduction of activity at higher solvent concentrations. The results for pyrene conversion 
are shown in Figure 1 I below. 

6.3.2 Alkyl modification: 

The modification of cytochrome c with polymers like PEG results in their attachment at the 
surface of the protein. The results from the thermodynamic analysis suggested that making the 
active site hydrophobic or more favorable to binding of the substrate will improve activity in 
organic media. The attachment of alkyl groups t h e r e h e  was initiated. The procedure used alkyl 
aldehydes which were reductively linked to the lysine g~oups within the protein giving, for 
example a CH&Hpligand using acetaldehyde as the modifying agent. Additionally, due to the 
relatively small size of these groups, they could potentially diffuse into the interior of the protein 
and possibly attach at [he lysine residues near the heme active site. As shown in Figure 10, the 
cytochrome c has 19 lysine residues, seven of which are in close proximity to the heme. 
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Figure 9. Bioconversion of pinacyanol chloride by native (unmopdified) and PEG-cyt c at 
various concentrations o f  acetonitrile. 

a 

Figure 10. BaU and stick structure of cytochrome c with lysine residues and the heme 
shown as colored spheres. 

Results for the pyrene conversion by alkyl modified cytochrome c are shown in Figure 1 I .  The 
results indicate an increased activity for the modified protein vs. the native protein at all 
acetonitrile concentrations. Further, the concentration of acetonitnle at which the catalyst shows 
maximum aciivjty has also increased as a result of the alkyl modification. Assuming that the 
lysine residues near the active site are modified, this suggests that by increasing the 
hydrophobicity of the protein, it is possible to make it active at higher solvent concentrations 
20% acetonitrile vs. 10% acetonitrile for the nativelPEG modified protein. This is a very 
important inference from these experiments. In addition to PEG and alkyl modifications, a 
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combined modification was also carried out with PEG and alkyl agents. This was done by 
performing the PEG modification first followed by the alkyl modification. This enables the PEG 
attachmen1 at the surface and alkyl modification at the lysine residues within the protein. This 
modification imparts the protein characteristics of both the modifications, although the effect is 
not cumulative in terms of overall activity. However, this protein has  higher activity at greater 
than 50% acetonitrile as well as the maxima in activity is shown at the higher solvent 
concentration (20%). 

Pyrene convesion 

03s I ' 1 t 

6 0.3 a -  s $ 025 
f :  05 
," 2 1.15 : 0.1 
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20 80 

Figure 11. Comparison of pyrene conversion by PEG-cyt c and Ethyl cyt c. 

In addirion to the ethyl modification, other alkyl groups were also aflached to the cytochrome c 
molecule. Formaldehyde and propionaldehyde were used to attach methyl and propyl groups 
respectively. The results (Figure 12) show that there is an optimum chain length for activity 
improvement. In case of pinacyanol chloride which is a longer molecule than pyrene, the ethyl 
modification I s  optimum, while for the pyrene, the ethyl and methyl modifications improve the 
activity to the same extent. 

0 20 80 

(b) 
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Figure 12. Effect of alkyl chain length on activity of  modified cytochrome c. (a) Conversion 
of pinacyanol chloride, (b) Conversion of pyreoe. 

Although, the chemical modjficatjon procedure improves activity of the protein in organic 
solvent mixtures, the extent of improvement possible with such modifications is limited due to 
the limited sites available for modification and since the point of attachment cannot be selected 
to give the best activiv. In order to achieve this, alternate methods capable of manipulation of the 
sites of attachment themselves may be useful. Genetic techniques, which can modify the primary 
protein structure and place the lysine residues at required positions may be applicable. This 
approach was therefore explored and i s  discussed below. 

6.4 Genetic engineering of lignin peroxidase: 

Additional proteins were screened to select the best candidate for genetic modification for further 
activity improvement. Although the protein cytochrome c has significant activity for PAH 
conversion, the activity is lower than the protein lignin peroxidase (Lip). 

6.4.1 Cloning lip into Picbia pastoris: The lip gene was cloned into a commercial expression 
system ‘Easy Select Pichio Expression Kit’, available from Lnvitrogen. The gene was inserted for 
as well as extracellular expression @PICZa ABC and pPICZABC) via the a factor prepro 
peptide from Saccharomyces crrmisiae and the native secretion signal, respectively. The three 
plasmids A,B,C were one basepair apart. The following plasmids were successfully generated: 
pPICZaB, pPICZaC, pPICZA, pPICZC. Sequence frame analysis for protein expression 
indicated that from the a series, pPICZccA was the only plasmid which could successfully 
produce an active protein, while all three plasmids fiom the other series (using the native 
secretion signal) could produce an active protein, since its expression was controlled by its own 
s t a r t  codon (ATG). Several colonies of P. pasroris were picked from the different Wansfomants 
and tested for activjv. A minimal media as well as ihe media recommended by lnvjwogen 
(Buffered Minimal GlyceroVmethanol, BMGBMM) was used. The minimal media was a 25% 
strength BMWBMM. The strain was usually grown in glycerol medium, followed by an 
induction with methanol. Media optimization was also conducted by adding calcium and iron, 
since the protein lignin peroxidase has iron heme and calcium as ligands bound within. the 
protein. The activity of the clones was measured by the ABTS assay as well as the veratryl 
alcohol assay. The activity was found to be extremely low and barely measurable. Since several 
factors could influence the aclivity, further analysis was conducted by growing the recombinant 
Lip (rLiP) clones in a 1L bioreactor, contTolling the pH, oxygen level, temperature and agitation. 
A control reactor was also run with a strain containing the pPICZ plasmid but no gene insert. The 
activity results from the reactor run are shown jn Figure 13. 
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Figure 13, Lignin peroxidase activity for supernatant obtained from bioreactor containing 
Pichia pasforis pCRM59 rLiP and control strain. 

The results indicate the presence of peroxidase activity (ABTS assay), however the activity is 
very low for enabling detection in microwell plate samples, needed for enzyme improvement. h 
order to investigate the low activity observed, some clones were grown for isolating protein. 
Some of the plasmids used enabled attachment of polyhislidine tag at the C-terminal. The cells 
were grown in a 1L batch and the supernatant as well as the cell cytoplasmic and membrane 
fraction were examined for the presence of rLiP. The supernatant was found to contain negligble 
rLiP protein. The cell membrane fraction was found to contain a peak on UV-vis spectnun at 400 
m corresponding to a heme, which may be the rLiP, since there was no such peak on the control 
sample. Further analysis by sodium dodecyl sulfate- polyacryl amide gel electrophoresis (SDS- 
PAGE) was also conducled. The cell extract and the membrane fraction was found to contain a 
band corresponding to - 42 K (Lip = 42KDa), which may potentially be the recombinant protein 
(Figure 14). 

These results indicated that there may be a portion of the rLiP which was not exported to the 
exterior of the cells and may have precipitated within the cells. However, the total r Lip protein 
produced was still very small, therefore, f i t h e r  attempts were directed towards increasing the 
protein production. 

6.4.2 Increasing expression of rLiP: Two approaches were taken to hrther investigate and 
improvc the rLiP expression. Firstly, the protein was hsed with another protein known to 
express i n  Pichia pusforis namely P-galactosidase (P-gal) encoded by lac2 gene. The lip gene 
was cloned behind the lacZ gene under control of the P-gal promoter. The presence of the firsion 
protein was then easily detected by the p-gal assay, Le. using the blue-green assay with p- 
galactoside. A few colonies were isolated which reported positive activity in the P-gal assay, 
however, after transferring the colony for re-cultunng, no growth was observed after repeated 
trials. This indicated that the plasmid was no1 stable, therefore this approach had to be 
abandoned. 
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Figure 14. (a) UV-vis spectrum of the triton K-100 extract of cell membrane from pichia 
pastoris pCRM69 and the control strain with no gene insert. (b) SDS-PAGE analysis of the 
various protein fractions. 

In the second approach, the codon usage in lip gene was partially modified to reflect the codon 
usage by Pichia pmioris. The lip gene (from Phoenerocheate chysosporium) has a GC content 
of 60% as opposed to 48% for the Pichia pusforis strains. Therefore, i t  was hypothesized that 
reducing the GC content may promote better expression. This was done by changing GC-rich 
portions of the original gene. In all, 24 bases were changed in three regions of the gene, without 
changing the amino acid sequence, resulting in about 57.9 % GC content. This was done by 
generating thee pairs of primers with a maximum possible AT content. The remaining gene 
fragments were generated by PCR. Two of the three gene modifications were successfully 
produced. However, the f ina l  recombination and cloning into Pichia pmtoris could not be 
completed due to lack of time and funding. A complete analysis of clones prepared by removing 
the codon bias may potentially allow expression of lip in P ichiopmforis. 

7. Conclusions 

Investigations into the activity of peroxidase enzymes in organic media for conversion of 
polyaromatic hydrocarbons demonstrated that while partial oxidation to quinones occurred in 10% 
mixtures of organic solvent in aqueous buffers, no conversion takes place in pure solvents. A 
thermodynamic analysis of the enzymatic PAH conversion in organic media revealed lack of 
effective interaction between the substrate and enzyme as the cause for low to negligble activity. 
This indicated a need for higher hydrophobocity of the enzyme active site to bind highly 
hydrophobic molecules such as pyrene. The protein cytochrome c was modified by attachment of 
two hydrophobic groups: polyethylene glycol (PEG) and an alkyl group. Alkyl groups, being small 
could be anached at interior locations within he core of the enzyme and possibly near the active 
site. Increase in the enzyme activity at higher solvent concentntions indicated potential of h s  
strategy for effective enzyme-substrate interaction. Further improvements in enzyme activity called 
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for other diverse methods due to the unavailability of sufficient chemical modification sites. 
Genetic techniques were therefore explored for further improvements. These experiments focused 
on cloning of a gene for the h g a l  enzyme lignin peroxidase (lip) into yeast Pic& pustoris, which 
would allow easy manipulation of the gene. However, differences in the fungal and yeast cellular 
m a c h e r y  impeded significant expression of the h g a l  enzyme. Several methods to improve 
expression including media optimization, addition of heme ligand, use of different host strains and 
directed evolution via error-prone PCR were explored. However, the expression levels did not 
change significantly. Examination of the cell supernatant and cell membrane h c t i o n  for additional 
protein indicated that some of the protein may be present intracellularly, but the over11 levels were 
still low. This indicated a problem at the transcription level. Further strateges hcludng removal of 
codon bias were examined but these experiments could not be completed due b time and funding 
limitations. Additional work IS therefore necessary to better understand the problems with 
expression of such proteins in heterologous hosts and Lo allow protein engineers to design proteins 
that would carty out conversion of hydrophobic substrates in organic media. 

8. Current State and Assessment 

The project goal was to assess potential of enzymes as biocatalysts for petroleurn upgrading. 
Besides the work conducted during this project and research conducted at other national 
laboratories as part of the NPTO program funding this project, the technical knowledge gained i n  
the area of non-aqueous e l y o l o g y  during the last three years was also applied during the 
course of this project. This knowhow has been essentially obtained from studies of enzymes such 
as lipases for esterification and transesterification reactions. In these studies, several critical 
parameters affecting the activity and stability of enzymes in solvents were identified. Such 
paramehic effects were applied to study the effect of enzyme of interest in petroleum 
bioprocessing. However, the reasons for inactivation and instability of the peroxidase enzymes 
relevani to petroleum processing as compared to h e  other enzymes were found to be different. 
The main parameter affecting activity of enzymes for application in petroleum processing was 
found to be the total inability of enzymes to bind the substrates of interest in an organic 
environment. Therefore, the need for demonstrating the feasibility of an enzyme-based process 
for petroleum processing required development of an enzyme whch could effectively bind the 
substrates of inlerest. This can potentially be done by designing a n  enzyme with high 
hydrophobicity. Such enzymes do not usually occur in nature but for few exceptions. These 
exceptions typically include proteins involving binding of steroids, long chain fatty acids (> C16) 
and possibly polyaromatjc hydrocarbons from PAH degrading bacteria. This project has shown 
the proof of principle for improving enzyme activity using the concept of increased 
hydrophobicity at the active site via chemical modification. Further improvements will require 
significant efforts in protein engmeering. The current state of research in protein engmeering 
allows some predictions of modifications to allow binding improvements, however, the process 
of developing a protein exactly fitting the needs o f  petroleum processing has to be done, at least 
at this stage, via a trial and error approach, which was used in the current project. Further work in 
this area can potentially provide biocatalysts suitable for pelroleurn applications. 

9. Questions to be answered 

The main question that has risen From the  work conducted during this project is: 
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Can o m  design and develop Q protein which can bind Q polyaroniatic entity efleciively enough 
in an organic media to allow a biocatalytie reaction? 

10. Inventions 

A subject invention was submitted for expression of lignin peroxidase by a heterologous host. 
The patent was not pursued since further work is necessary to completely confirm the preliminary 
results obtained during this work. 

11. Commercialization Possibilities 

Commercializalion of enzyme based processing of petroleum requires addilional research in the 
area of biocatalyst development. At least 3-5 years of further research is required to achieve this 
goal. Therefore, the commercialization of such technologies is at least five years away. 

12. Plans for Future Collaboration 

A new project in the area of biocatalyst development has been initiated in collaboration with 
ChevronTexaco. ln this project, enzymes capable o f  retaining activity in organic media and at 
slightly higher temperatures (60-90°C) will be expIored. Enzymes capable d P A H  bioconversion 
such as those From PAH degrading bacteria and hose capable of xenobiotic compound 
metabolism, for example, cytochrome P450 and other oxidase enzymes will be studied. Work 
will be initiated with cytochrome P450s already expressed in a host allowing genetic 
manipulation, for example, E. col i .  Genetic modifications will then be carried out using PAH 
oxidation as the reaction of interest to improve andor  accivjty in organic media, while optimizing 
for operalion in the thermophilic range. 
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