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Preface  

Now is the time to plan for the integration of significant quantities of distributed renewable 
energy into the electricity grid. Concerns about climate change, the adoption of state-level 
renewable portfolio standards and incentives, and accelerated cost reductions are driving steep 
growth in U.S. renewable energy technologies. The number of distributed solar photovoltaic 
(PV) installations, in particular, is growing rapidly. As distributed PV and other renewable 
energy technologies mature, they can provide a significant share of our nation’s electricity 
demand. However, as their market share grows, concerns about potential impacts on the 
stability and operation of the electricity grid may create barriers to their future expansion.  

To facilitate more extensive adoption of renewable distributed electric generation, the U.S. 
Department of Energy launched the Renewable Systems Interconnection (RSI) study during 
the spring of 2007. This study addresses the technical and analytical challenges that must be 
addressed to enable high penetration levels of distributed renewable energy technologies. 
Because integration-related issues at the distribution system are likely to emerge first for PV 
technology, the RSI study focuses on this area. A key goal of the RSI study is to identify the 
research and development needed to build the foundation for a high-penetration renewable 
energy future while enhancing the operation of the electricity grid.  

The RSI study consists of 15 reports that address a variety of issues related to distributed 
systems technology development; advanced distribution systems integration; system-level 
tests and demonstrations; technical and market analysis; resource assessment; and codes, 
standards, and regulatory implementation. The RSI reports are: 

• Renewable Systems Interconnection: Executive Summary 

• Distributed Photovoltaic Systems Design and Technology Requirements 

• Advanced Grid Planning and Operation 

• Utility Models, Analysis, and Simulation Tools 

• Cyber Security Analysis 

• Power System Planning: Emerging Practices Suitable for Evaluating the Impact of 
High-Penetration Photovoltaics 

• Distribution System Voltage Performance Analysis for High-Penetration 
Photovoltaics 

• Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls 

• Transmission System Performance Analysis for High-Penetration Photovoltaics 

• Solar Resource Assessment 

• Test and Demonstration Program Definition 

• Photovoltaics Value Analysis 

• Photovoltaics Business Models 
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• Production Cost Modeling for High Levels of Photovoltaic Penetration 

• Rooftop Photovoltaics Market Penetration Scenarios. 
 

Addressing grid-integration issues is a necessary prerequisite for the long-term viability of the 
distributed renewable energy industry, in general, and the distributed PV industry, in particular. 
The RSI study is one step on this path. The Department of Energy is also working with 
stakeholders to develop a research and development plan aimed at making this vision a reality. 
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Executive Summary 

We observed enhanced customer reliability through the management of energy storage 
systems and photovoltaics (PV) during a utility outage. In an outage, the affected 
community would intentionally island and meet only its critical load. The timing, 
duration, and number of customers affected by each outage event were obtained for a 
single utility in 2005. These data were used to simulate outage events for a community on 
a distribution feeder. Overall, this technology resulted in a community experiencing 
fewer outages and outages of shorter duration. 

The parameters considered in this analysis include three geographic regions (Golden, 
Colo., Hanford, Calif., and Sterling, Va.), three community sizes (10 homes, 100 homes, 
and 1,000 homes), and various combinations of battery capacity (0 to 10 kWh) and solar 
PV penetration (0%, 5%, 10%, 30%, 50%). The distribution reliability indices presented 
in IEEE 13661 were adapted to account for the management of energy storage and PV in 
meeting only the critical loads in each home or community. The enhancement in 
reliability was quantified in terms of modified reliability indices, which are pertinent to 
these types of communities: 

• Critical SAIDI —average duration of critical load interruptions. 

• Critical SAIFI—average number of interruptions per customer. 

• Unserved Critical Load (UCL)—annual unserved critical load (kWh) on a circuit. 
We observed a significant improvement in these three indices when PV and battery 
energy storage were deployed at each home within a community. The presence of more 
than ~5 kWh of battery capacity per home reduced each index to nearly zero (a 100% 
reduction). The contribution of PV to the improvement in reliability indices was less 
significant, contributing to ~25% reduction in each index at 50% PV penetration. The 
community size and geographic location had a small impact on the overall results. 

The following four areas provide a vision for future research: 

Load reconfiguration technology – We assumed that the loads in a home/community 
could reconfigure at the onset on an interruption. Identifying the technology and controls 
needed to perform this function is critical to achieving enhanced reliability through the 
use of PV systems. 

Customer reliability statistics – Statistics and specific information about which 
customers are affected during an outage event would enhance the accuracy of the 
simulation. This information will be needed for both utilities and customers in order to 
quantify the economic benefit of enhanced reliability due to PV systems. 
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Load profile breakdown – A breakdown of the contributions of various appliances to the 
overall aggregate load of a home (and community) through a year will be needed before 
customers and utilities invest in home load controls. 

Critical loads in communities – Residential customer surveys of appliance usage or 
appliance feedback to the utility are needed in order to quantify the contribution of each 
appliance to the total load in a home/community. 

 vii
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1. Introduction 

In this study, photovoltaics (PV), load control, and battery energy storage systems were 
managed in order to enhance energy reliability for the customer. During an interruption, 
customers within a community are able to intentionally island, reconfigure total loads to 
only the critical loads, and meet the critical loads by managing PV and energy storage. 
The objective of this study is to evaluate the reliability improvement associated with this 
capability. The results of this study can be used to identify the technologies and 
regulations needed to enable load and energy management in a home or community. 
Multiple case studies were considered, including three geographic regions, three 
community sizes, and various combinations of energy storage and PV. In this study, PV 
penetration is defined as the ratio of the nameplate solar array capacity divided by the 
maximum 15-min average peak load, within the community, in one year. 

Residential load modeling was performed for three regions of the United States and these 
results were used as an input to the reliability model. We considered adapting the 
reliability indices presented in IEEE 1366 in order to account for the management of 
energy storage and PV to meet the critical loads in each home within the community. The 
enhancement in reliability was quantified in terms of proposed new reliability indices that 
are pertinent to residential communities containing PV systems with energy storage and 
controls. 

Three community sizes were chosen in order to evaluate the influence of coincidence 
factors (i.e., a larger community would exhibit a smoother load profile). Three regions 
were considered because each region has unique annual weather/temperature profiles, 
and therefore a unique heating, ventilation and air conditioning (HVAC) load profile. 
Additionally, appliance penetration levels vary from region to region. Fifteen-minute 
time steps were chosen because no data were available for shorter intervals and additional 
fidelity would provide computation management challenges. 

In order to quantify the enhancement in reliability, the following tasks were performed: 

• Reliability Modeling – Random outages were generated based on representative 
utility data. 

• Residential Load Modeling – Total and critical load curves were constructed for 
individual homes and residential communities.  

The reliability model was used to simulate random outages throughout the year. During 
the outages, the residential-load model reconfigured HVAC and appliance loads to only 
the critical loads. The architecture of a system that could enable load reconfiguration was 
not the focus of this study. As a first step, quantifying reliability enhancement will enable 
the development of a value proposition for such a capability, and may ultimately lead to 
further technology development. In order to perform this study, we made some key 
assumptions: (1) a residential home could intentionally island load on PV inverters and 
breakaway from the grid during an outage, and would be capable of managing starting 
inrushes, and (2) the circuit protection within the island could be resolved. 
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2. Current Status of Existing Research 

The review of existing research is broken into two sections: distribution reliability and 
residential load modeling. These two distinct topics provided the basis for quantifying the 
reliability enhancement. 

2.1 Distribution Reliability Indices 
The IEEE Guide for Electric Power Distribution Reliability Indices (IEEE 1366) was 
developed in order to summarize relevant distribution reliability indices, outline the 
methodology for calculating these indices, and highlight the factors that affect the 
calculation of indices.  

In order to understand the details of IEEE 1366, definitions and additional information 
are needed. In the standard, a long interruption is defined as an event whereby the voltage 
at the customer’s connection drops to zero and does not re-establish automatically. 
Typically, interruptions in excess of three minutes are referred to as long interruptions, 
while interruptions of less than three minutes are called short interruptions,2 but this 
definition varies among utilities. Additionally, the term “sustained interruption” refers to 
a longer interruption, ranging from three seconds in IEEE 1159 to two minutes in IEEE 
1250.3 

The primary distribution reliability indices used for sustained interruptions (outages in 
excess of five minutes and excluding major event days) are: 

• System average interruption frequency index (SAIFI), 

• System average interruption duration index (SAIDI), and 

• Customer average interruption duration index (CAIDI). 
 
SAIFI describes how often an average customer will experience a sustained interruption 
(greater than five minutes). Mathematically, this index is defined as: 

TN
CISAIFI= , 

where CI is the number of customers interrupted and NT is the total number of customers 
served for the area. SAIDI is defined as the total duration of interruption for an average 
customer over a specific period of time. Mathematically, this index is defined as: 

TN
CMISAIDI= , 

where CMI is the customer minutes interrupted. In terms of load-based indices, the 
average system interruption frequency index (ASIFI) is often used to measure 
performance in areas with few consumers and concentrated loads.4 Mathematically, 
ASIFI is defined as: 

 2



T

i

L
L

ASIFI ∑= , 

where, ASIFI is the ratio of total connected kVA of load interrupted and the total 
connected kVA served.  

SAIDI and SAIFI are two of the most common distribution reliability indices used in the 
industry (see Figure 1).  

 
Figure 1. Percentage of responding companies using indices reporting in 1995 and 19975 

 
The distribution reliability indices described above are used to quantify sustained 
interruptions. Short duration outages for some customers, such as hospitals and large 
industrial customers, can result in complex systems shutting down. The startup of these 
systems can be costly. In many cases, these customers have installed backup generation 
or other means of addressing short-duration outages. In particular, it is these types of 
outages that would benefit from the presence of distributed generation and energy storage 
in islanded operation. Therefore, a reliability index must not only quantify enhanced 
reliability for sustained interruptions, but must also quantify enhanced reliability for 
short-duration outages. 

2.2 Residential Load Modeling  
Taking into account customer data for variable numbers of customers is essential for 
studying the time evolution of the load in the distribution system feeders. In fact, the 
electricity consumption of the single residential customer is too variable in time to allow 
us to obtain a sound estimate of its individual load pattern. The residential load 
aggregation can be obtained by either working directly at the distribution system level (if 
the results of measurements carried out on several feeders are available), or resorting to a 
bottom-up approach in which the aggregated load patterns of single-house customers are 
computed on the basis of information obtained from real-case investigations on customer 
behavior, lifestyle, and appliance use. In particular, it is important to assess not only the 
average value of the aggregated load, but also how its probability distribution varies 
during the day and as a function of the number of residential customers. Previous studies 
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[17,19,20,21] have shown that the time evolution of the average power, normalized with 
respect to the total contract power of the customers, has a predictable behavior, especially 
when the number of customers is relatively high (e.g., over 100). Yet, when the number 
of customers is low, the possible variations of the load power at any given time are 
significantly higher and strongly depend on the randomness of the customer composition 
and lifestyle. 

We reviewed a number of articles describing the distribution load profiling techniques. A 
selected few are discussed in this section. Two main categories of approaches, top-down 
and bottom-up, were found to exist in most of these articles.  

Top-down methods require data collection at the distribution substation. Even when such 
data are available, this approach does not easily accommodate modeling the impact of 
demand-response technologies. Bottom-up methods attempt to quantify the drivers for 
consumption and use Monte Carlo sampling to synthesize an aggregated load profile. 
Critical inputs are resident demographics, home size, geographic location, season, day of 
week, time of day, and the number of homes supplied by the feeder. 

In Schneider & Hoad (1992),6 researchers applied Monte Carlo sampling to data from a 
survey of household usage patterns. A diversity function was fit to the data, relating the 
diversity factor to the number of homes on the feeder. In Lee & Etezadi-Amoli (1993),7 
the authors made some general notes about coincident and diversity factors. Coincident 
factors differ by user type. Industrial and commercial users have higher coincident factors 
during the day while residential coincident factors have evening peaks. In addition, 
coincident factors tend to be higher during peak load. Finally, diversity factors were 
found to be similar for homes with electric and non-electric heating. 

While focused on methods to produce short-term residential forecasts, elements of 
Noureddine et al. (1992)8 apply to longer-term modeling. Loads are split between 
weather- and non-weather-dependent categories. Weather-dependent loads are modeled 
with a physics-based model while non-weather-dependent loads are quantified with an 
autoregressive model. Limitations of models like DOE2 are discussed—such models are 
house specific and ignore random usage patterns. 

In Capasso & Grattieri (1994),9 bottom-up modeling was conducted using cross-sectional 
(time of day) and longitudinal (day of week) use surveys as well as census data 
describing regional proclivities. In Carpaneto & Chicco (2006)10 researchers found that 
the load profile for feeders with more than 100 homes has a predictable behavior. 
However, as the number of homes decreases, the profile is significantly impacted by the 
number of customers and the randomness of customer use patterns. A number of 
probability functions were fitted to the aggregated load profile. The gamma function was 
found to be most appropriate for extra-urban homes. 

We reviewed many other articles to decide the appropriate tools for the modeling work. 
While the appliance load data can be built upon some existing data sources [11, 12] using 
simple spreadsheet-based calculations, a more detailed thermal model of the home is 
necessary to understand the HVAC loads. Drury et al. (2005)13 provided an overview of 

 4



a report that provides up-to-date comparisons of the features and capabilities of twenty
major building energy simulation programs. The comparison is based on information 
provided by the program developers in the following categories:  

 

• General modeling features,  

• Zone loads,  

• Building envelope and day-lighting and solar,  

• Infiltration, ventilation and multi-zone airflow, renewable energy systems,  

• Electrical systems and equipment,  

• HVAC systems,  

• HVAC equipment,  

• Environmental emissions,  

• Economic evaluation,  

• Climate data availability, results reporting; validation, and  

• User interface, links to other programs, and availability.  
After careful investigation of all these tools, and based on prior experience of available 
resources, DOE2.2 was chosen to analyze the heating and cooling loads of a home. As 
DOE2.2 requires extensive inputs to perform a comprehensive simulation of all the loads, 
the loads, which do not have a significant impact on heating and cooling, are excluded 
from this model and were handled in the spreadsheet-based model. This approach is 
described in Section 3.4 in more detail. 
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3. Project Approach 

In order to quantify the enhancement in reliability we needed to identify relevant 
distribution reliability indices that would accurately reflect reliability improvements and 
offer a benchmark to reliability improvements. Once identified, distribution reliability 
data (duration, timing, and the number of customers affected in each outage) were used to 
construct a reliability model that could simulate random outages within a community. 
Finally, a residential load model was developed. This model consists of total and critical 
HVAC and appliance load data, in 15-minute intervals, for three regions and three 
community sizes. During an outage, total load (for a given community in a given region) 
is reconfigured to form the critical load, where management of PV and energy storage 
meets this load. Outage data were generated by the reliability model, while load data 
were generated by the residential load model. 

3.1 Proposed Reliability Indices 
We anticipate that managing loads, PV, and energy storage will reduce (or perhaps 
eliminate) the number of outages a customer experiences and will reduce the duration of 
each outage a customer experiences. Since load control will also allow customers to 
differentiate between critical and non-critical loads in their homes, the reliability indices 
should be revised to account for a customer’s willingness to shed non-critical loads 
during a system interruption. Therefore, the following revisions to SAIDI and SAIFI are 
used in this study: 

• Critical SAIFI is defined as the average number of critical load interruptions 
experienced on a circuit. 

• Critical SAIDI is defined as the average duration of critical load interruptions 
experienced on a circuit. 

• Unserved Critical Load (UCL) is a proxy for ASIFI, defined as the annual 
unserved critical load (kWh) on a circuit. 

In Figure 2, area “A” represents the total kWh unserved during an outage and area “B” 
represents the critical kWh unserved duration an outage. A PV system with energy 
storage and load controls will reduce the unserved critical kWh, shown as area “C”. This 
study will quantify the enhanced reliability that PV systems with energy storage and load 
controls offer to residential communities based on these three indices. 
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Figure 2. Graphical representation of unserved critical kWh associated with an outage 

 
3.2 Distribution Reliability Data 
Reliability data for two utilities were provided by the Electric Power Research Institute 
(EPRI).14 Utility A is a small utility (fewer than 200,000 customers) located in the 
northeastern United States. Utility B is a larger utility (greater than 800,000 customers) 
located in the southeastern United States. Generally, utilities collect data for outages in 
excess of five minutes. The data provided includes all outages in excess of five minutes 
(including major event days). Outage events were determined by supervisory control and 
data acquisition (SCADA) measurement or by customer reporting. The data for utility A 
were provided with hourly time stamps for each event from 1994 to 2003, and daily time 
stamps for each event from 2004 to the end of 2006. Data were provided for utility B 
(with daily time stamps for each event) for the year 2005 only. 

The reliability statistics chosen for this study were based on data from utility A. With 
more than 20,000 events in 10 years, utility A offered a significant database, containing 
10 years of outage event data (outage duration, circuit affected, number of customers 
affected, weather condition, number of customers per circuit, etc.) with hourly time 
stamps for nine years of outage events. Although focusing on the distribution reliability 
performance of a single utility does not ensure that an “average” utility was considered in 
this study, the vast database of outage information was thought to provide the study with 
the best statistical data from a single data source. This ensures that outage durations 
obtained from one study are not intermixed with frequency data from another study. The 
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model has been developed to incorporate distributions of outage duration (per event) and 
customers affected (per outage duration) as an input. Therefore, if additional data is 
available, additional model runs can easily be performed. 

3.2.1 Outage Duration 
Based on the number of outage events presented in the data for utility A, an outage 
duration histogram was generated for two consecutives year (see Figure 3). 
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Figure 3. Historical outage duration per outage event for utility A 

 
Most outage durations in 2005 and 2006 were shorter than 100 minutes, though some 
outages were much longer. Note that each outage event affected a different number of 
customers. 

3.2.2 Outage Timing 
Based on the data for utility A, outages were not evenly distributed throughout the year. 
This trend was observable over various years of operation. The number of outage events 
per month in 2005 is shown for utility A and utility B in the top of Figure 4. Additionally, 
the number of outage events for four consecutive years at utility A is shown in Figure 4. 
The correlation of outage frequency to time of year can be easily observed. Based on the 
data provided for utility A, we examined the number of outage events over a 24-hour 
period (see Figure 5). These data are considered on an outage event basis, which treats 
each outage event as equal, independent of the number of customers affected. 
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Figure 4. Number of outage events per month for utility A and utility B 
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Figure 5. Hourly distribution of outage events for utility A from 1994 to 2003 

 
3.2.3 Outage Frequency 
The SAIFI data is widely available for many utilities (see Figure 6), but SAIFI (number 
of outages experienced per customer) is an aggregate of outage frequency data and does 
not provide enough information to determine the distribution of outages experienced by 
each customer in a utility. Since there is a correlation between the number of customers 
affected by an outage event and the duration of the same outage event (see Figure 7) it 
was necessary to account for this relationship in order to validate the model’s results 
against the SAIDI and SAIFI for utility A. 
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Figure 7. Number of customers affected based on various outage durations in 2005 and 

2006 for utility A 

 
Based on the relationship between the customers affected and the outage duration, the 
energy systems model chose the outage duration and chose the number of customers 
affected based on the statistical distribution of customers affected for each outage (Figure 
7). This was done to replicate the number of outage events experienced by utility A rather 
than replicate individual customer reliability throughout the year. Therefore, SAIDI and 
SAIFI for utility A were used to validate the simulation. Based on the data for utility A 
and utility B, the number of customers affected by each outage event highlights a similar 
relationship (see Figure 8). 
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Figure 8. Customers affected during each outage event 

 
3.2.4 Assumptions and Factors Affecting Reliability 
Many assumptions were made in order to simulate outage timing and duration. The lack 
of data on short-duration outages (less than five minutes) and the need to limit the size of 
the model, made it difficult to model short-duration outages. Since the model is 
discretized into 15-minute intervals, outages are rounded to the nearest 15-minute 
interval. This study will be unable to account for some factors, such as the correlation 
between lower than average solar insolation levels and poor weather conditions due to a 
storm. This factor presumably increases the probability of an outage. Similarly, the 
correlation between higher ambient temperatures (which leads to lower PV efficiency) on 
a “hot” day and increased outages due to hot weather will not be captured in this study. 
The weather observed during each outage event is shown for utility B in 2005 and utility 
A in 2005 and 2006 (see Figure 9).  
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Figure 9. Weather conditions for each outage event for utility A and utility B 
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The reporting of weather conditions is a subjective measure. Utility A and B used similar, 
though not identical, labels of weather condition. 

3.3 Reliability Modeling Approach and Validation 
In order to generate outage statistics for an outage event, we used statistical duration and 
timing data from utility A. The following list highlights the modeling approach: 

1. For a single event, the outage duration was chosen from a bin of outage durations (15 
minutes per bin) based on the discrete distribution of outage events in utility A in 
2005 (see Figure 3). 

2. The outage duration was chosen randomly from within the selected bin and rounded 
to a multiple of 15 minutes. 

3. The month in which the event occurred was selected based on the discrete monthly 
distribution of outage events for utility A in 2005 (see Figure 4). 

4. The day in which the event occurred was chosen randomly from within the month. 

5. The hour in which the event occurred was selected based on the discrete hourly 
distribution of outage events for utility A from 1995 to 2003 (see Figure 5). 

6. The event was placed on the first 15-minute interval of that hour. 

7. The number of customers affected is chosen based on the relationship between the 
outage duration and the number of customers affected in utility A (see Figure 7). 

8. A single simulation consists of an outage duration, timing, and number of customers 
affected. This is performed 1,800 times to replicate the number of events experienced 
by utility A in 2005. 

Based on this approach, 1,000 simulations of a single outage event were performed. The 
results are summarized in Figure 10. A good match between the results shown below and 
the reliability data from utility A was observed.  
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Figure 10. Outage duration and timing distribution based on 1,000 simulations 

 
Each outage event was input into the energy systems model and the reliability indices 
(described earlier) were quantified with and without the PV, energy storage, and load 
control system. 

Based on this approach, the average of more than 100 simulations reveals that the 
simulation SAIDI replicates the actual SAIDI, within 5%, for utility A in 2005. 
Additionally, the simulation SAIFI compares within 1% of the actual SAIFI for utility A 
in 2005. Any discrepancy between the SAIDI/SAIFI for utility A and the simulation is 
associated with the statistical sampling of the number of customers affected by an event 
(equally probable) based on the outage duration for the event. 

3.4 Residential Load Modeling 
As described earlier, load shaping of residential end-users is a highly complex task; a 
household’s energy usage is intimately linked to lifestyle-related factors that are 
extremely subjective and not easily defined. Furthermore census studies attempting to 
document this behavior don’t fully resolve the problem, because they fail to consider the 
random variability of the demand.  

The residential model is divided into two sections: 

1.  Matlab-based model for the top rated appliances and lighting 

2. DOE 2.2 model for the heating and cooling loads. 

The following two subsections describe these two approaches in more detail. 
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3.4.1 Appliance Load Modeling 
A bottom-up approach is used to model electrical appliance loads in the home. This 
method models each appliance’s behavior individually, allowing for a level of granularity 
that provides insight into the behavior of individual homes and power consumption per 
appliance. Furthermore, being aware of what each appliance is doing at all times enables 
load-shedding, allowing for continued operation of critical loads while shedding all non-
critical loads, thus lowering the overall power consumption of each home. For the 
purposes of this report, the critical loads were lighting, refrigeration, and baseline power 
consumption, a definition of which will follow. 

The model is composed of five appliances and lighting. Appliances were chosen by their 
popularity within the community,16 frequency of use, and power consumption.17 Once 
these values were understood, a statistics-based model assigned appliances, power values, 
and runtimes to each home in the community and dispersed the use of the assigned 
appliances throughout a day. The dispersion of appliance use throughout a day is 
modeled with help from Lawrence Berkley National Labs (LBNL) data,19 which provide 
an individualized appliance usage profile over a twenty-four hour period. Furthermore, 
since this model is limited to five appliances, the baseline power consumption is added to 
each home in the community to account for most of the residential electrical loads, which 
are not modeled. The baseline power curve has a bimodal distribution with its peak load 
located during the hours of greatest electrical activity. The baseline power curve also 
degrades during the early hours of the morning when most of the community is expected 
to be sleeping. 

For validation purposes, power consumption per appliance was cross checked against 
yearly expected consumption rates published by the Department of Energy (DOE) on 
Energy Guide labels and other similar sources. Furthermore, total power consumption 
throughout the year (including HVAC) was cross-checked against U.S. state average 
power consumption provided by an internal GE report. The weekly power consumption 
per appliance and yearly overall power consumption per home data were used to validate 
the model. 

The model is implemented in the computational mathematics program MATLAB. Inputs 
to the model are read from a Microsoft Excel file and from direct input from the user 
(Figure 11). The Excel file contains appliance values for penetration into the community, 
electrical load range, use time, and variability in use start time (Table 1) where 
“penetration” refers to the percentage of customers in the community who own that 
appliance. This model only takes into account appliances that are predominantly electric; 
therefore appliances such as gas dryers were not considered. Furthermore, there are cases 
in which an appliance will have a greater than 100% penetration, most commonly 
observed in refrigerators. Typically 10% of homes will have a second refrigerator or 
standalone freezer. However, to reduce the complexity of the model, a maximum of 
100% penetration was set per appliance. The impact of multiples of an appliance remains 
to be evaluated. 
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Figure 11. MATLAB appliance load modeling flowchart 

 
Also labeled in Table 1 are Low-/High-End Loads, which indicate the low- and high-end 
bounds of power consumption, in Watts, for each appliance being modeled. Section 3.4.2 
further elaborates how each appliance is assigned a specific value. “Run Time 
Low/High” indicates low- and high-end bounds of appliance operation time; these values 
indicate a fraction or multiples of 15-minute intervals for which the appliance is in 
continuous operation. Section 3.4.3 further explains how these values are determined. 
Lastly, “Start Time Variability” is the standard deviation, in minutes, of the time when 
the appliance comes on, allowing community usage to be spread about a time continuum; 
this concept is further explained in section 3.4.4. 

Table 1. Appliance Data Input to the MATLAB Model 

 Appliance
Penetration     

(%)
Low End Load 

(Watts)
High End Load 

(Watts)
Run Time Low (15 

min)
Run Time High (15 

min)

Start Time 
Variability 
(Minutes)

 Refrigerator 100 400 600 0.10 0.50 60

 Dishwasher 55 1200 1400 3.00 5.00 60

 Washer 68 400 600 4.00 6.00 840

 Dryer 35 4500 5500 4.00 8.00 840

 Range 37 2400 5000 1.00 4.00 120

 Lights 100 400 1000 1.00 10.00 60

Hanford, California

 
 
The direct input from the user consists of the community size, which is a number 
representing the number of homes to be simulated. As the community size grows, the 
total power consumption for the community becomes increasingly smooth. If the 
community size is small (e.g., 10 homes) the total power consumption for the community 
is more jagged as individual appliances can be seen turning on and off. 
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Based on these model inputs, a virtual community of electric loads is generated. The 
simulation outputs the temporal usage of appliances and lighting. The following sections 
further describe the generation of the community and parameters for operation. 

3.4.2 Generate Appliance Power Values 
Once a community size has been chosen, each home is provided with electric appliances. 
It is important to note that not all appliances of the same type are equal in their power 
consumption. Therefore, to accommodate this factor, a published range of possible power 
consumptions for each appliance is uniformly sampled to achieve variation within the 
community. Furthermore, not every home in the community is assigned every electrical 
appliance. Penetration of an electrical appliance into a particular community is 
determined by regional census data provided by the DOE Energy Information 
Administration (EIA). This helps account for homes that do not, for example, have a 
dishwasher and use a gas range and/or dryer. Therefore, some homes will have every 
appliance whereas other homes may only have a refrigerator and lights in addition to the 
baseline power consumption. Figure 12 represents the five appliances and lighting for a 
community of 100 homes. We can see that the refrigerator and lights are present in every 
home throughout the community whereas the other appliances have varying degrees of 
penetration; for example, in this community 67% of the homes have an electric range. 
Once the algorithm has finished assigning appliances to every home in the community, 
these values are then saved and remain fixed for the remainder of the simulation. 

To further improve the accuracy of the model, some parameters should be further 
researched and optimized. One of these parameters is the purchasing habits of consumers; 
who may prefer a particular brand and/or cost. This results in a normal rather than 
uniform distribution of power consumption. Furthermore, this model does not take into 
account consumer preference variation across the different regions modeled; only 
appliance penetration per region is accounted for. Finally, the variation of power 
consumption during an appliance’s operation is neglected, and is replaced by a constant 
rate of power consumption. After completing this step the model moves to generating 
runtimes for each appliance in every home of the community. 
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Figure 12. Appliance power and penetration for a community of 100 homes 

  
3.4.3 Generate Appliance Runtime Values 
Before a typical utilization time for an appliance can be calculated, it should be 
confirmed that the census data, which provides appliance power and total usage time over 
one month, agrees with the Energy Guide yearly totals. For example, a dishwasher is 
reported to be in operation 8 to 40 hr per month17. The following can be calculated: 
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Where the first factor is the average dishwasher power consumption, the second factor is 
the average use in hours per month. Lastly, these factors are multiplied by months in a 
year to obtain the yearly kWh usage. The results compare well with an average 323.3 
kWh per year expected consumption.18 Using the 8 to 40 hrs of operation per month, a 
daily usage time is calculated, assuming a thirty-day month. This last operation results in 
a range of daily “ON” times for each appliance. It is important to consider that some 
appliances operate one or multiple times an hour and others operate once to multiple 
times a week, such as the washer and dryer. At this point, the model uniformly samples 
these ranges, assigning each appliance in the community an individualized runtime. 
Furthermore, all runtime values are regenerated every week for further variability. As an 
example, Figure 13 is a histogram graph illustrating binned runtimes and the 
corresponding number of homes for which that runtime applies.  
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The model does not take into consideration how appliance runtimes change throughout 
the year. Furthermore, there is no correlation between appliance power usage and 
runtime, so a 5.5 kW clothing dryer could run for up to two hours and a 4.5 kW dryer 
could run for only one hour. Lastly, each selection of runtimes is uniformly chosen from 
the range of runtimes. This is an assumed behavior and it may not be an accurate 
representation of consumer habits. 

Once appliance power consumption and runtimes are set, a visual check is performed to 
avoid any outliers (see Figure 14). Furthermore, the figure illustrates many runtimes at 
zero power. This was done to simplify the model; every home is given runtimes for every 
electrical appliance within it, whether it exists or not, but the product of these two will 
not contribute to the overall kWh consumption for the home if the appliance power value 
is 0 W. 

At this point the MATLAB model has generated a community with electrical appliances 
and runtimes for each. The next step is to describe the procedure used to schedule 
appliances throughout the week based on the community’s behavior. 

 

 
Figure 13. Appliance runtime (in minutes) for a community of 100 homes 
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Figure 14. Appliance power and runtime for a community of 100 homes 

 
3.4.4 Generate Appliance Usage for One Week 
Accurately scheduling the residential loads within a community is a critical next step. 
This proves to be a challenging task and requires us to make many assumptions in order 
to keep the complexity of this model relatively low. 

The model uses a pre-populated spreadsheet as shown in Figure 15. Each row represents 
a 15-minute interval, while columns represent appliances and lighting. The array of zeros 
and ones represent whether an appliance is turned on or off. There is one master 
spreadsheet for the entire community, and two individual day profiles—a weekday and a 
weekend profile. Holidays are assumed to be most similar to weekend days, and are 
therefore overwritten with weekend day profiles.  

These spreadsheets were populated using LBNL graphs19 as a reference for peak 
appliance demand throughout weekday and weekend days. The graphs were translated to 
ones and zeros within the spreadsheet. However, to avoid every dishwasher turning on at 
10:00 AM, another factor, called start time variability (STV), was introduced to distribute 
the start time of the appliance around the 10:00 AM timestamp. Based on data from 
LBNL19, the spread of start times was uniformly or normally distributed about the ones in 
the spreadsheet. Furthermore, as can be seen in Figure 15, both the washer and the dryer 
are being operated twice on Sunday, but the spreadsheet may be misleading as to their 
actual times of operation. Table 1 shows that both the washer and the dryer have a STV 
of 840 minutes or 14 hours, and their appliance demand distribution, Figure 16, shows a 
relatively uniform probability of dryer operation from 8 AM to 10 PM for a typical 
weekday in February. This simulates a little more normal behavior on the weekend but 
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still has a mostly uniform distribution. Hence this MATLAB model will uniformly 
distribute the operation of the washer and dryer over this timeframe. However, the 
operation of a range has a more normal distribution in the morning and evening hours on 
the weekend and weekdays respectively, as seen in Figure 16. Therefore, the algorithm 
will normally distribute the range operation in the community between about 8 AM 
Sunday morning and at 6 PM Sunday evening.  

One of the shortcomings of this model is that it does not account for the chronological 
order of events; it may start a dryer before a washer. However, in a large community 
these events would represent a very small percentage of all events. Furthermore, as the 
model runs throughout the year, holidays are accounted for by exchanging week profiles, 
as seen in Figure 11, and accommodating holidays to the appropriate day of the week by 
substituting a weekend profile for a weekday holiday.  

 
 Refrigerator  Dishwasher  Washer  Dryer  Range  Lights

6:00 AM 1 0 0 0 0 1
6:15 AM 0 0 0 0 0 0
6:30 AM 1 0 0 0 0 0
6:45 AM 0 0 0 0 0 0
7:00 AM 1 0 0 0 0 0
7:15 AM 0 0 0 0 0 0
7:30 AM 1 0 0 0 0 0
7:45 AM 0 0 0 0 0 1
8:00 AM 1 0 0 0 1 0
8:15 AM 0 0 0 0 0 0
8:30 AM 1 0 0 0 0 0
8:45 AM 1 0 0 0 0 0
9:00 AM 1 0 1 0 0 0
9:15 AM 1 0 1 0 0 0
9:30 AM 1 0 0 0 0 0
9:45 AM 0 0 0 1 0 0
10:00 AM 1 1 0 1 0 0
10:15 AM 0 0 0 0 0 0
10:30 AM 1 0 0 0 0 0

Sunday

 
 

Figure 15. Appliance scheduling spreadsheet 

 
The implementation of the table in Figure 15 is highly subjective and may change 
radically from one community to another. Appliance usage patterns drift slightly as 
suggested by LBNL data,19 but to minimize model complexity these relatively minor 
drifts were ignored. Adding the LBNL data19 into this model should be improved by 
implementing the actual equations that produced the figures shown in Figure 16. Using 
piecewise continuous equations could more accurately distribute the use of appliances 
throughout a day without confining them to uniform or normal distributions. In addition, 
the existence of an appliance in the home does not necessarily imply its use. The current 
model assumes that all appliances existing in the community are used when the model 
encounters a “1” in the appliance scheduling sheet; this is probably not the case in an 
actual community. Data available at the EIA20 correspond to regionally dependent 
appliance usage patterns21. Further implementation of these studies would complement 
LBNL-provided data, thus increasing model accuracy.  
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We would expect the virtual community to exhibit a similar behavior. Figure 17 
represents the power drawn by a community of 100 homes on a per-home basis, that is to 
say, that all individual home loads have been added together and divided by the number 
of homes in the community. The result is an average home consumption for that 
community. This averaging effect, as can be seen in Figure 17, results in an average 
home power profile that is smooth and continuous throughout the day. However, given 
the bottoms-up approach of our model, we are able inspect home load profiles 
individually and notice higher power demand peaks as individual loads are turned on and 
off within the home. Figure 18 illustrates a single home where peak demand reaches 
approximately 12.5 kW for a few minutes. It is important to note that this peak is 
constituted only of domestic appliances; it does not include HVAC loads. The reader may 
notice that Figure 17 does not seem to be representing any load corresponding to a 
clothes washer. Therefore, in Table 2, the total kWh consumed per appliance during the 
24-hour period is displayed, and shows that, in fact, the washer does contribute, but in a 
small way, and the reasons for this behavior are explained.

3.4.5 Modeling Results 
Once the simulation has generated a year’s worth of data, interpreting and using these 
data is an important part of the validation exercise. One effect observed in reality is this 
notion of coincidence. Some utility customers could transiently demand upwards of 15-
20 kW at any point in time, but the likelihood that every other home in the community 
demands a similar magnitude of power is statistically improbable. This concept is well 
understood when it comes to transformer sizing for a finite size community.22 

 
The following section will address the interpretation of the simulation results. 
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Figure 16. LBNL-provided chart19 corresponding to residential drying (left) and residential 

cooking (right) 



 

 

 
Figure 17. Power consumption by appliance (excluding HVAC) for a community of 100 homes scaled to 1 home 
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Figure 18. Power consumption per appliance (excluding HVAC) for a single home over a 24hour period 
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Table 2. kWh Consumption per Appliance Represented in Figure 17 

One Day of Consumption per Appliance 

Appliance Base Refrigerator Dishwasher Washer Dryer Range Lights 

kWh/day 1.138 1.859 1.547 0.068 0.677 2.682 4.306 
 
The first item to point out in Table 2 is that indeed the washer contributes 0.068 kWh to 
the overall profile in Figure 17. The main reason this value is so low is that the average 
home power consumption profile, as illustrated in Figure 17, represents a clothes washer 
usage averaged out over a community where only a fraction of the homes have that 
appliance; this appliance penetration factor was discussed in section 3.4.1 and more 
specifically in Table 1. Therefore, averaging the use of the clothes washer over the entire 
community lowers the average due to the homes that do not own a clothes washer, hence 
making it difficult to see in Figure 17. Instead, if the kWh consumption for the clothes 
washer in Figure 18 (a profile for an individual home with a clothes washer) were 
calculated, the result would be 0.85 kWh for that day, which, if projected over a year, 
yields approximately 200 kWh annually. This value is within the Energy Star annual 
kWh consumption range for clothes washers23 of approximately 100 kWh to 400 kWh. 
Furthermore, it is apparent that the dryer has a ten-fold impact over the washer as shown 
in Table 1. This is not completely unexpected since a washer usually consists of a drum 
or agitator motor, a water pump and in some models, a heating element, and only the 
motor operates during most of the cycle. On the other hand, a clothes dryer consists of a 
drum motor, a blower to circulate air and a substantial heating element, all operating 
simultaneously.  

Another important point to remember is that the day profile shown in Figure 17 cannot 
simply be repeated 365 times to represent a year’s worth of appliance power 
consumption. This is because weekends and holidays are simulated with different user 
behaviors while the model also varies statistically on a daily basis.  

3.4.6 Heating and Cooling Load Modeling 
In this part of the study we adopted a dynamic building energy simulation program 
(DOE-2.2). This program was developed by LBNL as a tool for HVAC load simulation 
to determine the adequate size of heating and/or cooling systems. The program is able to 
simulate energy performance and HVAC loads of a building hour by hour for each of the 
8760 hours in a year. The DOE-2.2 program is composed of four modules that are 
executed sequentially. The LOADS module calculates the hourly cooling and heating 
loads using algorithms suggested by the American Society of Heating, Refrigerating, and 
Air-Conditioning Engineers (ASHRAE). The SYSTEMS module simulates the 
performance of secondary HVAC equipment under conditions of maintaining indoor 
comfort within the building. The PLANT module simulates the energy performance of 
primary HVAC equipment, such as chiller, boiler, and cooling tower, on the basis of 
operating conditions and part load performance characteristics. The maximum chiller 
capacity can be acquired from the PLANT module. The fourth module, ECONOMICS, 
tackles economical benefit analysis, and was not included in the current study. 
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eQUEST is a graphical front end to the widely used freeware building energy analysis 
program DOE-2 (version 2.2). DOE-2 is a powerful building simulation program written 
in Fortran. However, setting up a building simulation using the DOE-2 engine is quite 
complicated. The user is required to provide a text file containing all building parameters 
such as geometry, construction materials, weather data, etc., in DOE-2’s building 
description language (BDL). This is very cumbersome for reasonable sized buildings. 
eQUEST provides a layer of graphics and wizards on top of DOE-2 and contains a parser 
to convert the graphical inputs into BDL that can then be processed by DOE-2. For 
example, eQUEST allows the user to draw the building footprint shape using a sequence 
of keyboard and mouse commands rather than specifying each vertex in a text file. In 
addition, it contains features such as the ability to import building plans directly in as 
AutoCAD files. Another feature is that the building model can be specified via wizards, 
which are pre-populated with sensible default values for unknown building parameters. In 
addition, there is a detailed data edit mode, which exposes most of the functionality of 
DOE-2 while still retaining a user-friendly graphical interface. 

A standard four-bedroom 2500-ft2 colonial-style home was chosen for the simulation. 
Since the size of the PV array was chosen to achieve a specific PV penetration (in 
nameplate array size divided by the maximum 15 minute average total load), the size of 
the home does not impact the quantification of enhanced reliability due to the presence of 
PV (in % penetration). Also, without details of the potential market for enhanced 
reliability with batteries, PV, and load management, it is difficult to posit the size of the 
average home in such a community. The layout from a builder’s Web site in the 
northeastern United States is used for this purpose. The DOE-2.2 uses meteorological 
data to acquire accurate and local climatically responsive HVAC loads. NREL’s 
Resource Analysis group provided data for three locations: California, Colorado, and 
New Jersey. The HVAC meteorological simulation used data containing 15-minute 
weather information of outdoor dry and wet bulb temperatures, relative humidity, total 
horizontal solar radiation, normal solar radiation, and wind-speed for the whole year.  

The other key data that were assumed are occupancy levels, HVAC set points, and 
lighting profiles (used only to calculate the heat gains). Many existing literature sources 
were consulted to obtain this data. Sample results for a whole year of simulation are 
shown in the figure below. The results are validated by the EIA Web site. 
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Figure 19. Detailed electric and natural gas consumption over a year 

 
During outages, we assumed that the homeowners would be able to relax the constraints 
on the heating and cooling set points. A new table of set-points was generated with this 
relaxed constraint and the DOE2.2 simulations were repeated to get a new load profile, 
which was used for reliability calculations during outage conditions. A plot of regular 
(non-outage conditions) and critical loads for one whole year in Colorado is shown in 
Figure 20. 
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Figure 20. HVAC power consumption of a Colorado home over one year 
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Furthermore, to account for different types of heating and cooling topologies, we 
repeated the DOE2.2 model, and the results were then weighted and combined to provide 
average power consumption for the region. Two methods for heating and cooling were 
considered. The first uses direct expansion cooling and a gas furnace, and the second 
method uses a heat pump for both heating and cooling needs. Data gathered for the 
Northeast shows a 66% use of direct expansion cooling with a gas furnace and 33% use 
of a heat pump; this ratio was assumed to be constant for the other two regions. Since the 
DOE2.2 model represents energy consumption for one home, the simulation was repeated 
twice for each region, once with each method. The results were then weighted and 
combined to generate an average home consumption for that particular region. 

3.5 Energy Modeling 
In order to determine the enhanced reliability associated with PV and energy storage, an 
energy balance model was developed. This model incorporates outage duration, timing, 
and the number of customers affected (based on the reliability statistics described earlier), 
and simulates PV output and battery output during an interruption for an individual home. 
Another key input to the model is the load profile (unique for each region and community 
size). Developing a model capable of simulating the critical and total load profiles, in 15-
minute intervals, comprised a substantial component of the effort in this study. 

The modeling approach is described below: 

1. Loads for a community of size n, in geographic location m, have been classified as 
critical or non-critical for each 15-minute period of the day, for 365 consecutive days. 

2. The incident solar insolation and temperature is provided for location m. 

3. The PV output is calculated for location m. 

4. If there is no interruption, electricity is consumed from the PV array and the grid 
charges the battery 

5. If the battery is charged, PV is used to reduce grid consumption 

6. If there is an interruption, non-critical loads are shed and available PV energy is used 
to meet critical loads 

7. The battery is discharged to meet the remaining critical loads 

8. When battery is completely discharged, critical loads are shed and an interruption 
occurs. 

9. After the interruption, the grid meets all loads. Restart at Step 2. 

 
This approach is highlighted in Figure 21. 
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Figure 21. Energy modeling simulation validation 

 
Figure 21 shows an interruption occurring at different times of the day. Based on the 
modeling approach described above, energy from the battery and PV array was used to 
meet the critical loads for each home. The top left figure shows the battery meeting the 
entire critical load in the early morning hours (prior to sunrise). The top right figure 
shows the battery meeting the critical load prior to sunrise and meeting a portion of the 
critical load after the PV is available. The bottom left figure shows significant 
contribution from the PV array. The bottom right figure shows the battery discharging all 
of its energy prior to the end of the interruption. The customer would experience an 
interruption. 

3.5.1 Battery Energy Storage System 
Since the purpose of this study is to quantify the enhancement in reliability, a specific 
battery was not chosen in order to ensure technology neutrality. However, it was 
necessary to specify some battery parameters. The battery system was assumed to operate 
within a 10% to 90% depth of discharge (DOD) range for the maximum rated capacity in 
kWh. In this analysis we assumed that the battery (and power electronics) has a 90% 
charging and discharging efficiency and appropriately sized power electronics to meet the 
maximum critical load the home will experience during the year. It should be noted that 
based on statistical outage data, a battery in an average home in the United States could 
expect to be used, on average, once or twice per year (see above discussion on reliability 
statistics). We assumed that the energy storage system was located at each home in the 
community and represents a stand-alone battery or perhaps, in the future, the battery of a 
plug-in hybrid electric vehicle. For the purposes of this analysis, the relatively high 
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efficiency may slightly overstate the impact of the battery on enhancing reliability. For 
details about battery specifications, see Wiegman & Lorenz24 25 and Stevens & Corey . 

3.5.2 Photovoltaics 
The global insolation data were provided for three locations in the United States (Golden, 
Colo., Hanford, Calif., and Sterling, Va.) for the year 2003. The global insolation was 
translated into the actual insolation incident on the PV array. The incident insolation was 
then used to determine the maximum electrical power that the PV array can deliver. The 
following equation was used to model the PV output for a south-facing array, based on a 
PV array developed using the GE 200-W module. The equation was derived from 
Messenger & Ventre26. 

( ) ref
isoref

global
fcinclambientarray P

P
P

PPTP max171.1006825.0 +−=  

where, 

Pglobal is the global solar insolation (W/m2) data, provided by NREL, for the three 
regions described above. The data varies from zero to the maximum daily solar 
insolation (in 15-minute intervals for an entire year). 

Pincl is an inclination correction that varies, during the daylight hours, between zero 
and unity, to account for the orientation of a south-facing array with respect to ground 
level. 

Pfc is a longitudinal correction that varies, during the daylight hours, between zero 
and unity, to account for the location of the site on the earth, and within the time 
zone. There are corrections for daylight savings time. 

Pmaxref is the maximum output power of the PV array at 1,000 W/m2 and 25°C. 

Pisoref is the reference solar insolation (1000 W/m2). 

Tambient is air temperature near the PV array (°C). 

 
The parameters related to the array performance were obtained from the specifications of 
a GE 200-W solar array27 that was fitted to the Shockley Solar cell equation model and 
scaled using the electrical output power for a particular site. The Shockley model was 
used to determine the maximum electrical power of the PV array as a function of 
insolation level and normalized to the power level data given for a site. Since this model 
is complex, a linear fit equation was derived. This fitted equation introduces minimal 
error to the results as shown in Figure 22. 
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Figure 22. Normalized PV model equation fit 

 
The following assumptions were made: 

• The temperature of the PV array is uniform over the entire array. 

• The wind and ambient temperature effects on PV array were neglected. 

• The effect of albedo was neglected. 

• PV inverter efficiency was assumed to be 95% CEC and constant over the entire 
operating range of inverter operation. 

• The insolation is uniform across the entire PV array. 

• Effects of shading are neglected. 

• The PV array is south-facing only. 

• The PV array design was electrical-power driven and not based on a specific PV 
array design of x modules in series. 

The equation used to model the PV output incorporated information and equations from 
multiple sources [28 29, ]. 

Hourly PV output (kW AC) from a 1-kW south-facing array with a 25º tilt located in 
Golden, Colorado, was obtained from NREL based on simulations using PVWatts, a 
performance calculator for grid-connected PV systems. The insolation data were obtained 
from the NREL SPRL site in Golden and the weather data were taken from a nearby 
airport. The PVWatts output data were compared with the model results for five GE 200-
W arrays with the same orientation. As shown in Figure 23, the hourly PV output from 
the model compares extremely well with the NREL data from 2003 during the middle 
part of the year. However, during the beginning and the end of the year the discrepancy 
between the model’s output and the NREL data is observable. As shown in the bottom 
right of Figure 23, the cumulative error increases during the beginning and end of the 
year, but remains nearly constant during the middle part of the year. The difference 
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between the annual kWh produced by the model and observed output from the 1-kW 
array in Colorado is 14%. This was deemed to be adequate for quantifying the 
enhancement in reliability within a distribution feeder. The model was deemed valid for a 
study focused on the impact of PV, energy storage, and load control on enhanced 
reliability in a distribution feeder. 

December, 2003

January, 2003

April, 2003 December, 2003

January, 2003

April, 2003

 
Figure 23. Model validation for Golden, Colo. Data obtained from NREL. 

 

 31



4. Project Results  

A design of experiments was conducted in order to identify the parameters of interest 
(Table 3). These parameters were combined as inputs to the model. 

Table 3. Design of Experiments for Reliability Enhancement Modeling 

Community Size 10, 100, 1000 homes More homes translate into more load 
profile smoothing. 

Geographic Region Sterling, VA, Hanford, 
CA, Golden, CO 

Insolation and temperature data were 
used for PV modeling and load modeling 
in three regions of the United States. 

Energy Storage 
Capacity 

0, 0.5, 1.0, 2.0, 5.0 kWh Various battery sizes were chosen to 
augment the enhancement in reliability 
provided by solar power 

Photovoltaics 
Penetration 

Various penetrations of PV energy were 
chosen to enhance the reliability in a 
distribution feeder. 

0, 5, 10, 30, 50% total 
maximum peak 15min 
load. 

 
The community size, geographic region, PV array size (chosen to meet specific PV 
penetration levels), and battery capacity were taken as input parameters to the model (see 
Table 4). The output table is also shown in Table 2. For the simulation presented here, the 
outage is 90 minutes in duration (six 15-minute intervals) and affected 872 customers. 
The outage started at the 7884th 15-minute time stamp of the year (March 24 at 2:45 PM). 
Based on the input parameters for this simulation, both the unserved critical kWh and the 
outage duration decreased due to the load support provided by the battery (1 kWh) and 
PV (2.1 kW).  

Table 4. Model Input and Output Tables 

INPUT OUTPUT 
Distributed Generation - Photovoltaics
Location
Community Size
Photovoltaics 2.1 kW

Size of Battery 1 kWh
90.0%

100
CO

PV Penetration

Energy Storage - Battery

Limits from Max/Min 0.1 kWh

50.0%

Round Trip Efficiency

 

Reliability Simulation
Duration (15min intervals)
Timing (15min interval)
No. Customers Affected
Performance Before After
Critical kWh unserved 1.011 0.339
Outage Duration 6 2

7884
6

872

 
 
The entire combinatorial space was considered in the study. The following cases are 
presented here: (1) The impact of community size and geographic region on customer 
reliability, and (2) The impact of PV penetration and battery storage capacity on customer 
reliability. 
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4.1 Community Size and Geographic Region 
In this study, PV penetration was defined as the ratio of the maximum solar array output 
per home (in a specific region of the country) to the maximum total load for the home in 
a given year (on a 15-minute interval basis). Based on this definition, the number of 
arrays on the roof a home was selected to achieve a specific PV penetration level. The 
number of panels on a roof varies depending on the region and the total load of the home. 
For example, an average home in California consumes less electricity than an average 
home in Colorado, so a smaller array on a home in California provides the same PV 
penetration level as a larger array on a home in Colorado. Such scaling is important to 
allow for consistent comparison between regions. 

The range of PV penetration levels and energy storage capacities were chosen and 
simulated in the energy systems model based on the reliability statistics for utility A in 
2005. The many combinations of PV penetration, battery size, community size and 
geographic region were taken as inputs to the model. The results of the study present the 
fraction of each reliability index as compared with the same simulation without the 
presence of PV, energy storage, or critical load controls. This was done to allow for a 
simple comparison of relative improvement in each reliability index for each simulation. 
To summarize, the following reliability indices were considered: 

• Critical SAIDI – average duration of critical load interruptions. 

• Critical SAIFI – average number of interruptions per customer. 

• Unserved Critical Load (UCL) – annual unserved critical load (kWh) on a circuit. 
The indices are based on common distribution reliability indices (IEEE 1366), but on a 
critical load basis. By using reliability indices familiar to the electric utility industry, the 
impact of PV, energy storage, and load controls on enhancing reliability can be quantified 
using metrics that are meaningful to a broader audience. 

The results for three PV penetration levels (10%, 30%, and 50%) for each region and 
community size (without the presence of a battery) are presented in Figure 24. The PV 
penetration levels considered cover a wide range of PV output for a given home. The 
results reveal a definite trend in reliability enhancement as PV penetration levels 
increase. These results indicate that if the PV inverter can function during an outage, the 
presence of PV within a community will completely eliminate some outages (improve 
critical SAIFI) or allow consumers to reduce their outage duration (improve critical 
SAIDI). 

The same simulation was performed with a 1-kWh battery in each home within the 
community (see Figure 25). The battery provided a substantial reduction in outage 
duration and frequency, and largely overshadowed the improvement in reliability 
resulting from the increase in PV penetration levels. The relative impact of PV 
penetration, as compared battery size, on the overall reduction in critical SAIDI, critical 
SAIFI, and unserved critical kWh will be discussed in the next section. 



 

 

 
Figure 24. Customer reliability for 10%, 30%, and 50% PV penetration, with no battery, for three community sizes in three regions of the 

United States. 
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Figure 25. Customer reliability for 10%, 30% and 50% PV penetration, and a 1-kWh battery, for three community sizes in three regions of 

the United States. 



 

As we mentioned earlier, the community size was intended to represent the impact of 
coincidence factor (a smoother load profile represents a community that was able to 
distribute the load more evenly during an outage). A 1000-home community should 
provide a smoother load profile than a community consisting of 10 homes. We therefore 
expected that reliability indices would show improvement for larger communities. 
However, based on these results, there seems to be no common trend between reliability 
enhancement (reduction in the proposed reliability indices) and community size. Since 
the electric load modeling is broken into appliances and HVAC, and the methodology for 
accounting for community size varies between appliances and HVAC, it is difficult to 
postulate that the community size is truly a measure of energy management efficacy. For 
the HVAC simulation there is no randomness associated with the number of homes (e.g., 
the value for 100 homes is obtained by multiplying the HVAC load curve for a single 
home by 100). Conversely, for the appliance simulation, the number of homes affects the 
coincidence factor. Since the HVAC results are highly sensitive to some parameters, such 
as the thermostat settings in each region of the country, the results rely heavily on the 
assumptions for thermostat settings. Additional research could further refine assumptions. 
Therefore, residential load modeling is cited as a significant future research activity that 
will greatly enhance quantification of reliability enhancement. 

In the case of geographic region, each region experiences an enhancement in reliability as 
the penetration of PV increases. For the simulation presented in Figure 24, the reliability 
enhancement in Colorado is generally more pronounced than the other two regions. Since 
the size of the PV array is chosen based on the maximum total load in a region, and 
Colorado has a smaller ratio of critical load to maximum total load than the other two 
regions, Colorado should experience a more significant enhancement in reliability than 
the other two regions because ample solar power is available to meet a lower critical load 
during an outage. Since the classification of loads as being critical or non-critical 
significantly affects the results for each region, additional research on residential load 
modeling would allow for a more definitive conclusion on how reliability enhancement 
varies from region to region. Fifteen-minute appliance and HVAC load data, as well as 
customer preferences regarding critical load classification, may reveal that a region may 
have a unique preference in classifying loads as critical and deferrable. Data on consumer 
preferences in each region will greatly enhance this analysis. 

For the simulation with the 1-kWh battery, California experiences substantial reliability 
enhancement, even with 10% PV penetration. Since annual electricity consumption in 
California is lower than that of Virginia and Colorado, a 1-kWh battery has a more 
significant impact on reliability enhancement in California. The presence of a 1-kWh 
battery in each home contributes to reliability enhancement by more than the increases in 
PV penetration discussed above. This aligns with the commercial building back-up power 
market, where batteries are sometimes used to meet critical loads during an outage. 

4.2 Battery Size and PV Penetration 
If an energy storage medium, such as a battery, is also incorporated into a community, 
there is an opportunity to further enhance reliability. Early analyses revealed that the 
presence of a 10-kWh battery would completely eliminate all outages. As a point of 
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reference, a 10-kWh battery is approximately the size of battery one can expect in future 
plug-in hybrid vehicles. 

The enhancement in reliability is presented for a 100-home community in Golden Colo. 
(see Figure 26, Figure 27, and Figure 28). A range of battery sizes and PV penetration 
levels was considered. 

 

 
Figure 26. Critical SAIDI for a 100-home community in Golden, Colo. 
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Figure 27. Critical SAIFI for a 100-home community in Golden, Colo. 

 

 
 

Figure 28. Critical kWh unserved for a 100-home community in Golden, Colo. 
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Based on these results, a community with no energy storage (0 kWh) and no PV (0%) 
will experience no enhancement in reliability (100% of original index). As a validation 
exercise, this was observed for the indices presented in Figure 24. As PV increases, 
reliability improves. This is suggested by a reduction in the reliability index (decrease in 
average outage duration and frequency is an improvement in reliability and a reduction in 
reliability index). Similarly, as the battery capacity increases, reliability improves. As 
compared with PV penetration level, the enhancement in reliability is more substantial 
when the size of the battery increases. This is a logical conclusion since a charged battery 
is available to meet the critical load of a home during an outage at all hours of the day, 
independent of the presence of sun. Similar trends in reliability enhancement were 
observed for the other two community sizes and geographic regions. 

Based on this study, a significant improvement in these three reliability indices was 
observed when PV and battery energy storage were deployed at each home within a 
community. The presence of more than ~5 kWh of battery capacity per home reduced 
each index to nearly zero (almost a 100% reduction). The contribution of PV to the 
improvement in reliability indices was less significant than a battery system, though 
reliability enhancement was still observed for significant penetration levels. Geographic 
region had a small impact on the overall results, and the impact of community size could 
not be fully evaluated due to limitations of the HVAC modeling. 
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5. Gap Analysis 

As in any model, some external effects cannot be captured due to a lack of information or 
data. For instance, if an interruption is correlated with adverse weather conditions (e.g., 
clouds, rain, and lightning), insolation may be low and PV may be unavailable. Unless 
reliability data and insolation data are sourced for the same region and timeframe, the 
model will not capture this nuance. No data were available that correlated insolation, 
temperature, and outage statistics. Such data would eliminate the need to assume outages 
were independent of weather conditions. 

The model assumes the immediate availability of the battery and PV to meet critical loads 
during both short-term and sustained interruptions. The model also assumes that this 
“alternative supply” of electricity from PV and battery is not interrupted during grid 
interruptions. These assumptions were necessary in order to model the system. 

Distribution reliability statistics were obtained from a single utility in the northeastern 
United States (Utility A). The statistics for the entire utility were used to represent the 
outage statistics for the communities considered in this study. Data from additional 
utilities would facilitate more representative analyses. 

The reliability data include a description of the weather condition during each outage 
event. However, for the same reliability data, there is no data for temperature, wind 
speed, and insolation. Annual weather and reliability data from a single source for a 
single region would provide the necessary correlation between weather conditions and 
PV performance. 

The model timeline is broken into 15-minute intervals for both load modeling and 
reliability modeling for an entire year. This decision was based on the computational 
power required to model shorter intervals as well as the lack of data available in shorter 
intervals (i.e. insolation data). The choice of 15-minute intervals for modeling implicitly 
assumes that any shorter-duration outages or electricity loads cannot be captured. For 
instance, the model does not account for transient loads due to startup, nor does the 
model account for the variation in load associated with restarting the grid after an 
interruption. We anticipate that the loads could substantially exceed the 15-minute rolling 
load average. 

During an outage, the loads deemed non-critical during an outage will eventually become 
critical. As such, over the duration of an outage, critical loads will tend towards the total 
load. Essentially, an individual can go without certain appliances for a period of time, but 
at some point the individual will deem the appliance critical. This has not been accounted 
for in the model. 

The model represents the effectiveness of energy management via the community size 
parameter. Load averaging over many homes will result in smoother load profiles than 
load averaging over fewer homes. The model assigns the number of customers affected 
based on the outage duration chosen from a discrete distribution provided by Utility A. 
The load profile is not scaled based on the number of customers affected. Instead, we 
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assumed that the community size impacts only the smoothing of the load. Therefore, the 
community size parameter is a suitable proxy for energy management efficacy. One of 
the key assumptions of this study is the fact that for each outage event, the affected 
number of customers can reconfigure their loads into critical and non-critical loads, as 
well as operate as an islanded community, sustaining its critical loads through the use of 
PV and energy storage. Future research should be performed to identify the technology 
required to create such functionality within a community. 

Further data and analysis could generate a metric of the percentage increase in reliability 
per kWh of battery size per kW of average critical load. This could provide a residential 
customer with guidance on sizing a battery for enhanced reliability. In addition, 
enhancing the battery model to include durability and charge/discharge characteristics, 
and revising its current optimization function (providing energy during outages) could 
provide a better representation of a battery in a residential community. 
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6. Recommendations for Future Research 

The following headings outline specific future research directions that would enable a 
more detailed modeling analysis based on the fields of residential load modeling, 
distribution reliability statistics, and energy systems modeling. 

Load reconfiguration technology—We assumed in this study that the loads in a 
home/community could reconfigure (critical and non-critical) at the onset of an 
interruption. Identifying the technology and controls needed to perform this function is 
critical to achieving enhanced reliability using PV systems. 

Customer reliability statistics—A single utility’s reliability statistics were used in this 
analysis. Further data and specific information about which customer was affected during 
an outage event would enhance the accuracy of the simulation. This information will be 
needed for both utilities and customers in order to quantify the economic benefit of 
enhanced reliability due to PV systems. 

Load profile breakdown—A breakdown of the contributions of various appliances to the 
overall aggregate load of a home (and community) through a year will be needed before 
customers and utilities can evaluate the effectiveness of home load control technology for 
either improving economics or enhancing reliability. This could be done by instrumenting 
many homes across the country with load data acquisition systems. 

Critical loads in communities—Residential customer surveys of appliance usage or 
appliance feedback to the utility are needed in order to quantify the contribution of each 
appliance to the total load in a home/community. Identifying the critical loads is 
paramount to sizing PV arrays and battery storage systems.  

Value of lost load—At the cornerstone of quantifying the enhancement in reliability is the 
understanding of the value of deferring/eliminating an outage. By understanding the 
economic value of avoiding an outage, utilities and customers will be in a position to 
invest in residential load controls, PV systems, and energy storage systems. 

Availability of load data—A central data repository that consists of all non-proprietary 
data from this and similar studies, would enable future studies to be performed. 
Additionally, ease of data acquisition could enable many other, related studies. 

Improve DOE 2.2—This DOE tool was used to simulate HVAC loads in a given home 
for three regions. By enabling 15-minute incremental outputs, higher fidelity models 
could use DOE 2.2 as a tool. As was mentioned earlier, no coincidence factor was 
available from DOE 2.2. By aggregating the HVAC loads from multiple homes (i.e., 
smoothing the HVAC load profile), DOE 2.2 could be used in more and varied 
applications. 
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7. Conclusions and Recommendations 

The existence of power generation on the “customer side of the meter” creates an 
opportunity for residential customers to not only enhance the economics of electricity 
consumption, but also to enhance the reliability of their electric system by islanding 
during utility outages. As the penetration of PV rises over the coming years, customers 
will have the opportunity to meet some of their most critical loads during grid 
interruptions. By developing the technology to reconfigure loads during an outage, 
individual customers will be afforded the opportunity to enhance the reliability of their 
electric service through the management of their loads, solar PV, and energy storage 
devices. 

The timing, duration, and number of customers affected by each outage event were 
obtained for a single utility in 2005. These data were used to simulate outage events for a 
community on a distribution feeder. Overall, this technology resulted in a community 
experiencing fewer outages and outages of shorter duration. 

The parameters considered in this analysis include three geographic regions (Golden, 
Colo., Hanford, Calif., and Sterling, Va.), three community sizes (10 homes, 100 homes, 
and 1,000 homes), and various combinations of battery capacity (0 to 10 kWh) and solar 
PV penetration (0%, 5%, 10%, 30%, 50%). The distribution reliability indices presented 
in IEEE 136630 were adapted to account for the management of energy storage and PV in 
meeting only the critical loads in each home or community. The enhancement in 
reliability was quantified in terms of modified reliability indices, pertinent to these types 
of communities: 

• Critical SAIDI —average duration of critical load interruptions. 

• Critical SAIFI—average number of interruptions per customer. 

• Unserved Critical Load (UCL)—annual unserved critical load (kWh) on a circuit. 
A significant improvement in these three indices was observed when PV and battery 
energy storage were deployed at each home within a community. The contribution of PV 
to the improvement in reliability indices was observable, but less substantial than that of 
a battery energy storage system. Geographic region had a small impact on the overall 
enhancement in reliability. The impact of community size has to be reevaluated. 

Finally, many specific research topics were identified that will help evaluate the impact 
of distributed technology on customer reliability with better accuracy. 
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