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ABSTRACT 
 

We have developed a new technique for measuring 

the quantum efficiency (QE) in solar cells in real-time 

using a unique, electronically controlled, full-spectrum light 

source.  Full-spectrum QE graphs can be obtained in less 

than one second (as opposed to 20 minutes using 

traditional QE instruments). The high measurement speed 

is achieved by parallel processing of information from a 

multitude of spectral channels encoded in modulation 

frequency bands.  The reduction in time scale makes this 

QE measurement technique compatible with inline 

production diagnostics, high-fidelity, spectral-matching cell 

binning, and thin-film module spatial spectral response 

uniformity tests.  The instrument is completely solid-state 

with no moving parts, is robust enough for manufacturing 

environments, and is significantly less expensive than a 

traditional QE instrument. 

 

INTRODUCTION 
 

Quantum efficiency (QE) or spectral response 

measurements are extremely valuable tools for 

understanding device physics and materials properties of 

solar cells.  A QE diagram can reveal material band gaps 

and thicknesses in single and multilayer solar cells, 

minority carrier diffusion lengths,[1] spectral-dependence 

of short circuit current and qualitative spatial electronic 

behavior within cells[1,2]  Traditionally, QE measurements 

are made with a mechanically driven spectrometer to 

direct monochromatic, chopped light onto a cell.  Lock-in 

amplifier techniques measure the cell response (collected 

electron-hole pairs/photon flux) in a serial manner over the 

spectrum of interest. To obtain good signal-to-noise in the 

data and to allow time for mechanical switching of 

wavelengths within the monochrometer, measurements 

typically take 20 minutes (after system calibration).   

Because of this time burden, QE instruments are typically 

only found in laboratory settings – never on cell production 

lines.  

This paper discusses the development of a new 

technique for measuring the quantum efficiency in solar 

cells that reduces the time for measurement from 20 

minutes to less than one second.  This time reduction 

makes QE measurements compatible with cell and 

module production-line speeds, bringing a higher level of 

diagnostics to solar cell and module manufacturing.  We 

envisage making the new QE system available for in-line 

cell diagnostics, high fidelity, spectral-matching cell 

binning, and thin-film module spectral response uniformity 

tests across the solar cell and module industry. 
The new real-time quantum efficiency (RTQE) 

system, developed at NREL, shifts a QE measurement 

from serial to parallel, thus taking the entire QE spectrum 

simultaneously in less than one second.  It is similar in 

nature to the instrument by Bucher and Schonecker[3]; 

however our approach is less complex, considerably less 

expensive, completely solid state and significantly faster. 

 

PRINCIPLE OF OPERATION 

 

 The high measurement speed is achieved by 

parallel processing of information from a multitude of 

spectral channels encoded in modulation frequency 

bands.  This is achieved by an electronically controlled, 

full-spectrum light source (ECLS) that allows individual 
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on/off frequency control over specified spectral ranges.  

The ECLS is an electronically controlled array of light 

emitting diodes (LED), each with a unique spectral 

emission, but with a slight overlap in wavelengths such 

that the ECLS spectrum covers a typical solar cell spectral 

response (300 nm – 1200 nm).  Figure 1 shows the 

individual LED spectra for one embodiment of the ECLS 

which uses 57 LEDs.  A sine-wave generator and an 

amplifier, both of which are controlled by a computer, 

power each LED in the ECLS.  This arrangement allows 

for each LED to operate at a unique frequency and/or 

intensity.  Light from the LEDs in the ECLS is focused to a 

common area either by lenses, mirrors or by fiber optics.  

A schematic of the ECLS and the RTQE system is shown 

in Figure 2.    

The RTQE system works by focusing light from the 

ECLS onto a solar cell with each LED in the ECLS 

switched on and off at a unique, specified drive frequency.  

All of the LEDs in the array are driven simultaneously.  

The drive frequency of each LED is set above the inverse 

minority carrier lifetime of the cell and is not a multiple of 

the other LED drive frequencies.   The response of the cell 

or the A.C. current vs time signal (Figure 3) is sent through 

a current-to-voltage preamplifier after which it is recorded 

by a computer-based analog-to-digital converter (DAQ 

card).  The digitized signal is then Fourier transformed to 

determine the power spectrum (Figure 3).  The power 

spectrum separates out the frequency components of the 

total signal that exactly match the specified drive 

 
Figure 1. (left axis) Spectra of the individual LEDs in 

the electronically controlled light source using 57 

LEDs. (Right axis) AM1.5 solar spectrum. 

 
Figure 2. Schematic of the real time quantum efficiency 

instrument. 

 
Figure 3. Schematic of current versus time data 

from a solar cell illuminated with light from the 

ECLS. All of the LEDs flash simultaneously at a 

unique drive frequency onto the solar cell.  The data 

are transformed into a power spectrum using FFT 

mathematics.  A power spectrum of the total current 

vs time signal separates out the current 

contributions from each LED. 
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frequencies of the LEDs in the ECLS.  The amplitude of 

the power spectrum frequency components are directly 

related to the current generated in the cell from the light of 

the corresponding LED.  Calibration of the system is done 

with a reference cell by scaling the known current to the 

amplitude of each frequency component in the power 

spectrum.  A computer program continuously records the 

data, applies the calibration algorithm, and updates a QE 

graph.  A QE graph is obtained by assigning the current 

generated for each drive frequency to the peak 

wavelength of the associated LED.  The update rate of the 

QE graph is determined by the capture rate of the analog-

to-digital converter and by the integration time of the 

power spectrum.  Typical graphical update rates are less 

than 1 second.  Figure 4 shows a QE graph measured by 

the RTQE system (dots) using a prototype 10-LED ECLS.  

The dashed line in fig. 4 is the QE measured by a 

traditional QE system.  The agreement between the 

techniques is excellent. 

 

TECHNICAL NOTES 
 

The RTQE system is a very fast and stable technique 

for measuring the quantum efficiency in solar cells.  To 

implement the new method, however, several technical 

considerations should be addressed.   

1) Selection of LEDs: An enabling technology for the 

RTQE system has been the tremendous progress in 

available LED spectra and intensity.  When choosing 

LEDs for the ECLS one should consider spectral 

symmetry and intensity.  Some LEDs appear to the human 

eye to have a single color but in fact are a combination of 

two or more colors mixed together.  Only LEDs with a true 

single color (spectral symmetry) should be used in the 

ECLS.  If some LEDs are not intense enough to produce 

good signal to noise, multiple, identical LEDs can be 

ganged together.  

 
Figure 4. Quantum efficiency data (dots) generated in <1 
second using a 10-LED prototype RTQE system.  The 
dashed line is QE data from a traditional QE system.   

2) LED drive signal: A pure sine wave generator 

should be used to drive the LEDs in the ECLS in order to 

produce the fewest harmonics during the FFT. 

3) Drive frequency: As mentioned above, the drive 

frequency for each LED should be carefully chosen.  In 

general, the drive frequencies for each LED should be 

selected such that there is no overlap in power spectrum 

peaks.  Practically this means drive frequencies should not 

be multiples of each other and should be shifted away 

from large secondary harmonic peaks in the power 

spectrum due to non-sinusoidal current response in a 

solar cell.  Drive frequencies should be high enough to 

allow fast data averaging, but low enough to allow electron 

hole pairs time to be collected. 

4) LED spectral spread: Because light emission from 

LEDs is not monochromatic,[4] there is a spectral spread 

in wavelength on the order of 10 nm inherent with each 

data point in the QE graph.  The wavelength resolution of 

the QE graph by this technique is determined by the 

spectral spread of the individual LEDs and by the number 

of different-spectrum LEDs in the ECLS. The spectral 

spread of the individual LEDs and the spectral overlap 

between LEDs can be accounted for in a calibration 

algorithm that utilizes Singular Value Decomposition 

(SVD) matrix algebra.  Solid state lasers could also be 

used instead of LEDs in the ECLS to give sharp spectral 

bandwidths. 

5) Data Acquisition:  Data acquisition rates should be 

at least twice the highest drive frequency in the ECLS.   

 

ENVISAGE 
 

The RTQE instrument is completely solid-state with 

no moving parts, is robust enough for manufacturing 
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A follow-on to the electronic filtering idea is to match 

a specific spectrum with the ECLS by varying the intensity 

of the individual LEDs in the array.  Almost any spectra of 

choice (AM0, AM1.5, Moon, Mars, Etc) can be quickly and 

easily simulated.  

environments, and is significantly less expensive than a 

traditional QE instrument.  Except for the highest 

resolution QE measurements (Δλ ~ 1-2 nm) the RTQE 

(with LEDs in the ECLS) could replace traditional QE 

measurement systems in the laboratory saving time and 

money.  Additionally, the speed of the RTQE instrument 

allows QE measurements to be made on every cell and 

module in a manufacturing line during standard contacting 

for current versus voltage tests.  The ability to measure 

QE on each cell could allow for finer binning of cells by 

spectral-matching “identical” short-circuit current cells.  

This finer binning of cells would account for daily and 

yearly AM1.5 solar spectral shifts, which could maximize 

annual power output from a module.   Additionally, the 

RTQE system allows new production-line materials 

diagnostics and device physics feedback not available in 

current production lines.  

NREL has developed prototypes of the system and has 

secured licensable intellectual property rights.  We are 

seeking industrial partners to commercialize this 

technology to the solar industry.  Interested parties should 

contact the Technology Transfer Department at NREL, 

(David Christensen) +1 (303) 275-3015.  
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