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ABSTRACT 

The accuracy requirements for modern nuclear reactor simulation are steadily increasing due to 
the cost and regulation of relevant experimental facilities.  Because of the increase in the cost of 
experiments and the decrease in the cost of simulation, simulation will play a much larger role in 
the design and licensing of new nuclear reactors.  Fortunately, as the work load of simulation 
increases, there are better physics models, new numerical techniques, and more powerful 
computer hardware that will enable modern simulation codes to handle the larger workload.  This 
manuscript will discuss a numerical method where the six equations of two-phase flow, the solid 
conduction equations, and the two equations that describe neutron diffusion and delayed neutron 
precursor concentration are solved together in a tightly coupled, nonlinear fashion for a 
simplified model of a nuclear reactor core.  This approach has two important advantages.  The 
first advantage is a higher level of accuracy.  Because the equations are solved together in a 
single nonlinear system, the solution is more accurate than the traditional “operator split” 
approach where the two-phase flow equations are solved first, the heat conduction is solved 
second and the neutron diffusion is solved third, limiting the temporal accuracy to 1st order 
because the nonlinear coupling between the physics is handled explicitly.  The second advantage 
of the method described in this manuscript is that the time step control in the fully implicit 
system can be based on the timescale of the solution rather than a stability-based time step 
restriction like the material Courant.  Results are presented from a simulated control rod 
movement and a rod ejection that address temporal accuracy for the fully coupled solution and 
demonstrate how the fastest timescale of the problem can change between the state variables of 
neutronics, heat conduction and two-phase flow during the course of a transient.
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1. INTRODUCTION

The current generation of tools used in the United States for thermal hydraulic simulation of 
nuclear power plants, such as RELAP5 [1] and TRAC [2], were written in the 1970’s.  Because 
of constraints on computer speed and memory at the time of their inception, sacrifices were made 
in terms of physical models and numerical methods.  For example, different types of physics 
(neutron diffusion, heat conduction and two-phase fluid flow) were handled separately by what 
often originated as stand-alone simulation tools.  The results of these separate tools were then 
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loosely coupled by the high-level software package to represent the transient.  This type of 
“operator splitting” remains standard practice among the current state-of-the-art nuclear power 
plant system safety analysis software.  Regardless of the order in which the various tools are 
used within the software, the values of some of the variables at new time are calculated based on 
variables and/or closure relations available only at old time.  This traditional approach nearly 
always limits the temporal accuracy of the entire algorithm to 1st order in a transient simulation, 
regardless of the accuracy of the constituent solution algorithms for each type of physics [3] and 
can lead to oscillations which may prevent convergence in a steady state problem [4] (Note: 2nd

order in time operator split algorithms are possible). 

Since the 1970’s, exponential increases have been realized in computing speed and memory size 
accompanied by ever-decreasing costs.  With today’s machines, it is possible to take advantage 
of new numerical algorithms which allow for fully implicit solution of large non-linear systems 
of partial differential equations (PDE’s) with 2nd order accuracy in time.  Rather than splitting the 
different types of physics, they can remain tightly coupled and all variables and constitutive 
relations can be solved for simultaneously at new time.   

This work involves the simulation of a simplified nuclear reactor core wherein nine nonlinearly 
coupled PDE’s are discretized and solved simultaneously using the 2nd order in time physics-
based preconditioned Jacobian Free Newton-Krylov (JFNK) method [5,6,7].  The equations 
solved are the six equations of 1-D two phase flow, a single 2-D heat conduction equation and 2-
D neutron diffusion and precursor concentration equations.  A similar reactor model was used in 
previous work in order to demonstrate the advantages of JFNK methods over operator splitting 
[3].

2. OBJECTIVES

The work presented in this manuscript represents several key changes to the reactor model used 
in previous work described in [3].  Firstly, more realistic neutronic parameters (cross-sections 
and delayed neutron fraction) were added in order to portray more realistic timescales for the 
simulations.  Secondly, a basic model was added to simulate decay heat generation after reactor 
shutdown.  Finally, a control rod model was added.   

In this work, the control rod was manipulated to create three different types of transients.  The 
first was a slow transient in which the rod was moved with a prescribed position versus time.  
This transient was used to demonstrate that the simulation was 2nd order accurate in time with the 
control rod model.  The other two types of transients simulated were rod ejection accidents 
(REA’s).  The first type of REA was an instantaneous ejection used to demonstrate the various 
timescales of state variables in the problem and the advantages of the time step control of JFNK 
methods.  Three more REA transients were simulated with rod ejection times of 0.01, 0.05 and 
0.1 seconds.  The effects of the three ejection speeds are compared with the results of the 
instantaneous rod ejection. 
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3. DESCRIPTION OF MODEL 

3.1. PDE’s and Closure Models 

The nine PDE’s solved in this simulation are described briefly in this section along with some 
mention of closure models.  For a more complete description of the equations, closure models 
and the solution method, see [4,6,7].   

The conservation of mass in the vapor phase is given by  

g
ggggg

x
v

t
(1)

where  is the volume fraction,  is mass density, v is velocity, t is time, x is position, g is 
interphase mass transfer from liquid to vapor and the subscript g refers to the vapor phase.  The 
conservation of mass in the liquid phase is given by  
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where the subscript f refers to the liquid phase. 

The conservation of momentum for the vapor phase is given by  
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where P is pressure, awg is the wall surface area in contact with vapor, Fwg is the wall friction 
coefficient corresponding to the vapor phase, ai is the interfacial area between phases, and FI is 
the interfacial friction coefficient.  The conservation of momentum for the liquid phase is given 
by
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where awf is the wall surface area in contact with liquid and Fwg is the wall friction coefficient 
corresponding to the liquid phase.  The interfacial velocity term vi in Equations 3 and 4 is given 
by the following simplified model 

fgi vvv
2
1

(5) 

The equation for conservation of energy in the vapor phase is as follows 
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where U is specific internal energy, Hwg is the wall heat transfer coefficient corresponding to heat 
transfer from the wall to the vapor, Hfg is the heat transfer coefficient between liquid and vapor, 
Hig is the heat transfer coefficient between the vapor and the interface, Tw is the temperature of 
the solid fuel, Tg and Tf are vapor and liquid temperatures, respectively, and Ts is the fluid 
saturation temperature.  Similarly, the conservation of energy in liquid phase is given by
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where Hif is the heat transfer coefficient between the phase interface and the liquid. 

The liquid and vapor mass transfer enthalpies found in Equations 6 and 7 are given in terms of 
the liquid and vapor enthalpies, hf and hg, and the liquid and vapor saturation enthalpies, hfs and 
hgs, by 
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Conservation of energy in the fuel is given by the following equation 
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where K is the thermal conductivity,  f is the thermal neutron fission cross-section, ef is the 
energy released per fission,  is the thermal neutron flux and ew is the internal energy in the fuel.  
It should be noted that only the components of the fuel temperature array (Tw) in contact with the 
fluid are used in the convection heat transfer (terms in curly brackets in Equation 10).  The tight 
coupling between heat conduction in the solid and neutron diffusion is revealed by the presence 
of the fission energy as the internal heat source in the solid, given by the 

ff e  term in Equation 
10.  The conservation of neutrons is accounted for by the following thermal neutron diffusion 
equation
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where vth is the speed of thermal neutrons (2200 m/s), D is the thermal neutron diffusion 
coefficient, a is the thermal neutron absorption cross-section, nf is the number of neutrons 
emitted per fission reaction,  is the delayed neutron fraction,  is the decay constant of the 
delayed neutron precursors and C is the delayed neutron precursor population.  In this model, DH
determines the timescale with which the decay heat model is activated once the flux  drops 
below a threshold “floor” in the flux denoted by 0 . The delayed neutron precursors are 
conserved according to the following equation 

0Cn
dt
dC

ff  (12) 

Here, one delayed neutron precursor group is assumed with parameters averaged accordingly. A 
simple decay heat model was used in this work to account for heat generation from fission 
products and actinides after reactor shutdown.  Though not indicated by the forms of Equations 
11 and 12, the neutron absorption and fission cross-sections, a and f, and the thermal neutron 
diffusion coefficient D are modeled as functions of the moderator density m and the fuel 
temperature Tw, thus preserving the tight coupling between the neutron diffusion, heat 
conduction and two-phase fluid flow.  The forms of these dependences are given in [3]. 

3.2. Control Rod Model 

As was mentioned above, this work involved the incorporation of a control rod model into the 
reactor simulation.  This was modeled as an additional parasitic capture cross section in the 
nodes that the control rod is adjacent to.  The worth of the rod at a certain axial location x is 
given by 

rod
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where CR is the control rod worth in a node, CR
max is the maximum rod worth, x is the axial 

location of interest, Xrod is the position of the end of the control rod and rod is the width of the 
hyperbolic tangent shape in the worth near the end of the rod making it a smooth function of 
position.  The rod location at a given time tn+1 is given by 

 (14) 
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where Xrod is the rod axial location and Vrod is the rod velocity.  It should be emphasized that the 
time integration of rod velocity in Equation 14 must be performed accurately if the simulation is 
to be 2nd order accurate in time (it was done analytically in this study).  The rod velocity was 
governed by the following equation 
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where t1 is the time to start insertion and t is the width of the hyperbolic tangents used to 
simulate stops and starts of the movements smoothly. 

3.3. Solution Algorithm 

As mentioned above, the simulation uses the 2nd order in time JFNK method with physics-based 
preconditioning.  As this solution method is documented in [4-6], a discussion which will not be 
given in detail here.  The nine equations (Equations 1, 2, 3, 4, 6, 7, 10, 11 and 12) are discretized 
to give a non-linear system of equations 

0xres  (16) 

where res is a vector comprised of the nine discretized conservation equations and x is a vector 
containing all of the unknowns (vg, vf, g, P, Ug, Uf, Tw, , C).  Newton’s method is used to 
produce a sequence of linear problems that are then solved by an iterative Krylov method 

kkk xresxJ  (17) 

where k is the Newton iteration index.  The physics-based preconditioner uses an operator split 
solution method in order to accelerate the convergence of the Krylov iterations.  

3.4. Time Step Control 

In discussion of the time step control scheme used in this work, it is instructive to first consider 
operator split (or semi-implicit) methods.  In order for semi-implicit solutions to be numerically 
stable, they must respect the material Courant limit.  Thus the time step is given by 
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where tn is the time step, x is the size of a spatial node, vn
g,i and vn

f,i are vapor and liquid 
velocities in each mesh location at time step n and cfl is defined by the user.  Simply put, the 
material Courant limit dictates that in order to maintain numerical stability, no vapor or liquid 
may completely pass through a calculational node during a single time step.  The value of cfl is a 
user-specified fraction of that maximum time step which gives the actual time step to be used in 
the simulation.  This type of time step control is common among operator split, or semi-implicit, 
codes.  The maximum time step that would be dictated by the material Courant limit (before the 

cfl is applied) is referred to in this work as the CFL. 

The weakness of this type of time step control is that it does not consider the timescales of the 
state variables in the problem.  Therefore, the accuracy of the solution is not used in the 
determination of time step in operator split algorithms.  Time steps dictated by the CFL may be 
much smaller than those required to capture the timescales of the physics in the problem 
resulting in excessive computation.  Conversely, the time step dictated by the CFL may be much 
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larger than would be required to resolve physics with faster timescales.  Unless a time step 
convergence study is performed, a priori knowledge of the fastest timescales is required for 
accurate simulation.  This is in contrast to the time step control scheme used in the work 
presented here.

Because of the fully-implicit nature of the 2nd order in time JFNK method, there is no numerical 
stability limit and the time step can be determined based on the rate at which state variables 
change.  In other words, the size of each time step required to achieve a desired accuracy can be 
determined based on the fastest timescale of the solution at that time.  The time step used here is 
called a dynamical time step.  The concept of a dynamical time scale is introduced by the 
following equation

    

t
1

1
 (19) 

where is the dynamical time scale for a certain time step n and a generic state variable .  The 
discrete approximation to Equation 19 is given by  
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From this, a time step is defined for each variable by 
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where t n is the size of time step as dictated by the rate of change of generic variable  and dyn
is a user-defined fractional change allowable in any state variable from one time step to the next.  
The minimum value of all the time steps computed from all of the state variables is then used for 
the next time step. 

n
C

nn
T

n
U

n
U

n
P

nn
v

n
v

n tttttttttt
wfggfg

,,,,,,,,min  (22) 

When the solution changes quickly, small time steps are taken and when the solution is closer to 
a steady state, very large time steps can be taken.  This will be demonstrated in this work using 
an instantaneous rod ejection accident (REA). 

4. RESULTS

4.1. Temporal Accuracy of the Solution 
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The first calculation to be discussed here is a slow control rod movement.  The purpose of this 
was to demonstrate that the model is 2nd order accurate in time with the control rod motion 
included.  The error for the simulation was computed as the L2 norm of the difference between 
the computed neutron flux and the neutron flux from a base solution as shown by   

32

1

16

1

2,,
i j

bc jijiError (23) 

where the summations are shown to indicate inclusion of all spatial nodes in two dimensions.
Because the system of nine equations cannot be solved analytically, the “base” solution was 
estimated by using the JFNK method with t equal to 0.0625 seconds, which is 10 times smaller 
than the smallest time step shown in Fig.1.  Fig. 1 shows error versus time step.  The slope of this 
line indicates that the simulation is 2nd order accurate in time.  This is in contrast to traditional 
operator split methods, which are 1st order accurate in time at best.   

Figure 1.  Error versus dyn for control rod motion using the JFNK solution. 

4.2. Timescales of State Variables after an Instantaneous REA 

The second transient to be discussed in this Results section is an instantaneous rod ejection.  In 
this transient, the parasitic absorption cross-section from the control rod model is instantaneously 
removed in all parts of the reactor simultaneously.  Fig. 2 shows the normalized power 
(normalized to the steady state rod-out value) versus time following an instantaneous rod 
ejection at time zero.  Within 1/1000 of a second, the power has peaked at a power 
approximately eight orders of magnitude greater than the initial value.  The Doppler feedback 
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very quickly reduces the power to a value which remains somewhat steady until approximately 1 
second into the transient.  During the time from 1 to 100 seconds, the relatively high power 
continues to increase the temperature of the fuel while heat is conducted out to the cladding and 
the Doppler feedback and the moderator density coefficient reduce the power further.  After 
approximately 100 seconds, the coolant is able to remove sufficient energy from the fuel to arrest 
the power decrease.  The system then becomes supercritical and power begins to increase again.
The result is a return to power excursion occurring at approximately 1000 seconds, after which 
the power approaches the steady state rod-out value. 

Figure 2.  Total neutron flux versus time following instantaneous rod ejection. 

It is of interest to examine the timescales of the nine state variables during this simulation.  As 
shown by Equation 21, no state variable is allowed to change by more than a given percent 
(specified by the parameter dyn) from one time step to the next.  So at any time during the 
simulation, the fastest-changing variable is setting the time step.  Fig. 3 shows the dynamical 
timescale of each of the nine state variables as calculated using Equation 20.  The six blue lines 
represent the timescales of the two-phase flow variables, the red line is for the heat conduction 
and the green lines are for neutron flux and precursor concentration.  The multicolored line in the 
figure is the actual time step used, which remains a factor of dyn below the smallest of the other 
lines.  The color of each section of this line corresponds to what types of state variables are 
determining the time step at a given time.  The dashed line shows the material Courant (CFL) 
limit.  
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Initially, the multicolored line giving the actual time step is green, indicating that one of the 
neutronic state variables (in this case the neutron flux) has the fastest time scale and is therefore 
setting the simulation time step.  This is not surprising given the violence of the power spike 
observed in Fig. 2.

Figure 3.  Dynamical timescales of state variables following an instantaneous REA. 

At approximately 3x10-3 seconds, the multicolored line turns black.  The explanation for this has 
to do with the time step growth rate of 5% which the maximum time step growth from one time 
step to the next.  If the dynamical time-step from Equation (22) increases faster than this user-
defined rate, the actual time step grows exponentially limited by the 5% per time step limit.  
Regions where this is occurring are indicated by the black segments of the multicolored line in 
Fig. 3. 

At approximately 0.3 seconds, the multicolored line in Fig. 3 becomes red.  This means that the 
state variable with the fastest timescale is now the conduction in the solid as the energy deposited 
in the fuel from fission conducts out to the cladding.  At approximately 6 seconds, the 
multicolored line turns from red to blue indicating that the two-phase flow state variables now 
set the maximum time step as the coolant has begun to boil aggressively to cool the now hot 
cladding.  At around 20 seconds, the line turns from blue to green as the neutronic timescales are 
again fastest, and then turns black once again at 130 seconds signifying exponential growth of 
the time step.  The time step continues this exponential growth until around 400 seconds.  At this 

(10/13)



Pope and Mousseau NURETH-12 
Accurate Coupled Neutronics and TH Log:239 

time, the line turns green again as the neutronics variables change quickly during the return to 
power transient shown in Fig. 2.  Then at 2000 seconds, the line turns black again as the solution 
approaches steady state. 

Though this is a simplified reactor model, the results shown in Fig. 3 indicate that the state 
variable with the fastest timescale can alternate between neutronics, heat conduction and two-
phase fluid flow variables in the course of a transient.  The dashed line in Fig. 3 giving the CFL 
(the maximum time step allowable by the material Courant limit) remains relatively constant, 
only changing slightly at around 10 seconds from the introduction of faster vapor velocities from 
boiling.  This means that the CFL has not responded at all to the wide variation in timescales of 
the state variables.  The result is that the JFNK method initially takes smaller time steps than the 
CFL would dictate in order to resolve the very fast physics of the problem solution.  After 
approximately 20 seconds into the transient, the JFNK method takes longer time steps than the 
CFL would dictate because the state variables are now changing more slowly and the very small 
time steps are no longer required in order to accurately resolve the physics.  By the end of the 
simulation, the JFNK method is taking time steps roughly 1 minute long, approximately a factor 
of 1000 larger than the CFL.   

One can see how the lack of a stability restriction on time step in JFNK methods makes it 
conceivable to imagine a single simulation tool capable of handling rather fast transients, such as 
a scram, and very slow transients, like fuel burnup, in the same computer run. 

4.3. Effect of Rod Ejection Speed 

The same rod ejection described above as instantaneous is now performed in such a way that it 
travels out of the core in a specified time.  Fig. 4 shows power versus time following each of 
these simulated rod ejection transients.  The ejection times were 0.01, 0.05 and 0.1 seconds 
represented by the different colored lines and labeled in the legend.  The instantaneous rod 
ejection case is also included in the figure.  Similar to Fig. 2, the power is normalized to the 
steady state rod-out value. 

For the three non-instantaneous rod ejections, the power peak is flat on top.  Just below the 
bottom of the control rod the local power increases due to the lower absorption cross section 
caused by the control rod moving out. This local power rise decreases as Doppler feedback 
responds.  While this power peak moves up the core following the control rod, the total reactor 
power remains relatively constant.  One can also see from Fig. 4 how as the time of rod ejection 
is decreased, the initial power spike approaches that of the instantaneous rod ejection. 
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Figure 4.  Power versus time for three rod ejection speeds and instantaneous ejection 
(ejection times given in legend in seconds). 

A major difference between the different ejection speeds is the timing of the return to power.  For 
example, this occurs in the 0.01 second ejection case at around 800 second into the transient and 
at about 300 seconds in the 0.1 second ejection case.  While these values are not necessarily 
representative of the response of a real reactor, this illustrates the need for caution in making 
assumptions in fast transients.  This also demonstrates and the ability of the JFNK solver to 
capture nonlinear feedback. 

5. CONCLUSIONS  

In this paper, a simplified slab reactor was modeled using a simulation code which solves 
coupled neutronics, conduction and two-phase flow equations using the 2nd order in time JFNK 
algorithm.  Because the solution is fully implicit, there is no stability requirement as in the case 
of operator split methods.  This means that the time step control algorithm can be based on 
resolving the fastest timescales in the problem rather than the material Courant limit.  It was 
demonstrated in this work that under certain circumstances, the variables with the fastest 
timescales can alternate between neutronics, conduction and two-phase flow during the course of 
a transient.  This means that a code using the JFNK method can take very small time steps while 
variables change rapidly and then extremely long ones when the problem approaches steady 
state.  A simulated rod ejection with ejection times varying from instantaneous to 1/10 of a 
second was used to demonstrate how the non-linear feedback can have large effects in transients.
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