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In recent work (Nourgaliev, Liou, Theofanous, JCP in press) we demonstrated that 
numerical simulations of interfacial flows in the presence of strong shear must be cast in 
dynamically sharp terms (sharp interface treatment or SIM), and that moreover they must 
meet stringent resolution requirements (i.e., resolving the critical layer). The present work is 
an outgrowth of that work aiming to overcome consequent limitations on the temporal 
treatment, which become still more severe in the presence of phase change. The key is to 
avoid operator splitting between interface motion, fluid convection, viscous/heat diffusion 
and reactions; instead treating all these non-linear operators fully-coupled within a Newton 
iteration scheme. To this end, the SIM’s cut-cell meshing is combined with the high-order-
accurate implicit Runge-Kutta and the “recovery” Discontinuous Galerkin methods along 
with a Jacobian-free, Krylov subspace iteration algorithm and its physics-based 
preconditioning. In particular, the interfacial geometry (i.e., marker’s positions and volumes 
of cut cells) is a part of the Newton-Krylov solution vector, so that the interface dynamics 
and fluid motions are fully-(non-linearly)-coupled. We show that our method is: (a) robust 
(L-stable) and efficient, allowing to step over stability time steps at will while maintaining 
high-(up to the 5th)-order temporal accuracy; (b) fully conservative, even near multimaterial 
contacts, without any adverse consequences (pressure/velocity oscillations); and (c) high-
order-accurate in spatial discretization (demonstrated here up to the 12th-order for smooth-
in-the-bulk-fluid flows), capturing interfacial jumps sharply, within one cell. Performance is 
illustrated with a variety of test problems, including low-Mach-number “manufactured” 
solutions, shock dynamics/tracking with slow dynamic time scales, and multi-fluid, high-
speed shock-tube problems. We briefly discuss preconditioning, and we introduce two 
physics-based preconditioners – “Block-Diagonal” and “Internal energy-Pressure-Velocity 
Partially Decoupled”, demonstrating the ability to efficiently solve all-speed flows with 
strong effects from viscous dissipation and heat conduction.  
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I. Introduction

ree (fluid-fluid) interfaces in the presence of body forces and/or differential velocities are subject to deformation 
and breakup – processes that are principally responsible for flow regimes development, and thus for the 
macroscopic features in all multi-fluid systems. Depending on the direction of the acceleration vector, body 

forces normal to an interface can be stabilizing or destabilizing, differential velocities parallel to the interface are 
always destabilizing, and for the development of instabilities such driving forces must be sufficient to overcome the 
force due to interfacial tension (always stabilizing). Under unstable conditions, early growth of an interfacial 
disturbance is exponential in time, and the theory for understanding this regime, based on the linearized Navier-
Stokes equations, rests on firm grounds. At amplitudes that are a significant fraction of the wave-length, this theory 
breaks down, non-linear analysis becomes scarcely feasible, and numerical simulation is the key to further progress. 
The profound challenge of this endeavor is that in nature, interfacial instabilities develop essentially from “nothing”, 
while in a numerical approach (intrinsically discrete) they must be “seeded” with “something” that in most practical 
cases is not known a priori (i.e., not available from linear theory). 

Figure 1. (Left): Sequences of experimental LIF (Laser-Induced Fluorescence) images during breakup of 3 
mm TBP (Tributyl Phosphate) drops in a Mach 3 rarefied gas flow(38) (We~30).   

The flow is from right to left. Shown are sample deformation and penetration histories leading to breakup.  
(Right): Optical image of an evaporating liquid film on a heater at heat flux near burnout (1 MW/m2). The 
dark rings show the dynamics of bubble-edges as they grow and retract following bursting – one such full 
cycle is marked by the dotted circle. Burnout occurs when the center of such “craters” dries out forming a 

dry spot, an instability driven by vapor recoil at the triple contact line and capillarity(13).

In a recent paper(20) we addressed ourselves to a preliminary step in this quest – that of simulating interfacial 
instabilities at their inception and early growth. For this linear regime, as noted above, there is a body of analytical 
work that provides a solid foundation to measure success, and we made use of this foundation to demonstrate an 
intrinsic necessity in shear flows that the numerical scheme observe rigorously the sharp dynamics (the stress-jump 
conditions) at the interface [see also references(39,40,41)]. In the present paper we present the further developments 
needed for high-fidelity, robust simulations well into the non-linear regime, a numerical endeavor that, even if well-
founded (in the linear regime), is fraught with pitfalls. Not unexpectedly, the principal thrust in these further 
developments is implicitness, and the central role to this end is the Jacobian-free Newton-Krylov (JFNK) 
approach(19). Our method provides yet another practical realization within these two rapidly-developing topics, along 
with a suite of further developments (as detailed in Section II) made necessary by the particulars of the two classes 
of practical problems addressed.   

F
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The one class involves the combined action of Raylegh-Taylor, viscous Kelvin-Helmholtz, and Richtmyer-Meshkov 
instability mechanisms, as illustrated in Figure 1(left) – these are a (perhaps even the key) fundamental component 
in high-speed atmospheric dissemination problems(37). The other class involves the stability of contact-line motion 
under steep temperature gradients and intense phase changes(24), along with capillary instability in shear flow, as 
illustrated in Figure 1(right) – these are the key physics controlling the coolability limits in high-heat-flux boiling 
(burnout)(12,13,36,42). Clearly seen in both problems are the wide ranges of operative length and time scales, a 
challenge that could not be effectively met within the original SIM (explicit solver, large stencil of the high-order 
finite-volume numerics interacting inefficiently with the structured adaptive mesh refinement infrastructure 
employed). In this work we take necessary steps towards practical simulations by recasting SIM in a parallel-and-
time-stepping-efficient environment, while enhancing the high-fidelity capturing (tracking) of interface motions as 
needed for the very large CFL-operability sought. The rational for the numerical strategies employed to these ends is 
provided in the next Section II. Details for the Implicit Sharp Interface Method (I-SIM) are given in Section III. 
Illustrative results for test problems designed with an emphasis on wide-ranging length and time scales (and flow 
speeds) can be found in Section IV. The final Section V is a summary of main conclusions, along with the outlook 
for further developments on physics-based preconditioning and extension to 2D/3D. 

II. Basic Considerations 

On top of the driving considerations for the original SIM(20,21,22,23):

a. no smearing of properties across the interface is permitted;  
b. jump conditions are implemented sharply at the interface (within one cell); and  
c. discretizations are at least second-order-accurate in both time and space;  

the additional requirements are: 

1. implicit interface tracking without operator-splitting of interface motion and fluid dynamics; 
2. fully-coupled, all-speed fluid dynamics without operator-splitting of hyperbolic, viscous/heat diffusion and 

chemical reaction terms; and 
3. efficiency of  large-scale  parallel computing in a structured adaptive mesh environment. 

The key feature in meeting requirements (a-c) was the combination of a structured (Carterian, or C1-) grid with an 
unstructured (cut-cell, or C2-) grid defining the interface (piecewise-linearly) and anchored on a level-set-, marker-
tracking-based procedure. The C2-grid is continuously adapting to the interface evolution, inside an interfacial 
corridor, while remaining consistently embedded into a (structured-) adaptive Cartesian (C1-) grid in the bulk fluids.  

The central element in meeting requirements (1-3) is the Jacobian-Free Newton-Krylov (JFNK) methodology(19).
The JFNK provides an integrating framework for a fully-coupled, implicit high-order spatio-temporal discretization 
of the non-linear interface dynamics, without operator-splitting of interface motion, convection, viscous diffusion 
and heat conduction. It allows us to efficiently combine Discontinuous Galerkin (DG) type spatial discretization(8)

for both the C1- and C2-grids with Implicit Runge-Kutta (ESDIRK) temporal discretization(5).

The Discontinuous Galerkin discretization provides a better (more efficient/easier/elegant) framework for dealing 
with high-order treatment of the C2-(unstructured) grid, than the finite-volume discretization used in the original 
SIM(20). Moreover, there are compelling reasons to believe that the DG discretization is well-suited (more efficient) 
for Structured AMR (mainly, due to the compactness of its stencil). Here, we introduce a “recovery family” of DG 
methods (rDG) to provide, within a very compact stencil, very accurate (demonstrated up to 12th-order here) spatial 
discretization of both hyperbolic and diffusion operators on unstructured (C2-) grids, with a limited number degrees 
of freedom per cell. This is based on early work of van Leer for high-order finite-volume discretization of 
conservation laws(43) and his recent “recovery method” for the diffusion operator(44,45). Since the rDG is combined 
here with the implicit L-stable high-order Runge-Kutta time discretization(5), the stability and robustness of the 
method is not of concern, in difference to all previous (explicit RK) DG implementations(8,9,10,11,44,45).
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Importantly, during a time step, the shape/volume of the cut-cells are allowed to vary – this is achieved by including 
the positions of interfacial markers to be a part of the Newton-Krylov (NK) solution vector. This is a key to 
removing operator-splitting, temporal errors and to providing robustness of the algorithm when stepping over fast 
normal-mode time scales, while maintaining full conservation of the algorithm. Even though the algorithm is fully-
implicit and L-stable for any time step, we use an interface-CFL condition ( , where Um is the interface 
speed) to prevent singularities in the C2-grid, and to maintain the solution within the ball-of-convergence for Newton 
iterations. 

For a linear solver in JNFK, we deploy the Jacobian-free version of the “Generalized Minimal RESidual Method”
(GMRES)(32,33) – a particular implementation of the projection method based on iterations in Krylov subspace(33) – 
adapted to our cut-cell/rDG environment. The needed efficiency of JFNK is gained by physics-based pre-
conditioning (PBP)(19). To this end, we introduced two PBPs specially adapted to the rDG spatial discretization: the 
first one may be named “Block-Diagonal” (BD); and the second one we refer to as “Internal energy-Pressure-
Velocity Partially Decoupled” (IPV-PD).

Test results in 1D show that our method effectively addresses the combined challenge of accuracy and speed for 
computations over a wide range of flow speeds, material properties and in the presence of discontinuities (shocks, 
contacts). In particular we demonstrate: 

1. Stable time-stepping at stability CFL numbers of up to 500 (a speedup by four orders relative to SIM);
2. Asymptotic convergence of up to 12th-order in space and up to 5th-order in time, at non-linear tolerances 

down to (implemented in quad precision); 
3. Fully conservative interface tracking under shock dynamics without pressure-velocity oscillations at multi-

material contacts;
4. A use of a new method (eigenscopy) to analyze efficiency of preconditioning. 

III. Implicit Sharp-Interface Method (I-SIM) 

Each stage of RK loop is a non-linear solve, and it is driven by a Newton iteration scheme in the sequence shown 
below. Each Newton iteration requires a linear solve which is done with a Jacobian-free version of GMRES.

Beginning of time step, :
o Create/initialize C2-grid and solution vector .
o Start Runge-Kutta loop, :

Start Newton’s iterations, :
Start linear solve (GMRES): 

Form Krylov vectors, a basis of the Krylov subspace  

                  

until converged (a sufficient number of basis vectors is 
accumulated).  and  are the right-preconditioned Jacobian 
matrix and initial residual vector, respectively.  

End of linear solve. 
Update solution vector 
Check for convergence of Newton’s iterations. 

End of Newton’s iterations. 
o End of Runge-Kutta loop. 

End of time step. 
Choose new time step .
Move to new time step, .
…
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Details of the solution procedure are given below. We start by defining the governing equations in the bulk of each 
fluid, Section III.A. Spatial discretization with Discontinuous Galerkin method and its higher-order “recovery” 
extension are presented in Section III.B. Time discretization is explained in Section III.C. Finally, we outline the 
details of JFNK in Section III.D and its physics-based preconditioning in Section III.E.

A. Governing Equations 

The governing equations for fluid dynamics in the bulk of each fluid, including molecular diffusion terms and local 
sources, are: 

                 (1) 

   (2) 

where , P, u, , , i, , , ,  are density, pressure, velocity, 
momentum, total energy, internal energy, viscous stress, viscosity, heat flux, and ratio of thermal conductivity  to 
specific heat , respectively. The diffusion and source terms introduce additional time scales to that of the fluid 
motion. A key aim of the method is to achieve optimal time integration over a wide range of flow and fluid-property 
parameters. These result in a broad spectrum of normal modes and dynamic time scales, which causes the numerical 
system to be stiff. We use a fully-compressible formulation, with a stiffened-gas equation of state: 

 (3) 

where  and  are parameters specific to material. 

B. “Recovery” Discontinuous Galerkin (rDG) Family 

The Discontinuous Galerkin (DG) method can be viewed as a high-order extension of the Finite-Volume (FV) 
discretization approach. Originally introduced by Reed & Hills(31) in 1973 for neutron transport equation (steady-
state linear hyperbolic problems), DG has been recently extended to transient non-linear hyperbolic (conservation-
law) problems(8,9,10,11) and parabolic (diffusion) problems(4,28,44,45). As discussed by Cockburn(8), there are several 
important advantages to be realized by DG schemes:  

a) they are more convenient than FV in complicated geometries;  
b) they can easily accommodate different mesh adaptivity strategies – refining/de-refining without considering 

the continuity restrictions typical of conforming finite element methods, and by simply varying the degree of 
in-element approximating polynomials;  

c) the method uses compact stencils, which result in more efficient mesh adaptation, parallelization, and the 
implementation of boundary conditions. 

A DG method of pth-order involves (p+1) degrees of freedom (DoFs) per cell, . The 0th-order DoF 
corresponds to a cell-average variable (finite-volume representation). All higher-order DoFs can be interpreted as 
“perturbations” or higher-order corrections. Cell-level solutions are represented in terms of the cell’s DoFs by:  

 (4) 
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where  is the scaled  Legendre polynomial of order n. In general, these solutions are 

discontinuous from cell to cell. 

“Recovery” DG (rDG) is a higher-order extension of the finite-volume piecewise-parabolic method(43) (PPM), as 
the in-cell solution is “recovered” from the available degrees of freedom of the cell and its immediate (von 
Neumann) neighbors:

                                                         (5) 

where  is the nth “recovered” degree of freedom. It can be shown that the recovered in-cell distribution 
is (R+1)th-order-accurate, where . The recovery DoFs are computed using the following “weak 
statement”: 

 (6) 

and

 (7) 

The first N DoFs of the unlimited rDG coincide with DG’s DoFs, 

 (8) 

The rest of the DoFs are given in Appendix A for .

Notably: a)  is exactly the 3rd-order-accurate finite-volume PPM;  b) the stencil of the  is compact, i.e. 
involves only immediate von Neumann neighbors for in-cell approximating polynomials of any degree, and c) the 
“recovery” operation offers a way to estimate spatial discretization errors, which are usable in AMR-tagging for 
refinement/de-refinement of meshes. 

The evolution equations for each degree of freedom can be written as 

                (9) 

where 

 (10) 

is the spatial discretization operator accounting for hyperbolic and source terms*.  are numerical fluxes at cell 

edges, computed with either the LLF(35) or the AUSM+-up(25) schemes. The variable  is defined as  

                                                          
* Diffusion operator is discretized along the lines of van Leer’s “recovery” method(44,45) as described in Appendix B. 
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 (11) 

Integration over cell  is done using a 12-point Gaussian quadrature formula. The parameter  is a normalization 
constant for the Legendre polynomials, 

     (12) 

A derivation of the weak form, eq.(9), representation of the governing equation, (1), is given by Cockburn(8).

Hereafter, spatial discretization schemes are denoted as , where A is the order of the DG, B is either the 
order of the “recovered” in-cell polynomial (if unlimited) or the name of the used limiter (e.g., van-Albada, vAl, in 
shock dynamics tests), and C is the flux scheme (LLF or AUSM). 

C. Implicit Runge-Kutta (ESDIRK) method 

The vector  corresponds to  spatial discretization of convection, diffusion and reaction (source) terms. The 

Jacobian of , , might have a large spread of eigenvalues, which give rise to stiffness, defined as(5) a 

configuration when the largest scaled eigenvalue of the Jacobian   located in the complex left-half-plane (LHP) 

is . Stiffness might be associated with mesh (here – small cut cells) and wide spread of physical 
times (acoustic waves in low-Mach-number applications, high viscosity/thermal conductivity coefficients, phase 
change, chemical reactions, etc.). In an ideal time discretization scheme, the time step is selected solely based on 
error considerations, without concerns about stability and robustness. We are interested in schemes which not only 
do not amplify any LHP-scaled eigenvalues (A-stability), but also provide a complete damping of all eigenvalues
including those at the limit   (L-stability).

A family of implicit Runge-Kutta schemes with L-stability has been recently developed by Carpenter and co-
authors(5,6). These “explicit, singly diagonal implicit Runge-Kutta” (ESDIRK) schemes can be written as 

 (13)

where s is the number of stages; and , ,  are the stage, the main, and the embedded scheme weights, 
respectively. In eq.(13) we omitted all sub/superscripts associated with spatial discretization. The vectors  and 

 are pth and (p-1)th order solutions at time level n+1. The vector  is a by-product (free) and can be used 
for temporal error estimation. The Butcher tableaus for the third, fourth and fifth-order ESDIRK are developed in(5)

and take the following form: 
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 (14) 

where  denote the point in time of the rth-stage, . Note that the first stage is explicit, and the diagonal 
elements for all stages  are the same, . The coefficients for ESDIRK3,4,5 are given in Appendix C. 

D. Jacobian-Free Newton-Krylov (JFNK) Method 

Each RK stage is a non-linear solve for a system of the form 

 (15) 

where is a solution vector which includes 
positions of all (M) interfacial markers and all (p+1) degrees of freedom for all conservative variables ( ) in 
all ( ) computational cells. The size of the solution vector therefore is . The residual 
vector  for rDG’s degrees of freedom takes the form: 

 (16) 

and for each marker the form: 

 (17) 

Newton’s method solves a non-linear system, eq.(15), iteratively as a sequence of linear problems defined by  

 (18) 

The matrix  is the Jacobian of the ith Newton’s iteration step and  is the update vector. Each  element of 
the Jacobian matrix is a partial derivative of the ith equation with respect to the jth variable: 

 (19) 

The linear system is solved for  and the new Newton’s iteration value for X is then computed as 

 (20) 
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where  is the damping parameter, . This parameter is used to keep the solution vector in physically 
realizable manifold and/or to help bringing the initial guess inside the Newton method’s “ball of convergence”. The 
damping parameter can be interpreted geometrically as a scaling factor, preserving the direction of the update 
vector, but shortening its length. In the present study, for some difficult problems/large time steps, we start by 
choosing  for the few first iterations (enough to bring the solution to the convergence range), and then 
switching to , so as  to achieve quadratic convergence rate at the asymptotic iteration range. 

Newton’s iterations on X are continued until the convergence criterion 

 (21) 

is satisfied. Nonlinear tolerance is set to . We use quadruple precision for all arithmetic, so as to 
accurately measure asymptotic convergence of our high-order spatial and temporal discretization schemes. This is 
also useful for enabling eigenscopy of the Jacobian and preconditioning matrices, as preventing “pollution” by 
spurious eigenvalues. 

The linear solver used in the present study is the Arnoldi-based Generalized Minimal RESidual method(32)

(GMRES). It belongs to the general class of Krylov subspace iteration methods. These projection (Galerkin) or 
generalized projection (Petrov-Galerkin) methods(33) are suitable for solving generally non-symmetric linear systems 
of the form in eq.(18) using the Krylov subspace, ,

 (22) 

where . In GMRES, the Arnoldi basis vectors form the trial subspace out of which the mth-
iteration solution is constructed: 

 (23) 

where  are “coordinates” of the mth trial solution in the Krylov subspace. As one can see, one matrix-
vector product is required per iteration to create each new trial vector, and the iterations are terminated based on a 
by-product (free) estimate of the residual that does not require explicit construction of intermediate residual vectors.  
This is a major advantage of GMRES over other Krylov methods. GMRES has a residual minimization property in 
the Euclidean norm. The major drawback – it requires the storage of all previous Arnoldi/(Krylov) basis vectors.  
We use a “flexible” version of GMRES with Arnoldi Modified Gram-Schmidt (double-) orthonormalization(33),
without restarts. 

One of the particularly useful features of Krylov methods is that they do not require individual elements of the 
Jacobian matrix , but instead only matrix-vector multiplications  (  are Krylov vectors), 
which allows for Jacobian-free implementations. The action of the Jacobian matrix is approximated by Fréchet 
derivatives 

 (24) 

where  is chosen with a fine balance between approximation and floating-point rounding error as 

 (25) 

N is the total number of unknowns and b is a constant whose value is within a few orders of magnitude of the square 
root of machine roundoff (here, ). With the Jacobian-free formulation, the work associated with forming 
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the Jacobian matrix and its storage can be eliminated, which is a significant saving of both CPU time and storage for 
each non-linear iteration, provided that the number of Krylov vectors is kept small (see Section III.E). Moreover, in 
many non-linear applications (like being developed here for all-speed I-SIM with viscosity, conduction and phase 
change) the Jacobian matrix is not available in analytical form, this  makes the JFNK method attractive. 

One practically important modification used here is an inexact Newton’s method. The term “inexact” refers to the 
accuracy of the iterative linear solver. The basic idea behind it is that the linear system must be solved to a tight 
tolerance only when the added accuracy matters – i.e. when it affects the convergence of the Newton’s iterations. 
This is accomplished by making the convergence of the linear residual proportional to the non-linear residual: 

 (26) 

where  and the subscript m refers to the mth trial solution of GMRES and . This allows 
saving of some CPU time and storage for Krylov vectors at the early Newton’s iterations, while tightening the linear 
solver’s convergence in the asymptotic non-linear convergence range. 

E. Preconditioning of GMRES 

Because GMRES stores all of the previous Krylov vectors, it is necessary to keep the number of iterations relatively 
small, to prevent the storage and CPU time from becoming prohibitive. This can be accomplished by 
preconditioning the linear system. Preconditioning is a transformation of the original linear system into one with the 
same solution, but is easier to solve with an iterative solver. We will be using the right-preconditioned form of the 
linear system, 

 (27) 

where  approximates . The right-preconditioned version of eq.(24) is  

 (28) 

This operation is applied once per GMRES iteration, in two steps: 

I. Preconditioning:  approximately solve 

II. Compute matrix-free product:  

Finding a good preconditioner is often a combination of art, science, and intuition. A mathematically good 
preconditioner should efficiently cluster the eigenvalues of the iteration matrix(19,32). A preconditioner can also be 
defined as any subsidiary approximate solver that is combined with an outer iteration technique (e.g., multigrid or 
one of the Krylov iteration solvers). One of the simplest and most popular ways of defining a preconditioner is to 
perform an incomplete lower-upper (ILU) factorization of the original matrix . A number of variations - ILU(k),
ILUT, ILUS, ILUC, etc. - are discussed in(33).

An important class of preconditioners for the JFNK method is referred to as Physics-Based-Preconditioning (PBP)
or PDE-based(19). The motivation behind this approach is that there exist numerous legacy operator-split algorithms 
to solve nonlinear systems. These algorithms were developed with some insight into physical time scales of the 
problem. A direct benefit of this insight – a reduced implicit system, or a sequence of segregated semi-implicit 
solvers can be applied, instead of attempting to solve the fully-coupled system. Relevant fluid dynamics examples 
include the semi-implicit all-speed-flow Implicit Continuous-fluid Eulerian (ICE) algorithm(15), the semi-implicit 
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incompressible-flow SIMPLE(29) and the Projection(7) algorithms. The successes of PB preconditioning are 
exemplified in numerous recent publications(18,19,26,27).

In the present section, we introduce three preconditioners for our rDG-based I-SIM method: (i) “Full-Coupling” 
(FC); (ii) Physics-Based, “Block-Diagonal” (BD); and (iii) Physics-Based, “Internal energy-Pressure-Velocity 
Partially Decoupled” (IPV/PD). Efficiencies of these preconditioners will be studied in Section IV.B.

Full-Coupling (FC) preconditioning. By removing interfacial markers and re-arranging the solution vector in the 
following order  

     (29) 

 the linear system is reduced to , where the Jacobian matrix  is band-diagonal in 1D. The bandwidth 
of the  discretization is . Non-zero elements of  in the band can be approximated by automated 
differentiation of the type 

 (30) 

where  is the residual of the ith nonlinear equation,  is an unperturbed solution from the current Newton’s 
iteration, and  is the unit normal vector in the j-direction. The perturbation parameter was chosen as  .

  is a very efficient preconditioner in 1D, which in the absence of an interface collapses all eigenvalues to a 
single point, converging GMRES in 2-3 Krylov iterations. Since interfacial markers are left unpreconditioned, the 
actual number of Krylov steps in the I-SIM implementation is ~10. In 1D, FC preconditioner is probably the most 
efficient option, since  can be inverted directly using band-diagonal LU decomposition(30) (a generalization of 
the Thomson’s TDMA algorithm). In multi-D however,  cannot be reduced to the band-diagonal form (it will have 
several bands, for different spatial directions), which would require involvement of ILU-type preconditioning 
strategies(33).

Block-Diagonal (BD) physics-based preconditioning. One useful type of preconditioning can be derived from the 
FC by linearizing (moving elements at new time in the matrix to old time on the right hand side) elements of 
coming from neighbor cells. This preconditioning operation would look like 

   (31) 

where is the rDG’s local solution vector, at 

cell j, of size . Accordingly,  is the local residual/(Krylov) vector, at cell j. The preconditioning 

matrix is block-diagonal. Each block  is an  matrix, which is LU-decomposed once per Newton iteration, 
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and the local solution vector  is obtained by back-substitution at each preconditioning stage. This simple 
preconditioning is designed to target local effects (reaction, gravity, other sources); though, some non-local effects 
are also accounted for due to DG formulation, since the derivatives of the flow variables are parts of the local 
solution vector. This physics-based preconditioning will be particularly efficient when the stiffness of the non-linear 
system is caused by fast local reaction terms.   

FC preconditioning in primitive variables. Before introducing our next PBP, we shall describe how to transform 
the preconditioned linear system written in conservative variables  into the preconditioned linear 
system expressed in primitive variables . While solving a nonlinear system in conservative variables is 
very attractive (each Newton’s step is conservative to machine accuracy; if locked in the limit cycle, one can stop 
Newton’s iterations without full convergence – the solution will be still fully conservative and accurate*), the 
physical insight needed for PBP of linear solves is better gained when operating with primitive variables, such as 
pressure, velocity, temperature or internal energy. A particular difficulty for transformation  arises due to DG 
discretization, since an adequate/consistent transformation from/to higher-order DG degrees of freedom must be 
supplied. The approach introduced below offers a robust solution to this difficulty. 

For transparency of the following presentation, linear system eq.(18) can be expressed in the block-vector form 

 (32) 

where ,  and  are density, momentum and total energy vectors, arranged as  

The , ,  are corresponding residual vectors, arranged accordingly. Each block-element  of eq.(32) 
is of size  and represents a generally nonlinear coupling between the nth and mth

conservative variables. Next, we define the transformation  by the following matrices: 

 (33) 

and

 (34) 

so that 

                                                          
* But not necessary robust. 
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 (35) 

Elements of the transformation matrices eqs.(33) and (34) can be computed analytically from the equation of state. 

Thus, eq.(32) can be transformed to 

 (36) 

In the DG formulation, the solution vectors  and  are composed of the cell-average values and their higher-order 
perturbations, which means that we actually need a transformation matrix in the form: 

       (37) 

To compute elements of the transformation matrices, , we exploit weak statements as explained 

below.  

First, the in-cell DG solutions for conservative and primitive variables are defined as 

 (38) 

 (39) 

On the other hand, conservative variables are connected to primitive variables through the equation of state: 

 (40) 
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Applying the chain rule, we obtain: 

 (41) 

At the same time, differentiating eq.(38):  

 (42) 

Next, multiplying the left- and right- hand-sides of eq.(42) on Legendre polynomials , integrating over  and 
using orthogonality property, we get: 

 (43) 

Finally, using eq.(41), 

 (44) 

which are the elements of the transformation matrix eq.(37). Integrals on the r.h.s. are computed with a 12-point 
Gaussian quadrature formula. 

We numerically verified that the FC preconditioning in primitive variables  is almost identical to the one in 
conservative variables, collapsing eigenvalues of the no-interface problem to a single point upon convergence of 
Newton’s iteration and requiring 2-3 Krylov vectors to converge GMRES.

Internal energy-Pressure-Velocity/Partially Decoupled (IPV/PD) physics-based preconditioning. Eq.(36) can 
be expressed in the following block-vector form: 

 (45) 

where the terms are interpreted the same way as in eq.(32).  

First, we decouple the internal energy equation from the pressure and velocity equations, linearizing it as  

 (46) 

On the one hand, zeroing-out blocks  and  numerically means that the dependence of internal energy on 
pressure and velocity is treated explicitly (“frozen” at the previous Newton’s iteration values). On the other hand, 
heat conduction is accounted for implicitly. Eq.(46) is then solved directly for  using the band-diagonal LU 
decomposition*:

                                                          
* In multi-D, this step would require multigrid algorithms. 
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Step I:     

Next, algebraic manipulations of the coupled pressure-velocity equations 

 (47) 

allow to derive the following pressure-Poisson equation:

 (48) 

The Laplacian  is related to the Schur complement of the pressure-velocity matrix in the system eq.(47). To further 
simplify, we diagonalize  making the evaluation of the triple matrix product 

 trivial, and using the approximate Laplacian  in the second step of the 
preconditioning, where we solve the Poisson equation directly for  using the band-diagonal LU decomposition*:

 Step II:     

The final stage of this preconditioning is to find velocity as 

 Step III:     

Notably, viscous stress terms are directly accounted for in steps II and III. Multi-D extension would require 
directional splitting, solving for steps II-III sequentially, for each spatial direction, with optional alternation of the 
directions. 

The driving considerations behind our IPV/PD preconditioner is similar to the ones in the well-known operator-split 
algorithms for low-speed-compressible and incompressible flows (ICE(15), Simple(29), Projection(7)), i.e.:

a) identify the fastest physics, and  
b) reduce/split to the sequence of segregated implicit scalar problems, easily solved directly or by multigrid 

methods. 

IV. Numerical Examples 

A. Accuracy/Convergence 

To demonstrate accuracy of our numerical algorithm, we introduce the following manufactured solution: 

                                                          
* In multi-D, this step would require multigrid algorithms. 
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      (49) 

where , , , , , , , , , , ,   and  are input parameters. Dynamics of the 
manufactured solution used in the present study are shown in Figure 2 and Figure 3, together with corresponding 
input parameters, history of heat fluxes and viscous stresses and balances of forcing/source terms  and  for 
t=100. The solution is manufactured to satisfy the following requirements:  

a) Mach number is relatively low ( );
b) There are two dynamic velocity scales (  and ), both are significantly slower than the sound speed and 

comparable to material velocity (in fact,  is equal to fluid velocity at the interface);  
c) Heat and momentum fluxes are continuous across the interface; and  
d) Parabolic terms (viscous diffusion and heat conduction) are significant and comparable to hyperbolic terms 

(see Figure 3c,d). 
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Figure 2. Dynamics of density, pressure, velocity and Mach number for manufactured solution:
, , , , , ,

, , , ,  and , f=L,G. 
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To enforce the manufactured solution eqs.(49), the following source terms are included: 

 (50) 

Interfacial marker is moved with material velocity at , recovered from rDG solutions in cut-cells. 

Convergence in time is demonstrated in Figure 4a.  To ensure no-interference from spatial discretization errors, we 
used a sufficiently fine grid (N=400) and 6th-order-accurate quintic DG elements. -norms of errors for density at 
cell centers are computed as   

 (51) 

where  is the total number of cells. 

Five implicit time discretizations are tested: the 1st-order backward-Euler (BE1); the 2nd-order Crank-Nicholson
(CN2) and three “explicit, singly diagonally implicit Runge-Kutta (ESDIRK3-5)(5)” schemes. As seen from Figure 4a,
all schemes converge with nearly-theoretical rate. We are able to step over CFL stability limits due to stiff waves or 
viscosity/conductivity, at will; running with stability CFL numbers* as high as 240, converging with 2-3 Newton 

                                                          
* Through the rest of the manuscript, we will define stability CFL number as   
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steps per each Runge-Kutta level and involving only a few (~10) Krylov vectors per each linear solve 
(preconditioning of GMRES is discussed in Section IV.B). ESDIRK schemes are found to be extremely accurate – 
with many orders of magnitude lower errors than BE1 and CN2, even under significantly larger time steps.  
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Figure 3. Dynamics of heat flux (a), viscous stress (b), and balance of source terms in momentum (c) and 
energy (d) equations (manufactured solution). 

Convergence in space is demonstrated in Figure 4b. We tested both classical and our “recovery” DG schemes 
( , ). To eliminate temporal discretization errors, we ran with very small time steps ( ) and 
high-order time discretization (CN2, ESDIRK3,4). In convergence plots of Figure 4b, we account for the total 
number of unknowns (a product of the total number of cells, , and the number of degrees of freedom per cell). 
All schemes do converge with nearly-theoretical rates*. “Recovery” DG schemes exhibit spectral accuracy – a cubic 
rDG converges with 11th-order at the asymptotic grid range. Notably, the  on the grid with 12 cells is more 
accurate than the 1st-order finite-volume ( ) scheme on grid N=3200.  

                                                                                                                                                                                          

Similarly, dynamic CFL number is defined as , where  is the size of the smallest cut-cell and  is the 
fastest dynamic velocity (e.g.,  in the manufactured solution, or shock speed in the Shock Tracking test of Section 
IV.C).
* Quadratic and quartic DG are shown to be only second and fourth-order convergent, respectively (one order lower of what 
supposed to be). This is because the error is measured at cell centers, eq.(51), where all odd-order scaled Legendre polynomials 
are zero. 
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Figure 5. Profiles of density, pressure, velocity and total energy for MS, t=50. Solutions by rDG3 (a-d) vs. 
rDG0 (e-k) with the same number of unknowns (N=48) and dynamic CFL numbers (0.96). 
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Superb performance of the high-order rDG schemes is demonstrated in Figure 5, where we compared solutions at 
time t=50 for the cubic  (Figure 5a-d) and the piecewise-constant (finite-volume, PPM)  (Figure 5e-k). 
Both solutions are obtained with the same total number of unknowns ( ) and under the same 
CFL . We show both the solution at the cell centers (circles) and the reconstructed subcell distributions at 12 
Gaussian quadrature points (stars). The  solution with 12 cells (Figure 5a-d) is significantly more accurate than 
the  with 48 cells (Figure 5e-k). Inaccuracy of the 3rd-order scheme is clearly pronounced in pressure/total 
energy profiles, as an overshoot around fluid-fluid interface. With further grid refinement, this overshoot disappears.  

B. Physics-Based Preconditioning: Eigenscopy 

In this section, we demonstrate efficiency of our physics-based preconditioners, using manufactured solution 
introduced above. The base input parameters are given in the caption to Figure 2. The results are presented in terms 
of eigenvalue patterns (“eigenscopy”, Figure 6 and Figure 7) and the maximum number of Krylov vectors per linear 
(GMRES) solve, Figure 8; scanning a wide range of Mach numbers and fluid’s dynamic viscosities . Mach 
numbers are varied by changing   and ( ) and keeping the rest base input parameters unaltered.  
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Figure 6. Eigenscopy of the Block-Diagonal (BD) preconditioner.  
CN2-DG , CFLdyn=0.4, .



American Institute of Aeronautics and Astronautics 
AIAA-2008-1453 

22

Eigenvalues of the Jacobian  and preconditioned Jacobian  matrices are computed by first balancing matrices 
(reducing their Euclidean norms); then transforming to Hessenberg form, and, finally, using QR algorithm to 
compute eigenvalues(30).

Since the Jacobian matrices are non-symmetric and non-positive-definite, their eigenvalues are complex in general. 
This precludes using such a popular linear algebra solver as Conjugate-Gradient (CG). More general Krylov 
subspace iteration methods like GMRES or FOM(33) on the other hand are capable of dealing with these matrices; 
however, for efficiency purposes, they need preconditioning. The action/purpose of preconditioning is to “cluster” 
eigenvalues of the “effective” Jacobian matrix , so the Krylov (GMRES) method is able to converge in a few 
(~10) iterations/approximation vectors.    
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Figure 7. Eigenscopy of the IPV/PD preconditioner.  
CN2-DG , CFLdyn=0.4, .

In Figure 6, we show the action of the Block-Diagonal (BD) preconditioner. This preconditioner implicitly accounts 
for local coupling effects. Within the DG discretization, some non-local coupling effects are also captured, as the 
gradients (perturbations/high-order momenta) of the DG solution are part of the local solution vector and 
represented in the local block inversion. It can be seen from Figure 6, that the eigenvalues  are less spread, 
resulting in generally better performance than the unpreconditioned GMRES’s . However, at the limit , the 
elliptic components (associated with stiff acoustic waves) become very important. These are captured very well by 
using IPV/PD PBP, Figure 7 and Figure 8. “Poisson-solve” step of this PBP seems to “remove” complex 
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components of eigenvalues (associated with elliptic/pressure waves), clustering them near the Real axis, Figure 7. 
Steps I and III of the IPV/PD are designed to target parabolic/diffusion components. As a result, this PBP seems to 
be very effective in a wide range of Mach numbers and fluid’s viscosities, Figure 8. At the high-speed ( )
conditions, acoustic and material-velocity time scales are comparable, rendering pressure-Poisson part of the 
preconditioner ineffective (Figure 8a,b). For these, high-speed conditions, the BD preconditioner seems to become 
more effective.  
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C. Shock Tracking 

Problem formulation. A shock of strength Msh is initially placed at x=0.25 of the 1-unit-long computational 
domain. The right boundary of the domain is a solid wall (blunt body) moving with constant speed Ub.b. Pre- and 
post-shock conditions are initialized as 

   (52)

where , shock Mach number Msh is specified and the shock speed  is computed as 

 (53) 
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Figure 9. Comparison of the I-SIM and Eulerian methods  
for a weak Msh=1.5 shock wave problem. 
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The dynamic time scale for this problem is , which can be varied by changing the speed of the 
blunt body Ub.b. Here, we are interested at the regimes when the dynamic time is significantly larger than the CFL-
stability time scales, , which makes this problem particularly challenging (expensive) for explicit 
methods. The JFNK (preconditioned by the conservative-variable-FC, with maximum number of Krylov vectors 
maintained below 10) allows for very efficient solution with time steps resolving the dynamic time scales 
(CFLdyn= ) and significantly exceeding those from the stability limit of explicit schemes. 

In I-SIM simulations, interfacial markers are moved with shock speed, reconstructed from the exact Riemann solver 
applied at the interfacial edge between two adjacent cut-cells. 
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Figure 10. Comparison of the Crank-Nicholson (CN2) and implicit Runge-Kutta (ESDIRK3) schemes  
(with Eulerian spatial discretization) for a weak Msh=1.5 shock wave problem. 

Results and discussion. Computational results for weak (Msh=1.5) and strong (Msh=10) shock waves are presented 
in Figure 9, Figure 10 and Figure 11. All simulations are performed on the grid  and using AUSM+-up 
flux treatment(25). In Figure 9, the I-SIM method is compared with two Eulerian schemes, i.e. the third-order 
rDG0(vAl) and the fifth-order finite-volume WENO5, for a weak shock wave. All three methods capture shock 
position very accurately. The Eulerian schemes smear the shock over 2-3 nodes, which results in distinct over-
/undershoots of entropy next to the shock. The I-SIM is free of these over-/undershoots, and all variables (density, 
pressure, velocity and entropy) are sharp/discontinuous at the shock. Both the Eulerian third-order rDG0(vAl) and the 
I-SIM-rDG1(6) schemes are robust under CFL , corresponding to dynamic-time CFL . The 
Eulerian FV-WENO5 scheme requires lower dynamic CFL ( ), to make the Newton method converge. We 
believe this is because the WENO5 is “essentially non-oscillatory” (and TVB), introducing additional time scales 
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associated with small/bounded oscillations emanating from the shock, which effectively makes the “ball of 
convergence” for Newton’s method smaller. 

Performances of different temporal discretizations (second-order Crank-Nicholson vs. the third-order ESDIRK3) are 
compared in Figure 10. Even though the solutions for density, pressure and velocity are nearly identical, the entropy 
solution of CN2 is oscillatory, which is most probably associated with the fact that CN2 is not L-stable. The 
ESDIRK schemes on the other hand are L-stable, which result in more “clean” solutions for entropy. Notably, 
oscillations in entropy of CN2 scheme might introduce additional unphysical time scales, which will make the “ball 
of convergence” for Newton’s method smaller, and, therefore, requires smaller time steps. We found this especially 
notable when the CN2 is combined with the FV-WENO5.

Figure 11 demonstrates performances of the I-SIM and Eulerian methods for a strong shock wave. In this case, the 
Eulerian schemes require rather small dynamic CFL numbers ( ) in order for the Newton’s method be 
convergent. This corresponds to CFLstb=15, which is still an order of magnitude more efficient than what would be 
required from explicit schemes. Notably, the I-SIM is able to completely eliminate Eulerian method’s “artificial 
acoustics” emanating from the shock wave, enabling thus very efficient simulation with CFL  and 
CFL .
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Figure 11. Comparison of I-SIM and Eulerian methods  
for a strong Msh=10 shock wave problem. 

D. Interface tracking 

In this section, we demonstrate performance of our I-SIM method for multimaterial interface tracking. Even though 
most problems considered here are easily/robustly treated with explicit algorithms(22) (since the dynamic times are 
comparable to those due to stability limit), the benefits of using our I-SIM algorithm are its exceptional robustness 
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for strong shocks and high-acoustic-impedance interfaces, and, more importantly, our algorithm is fully conservative 
even at the interface, in difference to most previous interface tracking methods for compressible multifluid 
dynamics(1,2,3,14,16,17,22,34). All problems are solved without preconditioning of GMRES, as . Interfacial 
markers are moved with material velocity obtained from the exact Riemann solver applied at  (i.e., at the 
interfacial edge between two adjacent cut-cells). 
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Figure 12. Sod test: comparison of density profiles for different discretization schemes. 

Sod test. This is a soft shock-tube problem initiated by placing discontinuity 

 (54)

in the single-phase -gas, at x=0.5 of the 1-unit-long computational domain. 

Computational results are shown in Figure 12 and Figure 13. Performances of all schemes (both Eulerian and  
I-SIM) are comparable at the rarefaction and shock waves. The major differences are near the contact. The I-SIM
captures the jump in density sharply, within a cell, while the Eulerian schemes smear the discontinuity over 5-8 
nodes. There are small over-heatings in the post-contact solution with I-SIM method, which are associated with 
under-resolution of the wave structure at the very beginning of the simulation, when all waves (rarefaction, contact 
and shock) are within one cell, and I-SIM is unable to single-out the contact sharply. 
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Figure 13. Sod test: density, pressure, velocity and entropy of I-SIM compared to analytical solution. 

Multifluid Sod test. Initial conditions of the previous test problem are altered to 

 (55) 

For this problem, the Eulerian methods exhibit unphysical pressure oscillations at the multi-material contact(1,2,16). A 
number of recipes have been developed to fix this problem(2,3,14,16,17), all of them leading to the loss of conservation 
near the interface. As one can see from our results in Figure 14, our I-SIM method does not suffer from 
pressure/velocity oscillations and, at the same time, it is conservative to machine accuracy, even near the contact.
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Figure 14. Multifluid Sod test: density, pressure, velocity and entropy  
of I-SIM compared to analytical solution. 

Stiff Gas-Gas Shock-Tube Problem. Our next numerical test was first introduced by Abgrall and Karni(3). The 
problem is set up by placing the following discontinuity 

 (56) 

at x=0.5 of the 1-unit-long computational domain. This results in very strong Msh=31 shock wave transmitted to the 
right fluid, which is very closely followed by the multi-material contact. The results of our I-SIM method are 
compared with the analytical solution in  Figure 15. Importantly, shock position is captured very accurately. The 
pair “contact-shock” waves are under-resolved for a quite significant time due to relatively small difference between 
the post-shock material velocity and shock speed. Nevertheless, only a minor under-heating is formed near the 
contact.

It is instructive to note that in order for the Newton’s method be convergent, we had to use tight linear tolerances 
even at the beginning of the Newton iterations. This is most probably associated with the elevated sensitivity of the 
non-linear solvers under stronger (stiff) shock conditions. 
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 Figure 15. Stiff gas-gas shock-tube: density, pressure, velocity and entropy  
of I-SIM compared to analytical solution. 

Stiff Liquid-Gas Interface Problem. Our last shock-tube problem was originally proposed by Saurel and 
Abgrall(34). Initially, liquid-gas interface is placed at x=0.7m of the 1-m-long computational domain. The left and 
right states are 

 (57) 

Computational results for t=0.24 ms are compared to the analytical solution in Figure 16. Both contact and 
transmitted shock positions are predicted accurately. No pressure oscillation is seen at the liquid-gas interface. The 
solution is conservative (to machine accuracy). Insignificant overheating is produced at the contact, which is tracked 
sharply, within one cell. 

Due to extreme conditions of this test, once-in-a-while Newton’s method has difficulty converging to the specified 
tolerance of , because of a limit cycle in its iterations. In these cases, we allow the solution to proceed to the 
next time step if the maximum permitted number of Newton iterations is exceeded and the maximum  error at the 
cycle is less than 10-2. This has no impact on conservation and little impact on accuracy of the method, as one can 
clearly see from Figure 16. 
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Figure 16. Stiff liquid-gas shock-tube: density, pressure, Mach and velocity of I-SIM compared to analytical 
solution. Solution is shown in dimensionless units, scaled with ,  and L=1.

V. Summary 

Implicit Sharp-Interface Method (I-SIM) is introduced. The method is based on Jacobian-free Newton-Krylov 
technology, combining interface tracking, high-order temporal (ESDIRK) and spatial (cut-cell+“recovery” 
Discontinuous Galerkin) discretizations, with all relevant physics (interface dynamics, convection, diffusion and 
chemical reaction/sources in fluids) fully-(non-linearly)-coupled, thereby avoiding operator-splitting time 
discretization errors. Performance (accuracy, convergence, robustness and efficiency) of our method is demonstrated 
to be accurate and efficient on a number of one-dimensional problems: low-speed manufactured solutions with 
viscous and heat conduction operators; slow-dynamic-time-scale shock tracking and multi-material interfaces under 
high-speed (shock-tube) flow conditions. We demonstrated the all-speed and all-fluid-property capabilities of our 
algorithm, including potentials for a wide range of flow speeds (from very-low-Mach-number to supersonic/large-
Msh-number), fluid viscosities (from inviscid/Euler-formulation to very viscous/ ), fluid conductivities and 
density ratios (gas-gas and gas-liquid interfaces). Two physics-based preconditioners (BD and IPV/PD) of the 
Krylov (GMRES) method are introduced, their efficiencies are analyzed in terms of “Eigenscopy” of the Jacobian 
matrices; and the efficacy is demonstrated at the limits  and . Future development/challenges would 
require the extension/demonstration to/of multi-D cut-cell meshing and the development of SAMR/multigrid 
algorithms for physics-based preconditioners implemented along the lines of the introduced here IPV/PD
preconditioner.   
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Appendix A: Recovered Degrees of Freedom for rDG0-3

Piecewise-constant, rDG0(3), R=2:

 (58) 

Piecewise-linear, rDG1(6), R=5:  

    (59) 

Piecewise-quadratic, rDG2(9), R=8:  

      (60) 
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Piecewise-cubic, rDG3(12), R=11:  

   (61) 

Appendix B: Inter-Cell Recovery (Diffusion Operator) 

The weak form of the diffusion operator 

    (62) 

can be written as the recovery form introduced by van Leer & Nomura(44):

   (63) 

A continuous “recovery” profile  between cells  and  is reconstructed from the in-cell discontinuous 
solutions*  as 

                                                          
* In-cell distribution of primitive variables is computed as , where  

and the integral is evaluated using a 12-point Gaussian quadrature formula. 
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             (64) 

where  and  is the Hermite polynomial of the  order.  is reconstructed in the weak 

sense, using the following van Leer's “recovery” constraints(44):

       (65) 

where . By including cells  and  we ensure that approximation by eq.(64) is at least as 
accurate as eq.(5), i.e. , and it involves the same compact stencil s=2 for 
interpolation. 

The necessary “recovery” quantities  and  are computed as: 

Piecewise-constant, rDG0(4):

   (66) 

Piecewise-linear, rDG1(8):

 (67) 

Piecewise-quadratic, rDG2(12):

 (68) 
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Piecewise-cubic, rDG3(16):

      (69) 

Appendix C: Butcher Tableau for ESDIRK3,4,5
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