etadata

citation and similar papers at core.ac.uk

Enerav

Enerav



**Innovation for Our Energy Future** 

## INVESTIGATION OF JUNCTION PROPERTIES ( CdS/CdTe SOLAR CELLS AND THEIR CORRELATION TO DEVICE PROPERTIES

R.G. Dhere, Y. Zhang, M.J. Romero, S.E. Asher, M. Young, B. To, R. Noufi and T.A. Gessert.

#### Acknowledgements- K. Ramanathan, T. Coutts. DOE contract # DE-AC36-99GO10337

NREL/PR-520-43286 Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

NREL is operated by Midwest Research Institute - Battelle

#### **Objective - Junction Studies**

•Understand the nature of the junction in the CdTe/CdS device
•Correlate the device fabrication parameters to the junction formation
•Develop a self consistent device model to explain the device properties

Detailed analysis of CdS/CdTe and SnO<sub>2</sub>/CdTe devices prepared using CSS CdTe.





#### **CdTe Device Structure**



### n<sup>+</sup>-p device model for CdS/CdTe device (6/95)based on blue QE loss:

- One sided junction with depletion width entirely in CdTe.
- Only field assisted collection.



## **Problems with the n<sup>+</sup>-p model**

•Phenomenological Model – can explain the device performance but without physical basis.

•CBD CdS has carrier concentration around 10<sup>13</sup>/cm<sup>3</sup> which is even less than CdTe

Here we present our interface/junction analysis using Secondary Ion Mass Spectrometry (SIMS), Modulated reflectance techniques and Electron Beam Induced Current (EBIC) to elucidate the junction properties.



## **SIMS Results**

- Roughness of the samples (RMS 0.5  $\mu$ m) makes it impossible to resolve the features at CdS/CdTe interface.
- NREL SIMS and Microscopy groups developed sample preparation with polishing to improve the interface resolution.









## **Observations**

- Interdiffusion at CdS/CdTe interface increases with T<sub>sub</sub> and CdCl<sub>2</sub> HT
- Accumulation of CI at CdS/CdTe interface after CdCl<sub>2</sub> HT. Level of CI increases with level of HT
- Cl is a n-type dopant in both CdS and CdTe; also in the intermixed alloy



# Photo- or Electro-Modulated Reflectance (PR or ER)





## **Reflectance modulation**

$$R = \frac{|n - n_a|}{|n + n_a|}$$

$$n^2 = \varepsilon_1 + i \varepsilon_2$$
,  $n_a^2 = \varepsilon_a$  (real)

#### Near band-gap $\Rightarrow$ major contribution is from $\Delta \epsilon_1$ :

$$\frac{\Delta R}{R} \approx \alpha \Delta \varepsilon_{\rm l}$$



## **Fitting Modulation Reflectance Spectrum**

$$\Delta \varepsilon_{1} = \frac{2e^{2}\hbar^{2} |\vec{e} \cdot \vec{P}_{cv}|^{2}}{m^{2}(\hbar\omega)^{2}} \left(\frac{2\mu_{0}}{\hbar^{2}}\right)^{3/2} \sqrt{\hbar\Omega_{0}} \left(G(\frac{E_{g}-\hbar\omega}{\hbar\Omega_{0}}) - \sqrt{\frac{E_{g}-\hbar\omega}{\hbar\Omega_{0}}}F(\frac{E_{g}-\hbar\omega}{\hbar\Omega_{0}})\right)$$

$$F(\eta) = \pi [A_i'^2(\eta) - \eta A_i^2(\eta)]$$

$$G(\eta) = \pi[A_i(\eta)B_i(\eta) - \eta A_i(\eta)B_i(\eta)]$$

Shen & Pollak, Phys. Rev. B 42, 7097 (1990)



## **Photo-reflectance**



## **Electro-reflectance**



# Effect of CdCl<sub>2</sub> treatment (by PR)





## **Modulated Reflectance**

- Modulated electro-reflectance and photoreflectance studies identify a region of high electric field (~32-35 kV/cm) for high efficiency CdS/CdTe devices. The field is present in the region of 1.45 eV material.
- SnO<sub>2</sub>/CdTe devices do not show high field region

# The high field region corresponds to Te-rich CdSTe alloy.





From  $E_{max} = 32 \text{ kV}$  and depletion width on p-side = 3  $\mu$ m (base on C-V and EBIC results)

Using 
$$E_{max} = qN_A X_p / \varepsilon_s$$
  
Gives  $N_A = 5.5 \times 10^{14} \text{ cm}^{-3}$ 

Evaluation of N<sub>D</sub> based on SIMS and EBIC results



## EBIC

- SEM and HR-EBIC measurements performed on high V<sub>oc</sub> (835 mV) device.
- Measurements on the cross-section of the device. Shows EBIC response close to CdS/CdTe interface.







#### Electron-beam-induced-current







#### **Device model**



| Device structure              | V <sub>oc</sub> , mV |
|-------------------------------|----------------------|
| SnO <sub>2</sub> /CdTe        | 600-650              |
| CdS/CdTe as dep               | 720-750              |
| CdS/CdTe w/ CdCl <sub>2</sub> | 840-850              |

• Lower V<sub>oc</sub> devices are true hetero-junctions, whereas the devices with CdCl2 treatment have a junction between n<sup>+</sup> Te-rich CdSTe alloy (doped with Cl) and p-type CdTe with compatible cubic structure i.e. quasi-homojunction.

• A true hetero-junction CdS/CdTe device performance will be dominated by interface defects at the hetero-interface which will be within the depletion region. This may be the case for as deposited devices fabricated at lower temperatures and SnO<sub>2</sub>/CdTe devices giving low Voc.

• Role of CdS is mainly to produce Te rich alloy layer that gets doped to ntype during CdCl<sub>2</sub> process and passivation of the surface.