ZnO:Al Doping Level and Hydrogen Growth Ambient Effects on CIGS Solar Cell Performance

Joel N. Duenow David M. Wood Brian Egaas Colorado School of Mines Golden, Colorado, USA Timothy A. Gessert Rommel Noufi Timothy J. Coutts National Renewable Energy Laboratory Golden, Colorado, USA

33rd IEEE Photovoltaic Specialists Conference May 12, 2008

NREL/PR-520-43257

Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

This work was supported by DOE contract DE-AC36-99G010337 and NREL subcontract KXEA-3-33607-24

Modeled TCO Absorptance

Best optical properties by increasing mobility rather than carrier concentration

Investigations in this study

ZnO:Al Studies

- ZnO:Al with 2.0 wt.% Al₂O₃ commonly used, but limits carrier mobility
- We investigate lightly-doped ZnO:Al grown using small amounts of H_2 in the Ar sputtering ambient
 - 0.05, 0.1, 0.2, 0.5, 1.0, **2.0** wt.% Al₂O₃

CIGS PV Device Studies

Compare CIGS PV devices with lightly-doped and standard ZnO:Al ($0.1 \text{ wt.\% Al}_2O_3 \text{ vs. } 2.0 \text{ wt.\% Al}_2O_3$)

Film Growth

Electrical Data - Ambient Studies

- Adding O₂
 sharply decreases
 both carrier
 concentration and
 mobility
- Adding H₂ in limited amount is beneficial to both

Electrical Data - Substrate Temp. Series 100% Ar and 0.3% H₂/Ar, 0.2 wt.% Al₂O₃

- 100% Ar peaks at ~150-200°C
- Slight monotonic decrease for $0.3\% H_2/Ar$
- Tolerance for higher substrate T with H₂ added

Optical Data

Best optical properties for ZnO-based films, substrate temp. 200°C								
Thic	k. (nm)	n (cm	⁻³)	μ (cm ²/Vs)	ρ (ž cm)			
Undoped ZnO	390	3.3x10	19	48	4.0x10 ⁻³			
ZnO:AI (0.1 wt.%)	370	1.1x10	20	52	1.1x10 ⁻³			
ZnO:AI (0.2 wt.%)	420	1.7x10	20	49	7.7x10 ⁻⁴			
ZnO:AI (0.5 wt.%)	410	3.4x10	20	36	5.1x10 ⁻⁴			
	490	5.5x10	20	32	3.6x10 ⁻⁴			
ZnO:Al (2.0 wt.%)	470	5.9x10	20	25	4.3x10 ⁻⁴			

Burstein-Moss shift observedFree-carrier absorption in infrared

CIGS PV Device Studies

Control:

- 2.0 wt.% Al₂O₃
 - CdS by chemical bath deposition
 - 100 nm IZO, 120 nm ZnO:Al

Test:

- 0.1 wt.% Al₂O₃
 - CdS/ZnS (~20/30 nm)
 - 100 nm IZO, 120 nm ZnO:Al

CIGS PV Device Studies - 2

- Efficiency, FF, V_{OC} , J_{SC} compare favorably with control sample
- QE: Difference at low wavelengths due to CdS vs. CdS/ZnS
- At higher wavelengths, QE of 0.1% Al₂O₃ cell rivals 19.5% WR cell

Al ₂ O ₃ Content (wt.%)	Treatment	Efficiency (%)	Fill Factor (%)	Open-curcuit voltage (mV)	Short-circuit current (mA/cm ²)
0.1	CdS/ZnS	18.1	76.2	671	35.4
2.0	CdS	18.1	79.1	666	34.4

Conclusions

- Lightly-doped ZnO (grown in H₂) can substitute for the standard 2.0 wt.% Al₂O₃
 - increased carrier mobility
 - increased near-IR transmittance
- Addition of H₂ enables best mobility and carrier concentration for ZnO:Al using room T deposition and increased tolerance for higher T
- In initial CIGS PV device studies:
 - Efficiency, FF, V_{OC} , J_{SC} compare favorably with control
 - QE comparable to former WR cell at higher wavelengths

All CIGS PV Device Results

Resistivity vs. O_2 /Ar and H_2 /Ar Ratios

Electrical Properties vs. Substrate Temp.

Mobility (μ) vs. Carrier Concentration (n)

Undoped ZnOPassivation of defects by H

ZnO:Al

- Activation of dopant with H
- Ionized impurity scattering

H₂: Filling sites (e.g. on grain boundaries) on which dopant atoms would not contribute carriers?

Absorptance vs. Wavelength

To what extent is H₂ incorporated in films?

- SIMS measurements show $\sim 10^{21}$ cm⁻³ H conc.
- But carrier conc. is $\sim 10^{19}$ cm⁻³, so most H not ionized

SIMS measurements by Matthew R. Young, NREL

At what T is H₂ removed from ZnO?

• Decrease in carrier concentration and mobility appears near temp. at which desorption occurs

Measurement performed by Anne Dillon, NREL

Structure - H₂ and Thickness effects

- Is change in d spacing due to H₂ or thickness?
- To what extent is H₂ incorporated into films?

- Peak shifts to lower angle and decreases in intensity with H_2/Ar
- But film thickness also decreases by up to 50% with growth in H.

Separating H₂ and Thickness Effects

- Empirical fit of d spacing vs. thickness for fixed Al and H₂ amounts
- Fit of H₂ vs. thickness for all Al amounts

Scattering Mechanisms Using T-dep. Hall

Undoped ZnO 0.1% H₂/Ar

Temp. activation
 ⇒barrier (dangling bonds?)

0.3% H₂/Ar

- Phonon scattering
- Passivation of dangling bonds at grain boundaries

ZnO:Al

 Increasing ionized impurity scattering with Al dopant

Dopant Ionization - EPMA

Ionization % =
$$\frac{n_{\text{Doped}} - n_{\text{Undoped ZnO}}}{n_{\text{EPMA}}}$$

- Limited H₂ aids ionization
- Ionization decreases with Al level
- Mo has poorest ionization

Measurements performed by Bobby To, NREL

- Mo-doped films contain near the amount of dopant specified
- Al-doped films all contain greater amts. of Al

Performed by Bobby To, NREL

Scales Top: 2.1 μm wide Bottom: 0.73 μm wide Increasing roughness and faceting Increasing lateral crystallite growth Does lateral growth improve electrical properties?

Native Defects: Why is Undoped ZnO n-type?

- Oxygen vacancies?¹⁻³
 - High formation energy, deep donor⁴
- Zn interstitials?⁵
 - High formation energy, high diffusivity⁴
- Hydrogen as dopant (bonded to O)
 - H interstitial⁶
 - H₂ in Zn vacancy⁷
 - H always a donor in ZnO⁸⁻¹¹

- ¹G.D. Mahan, J. Appl. Phys. 54, 3825 (1983).
 ²E. Ziegler *et. al.*, Phys. Status Solidi A 66, 635 (1981).
 ³A.F. Kohan *et. al.*, Phys. Rev. B 61, 15019 (2000).
 ⁴A. Janotti and C.G. Van de Walle, J. Crys. Growth 287, 58 (2006).
 ⁵D.C. Look *et. al.*, Phys. Rev. Lett. 82, 2552 (1999).
 ⁶C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
 ⁷E. V. Lavrov *et. al.*, Phys. Rev. B 66, 165205 (2002).
 ⁸C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
 ⁹C.G. Van de Walle, Phys. Stat. Sol. B 235, 89 (2003).
 ¹⁰Ç. Kiliç and A. Zunger, Appl. Phys. Lett. 81, 73 (2002).
- ¹¹A. Janotti and C.G. Van de Walle, Nature Materials **6**, 44 (2007).

Benefits of ZnO TCO

- May be less expensive than comparable materials (e.g. ITO)
- No adverse effects from H₂-rich plasma
- High transparency in visible and near-IR

